

Translating the IM behaviour of munitions to operational consequences

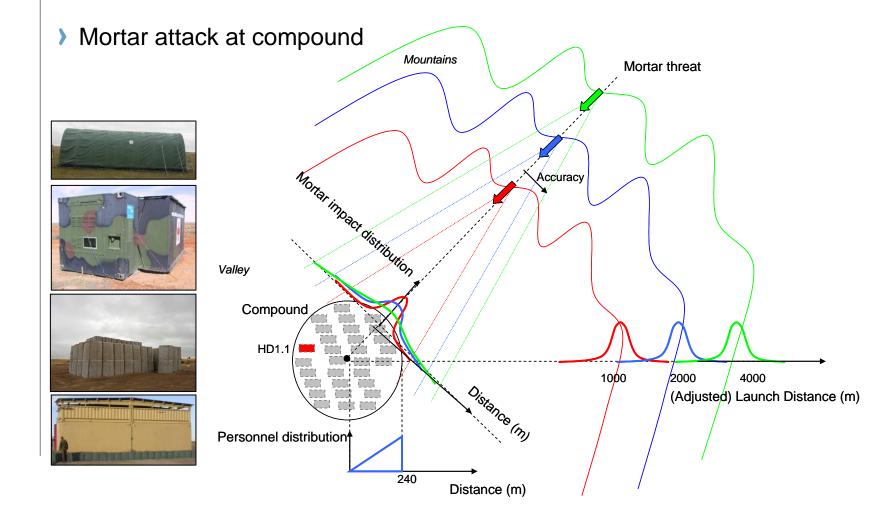
Peter Hooijmeijer, Gert Scholtes, Martijn van der Voort

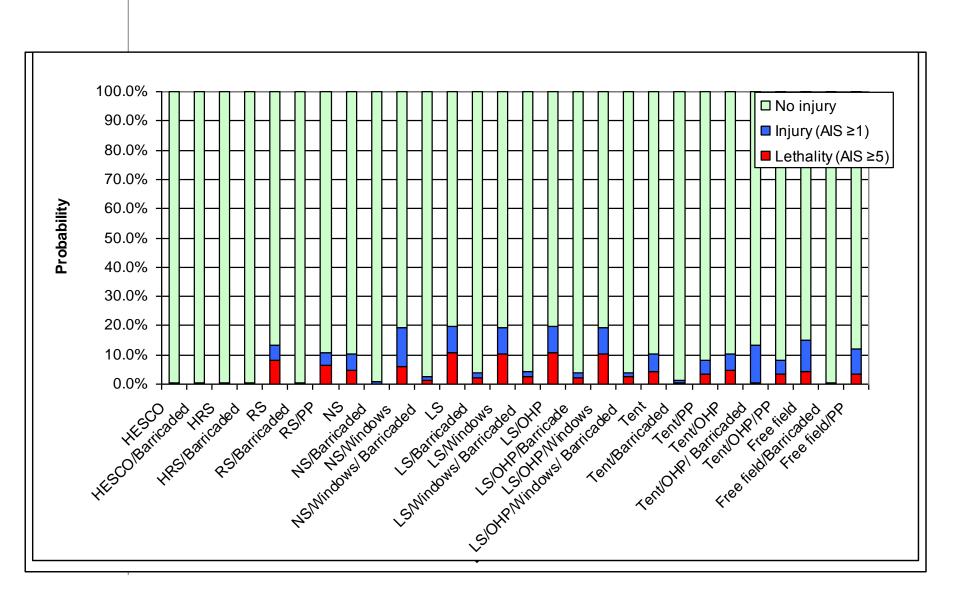
Overview

- Introduction
- Case study in compound
 - Mortar attack at compound
 - Detonation of ammunition storage
- Sympathetic Reaction toolbox
 - **)** Case study: M107 155 mm
 - Research mitigating materials
- Conclusions

Introduction

- Protection and Survivability of Compounds
- Countermeasures
 - Situational Awareness
 - Concealment /Camouflage
 - Distance
 - Physical protection
 - Munition storage



