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ABSTRACT

We propose a new approach for the joint estimation of aberration parameters and unknown object from diversity
images with applications in imaging systems with extended objects as astronomical ground-based observations
or solar telescopes. The motivation behind our idea is to decrease the computational complexity of the conven-
tional phase diversity (PD) algorithm and avoid the convergence to local minima due to the use of nonlinear
estimation algorithms. Our approach is able to give a good starting point for an iterative algorithm or it can
be used as a new wavefront estimation method. When the wavefront aberrations are small, the wavefront can
be approximated with a linear term which leads to a quadratic point-spread function (PSF) in the aberration
parameters. The presented approach involves recording two or more diversity images and, based on the before
mentioned approximation estimates the aberration parameters and the object by solving a system of bilinear
equations, which is obtained by subtracting from each diversity image the focal plane image. Moreover, using
the quadratic PSFs gives improved performance to the conventional PD algorithm through the fact that the
gradients of the PSFs have simple analytical formulas.

Keywords: point-spread function, wavefront reconstruction, born approximation, conjugate gradients

1. INTRODUCTION

All optical instruments are subject to optical aberrations either intrinsic to the instrument or due to the atmo-
spheric turbulence when imaging through the Earth’s atmosphere. Inhomogeneities of the temperature induce
inhomogeneities of the refractive index of air which lead to phase variations in the pupil plane and severely
reduce the optical transfer function of the instrument. If the aberrations can be estimated, they can be at least
partially compensated either through real-time techniques during image acquisition or post-processing. We will
investigate here a way to adapt a certain wavefront sensing (WFS) technique, called phase diversity, used mostly
for post-processing, to real-time adaptive optics systems.

PD directly uses image data for the estimation of the aberrations, and it is thus sensitive to all aberrations
degrading the quality of the optical instrument, contrary to wavefront sensors as the Shack-Hartmann. The
method consists of collecting two or more images. One of them is the focal plane image that has been degraded
by unknown aberrations. Additional images are obtained by introducing known aberrations into the system.
This method was first proposed by Gonsalves1 for two diversity images, and it was based on the minimization
of a least-squares (LS) criterion. Since the paper of Gonsalves, the method has been extended in numerous
papers2–5 . Paxman2 , formulated it as a maximum-likelihood estimation problem and generalized it to include
an arbitrary number of diversity measurements. Also, considering known aberrations, a closed-form expression
was obtained for the optimum object and introduced in the initial problem. The modified problem to be solved
has the aberrations as the only unknowns. If prior distributions on the object and aberrations are included in
the estimation, then the problem becomes a joint maximum a-posteriori estimation (MAP)4 . One disadvantage
of the MAP is that it introduces hyper parameters - parameters of a prior distribution used in the Bayesian
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estimation theory to distinguish them from parameters of the model for the underlying system under analysis -,
that have to be tuned for each object or turbulent condition. This problem is solved by integrating the object
out of the problem, or marginalization5 , and estimating the hyper parameters together with the aberrations.

PD has a number of advantages over other WFS techniques, like the fact that it does not require a bright,
point-like reference beacon, that may not be always available, or the fact that it can estimate high order aber-
rations. The disadvantages are given by the fact that it requires more extensive post-processing to estimate the
aberration parameters and also the computational time required is considerable compared to the evolution time
of the turbulence. Research efforts are looking at different ways to use this type of WFS technique in a real-time
adaptive optics system. Demonstrations of real-time correction have been obtained for very few corrected aber-
rations6 . Improvements to PD have been made by better numerical algorithms7,8 , by using object independent
error metrics to estimate the aberrations from the data9 or by different linearization techniques10–12 .

The approach we use here is to linearize the wavefront when the aberrations are small. We give an analytic
formula for the PSF which is quadratic in the aberration parameters using a finite series of Zernike polynomials.
This approximation can speed up algorithms like the one proposed in2 by using simple analytical formulas for
gradients of the PSFs. Our approach is to subtract two or more diversity images with quadratic PSFs in order
to end up with linear expressions in both the aberration parameters and the object, in other words a bilinear
problem. By solving this bilinear problem, we estimate the aberration parameters and the unknown object.
Using this approach, we show that the computational time is reduced compared to conventional PD2 .

