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Abstract—In this paper we present a simple framework for
planning options when deploying Fibre to the Curb, using G.Fast
as technology. We present a framework of eight possible planning
options, roll-out scenarios, coming from three main planning
choices. We elaborate the mathematical approach of each of these
eight options, using combinations of existing methods. We also
show the results of a real life case, rolling out Fibre to the Curb
in Amsterdam and The Hague, resulting in an example of the
calculation time needed and the indication of the costs of such a
roll-out.

Index Terms—G.Fast, Fibre to the Curb, access network
planning, telecommunications

I. INTRODUCTION

In the near future new internet services will be so de-
manding in bit rate that they easily consume a bandwidth of
hundreds of Mb/s, they probably include many high definition
video channels simultaneously. To deliver these services to
consumer’s homes the use of fibre will be inevitable but this
does not necessarily mean that fibre is to be deployed all the
way to a point into the home, Full Fibre to the Home (Full
FttH). An alternative is bringing fibre up or near to the home,
reusing existing copper cables. The copper technology that
is required for such a Hybrid FttH solution with sufficient
bandwidth is currently developed and is named G.Fast. First
results of this development make it plausible that Hybrid FttH
using G.Fast is technically feasible up to 1 Gb/s. For this work
look at the website of the CELTIC/4GBB project [1].
We distinguish four topology types (see Fig. 1):

1) Full Copper: services are offered from the Central Of-
fice (CO) over a copper cable, using ADSL or VDSL
techniques.

2) Fibre to the Cabinet (FttCab): the fibre connection is
extended to the cabinet. From the cabinet the services
are offered over the copper cable, using VDSL or G.Fast
techniques.

3) Hybrid Fibre to the Home (Hybrid FttH): services are
offered from a Hybrid FttH Node, which is connected
by fibre, close to the customer premises, in the street or
in the building.

4) Full Fibre to the Home (Full FttH): the fibre connection
is brought up to the customer premises.

In this paper we look at the planning of the Hybrid FttH
variant, where the fibre is brought to a place in the street, also
known as Fibre to the Curb (FttCurb). To realize FttCurb using
G.Fast a next step in bringing fibre to the houses is needed.

Fig. 1. Four topologies

Here a new node is realized within 200 meter of each house
connected. This 200 meter is the assumed maximum distance
that G.Fast brings value. We assume that a branching point
in the existing copper connections is chosen to place the new
active equipment. Technical issues like modulation and power
supply are considered in other work of the CELTIC/4GBB
project [1]. The new nodes have to be connected by a fibre
connection. We argue in this paper that there have to be made
three main choices before designing the network. If these three
choices all have two options, we end up with 8 possible roll-
out scenarios that we all elaborate in this paper.

In the remainder of this paper we first describe our starting
position of the copper network and the main choices that
have to be made by the designer of the network. Next we
will elaborate the various combinations of those choices and
explore literature for the mathematical approach for those
combinations. At the end we shall discuss a real case from
two cities in the Netherlands, Amsterdam and The Hague.

II. IDENTIFYING THE OPTIONS

In this section we will present the framework based on three
questions and elaborate the eight planning options that result
from these questions. Next we will discuss shortly the choice
between a tree and a ring based network structure.
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A. Three Questions

When we look in more detail to this next part of the copper
network we see a situation as shown in Fig. 2. This is a
typical situation in the last mile of the Dutch copper network:
a heavily branched network, with at the right side a cabinet.
In this network new network nodes have to be placed for
the G.Fast technology. To do this, possible locations for these
network nodes have to be determined, logical places are the
dots in the figure, the branching points of the network. We
assume that it is known which houses are connected to these
locations at which distance. Now one should decide which
locations will be used and how they are connected to a fibre
node in the most economical way.

Fig. 2. Typical last mile in the Netherlands

The three questions that form the basis of our framework are:
1) Should all houses be reached from a Hybrid Fibre node

within a fixed distance, or a fixed percentage of houses,
or do we have a fine for every house not connected
within that certain distance? We distinguish:

a) All houses must be connected, a fine is considered
otherwise.

b) A certain percentage has to be within the defined
distance.