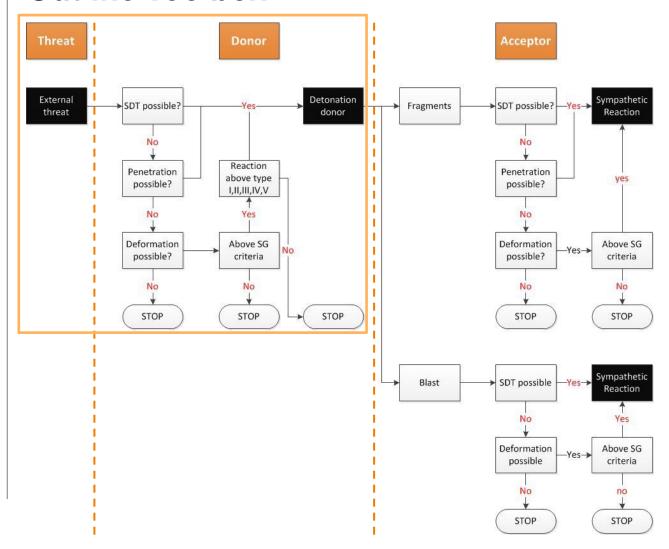

Case study

Case study

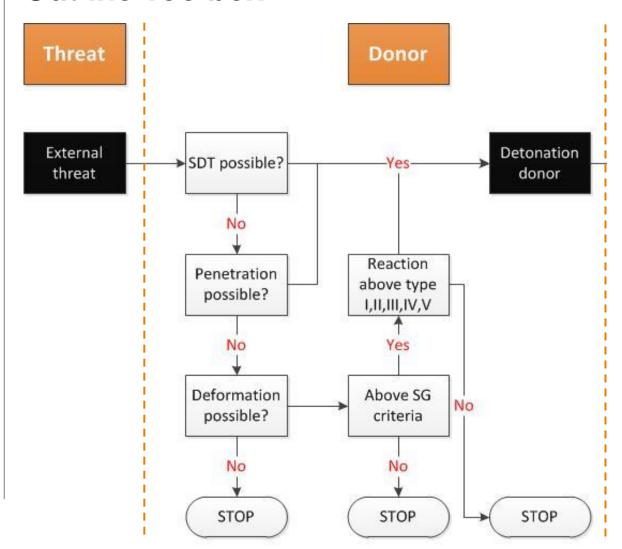
- Domino scenario: detonation of ammunition storage (0.5 %)
- > Entire storage (4000 kg) versus just one pallet (56 kg)
- Setting the stage for R&D in the field of IM munitions
- This is what it's all about!