Systems of bilinear equations are not as well understood as linear systems, and few results are reported in
the literature13–15 . The estimation of the bilinear parameters is usually formulated as a nonlinear least squares
problem. In this paper, the solution of the bilinear system is obtained using the so-called Two-Stage Algorithm
(TSA)16 . In a first step, the TSA uses an over-parametrization of the bilinear system and transforms it into a
linear system before reducing the estimated linear parameters back to the bilinear ones in a second step. The
linear system appearing in the first step is a large-scale, sparse system that can be solved using conjugate gradient
type iterative algorithms. The second step consists of an ’economic’ singular value decomposition (SVD) of a fat
matrix (more columns than rows).

The remaining part of this paper is structured as follows. Section 2 starts with the analytical expression for
the PSF, which is written as a quadratic function in terms of the Zernike coefficients. Section 3 summarizes the
phase diversity algorithm3 and shows how the gradients of the analytical PSFs can be computed. In Section 4 we
define and give the solution to the wavefront estimation problem formulated as a system of bilinear equations.
Section 5 is dedicated to numerical simulations that validate the results presented in the previous sections.
Concluding comments are placed in Section 6.

2. ANALYTICAL FORMULA FOR THE PSF

In this section we derive analytical formulas for the complex amplitude U (or spatial impulse response) of the
PSF using a linearization of the wavefront. Once we compute this quantity, the intensity PSF can be easily
derived as j = |U |

2
. To this end, we use the Nijboer-Zernike theory of diffraction integrals17,18 containing

small aberrations. These diffraction integrals apply to optical systems where the pupil is large compared to
the wavelength of the light used. The choice of Zernike polynomials for the representation of the wavefront is
motivated by the fact that they have analytical expressions and can be easily included in the computation of
the PSFs. The derivations here follow the lines of19–21 . We consider a point source of monochromatic light in
the object plane of a centered optical system. The diffraction integral that gives the spatial impulse response
U (x, y) in image space is

U (x, y) ≡ U (r, ϕ) = 1
π

∫ ∫

ν2+µ2≤1

exp [iΦ(ν, µ)] exp [2πi (νx + µy)] dνdµ

= 1
π

1∫

0

2π∫

0

exp [iΦ(ρ, θ)] exp [2πiρr cos (θ − ϕ)] ρdρdθ,
(1)

where the normalized coordinates in the exit pupil are (ν, µ) = (ρ cos θ, ρ sin θ), the normalized coordinates in
the image plane are (x, y) = (r cos ϕ, r sin ϕ) and Φ (·, ·) is the aberration function. We assume here that the
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optical system introduces a wavefront aberration only and that the amplitude distribution over the wavefront is
uniform. The aberration function Φ is approximated with a Zernike series

Φ (ρ, θ) =
∑

n,m

Zm
n (ρ, θ) αm

n + Z−m
n (ρ, θ) α−m

n =
∑

n,m

Rm
n (ρ)

(
αm

n cos mθ + α−m
n sin mθ

)
, (2)

where Zm
n (ρ, θ) := Rm

n (ρ) cos mθ and Z−m
n (ρ, θ) := Rm

n (ρ) sin mθ. Z±m
n are the even and odd Zernike polyno-

mials, which form an orthonormal basis on the unit disk, Rm
n (ρ) are called radial polynomials, n ≥ 0 is called the

radial degree of the corresponding Zernike polynomial, m ≥ 0 is called the azimuthal frequency, and n − m ≥ 0
and even. Under the assumption that Φ is sufficiently small, we can linearize the wavefront

exp [iΦ(ρ, θ)] ≈ 1 + iΦ(ρ, θ) . (3)

It is easily seen that the Born approximation (3) is a first order Taylor approximation of the wavefront around 0.
This approximation is meaningful for wavefronts with less than ∼ 0.5 rad of phase variance and has been used
in previous studies for phase retrieval (see10,11). With Eq. (2) we get

exp [iΦ(ρ, θ)] ≈ 1 + i
∑

n,m

Rm
n (ρ)

(
αm

n cos mθ + α−m
n sinmθ

)
. (4)

Introducing Eq. (4) in Eq. (1), we obtain the complex amplitude U

U (r, ϕ) ≈ 1
π

1∫

0

ρ
2π∫

0

[

1 + i
∑

n,mRm
n (ρ) (αm

n cos mθ + α−m
n sinmθ)

]

× exp [2πiρr cos (θ − ϕ)] dρdθ

≈ 1
π

1∫

0

ρ

{
2π∫

0

exp [i2πρr cos (θ − ϕ)] dθ

+i
∑

n,m

Rm
n (ρ) αm

n

2π∫

0

exp [i2πρr cos (θ − ϕ)] cos mθdθ

+i
∑

n,m

Rm
n (ρ) α−m

n

2π∫

0

exp [i2πρr cos (θ − ϕ)] sinmθdθ

}

dρ.

