
Detecting Intermittent Steering Activity
Development of a Phase-detection Algorithm

Hugo M. Da Silva Peixoto de Aboim Chaves, Jasper A. Pauwelussenc, Mark Muldera,b, Marinus M van Paassena,
Riender Happeeb & Max Muldera

aDepartment of Aerospace Engineering, Delft University of Technology
bDepartment of Biomechanical Engineering, Delft University of Technology

Delft, The Netherlands
cDepartment of Perceptual & Cognitive Systems, TNO Behavioural & Societal Sciences

Soesterberg, The Netherlands
hugochaves_ist@hotmail.com; jasper.pauwelussen@tno.nl; mark.mulder@tudelft.nl; m.m.vanpaassen@tudelft.nl;

r.happee@tudelft.nl; m.mulder@tudelft.nl

Abstract—Drivers usually maintain an error-neglecting
control strategy (passive phase) in keeping their vehicle on the
road, only to change to an error-correcting approach (active
phase) when the vehicle state becomes inadequate. We developed
an algorithm that is capable of detecting whether the driver is
currently error-neglecting or error-correcting in straight lane
keeping tasks. The development of this algorithm was part of a
larger research project, DrivObs, that aims at creating an
advanced driver observation tool. Performance of the algorithm
in a straight lane driving task with lateral vehicle position
perturbations was tested in a Monte Carlo simulation using
Matlab/Simulink. Results show that the algorithm is capable of
correctly detecting active or passive phase 90-95% of the time,
depending on vehicle speed and algorithm settings.

Keywords—Intermittent driver activity, driver observation,
Monte Carlo simulation, human factors, driver support.

I. INTRODUCTION

In 1988, [1] suggested that drivers usually maintain an
error-neglecting control strategy (passive phase) in keeping
their vehicle on the road, only to change to an error-correcting
approach (active phase) when, in the opinion of the driver, the
vehicle state becomes inadequate. Inadequacy was defined in
terms of time-to-line-crossing (TLC). Drivers chose to
commence error-correcting at approximately the same
TLC≈1.4s for different driving speeds. Additionally, [1]
reported that drivers attempted to switch to error-correcting
when the vehicle state could still be smoothly improved,
avoiding the need for harsh corrections. Given these
observations on driver behavior, one may speculate on how
distractions and other performance reducing factors can
(negatively) impact the driver’s switch to active phase.

In 1967, Senders [2] introduced the notion that drivers build
an internal, predictive model of the vehicle behavior, and
couple this with visual cues to control the vehicle. As such,
when the driver’s focus is not entirely dedicated to the driving
task, the driver will tend to over-rely on this internal model of
the vehicle without using the visual cues to update it as
frequently as actually required. This in turn means that the
internally predicted vehicle state will also tend to deviate more
with respect to the real vehicle state compared to an attentive
driving situation. This implies that it will be common, under

these circumstances for the driver to assume that the vehicle
state is acceptable, while in reality it is not. The main
consequence is that the driver will tend to take longer to change
to error-correcting behavior. From this it also follows that,
because the driver is likely to have slower responses to changes
in the vehicle state, these responses will need to be stronger,
leading to more extreme steering corrections.

We developed an algorithm that is capable of detecting
whether the driver is currently error-neglecting or error-
correcting in straight lane keeping tasks. The development of
this algorithm was part of a larger research project, DrivObs,
that aims at creating advanced driver observation tools
translating observed driving behavior into meaningful objective
measures regarding the state of the driver and the resulting
control strategies. DrivObs tools can be used off-line, to study
driver behavior adaptation to proposed vehicle innovations [3].
This paper aims at on-line application, developing robust real-
time driver state estimation such that the most adequate driver
assistance can be given when needed. Detecting whether the
driver is active or passive and whether the driver should be
active or passive with regard to the current traffic context is
important information with which it is possible to determine
whether the driver is distracted or not and needs to be
supported.

The work presented in this article details the development
of an error-neglecting / error-correcting phase (subsequently
called passive phase and active phase) detection algorithm.
Performance of the algorithm was tested in a Monte Carlo
simulation using Matlab/Simulink.