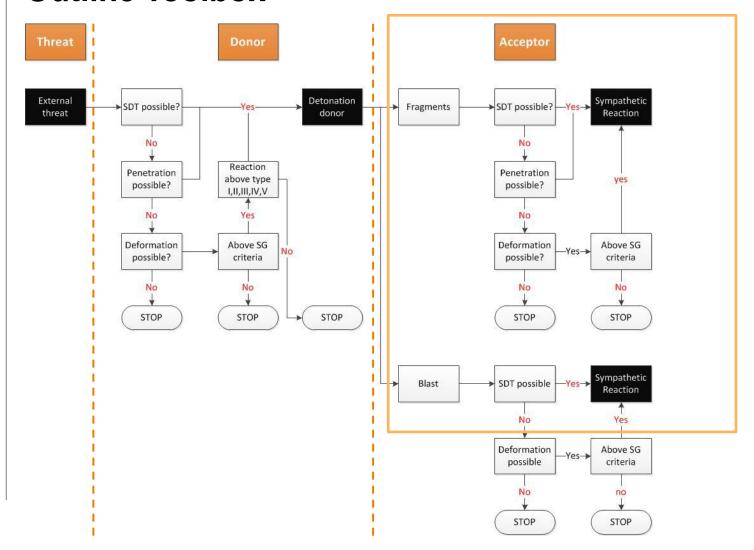
Overview

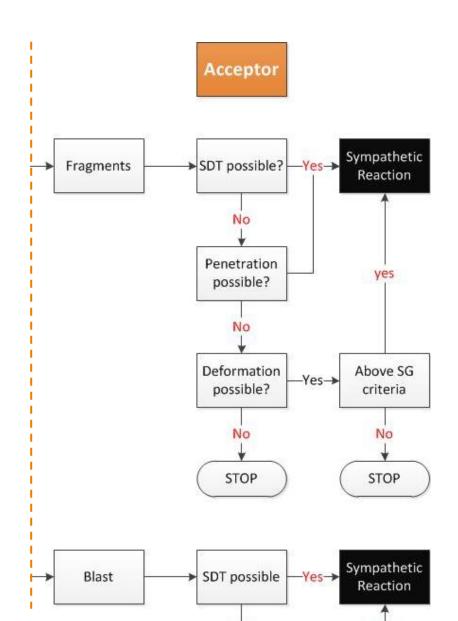
- Introduction
- Case study in compound
 - Mortar attack at compound
 - Detonation of ammunition storage
- Sympathetic Reaction toolbox
 - Case study: M107 155 mm
 - Research mitigating materials
- Conclusions


Sympathetic detonation Toolbox

- Effects external threat
- Effects detonating article on neighbouring articles
- Engineering tools
- Spreadsheet implementation

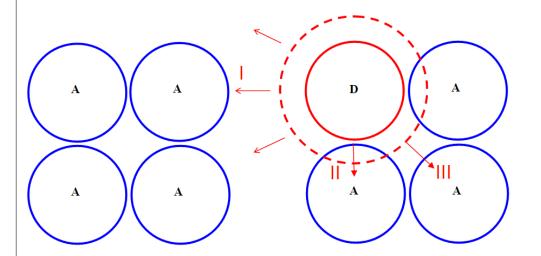


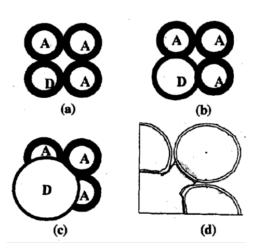




Case study: Sympathetic detonation M107, 155 mm

- Threat: effects from incoming mortar
- Donor and Acceptor: M107, 155 mm, TNT filled


- Three Mechanisms:
 - I. Acceptor in neighboring stack (10-100 cm's)
 - II. Acceptor in same stack: one-on-one
 - III. Acceptor in same stack: diagonal positioned

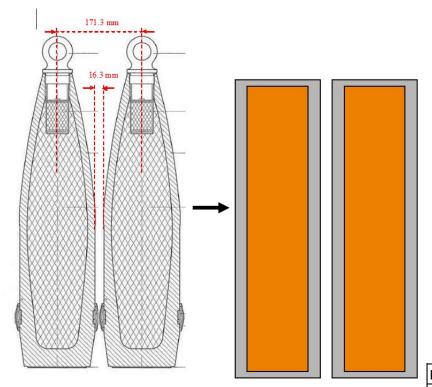


Three mechanisms

Effects on acceptors vary with distance

20 mm distance

70 mm distance



Conversion to representative cylinder

Dimension		Туре		
		CompB	TNT	
Mass metal part	kg	35,0	35,0	
Design explosive mass	kg	8,41	8,39	
Total mass	kg	43,41	43,39	
External diameter	mm	155,0	155,0	
Internal diameter	mm	112,3	113,2	
Thickness casing	mm	21,35	20,90	
Length	mm	494,0	509,0	

Mott fragment distribution equations

Parameter		Туре		
		CompB	TNT	
Mott constant	kg^0.5 m^-7/6	2,714	3,815	
Fragment distribution factor	kg^0.5	2,00	2,75	
Average fragment mass	gr	7,89	15,16	
Heaviest fragment	gr	280	455	
Design fragment mass	gr	36	68	
Total number of fragments	-	658	346	

SDT

- Energy criterium (Haskins and Cook)
- Critical diameter (Green or Lundstrom)