2) Does the node have a capacity restriction?
a) Yes
b) No

3) How are the nodes connected:
a) Tree or star structure
b) Ring structure

B. Elaborate the Planning Options

In the previous section we had 3 choices to be made, each
having 2 possible answers. This leads to (23 =) eight possible
roll-out scenarios that are in theory all thinkable. In this section
we will discuss all scenarios and propose a mathematical
approach to each planning problem. We refer to each scenario
with a three letter acronym, each representing the chosen
answers to the questions. As example, the scenario AAA refers
to the case where all questions were answered by option (a):
all houses connected, the node has a capacity restriction and
the nodes are connected by a tree or star structure. The eight
possible roll out scenarios are then:

• AAA: CFLP plus MSP: The scenario AAA refers to the
case where all houses have to be connected, the node
has a capacity restriction and the nodes are connected
by a tree structure. This problem can be seen as the
case where from several possible facilities with a certain
maximum capacity we have to choose a subset of those
facilities and assign customers to a facility such that all
customers are served by one facility at minimal cost.
This is a Capacitated Facility Location Problem (CFLP).
Next the opened facilities have to be connected with the
central point (cabinet, central office) in a star structure.
To do this the shortest path between the central point and
the opened facilities can be determined, but to reduce
the cost of digging it is more economical to take the
minimal spanning tree between all the facilities and the
central point by solving a Minimal Spanning tree Problem
(MSP).

• AAB: CFLP plus VRP: The scenario AAB refers to the
case where all houses are connected, the node has a
capacity restriction and the nodes are connected by a
(multiple) ring structure. This looks like the previous
problem, only now the routing comes into scope. The
central point uses ring structures to serve the opened
nodes in a shortest cycle. Which ring has to serve which
node and what is the shortest path the ring has to go?
This is a Vehicle Routing Problem (VRP), or if there is a
maximum number of nodes that can be connected in one
ring a Capacitated Vehicle Routing Problem (CVRP).

• ABA: standard FLP plus MSP: The scenario ABA refers
to the case where all houses are connected, the node
does not have a capacity restriction and the nodes are
connected by a tree structure. This is a standard or
uncapacitated Facility Location Problem (FLP). Again the
Minimum Spanning Tree Problem can be used to connect
te opened facilities.

• ABB: standard FLP plus VRP: The scenario ABB refers
to the case where all houses are connected, the node
does not have a capacity restriction and the nodes are
connected by a ring structure. This is a uncapacitated
Facility Location Problem in combination with a Vehicle
Routing Problem.

• BAA: activation problem plus MSP: The scenario BAA
refers to the case where a certain percentage of the houses
have to be within the defined distance, the node has a
capacity restriction and the nodes are connected by a tree
structure. This is the same problem as discussed in [2] for
VDSL cabinet activation, combined with the Minimum
Spanning Tree Problem to connect the opened facilities.

• BAB: activation problem plus VRP: The scenario BAB
refers to the case where a certain percentage of the houses
have to be within the defined distance, the node has a
capacity restriction and the nodes are connected by a ring
structure. This is again the activation problem, combined
with the Capacitated Vehicle Routing Problem (CVRP)
to connect the opened facilities.

• BBA: activation problem plus MSP: The scenario BBA
refers to the case where a certain percentage of the houses
have to be within the defined distance, the node does not
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have a capacity restriction and the nodes are connected by
a tree structure. This is the activation problem, now with
infinite capacity on the nodes. Again combined with the
Minimum Spanning Tree Problem to connect the opened
facilities.

• BBB: activation problem plus VRP: The scenario BBA
refers to the case where a certain percentage of the houses
have to be within the defined distance, the node does not
have a capacity restriction and the nodes are connected
by a ring structure. This is the activation problem, now
with infinite capacity on the nodes combined with the
Capacitated Vehicle Routing Problem (CVRP) to connect
the opened facilities.

If we look at these eight roll-out scenarios and the identified
standard problems we can summarize this in the following six
mathematical main problems:

1) scenario AAX: Capacitated Facility Location Problem
(CFLP).

2) scenario ABX: Uncapacitated Facility Location Problem
(FLP).

3) scenario BAX: Activation Problem (CACT).
4) scenario BBX: Activation Problem with infinite node

capacity (ACT).
5) scenario XXA: Minimum Spanning Tree Problem

(MSP).
6) scenario XXB: (Capacitated) Vehicle Routing Problem

(CVRP).
The total framework can now be summarized in a flow

diagram, as depicted in Fig. 3.