II. THE PHASE-DETECTION ALGORITHM

As described in the previous section, the driver may exhibit
two distinct behaviors while performing a lane keeping task: a
“standard” passive behavior and a corrective active behavior.
The main differences between these phases are related to the
‘steering energy’ and the steering velocity, with the driver
generally moving the steering wheel faster and more
energetically during active phases. We defined the steering
energy with the ‘active factor’ derived from the steering angle,
as described below. A robust phase detection algorithm has
been implemented using these 2 variables in what was called
the Trigger-Hold Mechanism.

A. Definition of the Active Factor

The simplest energy related function is the root mean
square (RMS) of a signal x with n number of samples. Two
issues must be taken into account regarding the definition of
the energy function though:

• The standard RMS function is centered around zero, which is
coincidentally a good estimation of the ‘neutral’ steering
position. However, a better approach is to estimate the neutral
steering position using a forgetting saturated average of the
steering angle. The advantage of using this approximation is
two-fold: on the one hand, it overcomes any offset the
steering angle sensor may have, and on the other hand it is a
relevant reference in steady state following of (mild) curves.

• Because the goal of the steering energy function is to obtain
an ‘instantaneous’ energy measure, instead of the average
energy of the past steering history, it is important to include a
forgetting factor that ensures a decreasing weight is given to
older data. This forgetting parameter however should be large
enough to ensure some temporal inertia, to be able to translate
the amplitude of multiple brief steering actions into the level
of activity during an active phase.

Taking these two considerations into account, we use the
ActiveFactor defined in the following as a measure for the
steering energy. The ActiveFactor of a steering wheel signal δH
at the time instant n is given by:

 2

1
0

()
1

() ()
1 neutral

n
n k

H Hn
k

ActiveFactor n k k

 (1)

where λ is the forgetting factor and
neutral

H
 is the neutral steering

wheel position. The forgetting factor λ is chosen such that 95%
of the total forgetting weight is given to the last 0.8 s of
recorded samples.

B. Definition of the Steering Velocity

The steering velocity function is simply defined as the
derivative of the steering angle signal:

H
 .

C. The Trigger-Hold Mechanism

The phase detection algorithm employs threshold based
trigger and hold switches to enhance robustness, and to prevent
spurious switches. The trigger-hold mechanism has two
possible outputs being 0 (passive) and 1 (active steering).

The ActiveFactor has a relatively high temporal inertia to
allow it to cope with the oscillations of the steering signal

without being too affected by them, while
H

 has an almost

negligible temporal inertia, to ensure it reacts quickly to

changes in the steering angle. As such, the
H

 will tend to lead,

with ActiveFactor lagging behind when detecting active and
passive phases. Due to their distinct nature, we use the steering
velocity to ‘trigger’ the active phase detection, and then use the
ActiveFactor to ‘hold’ the active phase for as long as its value
shows prolonged steering.

1) The Trigger: steering velocity. The goal of the steering
velocity is to trigger the active phase as soon as a certain upper

threshold, Triggermax, is reached. Conversely, it could also be
used to trigger the passive phase as soon as a certain lower
threshold, Triggermin, is crossed. However, a low steering
velocity has no direct implications for detecting the driver’s
phase as this can happen in both active and passive phases. It
is therefore desirable to make the lower boundary inaccessible
in practice when

H
 is small (for example giving Triggermin a

negative value). The shape of the phase function in the
transition region (0<Trigger<1) is directly related to the value
of the Hold parameter and as such cannot yet be defined at this
point.

2) The Hold: ActiveFactor. The purpose of the Hold
parameter is to maintain the active or passive phase based on
the ActiveFactor value. As such, when the ActiveFactor is
equal or higher than an upper boundary Holdmax (using a re-
dimensioning process similar to the one for the trigger yields
Hold ≥ 1), the phase function should “hold” the active phase,
i.e., always return the value one in the transition phase.
Conversely, when the ActiveFactor is smaller or equal than a
lower boundary Holdmin (i.e., Hold ≤ 0), the phase function
should not hold an active phase, by returning the value zero
unless the trigger is ‘pulled’, i.e., in the transition phase. The
shape of the phase function in the transition region can now be
generalized for any Hold between zero and one by defining the
hold axis.

3) Trigger-hold equations. To obtain a mathematical
description of the trigger-hold algorithm, it is important to
start by obtaining the position of the transition vertex.
Inspection of the latter shows that the vertex is given by the
point V = [1 - Hold ; Hold]T. After obtaining the position of
the vertex, the transition segments are given by eq’s (2) and
(3).

