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Abstract—Drivers usually maintain an error-neglecting 
control strategy (passive phase) in keeping their vehicle on the 
road, only to change to an error-correcting approach (active 
phase) when the vehicle state becomes inadequate. We developed 
an algorithm that is capable of detecting whether the driver is 
currently error-neglecting or error-correcting in straight lane 
keeping tasks. The development of this algorithm was part of a 
larger research project, DrivObs, that aims at creating an 
advanced driver observation tool. Performance of the algorithm 
in a straight lane driving task with lateral vehicle position 
perturbations was tested in a Monte Carlo simulation using 
Matlab/Simulink. Results show that the algorithm is capable of 
correctly detecting active or passive phase 90-95% of the time, 
depending on vehicle speed and algorithm settings. 

Keywords—Intermittent driver activity, driver observation, 
Monte Carlo simulation, human factors, driver support. 

I.  INTRODUCTION 

In 1988, [1] suggested that drivers usually maintain an 
error-neglecting control strategy (passive phase) in keeping 
their vehicle on the road, only to change to an error-correcting 
approach (active phase) when, in the opinion of the driver, the 
vehicle state becomes inadequate. Inadequacy was defined in 
terms of time-to-line-crossing (TLC). Drivers chose to 
commence error-correcting at approximately the same 
TLC≈1.4s for different driving speeds. Additionally, [1] 
reported that drivers attempted to switch to error-correcting 
when the vehicle state could still be smoothly improved, 
avoiding the need for harsh corrections. Given these 
observations on driver behavior, one may speculate on how 
distractions and other performance reducing factors can 
(negatively) impact the driver’s switch to active phase.  

In 1967, Senders [2] introduced the notion that drivers build 
an internal, predictive model of the vehicle behavior, and 
couple this with visual cues to control the vehicle. As such, 
when the driver’s focus is not entirely dedicated to the driving 
task, the driver will tend to over-rely on this internal model of 
the vehicle without using the visual cues to update it as 
frequently as actually required. This in turn means that the 
internally predicted vehicle state will also tend to deviate more 
with respect to the real vehicle state compared to an attentive 
driving situation. This implies that it will be common, under 

these circumstances for the driver to assume that the vehicle 
state is acceptable, while in reality it is not. The main 
consequence is that the driver will tend to take longer to change 
to error-correcting behavior. From this it also follows that, 
because the driver is likely to have slower responses to changes 
in the vehicle state, these responses will need to be stronger, 
leading to more extreme steering corrections. 

We developed an algorithm that is capable of detecting 
whether the driver is currently error-neglecting or error-
correcting in straight lane keeping tasks. The development of 
this algorithm was part of a larger research project, DrivObs, 
that aims at creating advanced driver observation tools 
translating observed driving behavior into meaningful objective 
measures regarding the state of the driver and the resulting 
control strategies. DrivObs tools can be used off-line, to study 
driver behavior adaptation to proposed vehicle innovations [3]. 
This paper aims at on-line application, developing robust real-
time driver state estimation such that the most adequate driver 
assistance can be given when needed. Detecting whether the 
driver is active or passive and whether the driver should be 
active or passive with regard to the current traffic context is 
important information with which it is possible to determine 
whether the driver is distracted or not and needs to be 
supported. 

The work presented in this article details the development 
of an error-neglecting / error-correcting phase (subsequently 
called passive phase and active phase) detection algorithm. 
Performance of the algorithm was tested in a Monte Carlo 
simulation using Matlab/Simulink.  

II. THE PHASE-DETECTION ALGORITHM 

As described in the previous section, the driver may exhibit 
two distinct behaviors while performing a lane keeping task: a 
“standard” passive behavior and a corrective active behavior. 
The main differences between these phases are related to the 
‘steering energy’ and the steering velocity, with the driver 
generally moving the steering wheel faster and more 
energetically during active phases. We defined the steering 
energy with the ‘active factor’ derived from the steering angle, 
as described below. A robust phase detection algorithm has 
been implemented using these 2 variables in what was called 
the Trigger-Hold Mechanism.  



 

A. Definition of the Active Factor  

The simplest energy related function is the root mean 
square (RMS) of a signal x with n number of samples. Two 
issues must be taken into account regarding the definition of 
the energy function though: 

• The standard RMS function is centered around zero, which is 
coincidentally a good estimation of the ‘neutral’ steering 
position. However, a better approach is to estimate the neutral 
steering position using a forgetting saturated average of the 
steering angle. The advantage of using this approximation is 
two-fold: on the one hand, it overcomes any offset the 
steering angle sensor may have, and on the other hand it is a 
relevant reference in steady state following of (mild) curves. 