(5)

In order to reduce Eq. (5), we use the following relation20 , valid for an integer m

2π∫

0

exp [iz cos (θ − ϕ)] exp (imθ) dθ = 2πim exp (imϕ) Jm (z) . (6)

Here, Jm is the Bessel function of the first kind of order m

Jm (x) =
m∑

k=0

(−1)
k

k!Γ (k + m + 1)

(x

2

)2k+m

, (7)

where Γ (n) = (n − 1)!. Using Eq. (6), we can carry out the integration over θ in Eq. (5) and obtain

U (r, ϕ) ≈ 2T 0
0 (r) + 2i

∑

n,m

imTm
n (r)

(
αm

n cos mϕ + α−m
n sinmϕ

)
, (8)

where

Tm
n (r) = (−1)

n−m

2
Jn+1 (2πr)

2πr
. (9)

In the case when no aberrations are present, 2T 0
0 (r) in Eq. (8) is the only nonzero term and is the amplitude

corresponding to the Airy function. Also, in terms of intensity, 4
(
T 0

0 (r)
)2

is exactly the Airy function and the
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PSF is the summation of this quantity plus/minus the other terms depending on α. In Eq. (9) we have used a
well-known result in the Nijboer-Zernike theory (see Chapter 9 of17), namely that

1∫

0

ρRm
n (ρ) Jm (2πrρ) dρ = (−1)

n−m

2
Jn+1 (2πr)

2πr
. (10)

Finally, the PSF is j = |U |
2

j (r, ϕ) = 4
[
T 0

0 (r)
]2

− 8
∑

n,m

Im (im) Tm
n (r) T 0

0 (r) (αm
n cos mϕ + α−m

n sin mϕ)

+4
∑

n1,m1;n2,m2

αm1
n1

αm2
n2

Re (im1−m2) Tm1
n1

(r) Tm2
n2

(r) cos m1ϕ cos m2ϕ

+4
∑

n1,m1;n2,m2

αm1
n1

α−m2
n2

Re (im1−m2) Tm1
n1

(r) Tm2
n2

(r) cos m1ϕ sin m2ϕ

+4
∑

n1,m1;n2,m2

α−m1
n1

αm2
n2

Re (im1−m2) Tm1
n1

(r) Tm2
n2

(r) sin m1ϕ cos m2ϕ

+4
∑

n1,m1;n2,m2

α−m1
n1

α−m2
n2

Re (im1−m2) Tm1
n1

(r) Tm2
n2

(r) sin m1ϕ sin m2ϕ.

(11)

The rather involved Eq. (11) can be rewritten into a simpler quadratic form

j (r, ϕ) = c0 + c1
T α + αT Qα, (12)

where
α =

[
α0

0 α−1
1 α1

1 α0
2 α−2

2 α2
2 . . .

]T
, (13)

c0 := 4
[
T 0

0 (r)
]2

,

c1
T := −8

[
0 T 1

1 T 0
0 sin ϕ T 1

1 T 0
0 cos ϕ 0 0 0 . . .

]
,

Q := 4×













`

T 0

0

´2

0 0 T 0

0 T 0

2 −T 0

0 T 2

2 sin 2ϕ −T 0

0 T 2

2 cos 2ϕ . . .

0
`

T 1

1

´

2

sin2 ϕ
`

T 1

1

´

2

sin ϕ cos ϕ 0 0 0 . . .

0
`

T 1

1

´

2

cos ϕ sin ϕ
`

T 1

1

´

2

cos2 ϕ 0 0 0 . . .

T 0

0 T 0

2 0 0
`

T 0

2

´2

−T 0

2 T 2

2 sin 2ϕ −T 0

2 T 2

2 cos 2ϕ . . .

−T 2

2 T 0

2 sin 2ϕ 0 0 −T 2

2 T 0

2 sin 2ϕ
`

T 2

2

´2

sin2 2ϕ
`

T 2

2

´2

sin 2ϕ cos 2ϕ . . .