C. Ring or Star

One of the choices to be made was the choice between a star
or tree and ring topology. In the Netherlands ring structures are
common, but in other European countries star or tree topolo-
gies are conventional. Mostly cost are the driver for this choice.
Ring topology deliver a much higher reliability however, and
the break-even costs (in terms of distance of digging) where
both topologies are equally expensive is reached fairly rapidly
(ring vs star) or are close all the time (ring vs tree).

Theoretically we could derive the break-even point between
the star and the ring structure very simply. Say we have
n nodes, all of them at the distance r of a centre point.
Connecting them with a star structure will cost n ∗ r. If we
use a ring structure, all nodes are on the ring with radius r,
the total costs are

n− 1

n
∗ 2 ∗ π ∗ r + 2 ∗ π.

The break even point is where

n ∗ r = n− 1

n
∗ 2 ∗ π ∗ r + 2 ∗ π.

This is true when

n = π + 1 +
√
π2 + 1 = 7.44.

This means that if we want to connect 8 or more nodes, a ring
structure is cheaper.

Fig. 3. Framework flow diagram

However, it is obvious that the nodes will not be distributed
such that they are all at distance r from the central office. To
find the relation between the number of nodes and the digging
length of the three network structure options we simulated
1000 situations where n nodes are placed randomly within an
area with dimension 100x100. The central node is placed at
(x, y) = (50, 50). For each situation we connected the n points
with the central node in a star structure, in a tree structure,
in a ring structure and in a ring structure with at most 10
nodes per ring. The ring is created solving a TSP using a
generic insertion algorithm and 2-opt algorithm. The ring with
capacity constraint is created solving a CVRP using Clark
and Wright savings algorithm [3]. The tree is calculated using
Prim’s algorithm [4]. The results are shown in Fig. 4. Here we
see that the break even point for star vs ring is between 6 and
7 nodes and the that the tree is always slightly cheaper than
the ring structures. The owner of the network has to weight
this against the differences in reliability of the structures.

III. ELABORATE THE STANDARD PROBLEMS

In the previous section we identified six mathematical main
problems that appear when effect the eight roll-out scenarios.
In this section we will give for each problem an overview of
literature dealing with that problem.
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Fig. 4. Digging distances

A. Uncapacitated Facility Location Problem

The FLP revolves around the following problem: given a
set F of facilities, a set D of customers, costs fj for opening
facility j ∈ F and connection costs cij for connecting the
customer i with facility j: which subset of facilities in F needs
to opened and which customers have to be connected with
which open facility, in order to minimize the costs. A facility
is considered open when at least 1 customer is serviced by this
facility. Opening a facility and servicing customers involves
costs. To coop with the maximum distance of 200 meters one
should express that in the cost parameter cij .

Literature (e.g. [5]) makes a distinction between several
different types of FLP. The difference is important, as the
known heuristics used cannot be the same for all types. The
first important type here is the Uncapacitated Facility Location
Problem (UFLP). The assumption there is that the capacity of
a facility, or the number of customers which can be serviced,
is infinite, and the costs of opening a facility are set. So the
opening costs of a facility are not determined by the number
of customers serviced.

Again in [5] a metric Uncapacitated Facility Location
Problem (UFLP) is discussed. The connection cost is metric
as they are symmetrical and meet the triangle inequality. The
article discusses first the JMS heuristics. The JMS heuristics
work as follows:

1) At the start, all customers are unconnected and all
facilities closed, and the budget of every customer i,
noted with Bi is equal to 0. In every step every cus-
tomer i, based on his actual budget, makes an offer to
each closed facility j. The size of the offer equals to
max(Bi − cij) if customer i is not connected and is
equal to max(cij′− cij , 0) if customer i is connected to
another facility j′.

2) If there is an unconnected customer, increase the budget
of each unconnected customer by the same value, until
one of the following events occurs:

a) If for an unopened facility j, the total offer which
facility j receives from all customers is equal to the

Fig. 5. Starting point

costs of opening facility , then we open facility j
and for each customer i (serviced or not serviced)
that has an offer to facility j greater than 0, we
connect customer i with facility j.

b) If for a non-serviced customer i and an already
opened facility j the budget of customer i equals
the connection costs cij , then we connect customer
i with facility j.

Next they present a more complex, but also more efficient
algorithm.

