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ABSTRACT: 

We have developed a system that recognizes 48 
human behaviors from video. The essential 
elements are (i) inference of the actors in the 
scene, (ii) assessment of event-related properties 
of actors and between actors, (iii) exploiting the 
event properties to recognize the behaviors. The 
performance of our recognizer approaches human 
performance, yet the performance for unseen 
variations of the behaviors needs to be improved. 
 
1. INTRODUCTION 

This paper is about the recognition of 48 human 
behaviors from 2,588 short video clips of about 10-
30 seconds, given a learning set of 3,480 video 
clips. The behaviors and their prevalence in the 
dataset (based on human annotations) are listed in 
Figure 1. For some behaviors, several tens of 
positive examples are available, while for others 
there are a few thousand positive examples. The 
behaviors vary from simple behaviors of one 
person (e.g. walk) where others involve two or 
more persons (e.g. follow). There are behaviors 
that are defined by the involvement of some item 
(e.g. give), or an interaction with the environment 
(e.g. leave). 
 
This challenge cannot be solved by using general 
spatiotemporal features and learning a 
straightforward classifier. The reason is that each 
behavior will have several variants which may be 
encountered with varying actors and in various 
conditions. It can be argued that one behavior may 
have about 10 variants. That means that for a 
corpus of 48 behaviors we have approximately 500 

variants. For a typical statistical learning problem, 
50 samples per class are used [1]. In total we 
would need 25,000 clips to solve the problem of 
recognizing 48 human behaviors. DARPA has 
provided us with 3,480 clips to solve the challenge. 
This is an order of magnitude lower than what we 
would need from a statistical pattern recognition 
point of view. 
 
Solutions are needed to solve the recognition 
problem without being hindered by the insufficient 
training set. That is the focus of this paper, in 
which we highlight three contributions. We have 
incorporated as much world knowledge as possible 
in order to reduce the learning. The world 
knowledge is integrated into our system at two 
levels: inference of the actors in the scene (see 
Entities), assessment of event-related properties of 
actors and between actors (see Event Properties). 
The third contribution is to optimally exploit the 
available yet limited training set by comparing the 
current video to all videos from this set (see 
Random-Forest Tag-Propagation). 
 
We demonstrate the performance of our system by 
comparing to human annotations (see Recognition 
Results). 
 
2. ENTITIES 

World knowledge is included in decomposing the 
scene into actors and items: the entities. We know 
which type of entities to expect. To that end, we 
apply dedicated person, car and bike detectors [2]. 
To detect all other objects that move, we apply a 
standard moving object detector [3]. For both type 
of detectors, examples are provided in Figure 2.  
 
We know about the size of entities: not just a few 
pixels and not half of the screen. We also have an 
understanding of their location: e.g. not in the sky.  

Figure 1. The 48 human behaviors in this paper and their (logarithmic) prevalence in the test set. 
 



 

 
 

Figure 2. Dedicated detectors (left) and  
moving object detection (right). 

 
We also know that typical trajectories are mostly 
horizontal and in a range of normal velocities of a 
few pixels per frame. Non-moving but shaky 
objects are usually false. We exploit such prior 
knowledge in order to merge object detections and 
to reduce false detections [4]. Illustrations of a 
typical merge and removal based on such rules are 
given in Figure 3. 

 

 
 

Figure 3. Merging (green) and removal (yellow). 
 
3. EVENT PROPERTIES 

World knowledge is also included in the event-
related attributes of entities and between entities: 
the event properties. We know which properties 
define the behaviors [5]. Some behaviors involve 
one entity (e.g. walk) where others involve two or 
more entities (e.g. follow). There are behaviors that 
are defined by the involvement of some item (e.g. 
to give something), or the environment (e.g. dig).  
 
Higher-level event properties are needed that 
describe the scene’s entities and their kinematics, 
relations and interactions. Low-level features are 
not directly fit for creating the required event 
properties. This class of features is highly popular, 
because they are generally applicable and easily 
integrated into an application. Many reasonably 
discriminative and straightforward schemes with 
classifiers such as SVM have been proposed. 
STIP [6] is such an example: a highly informative 
feature of the (object) parts in the scene that are in 
motion. Yet such low-level features do not encode 
(at least not explicitly and arguably not even 
implicitly) essential event-related properties like 
interactions between people, items and their 
environments.  
 

We make a distinction between single-entity event 
properties (e.g. type of entity; an entity moves 
horizontal; etc.), multiple-entity and relational 
properties (e.g. one entity approaches another 
entity; an entity holds an item; etc.) and global 
properties (e.g. there is more than one entity in the 
scene; etc.). These properties have been 
implemented. Many of the single-entity properties, 
like the kinematics of the entity are already very 
informative. In the example from Figure 4, 
somebody fell over a chair. The bounding box was 
portrait-oriented, moved to the right, and then went 
down and became landscape-oriented. 
 