−T 2

2 T 0

2 cos 2ϕ 0 0 −T 2

2 T 0

2 cos 2ϕ
`

T 2

2

´2

cos 2ϕ sin 2ϕ
`

T 2

2

´2

cos2 2ϕ . . .

...
...

...
...

...
...
. . .














,

(14)

α ∈ R
Nα , c0 ∈ R, c1 ∈ R

Nα , and Q ∈ R
Nα×Nα .

Eq. (12) gives a way to compute the intensities in the focal planes as functions of the Zernike coefficients α

corresponding to the aberration function Φ. Given a grid of size M × N and using Eq. (12) for each point of
this grid, the intensity PSF can be written as

t0 (α) =








j (r11, ϕ11) j (r12, ϕ12) . . . j (r1N , ϕ1N )
j (r21, ϕ21) j (r22, ϕ22) . . . j (r2N , ϕ2N )

...
...

...
...

j (rM1, ϕM1) j (rM2, ϕM2) . . . j (rMN , ϕMN )








. (15)

The PSF in Eq. (15) can be rewritten as a function of α

t0 (α) = C0 + C1 (IN ⊗ α) + Qt (IN ⊗ α ⊗ α) , (16)
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where ⊗ denotes the Kronecker product, IN is the identity matrix of order N , and the coefficients C0 ∈ R
M×N ,

C1 ∈ R
M×(NαN), Qt ∈ R

M×(Nα
2N) are given below

C0 :=








c0 (r11) c0 (r12) . . . c0 (r1N )
c0 (r21) c0 (r22) . . . c0 (r2N )

...
...

. . .
...

c0 (rM1) c0 (rM2) · · · c0 (rMN )








,

C1 :=








c1
T (r11, ϕ11) c1

T (r12, ϕ12) . . . c1
T (r1N , ϕ1N )

c1
T (r21, ϕ21) c1

T (r22, ϕ22) . . . c1
T (r2N , ϕ2N )

...
...

. . .
...

c1
T (rM1, ϕM1) c1

T (rM2, ϕM2) · · · c1
T (rMN , ϕMN )








, (17)

Qt :=








vec (Q (r11, ϕ11))
T

vec (Q (r12, ϕ12))
T

. . . vec (Q (r1N , ϕ1N ))
T

vec (Q (r21, ϕ21))
T

vec (Q (r22, ϕ22))
T

. . . vec (Q (r21, ϕ21))
T

...
...

. . .
...

vec (Q (rM1, ϕM1))
T

vec (Q (rM1, ϕM1))
T

. . . vec (Q (rMN , ϕMN ))
T








.

Here vec (Q) is a vector obtained by stacking together all the columns of the matrix Q from left to right. The
coefficients in Eq. (17) do not have to be computed in real-time, but are calculated in advance.

The PSF in Eq. (16) is given by a quadratic, analytical formula in the aberration parameters α. This
expression can be used to improve the efficiency of phase diversity algorithms as will be shown in the following
two sections. Because the approximation in Eq. (3) does not conserve the energy of the wave, as this is
problematic when taking differences of images, we have to use normalized PSFs in our implementations.

3. PHASE DIVERSITY AND THE ANALYTICAL COMPUTATION OF THE PSF
GRADIENTS

In this section we assume that we have recorded one focal plane image and one diversity image (using a known
defocus). If d0, d1 are the observed focused and defocused images and t0, t1 are the corresponding PSFs at the
moment of exposure, then their relations with the object f are

d0 = t0 (α) ∗ f + n0

d1 = t1 (α) ∗ f + n1,
(18)

where ∗ denotes convolution, t0 is given by Eq. (16), t1 is given by

t1 (α) = t0 (α + αd1) , (19)

αd1 is a known quantity, in most cases a given defocus, and n0, n1 represent measurement noise. The error
metric to be minimized in the PD algorithm (see for example1–3) measures the sum of the square errors in the
difference between the observed images and the ones obtained from the reconstructions

L =
∑

u,v

|D0 − F̂ T̂0|
2 + |D1 − F̂ T̂1|

2, (20)

where ·̂ denotes an estimated value, u and v spatial frequencies and F,D0,D1, T0, T1 are the Fourier transforms
of f, d0, d1, t0, t1. The optimum restored object, FM , is found by minimizing L considering known aberrations

FM =
(

|T̂0|
2 + |T̂1|

2
)−1 (

D0T̂
∗
0 + D1T̂

∗
1

)

(21)

Substituting the object from Eq. (21) in Eq. (20) we obtain the modified error metric

LM =
∑

u,v

(

|T̂0|
2 + |T̂1|

2
)−1 (

D1T̂0 − D0T̂1

)

. (22)
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We will call this minimization problem the PD algorithm.