B. Capacitated Facility Location Problem

Where the UFLP can be solved relatively easy by a good and
simple heuristics, adding capacity constraints to the facilities
makes the problem much more difficult. Most research on the
CFLP has focused on the development of efficient solution al-
gorithms, based on branch-and-bound techniques, Lagrangian
relaxation, Benders decomposition etcetera, see for example
[6], [7] and [8]. Ref. [9] defines the Capacitated Connected
Facility Location Problem (CapConFL) for a similar problem.
A nice local search heuristic can be found in [10]. An other
possibility is to use the solution to the Activation Problem of
the next section, with 100% customers connected.

C. Activation Problem

In [2] this problem is discussed for the FttCab roll-out.
This works for both the activation problem with and without
infinite node capacity. The problem there is: which cabinets
must be activated in order to reach the desired percentage of
households at minimal costs? Fig. 5 shows the starting point.
All cabinets (Cab) are connected through copper with the
Central Office (CO). Several residences are connected to the
cabinet; this is only shown for one cabinet in the illustration.
Now a subset of the cabinets needs to be activated in order to
reach the intended number of households over copper from an
activated cabinet within the set distance, see Fig. 6. In fact,
this is a generalization of the CapConFL.

The proposed heuristics is shown in Fig. 7. It starts with a
logical, allowed, solution, in which all cabinets are activated
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Fig. 6. Which cabinets are activated?

in step 1. Next in step 2, all possible cascade arrangements
are determined and the savings of this arrangement (call it
B) as well as the number of customers which as a result are
positioned outside the desired distance of, here, 200 meter
(call it K) are reviewed. Next, the solutions which generate a
saving (B > 0) can be sorted by two possible characteristic:
B and B/K. In step 3 we realize the solutions with the largest
(negative) value of B or B/K, until the requirement of e.g.
90% of the customers is reached. In step 4 we perform a 2-
opt approach to improve the solution. The 2-opt methodology
was originally presented for solving the travelling salesman
problem (TSP), see [11]. If step 4 results in a swap, we try to
find a new improvement; if no swap could be found the best
solution was found. We showed that this algorithm is very fast.

D. Minimum Spanning Tree Problem

Given a connected, undirected graph, a spanning tree of that
graph is a connected sub graph, connecting all the vertices of
the original graph. If the edges have a weight assigned, we can
use these weight to compute the weight of the spanning tree,
the sum of the weights of the edges in that spanning tree. A
minimum (weight) spanning tree is then a spanning tree with
weight less than or equal to the weight of every other spanning
tree. A solution to MSP can be found in [4]. An alternative
is the method of Kruskal. A nice comparison can be found in
[12]. Prim’s algorithm is quite simple:

1) Take some arbitrary start node s. Initialize tree T = s.
2) Add the cheapest edge, which has one vertex in T and

one vertex not in T, to T.
3) If T spans all the nodes the Minimum Spanning Tree is

ready, else repeat step 2.

E. (Capacitated) Vehicle Routing Problem (CVRP)

The Vehicle Routing problem comes from logistics and
describes the problem that clients have to be serviced from
(one or more) depots, using one or more vehicles that might
have a certain capacity constraint. The question in this problem
is which client is serviced by which vehicle from which depot

Fig. 7. Overview of the heuristics

and what is the shortest route the vehicle will drive. Two main
questions in our problem will be: which node is serviced by
which ring and how does the ring run physically. To solve
these two problems together the best-known approach is the
”savings” algorithm of Clarke and Wright. Its basic idea is
very simple, as described in [3]: ’Consider a depot D and n
demand points. Suppose that initially the solution to the VRP
consists of using n vehicles and dispatching one vehicle to
each one of the n demand points. The total tour length of this
solution is, obviously, 2

∑n
i=1 d(D, i). If now we use a single

vehicle to serve two points, say i and j, on a single trip, the
total distance travelled is reduced by the amount

s(i, j) = 2d(D, i) + 2d(D, j)

−[d(D, i) + d(i, j) + d(D, j)]

= d(D, i) + d(D, j)− d(i, j)

The quantity s(i, j) is known as the ”savings” resulting from
combining points i and j into a single tour. The larger s(i, j)
is, the more desirable it becomes to combine i and j in a
single tour. However, i and j cannot be combined if in doing
so the resulting tour violates one or more of the constraints of
the VRP.’ Where d(i, j) is the distance function.