 
 

Figure 4. Kinematics of an entity. 
 
In some cases, the straightforward implementation 
was not possible, for instance with an entity that 
holds an item. In many video fragments, the item 
that was in the hands of the person was not 
(clearly) visible. In such cases, we chose for a 
good trade-off between the information of the 
property and the likeliness of detecting it. In the 
case of the carried item, we implemented a 
derivative: the ‘one-arm-out’ pose. Given that we 
are interested mainly in events, like the exchange 
of an item, this is the best clue that some item is 
being carried and handed over to another person. 
The pose estimation of Ramanan [7] is projected 
onto a limited number of pose types that are 
relevant for the 48 behaviors. By adding skin 
detection and the local optical flow (see Figure 5), 
an indication is obtained where the object part is 
going. 
 

 
 

Figure 5. Pose (left), its local motion (middle)  
and skin detection (right). 

 



 

Other properties involve relations between entities 
(e.g. approaching someone), or with the 
environment (e.g. burying something in the 
ground). The example in Figure 6 shows a woman 
that passes a man, who keeps at the same 
position. Such a spatiotemporal pattern is highly 
informative of somebody who passes another 
person. 
 

 
 

Figure 6. A multiple-entity event property that 
describes an interaction between persons.  

 
In total we have implemented 57 single-entity 
properties, 13 multiple-entity properties and 8 
environmental properties. For each entity (on 
average 5 entities are detected per video clip), at 
each video frame, we represent the beliefs about 
the 78 event properties. Note: we process this 
offline. On a standard desktop pc, the processing 
time per clip (average 15 seconds) is 
approximately 15 minutes. Most time is consumed 
by running the dedicated object detectors. 
 

 
 

Figure 7. Event properties of a typical entity (left). 
The properties (right, vertical) are displayed on the 

time axis (right, horizontal). 
 

4. RANDOM-FOREST TAG-PROPAGATOR  

The goal of our system is to produce 48 beliefs 
about each of the human behaviors within the 
current test video clip. These beliefs are not 
mutually exclusive and need to be estimated from 
the event properties from all training videos.  

To optimally exploit the available yet limited 
training set (3,480 videos), we compare a test 
video to all videos from this set. We base the 
beliefs about the 48 behaviors in the current video 
on the similarities to all of these previously seen 

videos. In this paragraph, we will establish a 
distance measure between two video clips to 
express their dissimilarity. First we need a 
representation for each clip. A difficulty is that each 
clip has a varying number of entities and varying 
length. The number of entities varies due to actual 
variations of the number of actors and items and 
due to erroneous variations i.e. missed and false 
detections. We have chosen a bag-of-features [8] 
representation that is independent of the number 
of entities and clip length. The advantage is that 
we are able to deal with all clips in exactly the 
same way and that the method has proven to be 
discriminative and robust to clutter (e.g. [8]). The 
disadvantage is that we do not explicitly associate 
entities in order to compare clips and therefore we 
loose selectivity.  

For the representation of a clip, we consider the 
event properties. We know that not all properties 
are relevant for each type of behavior. We want to 
create a representation that makes some 
properties more important than others. This boils 
down to feature selection, which is guided by some 
form of labelling. To obtain this labelling, we have 
clustered (k-means, k=30) the human annotations 
for all 3,480 training clips (a vector of length 48 
indicating presence or absence for each verb). 
With the resulting 3,480 labels we have created a 
random forest [9] of 200 trees on the event 
properties. The trees resemble good cuts on 
values of a subset of event properties that are 
selective of the guiding cluster labels. Each tree is 
generated from top-down, where each time a node 
is created to make a binary decision on a 
property’s value to go to the next level. The 
creation of the ensemble of 200 trees requires a 
good balance of diversity of trees and predictive 
power of each tree [9]. This balance depends on a 
good choice of the M-parameter, which determines 
the randomness in the creation of new nodes. M 
has been optimized using the train set. 
 
The trees are used to calculate a histogram for 
each clip. For a clip, all 78 event properties for 
each entity and for each timestep are passed 
through all trees. We count for each leaf (the end 
node) how often it was reached [10]. The 
histogram now resembles the mass over all leafs 
from all trees. The histogram is normalized to one 
to obtain a pdf that is independent of the number of 
entities and timesteps. Because each entity is fed 
through the trees and ends up in a single 
representation, the resulting representation is 
highly similar to the coding of natural images by a 
bag-of-features model [8]. The trees are 
independent and because they are likely to be 
redundant, this creates a robust representation of 
subsets of relevant event properties. 
 
We generate a representation using the single 
random forest for all clips in our training and test 
set. Now that we have a representation for all clips, 



 

we are able to compare video clips. We want to 
compare the current test clip to all training clips to 
make optimal use of the learning set.  
 