One important step in the minimization of the metric in Eq. (22) is the computation of the gradients of
the PSFs in Eq. (16) and Eq. (19). It is stated in3 that the computation time of the algorithm is completely
dominated by the time required to obtain these gradients. Using our approach, the gradients can be easily
computed and included in the PD algorithm

∂t0(α)
∂αi

= ∂
∂αi

[C0 + C1 (IN ⊗ α) + Qt (IN ⊗ α ⊗ α)]

= C1 (IN ⊗ ei) + Qt
∂

∂αi

(IN ⊗ α ⊗ α)

= C1 (IN ⊗ ei) + Qt

[
∂(IN⊗α)

αi

⊗ α + (IN ⊗ α) ⊗ ∂α
∂αi

]

= C1 (IN ⊗ ei) + Qt (IN ⊗ ei ⊗ α + IN ⊗ α ⊗ ei) ,

(23)

∂t1(α)
∂αi

= ∂t0(α)
∂αi

+ Qt
∂

∂αi

(IN ⊗ α ⊗ αd1 + IN ⊗ αd1 ⊗ α)

= ∂t0(α)
∂αi

+ Qt (IN ⊗ ei ⊗ αd1 + IN ⊗ αd1 ⊗ ei) ,

(24)

where ei =
[

. . . 0 1i 0 . . .
]T

. We can then compute the gradients in the Fourier domain as

∂

∂αi

F {tj (α)} = F

{
∂tj (α)

∂αi

}

j = 1, 2, i = 1, . . . , Nα. (25)

4. BILINEAR PROBLEM

For this part, we assume that we have obtained Nα + 2 images, one focus plane image d0, and diversity images
dk, k = 1 . . . Nα + 1, with t0 in Eq. (16) and tk, k = 1 . . . Nα + 1, such that

tk (α) = t0 (α + αdk) , k = 1, . . . , Nα + 1, (26)

where αdk are known quantities. As in the previous section, the images are obtained as a convolution of the
PSF with the object f in the presence of additive Gaussian noise n

d0 = t0 (α) ∗ f + n0

dk = tk (α) ∗ f + nk, k = 1 . . . Nα + 1.
(27)

We note that the assumption of Gaussian noise is adequate for solar and horizontal path imaging that have
extended, relatively low-contrast objects, and not so good for night-time astronomical applications with extremely
high-contrast images such as stars. For the latter, the space-varying photon noise with a Poisson distribution
would be a more adequate assumption.

The approach we use here is to subtract from each diversity image the focus plane image and end up with
linear relations both in the aberration parameters and the object. When we subtract the pairs of images we
obtain

ddk = dk − d0

= [tk (α) − t0 (α)] ∗ f + (nk − n0)

= [t0 (α + αdk) − t0 (α)] ∗ f + nk0,

(28)

where nk0 := nk − n0. We further use Eq. (16) to write expressions for the two PSFs in Eq. (28) and obtain

ddk = [C1 (IN ⊗ αdk) + Qt (IN ⊗ αdk ⊗ αdk + IN ⊗ α ⊗ αdk + IN ⊗ αdk ⊗ α)] ∗ f + nk0

=

[

C1 (IN ⊗ αdk) + Qt (IN ⊗ αdk ⊗ αdk) + 2
Nα∑

i=1

αivki

]

∗ f + nk0,

(29)
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where vki = Qt (IN ⊗ ei ⊗ αdk) , i = 1 . . . Nα and ei =
[

. . . 0 1i 0 . . .
]T

. With

pk := C1 (IN ⊗ αdk) + Qt (IN ⊗ αdk ⊗ αdk) , (30)

we obtain

ddk =

(

pk + 2

Nα∑

i=1

αivki

)

∗ f + nk0. (31)

We take the Fourier transform in Eq. (31) and obtain

F {ddk} =

(

F {pk} + 2
Nα∑

i=1

αiF {vki}

)

F {f} + F {nk0} . (32)