However, to fully exploit the reliability gain of a ring
structure, all the elements (paths) of the ring should be
independent. The ring should not use the same trench or cable
twice (or more). This is not taken into account in a regular
CVRP solutions, like Clarke and Wright.

Kalsch et al. [13] developed a mathematical model and a
heuristic approach for embedding a ring structure in a fibre
network, that takes into account the following restrictions:
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ensuring a ring structure, a maximum number of nodes in a
ring, each node in exactly one ring, and that the ring uses each
edge only once. It is, however, hard to draw conclusions on
the performance of their approach, since no further information
is given on the data used for a test case. Another important
disadvantage of their method is that no real attention is paid
to the clustering of the nodes to the rings. They indicate
clustering is part of the problem, but do not really treat it
in there article and they go directly to the routing part of the
problem.

For a similar problem in the designing of a FttCab network
the two problems, clustering and routing, were solved by us
in succession. First the nodes were clustered in groups and
then a ring is created through these groups (see [14]). In our
current research we are developing a method to solve both
steps together, within reasonable calculation times.

IV. CASES

We performed scenario BBA to two cities in the Nether-
lands, Amsterdam and The Hague, using the activation algo-
rithm [2] and Prim’s algorithm [4]. We assume that the cabi-
nets already have a fibre connection, so our focus is the part
of the network between the cabinet and the home connection.
The Amsterdam case has 150,058 branching points in that
area, The Hague has 89,076 branching points. Those branching
points are the potential spots to place the new equipment.
In Fig. 8 an example is shown; a part of Amsterdam with
all the splices and cabinets. The pictures comes from the
GIANT/PLANXS tool of TNO, which performs FttCab and
FttCurp planning problems. In both cities we want to connect
at least 99% of the customers within 200 meter to a G.Fast
node. Each G.Fast node is placed in a manhole. We can place
each combination of 16-port and 48-port G.Fast equipment
(G.Fast multiplexer) in the manhole.

The problem that is solved by the activation algorithm is
the following. The central question is: which nodes should
be activated in order to reach the desired percentage of
households at minimal costs? A household is reached when
the distance over copper is less than a chosen length, here
200 meter. Households which meet this requirement are said to
meet the distance requirement. Here we describe the problem
as a mathematical model. The chosen structure is that of an
Integer Programming Problem. We first define the decision
variables:

xij =

{
1 if node i is handled by node j
0 otherwise.

yj =

{
1 if node j is activated,
0 otherwise.

The input we need is described by the following parameters:

bij = number of clients within a chosen length
if nodei is handled via node j,
bii is the number of customers at
location i, namely, if this location is
activated itself, the loss of customers is 0.

cij = connection costs if node i is connected
via node j, cii is the activation
costs of node i, the costs to place a
node with the equipment inside.

D = number of clients that has to be within
the chosen length.

wi = max number of clients on node i.
ti = max number of cascades on node i.

The indices i en j are defined as the nodes 1, ..., n. In (1) it is
stated what we want to reach: the decision variables need to
be chosen in such a manner that the objective function, total
costs for activation and connection, are minimal.

min
x,y

n∑
i=1

n∑
j=1

cijxij +

n∑
j=1

cjjyj (1)

The constraints of this problem are:

n∑
j=1

xij = 1 i = 1, . . . , n (2)

n∑
i=1

n∑
j=1

bijxij ≥ D (3)

yj ≥
∑n

i=1 xij
n

j = 1, . . . , n (4)

n∑
i=1

xij ≤ tj j = 1, . . . , n (5)

n∑
i=1

biixij ≤ wj j = 1, . . . , n (6)

xij , yj ∈ {0, 1}. (7)

The conditions that need to be met are:
(2) This condition says that each node has to be dealt with
via exactly one (other) node.
(3) The total number of customers connected within the
chosen length, 200 meter, to the node needs to be larger than
or equal to D.
(4) If a node is handled via node j, node j needs to be
activated.
(5) No more than tj nodes may be cascaded to one other
node .
(6) No more than wj customers may be within a cascade.
(7) Both xi,j and yj are binary variables.