 

 
 
Figure 8. Random forest representation based on 

the event properties (figure adapted from [10]). 
 
The final source of knowledge that we include in 
our system is the coincidence of the behaviors. 
Some of them are highly correlated. For instance, 
we know that if somebody follows another person, 
he is usually walking. Likewise, if somebody gives 
an item to another person, we will also observe 
that the other person receives the item. Clearly, 
correlations between the observed behaviors are 
significant. 
 
For the current test clip, we have the following 
inputs available: its similarity distance to all training 
clips and the tags of the present behaviors for 
each training clip. Given the dissimilarities and 
tags, we learn a tag-propagator model [11]. This 
model is appropriate for making predictions about 
multiple labels (in our case 48 verbs) which are not 
mutually exclusive (and for some verbs even 
strongly correlating). 
 
The essence of our approach is that we aim to 
model which clips are informative of particular 
behaviors – and how similar a new clip should be 
to count as evidence for a particular behavior. The 
driving element during training are the annotations 
from the humans (i.e. tags). The tags of a test clip 
are predicted using a weighted nearest-neighbor 
model to exploit the labeled training clips [11]. 
Neighbor weights are based on neighbor distance 
(i.e. the dissimilarity explained earlier). The model 
allows the integration of metric learning by directly 
maximizing the log-likelihood of the tag predictions 
in the training set. In the results, we refer to our 
recognizer as Random-Forest Tag-Propagator 
(RF-TP). 
 
5. RECOGNITION RESULTS 

The performance of our system is measured by the 
F1-measure to balance precision and recall: we 
want both to be good. The F1-measure is defined 
by: F1 = 2*TP/(2*TP+FP+FN), where T=true, 

F=false, P=positive and N=negative. We evaluate 
against the entire test set and compare to human 
annotations. For each clip and each of the 48 
behaviors we have a present/absent was provided 
by DARPA. The human annotations appears to be 
very noisy. To measure the stability of human 
annotations, we compare humans to other humans 
as well. We aim to achieve a performance that is 
similar to humans. The procedures will be 
explained shortly. 
 
To get insight in its generalization power, we split 
the evaluation for previously seen clips, unseen 
clips (yet the variations of behavior are similar to 
the previously seen clips) and unseen variations of 
behaviors. These cases are increasingly hard and 
we want to establish where the system degrades. 
 
The first part of the evaluation is to establish 
whether the RF-TP performs better than 
straightforward alternatives. We have compared 
RF-TP against a rule-based system (RBS), a 
conditional random field with hidden units 
(HUCRF) and a recurrent temporal restricted 
Boltzmann machine (RTRBM). The reason for 
considering the RBS is to have an expert system 
with manually created rules as opposed to a 
statistical classifier. The reason for comparing with 
a HUCRF and RTRBM is to include classifiers from 
the set of temporal, graphical models. Where the 
HUCRF is a discriminative model, the RTRBM is 
generative. Together these four methods span a 
variety of the types of classifiers. Furthermore we 
compare to two baselines. The first baseline is the 
human performance, which we have derived from 
the annotations and the variation within annotators. 
The second baseline is a lower-bound baseline. 
This is the performance that we get when we 
produce the same fixed response for all clips by 
reporting the average number of occurrences for 
all verbs. On average, this is the best fixed 
response and it serves as a lower bound.  
 
In Table 1, we summarize the recognition 
performances for the 2 baselines and the 4 
classifiers. The reported F1-measure is first 
computed per verb and then averaged. In this way, 
we are less sensitive to the prevalence of verbs. 
HUCRF and RTRBM are similar to the lower 
baseline and RBS is just above. RF-TP performs 
significantly better than both the other classifiers. 
The RF-TP approaches human performance for 
the entire test set. 
 

Human Base-

line 

RBS HU- 

CRF 

RT- 

RBM 

RF-TP 

0.57 0.40 0.44 0.40 0.40  0.56 

 
Table 1. F1-measures of two baselines and  

four classifiers across entire test set. 
 
The second part of the evaluation is dedicated in 
establishing how well we are able to recognize 
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represent the classifiers, from which the RF-TP is the only one that exceeds the  
lower baseline and approached the human performance. 

 

each verb individually. Again we consider the F1-
measure, yet now specified per verb. For each 
verb, the results are shown in Figure 9. The figure 
is organized as follows. From left to right, the verbs 
are ordered by increasing prevalence. So, for the 
verbs on the left, we have far less positive samples 
to learn from, in some cases only tens of clips (see 
also the dataset statistics in Figure 1). We point out 
that the F1-measure is emphasizing errors on the 
rare verbs, as it is dominated by the amount of true 
positives. This effect is clear from the figure: the 
lines are generally lower at the left part than at the 
right. At the right are verbs like move and go, 
which are present in respectively 50% and 75% of 
the videos. Clearly, the classifiers have optimized 
to perform well on common verbs: all lines towards 
the right are similar.  
 