• Because the goal of the steering energy function is to obtain 
an ‘instantaneous’ energy measure, instead of the average 
energy of the past steering history, it is important to include a 
forgetting factor that ensures a decreasing weight is given to 
older data. This forgetting parameter however should be large 
enough to ensure some temporal inertia, to be able to translate 
the amplitude of multiple brief steering actions into the level 
of activity during an active phase. 

Taking these two considerations into account, we use the 
ActiveFactor defined in the following as a measure for the 
steering energy. The ActiveFactor of a steering wheel signal δH  
at the time instant n is given by: 
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where λ is the forgetting factor and 
neutral

H
 is the neutral steering 

wheel position. The forgetting factor λ is chosen such that 95% 
of the total forgetting weight is given to the last 0.8 s of 
recorded samples. 

B. Definition of the Steering Velocity 

The steering velocity function is simply defined as the 
derivative of the steering angle signal: 

H
 .  

C. The Trigger-Hold Mechanism 

The phase detection algorithm employs threshold based 
trigger and hold switches to enhance robustness, and to prevent 
spurious switches. The trigger-hold mechanism has two 
possible outputs being 0 (passive) and 1 (active steering).  

The ActiveFactor has a relatively high temporal inertia to 
allow it to cope with the oscillations of the steering signal 

without being too affected by them, while 
H

 has an almost 

negligible temporal inertia, to ensure it reacts quickly to 

changes in the steering angle. As such, the 
H

 will tend to lead, 

with ActiveFactor lagging behind when detecting active and 
passive phases. Due to their distinct nature, we use the steering 
velocity to ‘trigger’ the active phase detection, and then use the 
ActiveFactor to ‘hold’ the active phase for as long as its value 
shows prolonged steering. 

1) The Trigger: steering velocity. The goal of the steering 
velocity is to trigger the active phase as soon as a certain upper 

threshold, Triggermax, is reached. Conversely, it could also be 
used to trigger the passive phase as soon as a certain lower 
threshold, Triggermin, is crossed. However, a low steering 
velocity has no direct implications for detecting the driver’s 
phase as this can happen in both active and passive phases. It 
is therefore desirable to make the lower boundary inaccessible 
in practice when 

H
  is small (for example giving Triggermin a 

negative value). The shape of the phase function in the 
transition region (0<Trigger<1) is directly related to the value 
of the Hold parameter and as such cannot yet be defined at this 
point. 

2) The Hold: ActiveFactor. The purpose of the Hold  
parameter is to maintain the active or passive phase based on 
the ActiveFactor value. As such, when the ActiveFactor is 
equal or higher than an upper boundary Holdmax (using a re-
dimensioning process similar to the one for the trigger yields 
Hold ≥ 1), the phase function should “hold” the active phase, 
i.e., always return the value one in the transition phase. 
Conversely, when the ActiveFactor is smaller or equal than a 
lower boundary Holdmin (i.e., Hold ≤ 0), the phase function 
should not hold an active phase, by returning the value zero 
unless the trigger is ‘pulled’, i.e., in the transition phase. The 
shape of the phase function in the transition region can now be 
generalized for any Hold between zero and one by defining the 
hold axis. 

3) Trigger-hold equations. To obtain a mathematical 
description of the trigger-hold algorithm, it is important to 
start by obtaining the position of the transition vertex. 
Inspection of the latter shows that the vertex is given by the 
point V = [1 - Hold ; Hold]T. After obtaining the position of 
the vertex, the transition segments are given by eq’s (2) and 
(3).  
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Coupling the transition equations with the trigger equations, the 
phase function, finally, is given by eq. (4). The algorithm 
interpretation based on the numerical value of Phase can be 
given by eq. (5). 
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Where δPassive and δActive are the margins above zero and 
below one, respectively, for which a decision about the phase 
can already be made. In this work, they were chosen as δPassive 
= δActive = 0.05. To choose these values, it was considered that 
the phase function somewhat reflected the percentage of 
certainty for the phase to be active or passive, and as such this 
short margin should correspond to a very high certainty region 
already. It is important to remark that this choice only feebly 
affects the transition regions from active to passive and vice-
versa (because when the algorithm is well calibrated it spends 
very little time in the transition zone). 

The calibration of the Trigger-Hold algorithm corresponds, 
on the first level, to choosing adequate values of Triggermin, 
Triggermax, Holdmin and Holdmax. On a second level, it also 
depends on the way that the ActiveFactor and the steering 
velocity are defined (namely on their forgetting factors). 