Penetration of casing

- > THOR code
- Fragment stuck in EM

	A	В	С	D	E	F	F G		l I	J
1	Hugoniot ca	lculatio	ins			Vatmin	0,1	km/s		
2	Us=Co+sUp	Co	S	r		Vatmax	0,3	km/s		HU45 hugoniot is
3	staal	4,58	1,49	7,89		angle2	-0,978961515	degree		vorm of vlak (1,0)
4	Aluminium	5,38	1,34	2,712		angle2	-2,934601533	degree		
5	Comp B	3,03	1,73	1,715		angle3	-1,476123403	degree		cook/haskins
6	Octol	1	1	1		angle3	-4,420557984	degree		"Projectile impac
- 7	Imp vel, km/s	0,5	km/s	angle	0	degree				c2=
8	Imp vel, km/s	0,500	km/s	pressures i	n GPa					c3=
9	P1=P2=ro1*Us1	"(V-Up1)=	ro2"Us2"Up				Barriere dikte	10	mm /	Us2=
10	V= Up1+P2/(ro1	"Us1)					c(explosief)	4,13181	km/s 🖍	c2^2-(Us2-Up2)^;
11	P3=ro3"Us3"U	p3=ro2*U:	s2*(V2-Up)				diameter fragment	40,00	mm	Re=
12	V2=2*Up1						Eflatrod	2596,22	KJłm2	tau
13							Eroundrod	865,406	KJ/m2	Effux
14	Quadratic solu	tions for	up				tan(alfa)	0,38505		Ec=
15	a=	8,122	a=	0,66713	a=	1,96695	alfa	21,059		Ec-Eflux
16	b=	-62,483	b=	-24,9087907	b=	-12,0318716				
17	c=	21,007	C=	12,0864109	C=	7,97949904				
18			Up match	Prnatch	Up match	Prnatch	Up match	Prnatch		
19			0,352344	5,5920487	0,491702	3,272427	0,756837751	1,32964		
20			1st match up	&P	2nd match up	&P	3rd match up & P			
21										
22	Up	P. steel	P.st refl	P. Al	P. Al refl	P. comp B	P.comb B refl	P. octol		
23	0	0	21,007125	0	12,0864109	0	5,717946851	0		
24	0,2	7,6975	11,898909	3,0634752	8,28930595	1,157968	3,795638236	0,24		
25	0,4	16,335	3,731181	6,4176768	4,7829274	2,553292	2,11068562	0,56		
26	0,6	25,914	0	10,0626048	1,56727526	4,185972	0,663089005	0,96		
27	0,8	36,433	0	13,9982592	0	6,056008	0	1,44		
28	1	47,892	0	18,22464	0	8,1634	0	2		
29	1,2	60,292	0	22,7417472	0	10,508148	0	2,64		
30	1,4	73,633	0	27,5495808	0	13,090252	0	3,36		
31	1,6	87,914	0	32,6481408	0	15,909712	0	4,16		
32	1,8	103,13	0	38,0374272	0	18,966528	0	5,04		
33	2	119,3	0	43,71744	0	22,2607	0	6		
34	2,2	136,4	0	49,6881792	0	25,792228	0	7,04		
35	2,4	154,44	0	55,9496448	0	29,561112	0	8,16		
36	2,6	173,43	0	62,5018368	0	33,567352	0	9,36		
27										

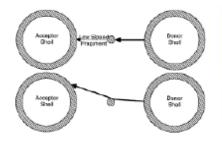
	A	В	C	D	E	F	G	H		J	K	L
1	THOR Fragm											
2		Residual velocity equation constants Residual mass equation constants										
3	Material	c1	a1		g1	11	c2	a2	b2	g2	12	
4	Mild steel	3,69	0,889	-0,945	1,262	0,019	-2,478	0,138	0,835	0,143	0,761	
5	hard homo st		0,889		1,262		-2,671			0,327	0,88	
6	face-hard st	2,305	0,674	-0,791							0,483	
7	Cast iron	2,079		-1,051			-8,89			2,091	2,71	
8	2024T-3 AI	3,936	1,029	-1,072	1,251	-0,139	-6,322	0,227	0,694	-0,361	1,901	
9												
10	Layer 1											
11	Vs, m/s	2000			Assum	e randon	n fragme	nt (A=K	*ms^.667)	, K rand	om =0.5	199
12	ms, g =	16	A=	3,3012	sq cm		Other fr	agments	K cube=	0,3799		
13	targ thick,cm	0,635							K sphere	0,3079		
14	oblig, ang, de											
15												
16												
17	Residual vel=	1052	m/s			NOTE:	For diffe	erent ta	rget mat	erials, d	lifferent	
18	Residual mas	3,341	grams			consta	nts from	rows 4	-8 must b	e used.		
19	limit velocity	934,1	m/s for	perforati	on							
20	max obl	56,91	deg for	perforation	on							
21												
22	Layer 2											
23	targ thick,cm	0,389	A=	1,1618	sq cm							
24	oblig, ang, de	0										
25	Residual vel=		m/s			NOTE:	For diffe	erent ta	rget mat	erials, d	lifferent	
26	Residual mas	1,761	grams						-8 must b			
27	TARGET MA			homoge	eneous	steel (re	ow 5)					
28												