The black line on top represents the human 
performance. This is the line that defines the aimed 
performance for our RF-TP. The light blue line that 
is a little below the top line shows the performance 
of the RF-TP. Indeed, we are approaching the 
human performance when we consider the entire 
test set. The verbs on the left are harder and for 
this subset humans really do better. The black line 
at the bottom of Figure 9 is the baseline 
performance. The RTRBM and HUCRF are 
represented by the colored lines that are just 
above the baseline. These classifiers fail to 
discriminate between the 48 verbs. The RBS 

performs a slightly above these temporal 
classifiers, yet lacks good selectivity. 
 
The third part of the evaluation is about the ability 
to generalize from the learned examples to 
completely new variations of the 48 behaviors. We 
have distinguished three subsets from the entire 
set. In increasing order of difficulty: clips we have 
seen before (these were also contained in the train 
set), unseen clips yet similar variations of the 48 
behaviors, and totally unseen variations of the 48 
behaviors. These increasingly hard cases are 
listed below in Table 2 from top to bottom. The RF-
TP does not generalize well to completely unseen 
variations of behavior. The F1-measure drops to 
just a little above baseline for  these cases. From 
the high performance for seen clips (compared to 
humans) we conclude that the the RF-TP is clearly 
overtraining.  
 

 Human Baseline RF-TP 

Seen clips 0.57 0.39  0.65 

Unseen variations - 0.43  0.50 

Unseen behaviors - 0.40  0.43 

 
Table 2. F1-measures of two baselines and the 

RF-TP for various subsets of the test set. 
 
We aim to discover the reasons for the drop in 
performance from seen clips to unseen behaviors. 



 

In Figure 10, we have visualized the TP, FP, TN 
and FN per verb, for seen clips (top) and unseen 
variations (bottom). Horizontally we have ordered 
the verbs by prevalence (sum of TP and FN). The 
RF-TP misses (red) a serious amount of detections 
in the new cases. Generally, for all verbs, there are 
about 50% more false positives (orange). This 
happens especially for a particular set of verbs, 
given the few orange strikes in the figure. 
Examples are: leave, pickup, run, hold, etc. We 
hypothesize that this is due to their ambiguous 
nature: there are other verbs that are highly similar 
(e.g. leave/go, pickup/lift, run/walk, hold/carry). We 
will try to obtain better selectivity between the 
ambiguous verbs, and better generalization in 
general. For those verbs that are also indistinctive 
for humans, we will explore a scoring scheme that 
does not penalize them if they are confused. 
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Figure 10. Positives and negatives for all verbs for 
seen clips (top) and unseen behaviors (bottom). 

 
6. SUMMARY 

We have proposed a framework to recognize a set 
of 48 complex behaviors. The behaviors in this 
paper include relations between persons, 
involvement of items, interactions with the 
environment. That makes this challenge go beyond 
the typical action recognition approaches where an 
individual is displaying a limited number of 
behaviors. Compared to the huge variation in the 
48 behaviors, the training set of 3,480 clips is 
relatively small. To bridge the gap between the 

low-level features and the recognition, we have 
considered event properties. They serve as an 
intermediate level of understanding the set of 
events that define the behaviors. Our promising 
recognition results demonstrate that our set of 
event properties captures discriminative properties 
of the 48 human behaviors.  
 
The event properties are represented by a bag-of-
features model [8] where the codebook is 
generated by a random-forest [10]. The recognizer 
consists of a dissimilarity-based classifier. Guided 
by the human annotations, we retrieve the subsets 
of clips that are informative about particular 
behaviors by a tag-propagation model [11]. This 
RF-TP model proves to approach human 
performance on the entire test set. However, for 
the subset of completely unseen variations of 
behavior, the RF-TP does not yet generalize well.  
 
 
7. DISCUSSION 

Improvements on the RF-TP are expected in both 
representation and the classifier. For 
representation, we will optimize the generation of 
the trees in the random forest. Currently we are 
investigating the labelling that guides the tree 
formation process. Parameters that we are 
exploring are the number of leafs and the 
regularization in the nodes. The tag-propagation 
recognizer is exploiting the dissimilarities. We are 
exploring whether other dissimilarity measures 
perform better, including metric learning on the 
random-forest representations.  
 
In parallel, we are extending the set of 78 event 
properties. We are zooming in on body parts when 
two persons are close to each other. We are 
exploring how to incorporate a generic item 
detector like [12] to detect whether a person is 
interacting with an item (e.g. give) or with 
something from the environment (e.g. open). 
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