 (0 1)
1

Hold
Phase Trigger Hold Trigger

Hold

 (2)

(1 1)

1
(1)

Phase Hold Trigger

Hold
Hold Trigger Hold

Hold

 (3)

Coupling the transition equations with the trigger equations, the
phase function, finally, is given by eq. (4). The algorithm
interpretation based on the numerical value of Phase can be
given by eq. (5).

1

1

0 0

0 1

[(1)] 1 1

1 1

Hold

Hold

Hold

Hold

Trigger

Trigger Trigger Hold

Hold Trigger Hold Hold Trigger

Trigger

Phase

 (4)

0

1

1

Passive

Passive Active

Active

Passive Phase

Maintain Previous Phase 0 + Phase

Active Phase

 (5)

Where δPassive and δActive are the margins above zero and
below one, respectively, for which a decision about the phase
can already be made. In this work, they were chosen as δPassive
= δActive = 0.05. To choose these values, it was considered that
the phase function somewhat reflected the percentage of
certainty for the phase to be active or passive, and as such this
short margin should correspond to a very high certainty region
already. It is important to remark that this choice only feebly
affects the transition regions from active to passive and vice-
versa (because when the algorithm is well calibrated it spends
very little time in the transition zone).

The calibration of the Trigger-Hold algorithm corresponds,
on the first level, to choosing adequate values of Triggermin,
Triggermax, Holdmin and Holdmax. On a second level, it also
depends on the way that the ActiveFactor and the steering
velocity are defined (namely on their forgetting factors).

III. LANE KEEPING MONTE-CARLO SIMULATIONS

To select optimal thresholds, and to assess the efficacy of
the algorithm we created a straight lane keeping simulation
with perturbations and distraction in MATLAB/Simulink. The
simulation was executed as a Monte Carlo simulation to obtain
a large variety of tested driving situations and algorithm
parameters in order to investigate the quality and robustness of
the algorithm. The simulated environment was run using a
simple laptop computer.

A. MATLAB/Simulink model

The simulation model used for the Monte Carlo simulations
was a simple compensatory tracking task with the driver
tracking the center of a straight lane, see Figure 1.

Figure 1. Block diagram of the general driver-vehicle closed loop simulation

model as used in our Monte Carlo simulations.

The vehicle dynamics are based on the bicycle model, which is
a 2 degrees of freedom model that can be written in the state-
space form given by eq. (6).

* *

2 2

f r f r f

y y

Wheels

ff r f r

C C a C b C C
V

V Vm V m V m

a Ca C b C a C b Cr r

JJ V J V

 (6)

where *
y

V is the lateral velocity in m/s; r is the yaw rate in

rad/s; Cf and Cr are the respective front and rear cornering
stiffnesses of respectively the front and rear axle in N/rad; m is
the vehicle mass in kg and J is the vehicle moment of inertia in
kg·m2; a and b are the respective distances from the front and
rear axles to the center of gravity in m; V is the vehicle velocity
in m/s and δWheels is the steering angle of the front wheels in
rad.

A driver model was applied consisting of three different blocks
as shown in Figure 2. The position predictor block represents
the internal model of the driver with regards to the vehicle
dynamics; the reference path generator represents the driver’s
expectations with regards to the desired trajectory; and the
control block represents the action dynamics that determine
how the driver responds to perceived deviations from the
desired reference trajectory.

The dynamics of the position predictor in state-space form
were written as in eq. (7).

*

[0 0 1]

y

predict predict

V

r
y V t

y

 (7)

with y as the current lateral vehicle position in m; ypredict as the
predicted future lateral vehicle position in m; tpredict the
‘lookahead’ time in s the driver uses to predict the future
vehicle position; and ψ the yaw angle in rad (r =).

Figure 2. Extended block diagram of the driver-vehicle interaction where yref

represents the driver’s reference path; ypredict the predicted lateral vehicle
position; epredict the estimated future lateral error with respect to the lateral

reference path; δH the steering wheel input to the vehicle; x the longitudinal
position of the vehilce; y the lateral position of the vehicle; ψ the yaw angle of

the vehicle; and V the speed of the vehicle.