III. LANE KEEPING MONTE-CARLO SIMULATIONS 

To select optimal thresholds, and to assess the efficacy of 
the algorithm we created a straight lane keeping simulation 
with perturbations and distraction in MATLAB/Simulink. The 
simulation was executed as a Monte Carlo simulation to obtain 
a large variety of tested driving situations and algorithm 
parameters in order to investigate the quality and robustness of 
the algorithm. The simulated environment was run using a 
simple laptop computer. 

A. MATLAB/Simulink model 

The simulation model used for the Monte Carlo simulations 
was a simple compensatory tracking task with the driver 
tracking the center of a straight lane, see Figure 1.  

 
Figure 1.  Block diagram of the general driver-vehicle closed loop simulation 

model as used in our Monte Carlo simulations. 

The vehicle dynamics are based on the bicycle model, which is 
a 2 degrees of freedom model that can be written in the state-
space form given by eq. (6). 
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where *
y

V is the lateral velocity in m/s; r is the yaw rate in 

rad/s; Cf and Cr are the respective front and rear cornering 
stiffnesses of respectively the front and rear axle in N/rad; m is 
the vehicle mass in kg and J is the vehicle moment of inertia in 
kg·m2; a and b are the respective distances from the front and 
rear axles to the center of gravity in m; V is the vehicle velocity 
in m/s and δWheels is the steering angle of the front wheels in 
rad. 

A driver model was applied consisting of three different blocks 
as shown in Figure 2. The position predictor block represents 
the internal model of the driver with regards to the vehicle 
dynamics; the reference path generator represents the driver’s 
expectations with regards to the desired trajectory; and the 
control block represents the action dynamics that determine 
how the driver responds to perceived deviations from the 
desired reference trajectory.  

The dynamics of the position predictor in state-space form 
were written as in eq. (7). 
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with y as the current lateral vehicle position in m; ypredict as the 
predicted future lateral vehicle position in m; tpredict the 
‘lookahead’ time in s the driver uses to predict the future 
vehicle position; and ψ the yaw angle in rad (r =  ). 

 
Figure 2.  Extended block diagram of the driver-vehicle interaction where yref 

represents the driver’s reference path; ypredict the predicted lateral vehicle 
position; epredict the estimated future lateral error with respect to the lateral 

reference path; δH the steering wheel input to the vehicle; x the longitudinal 
position of the vehilce; y the lateral position of the vehicle; ψ the yaw angle of 

the vehicle; and V the speed of the vehicle.  

Based on assumed driver equalization adjustment in the 
form of a low-frequency lead according to the Cross-over 
Model of McRuer et al. [4], [5], the control part of the driver 
was determined to have the transfer function as in (8). 
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with δH the steering wheel angle in rad; SR the steering wheel 
to front wheel ratio; epredict the estimated future lateral error 
with respect to the lateral reference trajectory in m; K the 
lateral gain in rad/m; τlead the lead time in s; τdelay the time 
delay in s; and s the Laplace operator. TABLE I shows the 
values used for the parameters in the simulation model. 

Design and Procedure 

1) Independent Variables. Three independent variables 
were used in this experiment. Vehicle speed was varied to see 
how that would influence the performance of the phase 
detection algorithm, V = {50, 80, 120}km/h. Furthermore, we 



 

were interested in effects of different calibrations of the phase 
detection algorithm, particularly the Hold, and used values of 
Holdmin = {0, 1, 2, 4, 6, 8}deg and Holdmax = {3, 6, 9, 12, 
15}deg. Together, these independent variables yielded 3x6x5 
= 90 different conditions that were tested. Each condition was 
repeated 100 times. 

TABLE I.  MONTE CARLO SIMULATION MODEL PARAMETERS 

Parameter Value Source 
vehicle 

Cf 95000 N/rad [6] 
Cr 85000 N/rad [6] 
m 1400 kg [6] 
J 3000 kg·m2 [6] 
a 1.125 m [6] 
b 1.375 m [6] 

SR 15:1 [6] 
driver 

tpredict 1 s [7], [8] 
Klateral 0.13 rad/m based on [5], ωc = 3.3 rad/s 
τlead 0.5 s [5] 
τdelay 0.37 s based on [5], ωi = 2.0 rad/s 
yref 0 m - 

ωc is the cross-over frequency 

ω1 is the forcing function bandwidth 

2) Simulation Procedure. The experiment consisted in 
keeping the simulated vehicle on the center of the simulated, 
infinite straight lane. The duration of each simulation was set 
to 1000 s in an attempt to assure asymptotic results for each 
performance parameter of the phase algorithm. The velocity 
was kept constant during each simulation run. 