Results evaluation

Summary of results

Mechanism	Relevant threat	Result
I	SDT	Highly likely for different fragments and
		impact angles
	Acceptor casing	Highly likely for different fragments
	penetration	shapes and impact angles
	Blast	Critical shock pressure of the
		explosive fill exceeded < 2 m
II	Sympathetic reaction, one-	No SDT, effect of deformation not
	on-one (homogeneous	evaluated
	loading of acceptor)	
III	Sympathetic reaction,	SDT is highly likely
	diagonal (homogeneous	
	loading of acceptor)	

Results of the Toolbox evaluation guides the search for the right mitigating materials or structural solutions



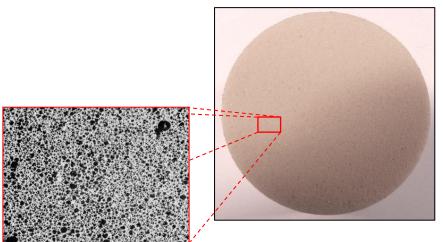
Approach for barrier research

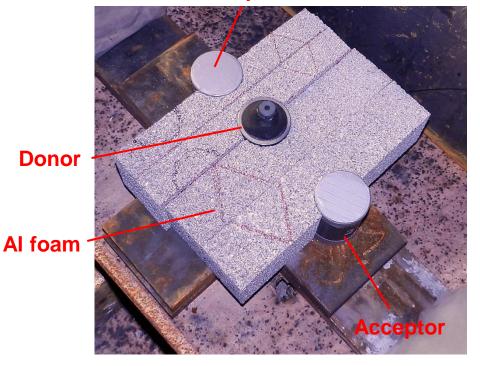
- A barrier should:
 - Stop Fragments
 - Stop Secundairy fragments (e.g. spall of container)
 - Reduce (Blast) pressure
 - No secundairy fragments from barrier itself
 - Reduce deformation acceptor

Pumice

Anti Fracticide bars

Approach for barrier research – recent advances


- New blast mitigating materials for situation of SD
 - Based on damage assessment of acceptor
 - > Homogeneous load distribution due to intact casing
- Tested materials (a.o.)
 - Aluminium foam
 - Polyurethane foam



Experimental set up

- Experiment in bunker
- 1 donor, 2 acceptors at different distances
- Steel cilinders D=70 mm, t= 5 mm

Semtex10 or sand fill

Acceptor

> 20 mm distance

No mitigation

PUR foam

> 40 mm distance

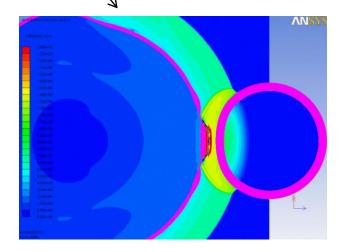
No mitigation

PUR foam

> 70 mm distance

No mitigation

PUR foam



- All materials excellent fragment arresting capabilities
- > PUR and AI foam applied
 - Live acceptors
 - Autodyn simulations

	Distance [mm]				
Material	20	40	70		
PUR foam	n.t.				
Aluminium foam	n.t.		n.t.		

> Simulation of foam behaviour - movie

Conclusions

- Engineering tools in the sympathetic detonation Toolbox guide the search for the right mitigating materials or structural solutions
- Important difference between effects mass detonation or limited event
 - Quantification of consequences

Putting all the work on IM munitions in the right perspective sets the stage and motivates and challenges research engineers in their activities. These efforts protect the war fighter in an intrinsic dangerous environment.