Based on assumed driver equalization adjustment in the
form of a low-frequency lead according to the Cross-over
Model of McRuer et al. [4], [5], the control part of the driver
was determined to have the transfer function as in (8).

 (1) delay
sWheelsH

Control lead

predict predictref

SR
H K s e

e y y

 (8)

with δH the steering wheel angle in rad; SR the steering wheel
to front wheel ratio; epredict the estimated future lateral error
with respect to the lateral reference trajectory in m; K the
lateral gain in rad/m; τlead the lead time in s; τdelay the time
delay in s; and s the Laplace operator. TABLE I shows the
values used for the parameters in the simulation model.

Design and Procedure

1) Independent Variables. Three independent variables
were used in this experiment. Vehicle speed was varied to see
how that would influence the performance of the phase
detection algorithm, V = {50, 80, 120}km/h. Furthermore, we

were interested in effects of different calibrations of the phase
detection algorithm, particularly the Hold, and used values of
Holdmin = {0, 1, 2, 4, 6, 8}deg and Holdmax = {3, 6, 9, 12,
15}deg. Together, these independent variables yielded 3x6x5
= 90 different conditions that were tested. Each condition was
repeated 100 times.

TABLE I. MONTE CARLO SIMULATION MODEL PARAMETERS

Parameter Value Source
vehicle

Cf 95000 N/rad [6]
Cr 85000 N/rad [6]
m 1400 kg [6]
J 3000 kg·m2 [6]
a 1.125 m [6]
b 1.375 m [6]

SR 15:1 [6]
driver

tpredict 1 s [7], [8]
Klateral 0.13 rad/m based on [5], ωc = 3.3 rad/s
τlead 0.5 s [5]
τdelay 0.37 s based on [5], ωi = 2.0 rad/s
yref 0 m -

ωc is the cross-over frequency

ω1 is the forcing function bandwidth

2) Simulation Procedure. The experiment consisted in
keeping the simulated vehicle on the center of the simulated,
infinite straight lane. The duration of each simulation was set
to 1000 s in an attempt to assure asymptotic results for each
performance parameter of the phase algorithm. The velocity
was kept constant during each simulation run.

To ensure a rich sample of active and passive phases, a
‘distraction switch’ was included in the Simulink model which
randomly switched between an active or a passive simulated
driver behavior. When the switch was on passive, this meant
that there was zero driver corrective output for as long as the
distraction switch was on, regardless of the vehicle state.

In order to elicit corrective steering actions, passive noise
was added to the steering angle such that no single run would
yield the exact same results. This passive noise was created
from a sum of 4 sinusoids with random amplitude and random
period. Details are given in TABLE II.

TABLE II. PASSIVE NOISE CHARACTERISTICS

Amplitude (deg) Period (s)
0.4·(1+0.5·rand) 45·(1+0.3·rand)-1
0.3·(1+0.5·rand) 17·(1+0.2·rand)-1
0.04·(1+0.5·rand) 7·(1+0.1·rand)-1
0.04·(1+0.5·rand) 2·(1+0.1·rand)-1

rand represents a random, normally distributed number with zero mean and standard deviation one.

B. Evaluation Parameters

1) Match Percentage. The most simple and intuitive way
to compare the phase distinction algorithm with a reference is
by measuring the percentage of time they match. While this
parameter provides a great overview on the general
performance of the algorithm, it is incapable of providing a
deeper understanding about how it is working, namely how
well is the algorithm reacting to the transitions between phases

and how well is it managing to hold the active and passive
phases. As such, additional parameters will need to be devised
to provide a deeper understanding of the algorithm’s
performance.

2) Activation and Deactivation Times. In order to better
understand how the algorithm behaves in the transition
regions, one possibility is to measure the average time
difference between the algorithm and the reference for both
the passive-active (activation) and active-passive
(deactivation) transitions. While these parameters do not
reflect the performance of the algorithm as a whole, they
provide a very good understanding on how well the trigger and
the hold are managing the activation and deactivation
transitions, respectively.