There are two important constraints:
1) One arriving cable at the G.Fast cannot be spread over

2 G.Fast multiplexers.
2) Maximum distance over copper to the active point
For the first constraint look at the example in Fig. 9, two

cables arrive at node A, one with 14 connections and one
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Fig. 8. Part of Amsterdam showing all the splices (open dots) and cabinets
(closed dots)

TABLE I
COSTS INPUT

G.Fast multiplexer e 25 per port
G.Fast Manhole e 500
Digging and cables e 25 per meter

cable with 9 connections. If the capacity of the multiplexer
is 16, node A can be used to handle both cables with two
multiplexers. However, these (14+9=) 23 cables arrive at
node B in one cable. This cable cannot be handled with
one multiplexer, thus these cables should be handled by an
activated node before node B. In the activation problem this
situation should be depicted in the parameter bij , meaning:
handling the connections of node i by node j keeps bij
connections within the desired distance. However the distance
from the home connections to B or C might be less than the
chosen maximum copper length 200 meter, we have to make
bij with i=A or lower in the network and j = B or higher in
the network equals zero to prevent handling the connections at
B or C . If we have also a 48 port multiplexer, this connection
can be handled by node B or C.

Also the length constraint, the second constraint, should be
depicted in the parameter bij . Here, with a node capacity of 48
connections and equipment capacity of 48 connection, bAA =
23, bAB = 23, bAC = 23 but bACab = 0. The length to the
cabinet is more than 200 meters. The minimal cost selection
of new locations for these G.Fast nodes is then connected by
a Minimum Spanning Tree. We assume costs as shown in
Table I.

The calculation time for the case Amsterdam is 50 seconds,
consisting of:

• 14 Spanning Tree calculations: 1 seconds
• Database interaction and data handling: 25 seconds
• Solving 2745 Activation Problems: 24 seconds

The activation problem activates 7,366 new G.Fast nodes,
out of the possible 150,058, for 490,000 connections in

Fig. 9. Example of cable with connections

TABLE II
RESULTS AMSTERDAM

Digging (meter) 686,106 meter e 17,152,650
Equipment (ports) 661,024 ports e 16,525,600
Manholes (new node) 7,366 e 3,683,000
Total costs (euro) e 37,361,250
Per connection (euro) e 76.19

Amsterdam1. The results of this calculations are in Table II.
This means we have a port utilization2 of 74% and an average
digging distance per node of 93 meters. For various distances,
the costs per home connected is depicted in Fig. 10. Note that
we do not make extra nodes, next to the existing branching
points, thus the minimum distance is restricted by the length
of the last piece of copper in the path towards the houses.
A copper length of 25 meter does not indicate that all copper
lengths are lower, but only those connections who can physical
realize this. Otherwise the graph is expected to increase faster
when decreasing the distance. The trend line indicating this
in the figure is an estimation of the real relation, based on a
logarithmic trend.

For The Hague the results are in Table III and in Fig. 11.
Here we have 288000 connections, resulting in a port utiliza-
tion of 73% and an average digging distance per node of 122
meters. The difference between Amsterdam and The Hague are
explained by the existing copper infrastructure. Amsterdam-
region has already 60% of the homes within 200 meters of
the cabinet, and Amsterdam-Centre even 75%. The Hague only
has 28% of the connections within 200 meters.

1There are more ports than connections, due to the fixed number of ports
per multiplexer.

2Number of connections divided by number of ports.

TABLE III
RESULTS THE HAGUE

Digging (meter) 1,058,350 meter e 26,458,750
Equipment (ports) 395,328 ports e 9,883,200
Manholes (new node) 8,656 new nodes e 4,328,000
Total costs (euro) e 40,669,950
Per connection (euro) e 141.15
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Fig. 10. Costs of connection in Amsterdam

Fig. 11. Costs of connection in The Hague

V. SUMMARY AND CONCLUSIONS

In this paper we looked at the planning of the Hybrid FttH
variant using G.Fast as technology, where the fibre is brought
to a place in the street, also known as Fibre to the Curb. To
realize FttCurb using G.Fast a next step in bringing fibre to
the houses is needed. Here a new node is realized within 200
meter of each house connected. We assumed that a branching
point in the existing copper connections is chosen to place the
new active equipment. The new nodes have to be connected by
a fibre connection. We presented a framework that is based on
three main choices before designing the network. If these three
choices all have two options, we end up with eight possible
planning options and 6 main mathematical challenges, which
we all elaborated in this paper, showing the mathematical
approach for all of these options. For one of the options we
showed the results of a real life case, the planning of FttCurb
in Amsterdam and The Hague.
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