To ensure a rich sample of active and passive phases, a 
‘distraction switch’ was included in the Simulink model which 
randomly switched between an active or a passive simulated 
driver behavior. When the switch was on passive, this meant 
that there was zero driver corrective output for as long as the 
distraction switch was on, regardless of the vehicle state.  

In order to elicit corrective steering actions, passive noise 
was added to the  steering angle such that no single run would 
yield the exact same results. This passive noise was created 
from a sum of 4 sinusoids with random amplitude and random 
period. Details are given in TABLE II.  

TABLE II.  PASSIVE NOISE CHARACTERISTICS 

Amplitude (deg) Period (s) 
0.4·(1+0.5·rand) 45·(1+0.3·rand)-1 
0.3·(1+0.5·rand) 17·(1+0.2·rand)-1 
0.04·(1+0.5·rand) 7·(1+0.1·rand)-1 
0.04·(1+0.5·rand) 2·(1+0.1·rand)-1 

rand represents a random, normally distributed number with zero mean and standard deviation one. 

B. Evaluation Parameters 

1) Match Percentage. The most simple and intuitive way 
to compare the phase distinction algorithm with a reference is 
by measuring the percentage of time they match. While this 
parameter provides a great overview on the general 
performance of the algorithm, it is incapable of providing a 
deeper understanding about how it is working, namely how 
well is the algorithm reacting to the transitions between phases 

and how well is it managing to hold the active and passive 
phases. As such, additional parameters will need to be devised 
to provide a deeper understanding of the algorithm’s 
performance. 

2) Activation and Deactivation Times. In order to better 
understand how the algorithm behaves in the transition 
regions, one possibility is to measure the average time 
difference between the algorithm and the reference for both 
the passive-active (activation) and active-passive 
(deactivation) transitions. While these parameters do not 
reflect the performance of the algorithm as a whole, they 
provide a very good understanding on how well the trigger and 
the hold are managing the activation and deactivation 
transitions, respectively. 

3) Interruption and Overextension Ratios. To better 
evaluate how well the algorithm is able to hold the active 
phases (whichis one of the hardest parts to tune properly 
regarding the choice of the hold parameters), two concepts are 
introduced: interruptions and overextensions. 

a) Interruptions: Interruptions are events where the 
reference phase remains active, but the algorithm is unable to 
hold the active phase, and as such yields a (usually, but not 
necessarily, short) passive output surrounded in between 
active outputs. Figure 3a illustrates this situation. Having a 
high interruption ratio (number of interruptions / number of 
active phases) can be considered a good indicator that the 
algorithm’s hold is too weak, and therefore Holdmin and 
Holdmax should probably be decreased. 

b) Overextensions: Overextensions are are the opposite 
of interruptions, corresponding to situations where the 
reference signal yields a passive phase in between two active 
phases, but the algorithm’s hold is too strong, and as such 
overextends in this passive region, interconnecting the active 
phases, as illustrated in Figure 3b. Similarly to the interruption 
rate, the overextension rate is defined as the quotient between 
the number of overextensions and the number of active phases. 
Having a high overextension ratio will, as opposed to a high 
interruption ratio, indicate that the hold is probably too strong. 
The Hold parameters should, in that case, be increased to 
improve the performance of the algorithm. 
C. Results 

1) Match Percentage. Inspection of Figure 4a-c shows that 
the algorithm is capable of correct phase distinction around 
90-95% of the time for a large zone of possible combinations 
of Holdmin and Holdmax and all three vehicle speeds. For 120 
km/h the shape of the match percentage surface is slightly 
different, with a maximum value reached around Holdmin = 4, 
and then a slight decrease for larger values of this parameter. It 
is also interesting to note that the match percentage appears to 
be much more affected by Holdmin than by Holdmax. 

2) Activation and Deactivation Times. The activation 
times for the different combinations of Holdmin and Holdmax 
were practically zero for each of the three speeds (data not 
shown). Deactivations times were found to be in the range 
between 0-0.5 s (data not shown) in a similarly dependent 



 

manner. Holdmax and speed had little influence, while 
deactivation time decreased with increasing Holdmin. 

3) Interruptions and Overextension Ratios 
Figure 6a-c show that for the least amount of 

overextensions both Holdmin and Holdmax should both be as 
large as possible. As the velocity decreases the interruption 
ratio (Figure 5a-c) becomes much more affected by under-
holding calibrations (this is particularly noticeable for Holdmin ≤ 
4). This effect seems to be non-linearly distributed with vehicle 

velocity. At 120 km/h overextension is not a problem for any of 
the Holdmin – Holdmax combinations. At 80 km/h, however, a 
combination of low Holdmin and low Holdmax greatly increases 
the number of overextensions. A low Holdmin has a noticeably 
more negative effect than Holdmax. However, at 50 km/h the 
increase of the number of overextensions for low Holdmin and 
low Holdmax combinations is reduced again. A low Holdmin still 
has a more negative effect than a low Holdmax. 