3) Interruption and Overextension Ratios. To better
evaluate how well the algorithm is able to hold the active
phases (whichis one of the hardest parts to tune properly
regarding the choice of the hold parameters), two concepts are
introduced: interruptions and overextensions.

a) Interruptions: Interruptions are events where the
reference phase remains active, but the algorithm is unable to
hold the active phase, and as such yields a (usually, but not
necessarily, short) passive output surrounded in between
active outputs. Figure 3a illustrates this situation. Having a
high interruption ratio (number of interruptions / number of
active phases) can be considered a good indicator that the
algorithm’s hold is too weak, and therefore Holdmin and
Holdmax should probably be decreased.

b) Overextensions: Overextensions are are the opposite
of interruptions, corresponding to situations where the
reference signal yields a passive phase in between two active
phases, but the algorithm’s hold is too strong, and as such
overextends in this passive region, interconnecting the active
phases, as illustrated in Figure 3b. Similarly to the interruption
rate, the overextension rate is defined as the quotient between
the number of overextensions and the number of active phases.
Having a high overextension ratio will, as opposed to a high
interruption ratio, indicate that the hold is probably too strong.
The Hold parameters should, in that case, be increased to
improve the performance of the algorithm.
C. Results

1) Match Percentage. Inspection of Figure 4a-c shows that
the algorithm is capable of correct phase distinction around
90-95% of the time for a large zone of possible combinations
of Holdmin and Holdmax and all three vehicle speeds. For 120
km/h the shape of the match percentage surface is slightly
different, with a maximum value reached around Holdmin = 4,
and then a slight decrease for larger values of this parameter. It
is also interesting to note that the match percentage appears to
be much more affected by Holdmin than by Holdmax.

2) Activation and Deactivation Times. The activation
times for the different combinations of Holdmin and Holdmax
were practically zero for each of the three speeds (data not
shown). Deactivations times were found to be in the range
between 0-0.5 s (data not shown) in a similarly dependent

manner. Holdmax and speed had little influence, while
deactivation time decreased with increasing Holdmin.

3) Interruptions and Overextension Ratios
Figure 6a-c show that for the least amount of

overextensions both Holdmin and Holdmax should both be as
large as possible. As the velocity decreases the interruption
ratio (Figure 5a-c) becomes much more affected by under-
holding calibrations (this is particularly noticeable for Holdmin ≤
4). This effect seems to be non-linearly distributed with vehicle

velocity. At 120 km/h overextension is not a problem for any of
the Holdmin – Holdmax combinations. At 80 km/h, however, a
combination of low Holdmin and low Holdmax greatly increases
the number of overextensions. A low Holdmin has a noticeably
more negative effect than Holdmax. However, at 50 km/h the
increase of the number of overextensions for low Holdmin and
low Holdmax combinations is reduced again. A low Holdmin still
has a more negative effect than a low Holdmax.

(a) (b)

Figure 3. Schematic representation of an interruption (a) and an overextension (b) in the Phase(t) plot. The dashed (blue) lines represent the reference phase
signal (i.e. what the driver is really doing), while the solid (red) lines represent the phase signal as estimated by the phase distinction algoritm.

IV. DISCUSSION

We developed an algorithm to detect whether a driver
currently is error-neglecting (passive phase) or error-correcting
(active phase) with regards to a lane keeping task on a straight
road. The first test of our algorithm was performed with a
Monte Carlo simulation so that we could evaluate the two most
important parameters of our algorithm, the minimum Holdmin
and the maximum Holdmax, over a range of different driving
speeds. Holdmin and Holdmax affect the strength with which the
algorithm ‘holds’ on to a current driver state (either active or
passive phase). To get the best ‘overall’ performance out of the
algorithm, the results of the Monte Carlo simulation suggest
choosing a high Holdmin and a high Holdmax gives the best
match over time with the actual behavior of the driver –
approximately 90-95%, see Figure 4a-c. This result is also
robust for the different speeds at which we tested the algorithm.

However, the smaller Holdmin, the more difficult it will be
for the algorithm to switch into error-neglecting mode (passive
phase). This is reflected in overextension results shown in
Figure 6a-c. This figure indicates that the smaller Holdmin, the
more likely the algorithm is to ‘hold’ on to the active phase, in
other words, the overextensions increase. The smaller Holdmax,
the more difficult it will be for the algorithm to switch into
error-correcting mode (active phase). This also follows from
Figures 6a-c. The opposite effect, however, can be detected for
the interruptions. The larger Holdmin, the easier the algorithm
will switch from active phase to passive phase (see Figure 5a-
c). A large Holdmax appears to be less relevant from inspection
of Figure 5a-c.