(a) (b) 

 

Figure 3.  Schematic representation of an interruption (a) and an overextension (b) in the Phase(t) plot. The dashed (blue) lines represent the reference phase 
signal (i.e. what the driver is really doing), while the solid (red) lines represent the phase signal as estimated by the phase distinction algoritm. 

IV. DISCUSSION 

We developed an algorithm to detect whether a driver 
currently is error-neglecting (passive phase) or error-correcting 
(active phase) with regards to a lane keeping task on a straight 
road. The first test of our algorithm was performed with a 
Monte Carlo simulation so that we could evaluate the two most 
important parameters of our algorithm, the minimum Holdmin 
and the maximum Holdmax, over a range of different driving 
speeds. Holdmin and Holdmax affect the strength with which the 
algorithm ‘holds’ on to a current driver state (either active or 
passive phase). To get the best ‘overall’ performance out of the 
algorithm, the results of the Monte Carlo simulation suggest 
choosing a high Holdmin and a high Holdmax gives the best 
match over time with the actual behavior of the driver – 
approximately 90-95%, see Figure 4a-c. This result is also 
robust for the different speeds at which we tested the algorithm. 

However, the smaller Holdmin, the more difficult it will be 
for the algorithm to switch into error-neglecting mode (passive 
phase). This is reflected in overextension results shown in 
Figure 6a-c. This figure indicates that the smaller Holdmin, the 
more likely the algorithm is to ‘hold’ on to the active phase, in 
other words, the overextensions increase. The smaller Holdmax, 
the more difficult it will be for the algorithm to switch into 
error-correcting mode (active phase). This also follows from 
Figures 6a-c. The opposite effect, however, can be detected for 
the interruptions. The larger Holdmin, the easier the algorithm 
will switch from active phase to passive phase (see Figure 5a-
c). A large Holdmax appears to be less relevant from inspection 
of Figure 5a-c.  

Interestingly, the choice of Holdmax and Holdmin should be a 
compromise between few interruptions and more 
overextensions or more interruptions and fewer overextensions. 
Large Holdmin (>4) are favourable for few overextensions, i.e. 

for reducing the number of undetected passive phases. Small 
Holdmin (<4) are favourable for reducing the number of 
interruptions, i.e. for reducing the number of undetected active 
phases. In other words, when the active phase (error-correcting) 
is more of interest, a small Holdmin is a good choice; when the 
passive phase (error-neglecting) is more of interest, a larger 
Holdmin is  a better choice. The choice of Holdmax is less 
relevant for the overextensions or interruptions. 

V. CONCLUSIONS 

The driver error-neglecting / error-correcting distinction 
algorithm presented in this article was evaluated using a Monte 
Carlo simulation with MATLAB/Simulink. The results of the 
simulation show that overall performance of the algorithm is 
good, matching 90-95% of the driver’s simulated behavior. 
Settings of the algorithm’s Hold thresholds, .i.e. bounds that 
determine how quickly the algorithm switches between error-
neglecting and error-correcting, need to be finely balanced, 
though. Depending on the driver state of interest, the lower 
threshold of Hold, Holdmin, should be chosen properly. A high 
Holdmin (>4) is a good choice when error-neglecting behavior is 
of most interest; a low Holdmin (<4) is a good choice when 
error-correcting behavior is of most interest. 

Future work will evaluate the algorithm performance in 
more realistic driving settings in our fixed base driving 
simulator and ultimately in a real test-vehicle. Furthermore, the 
algorithm should be extended to be able to work in lane-
keeping conditions other than on a straight lane. 
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(a) V = 50 km/h 

 

 
(b) V = 80 km/h 

 

 
(c) V = 120 km/h 

Figure 4.  Match percentage averages after the 100 runs of the Monte Carlo simulations for each of the different combinations of V, Holdmin and Holdmax. 

 
(a) V = 50 km/h 

 
(b) V = 80 km/h 

 
(c) V = 120 km/h 

Figure 5.  Interruption ratio averages after on the 100 runs of the Monte Carlo simulations for each of the different combinations of V, Holdmin and Holdmax. 

 
(a) V = 50 km/h 

 
(b) V = 80 km/h 

 
(c) V = 120 km/h 

Figure 6.  Overextension ratio averages after the 100 runs of the Monte Carlo simulations for each of the different combinations of V, Holdmin and Holdmax.
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