Interestingly, the choice of Holdmax and Holdmin should be a
compromise between few interruptions and more
overextensions or more interruptions and fewer overextensions.
Large Holdmin (>4) are favourable for few overextensions, i.e.

for reducing the number of undetected passive phases. Small
Holdmin (<4) are favourable for reducing the number of
interruptions, i.e. for reducing the number of undetected active
phases. In other words, when the active phase (error-correcting)
is more of interest, a small Holdmin is a good choice; when the
passive phase (error-neglecting) is more of interest, a larger
Holdmin is a better choice. The choice of Holdmax is less
relevant for the overextensions or interruptions.

V. CONCLUSIONS

The driver error-neglecting / error-correcting distinction
algorithm presented in this article was evaluated using a Monte
Carlo simulation with MATLAB/Simulink. The results of the
simulation show that overall performance of the algorithm is
good, matching 90-95% of the driver’s simulated behavior.
Settings of the algorithm’s Hold thresholds, .i.e. bounds that
determine how quickly the algorithm switches between error-
neglecting and error-correcting, need to be finely balanced,
though. Depending on the driver state of interest, the lower
threshold of Hold, Holdmin, should be chosen properly. A high
Holdmin (>4) is a good choice when error-neglecting behavior is
of most interest; a low Holdmin (<4) is a good choice when
error-correcting behavior is of most interest.

Future work will evaluate the algorithm performance in
more realistic driving settings in our fixed base driving
simulator and ultimately in a real test-vehicle. Furthermore, the
algorithm should be extended to be able to work in lane-
keeping conditions other than on a straight lane.

ACKNOWLEDGMENT

The work presented in this article was funded by the Dutch
Ministry of Economic affairs, grant no. HTASI09004–E!5395
of the Driver Observation in Car Simulators (DrivObs) project
(http://drivobs.3me.tudelft.nl).

(a) V = 50 km/h

(b) V = 80 km/h

(c) V = 120 km/h

Figure 4. Match percentage averages after the 100 runs of the Monte Carlo simulations for each of the different combinations of V, Holdmin and Holdmax.

(a) V = 50 km/h

(b) V = 80 km/h

(c) V = 120 km/h

Figure 5. Interruption ratio averages after on the 100 runs of the Monte Carlo simulations for each of the different combinations of V, Holdmin and Holdmax.

(a) V = 50 km/h

(b) V = 80 km/h

(c) V = 120 km/h

Figure 6. Overextension ratio averages after the 100 runs of the Monte Carlo simulations for each of the different combinations of V, Holdmin and Holdmax.

REFERENCES
[1] H. Godthelp, “The Limits of Path error-neglecting in Straight Lane

Driving,” Ergonomics, vol. 31, no. 4, pp. 609-619, 1988.

[2] J. W. Senders, A. B. Kirstofferson, W. H. Levison, C. W. Dietrich, and
J. L. Ward, “The Attentional Demand of Automobile Driving,” Highway
Research Record, vol. 195, pp. 15-33, 1967.

[3] M. Saffarian, J. C. F. de Winter, R. Happee, “Enhancing driver car
following performance through distance and acceleration display”. In
Press. IEEE Transactions on Systems Man & Cybernetics, Part A, 2012.

[4] D. T. McRuer, D. Graham, E. S. Krendel, and W. Reisener, “Human
Pilot Dynamics in Compensatory Systems. AFFDL-TR-65-15.,”
Hawthorne, CA, USA, 1965.

[5] D. T. McRuer and H. R. Jex, “A Review of Quasi-Linear Pilot Models,”
IEEE Transactions on Human Factors in Electronics, vol. 8, no. 3, pp.
231-249, 1967.

[6] G. J. Heydinger, R. A. Bixel, W. R. Garrott, M. Pyne, J. G. Howe, and
D. A. Guenther, “Measured vehicle inertial parameters-NHTSA’s data
through November 1998,” Transportation Research, Society of
Automotive Engineers, 400 Commonwealth Dr, Warrendale, PA, USA,
1999.

[7] S. Monsma and M. V. Oort, “Subjective Evaluation of Handling
Behaviour related to Tyre Dependent Driver Parameters,” AVEC ‘10,
574-579, 2010.

[8] J. Pauwelussen, “A basis for driver state estimation,” AVEC ‘10, 622-
627, 2010.