Using the notations Ddk := F {ddk} , Pk := F {pk} , Vki := F {vki} , F := F {f} , Nk0 := F {nk0} (of dimension
MF × NF ), we obtain

Ddk =

(

Pk + 2

Nα∑

i=1

αiVki

)

⊙ F + Nk0, (33)

where ⊙ denotes point-wise multiplication. We would like to rewrite Eq. (33) in a form where the linear variables

are
[

1 αT
]T

and vec (F ). To this end, we vectorize Eq. (33) (we stack together all the columns) in order to
obtain

vec (Ddk) =

[

vec (Pk) + 2

Nα∑

i=1

αivec (Vki)

]

⊙ vec (F ) + vec (Nk0) . (34)

In Eqs. (33) and (34), Ddk contain the measured data and Pk and Vki depend on the diversities we impose and
can be precomputed. The quantities that we want to estimate are αi, i = 1, . . . , Nα and F . It is easy to see that

each equation of the system in Eq. (34) can be expressed as a bilinear equation in the unknowns
[

1 αT
]T

and vec (F ) as mentioned above. We show this for the equation corresponding to the element number j

vec (Ddk)j =
[

vec (Pk)j + 2
∑Nα

i=1 αivec (Vki)j

]

vec (F )j + vec (Nk0)j

=
[

1 αT
]










vec (Pk)j

2vec (Vk1)j

2vec (Vk2)j

...
2vec (VkNα

)j










vec (F )j + vec (Nk0)j , j = 1, . . . ,MFNF .
(35)

Let A (j) , j = 1, . . . ,MFNF be the (Nα + 1) × MFNF sparse matrix with non-zero elements only in column j

A (j) =











0 · · · 0 vec (Pk)j 0 · · · 0

0 · · · 0 2vec (Vk1)j 0 · · · 0

0 · · · 0 2vec (Vk2)j 0 · · · 0
...

0 · · · 0 2vec (VkNα
)j

︸ ︷︷ ︸

0 · · · 0











.

j

(36)

Using Eq. (36) in Eq. (35) we obtain

vec (Ddk)j =
[

1 α
]T

A(j)vec (F ) + vec (Nk0)j . (37)

With the notations d := vec (Ddk) , y :=
[

1 αT
]T

, x := vec (F ), n := vec (Nk0), we obtain the bilinear
system of equations

dj = y∗T
A (j) x∗ + nj , j = 1, . . . ,MFNF , (38)
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equivalent to the one appearing in14 , where the superscript ∗ denotes the true values. We obtain the same
type of equations for the Nα + 1 pairs of focus plane and diversity images. Stacking together all these bilinear
equations we obtain a system of bilinear equations. The bilinear equations can be written in the following form

dj = yT A (j) x, j = 1, . . . , (Nα + 1) MFNF , (39)

and the goal is to find a solution in the least squares (LS) sense

(x,y) = arg min
x,y

1

(Nα + 1) MFNF

(Nα+1)MFNF∑

i=1

[
di − yT A (i) x

]2
, (40)

with (x,y) as close as possible to the true values (x∗,y∗).

In14 , a comparison of three methods to solve systems of bilinear equations is presented. The first is an iterative
algorithm whose convergence is not proved in the general case, the second is a so-called over-parametrization
method or TSA, which implies solving as a first step a least-squares estimate using an over-parametrized vector
and then projecting the solution onto the class of bilinear equations via the SVD, and the third, a method which
solves the nonlinear LS problem (40) using a direct optimization technique. We choose to solve this problem
using the second approach. The TSA was initially proposed in16 to identify a bilinear Hammerstein-Wiener
system. It is an optimal two-stage algorithm.

In the following we use the notations introduced in Eq. (38), which can be written in the following scalar
form

Nα+1∑

i=1

MFNF∑

k=1

aik (j) yixk = dj for j = 1, . . . , (Nα + 1)MFNF . (41)

The first step in the proposed algorithm is to write the bilinear system as an over-parametrized linear system.
We do this by defining a new vector consisting of all the products of the unknowns x and y. Thus, we define

θ = (y1x1, . . . , y1xMFNF
, y2x1, . . . , y2xMFNF

, . . . , yNα+1x1, . . . , yNα+1xMFNF
)

=
(
θ1, θ2, . . . , θ(Nα+1)(MFNF )

) (42)

as the over-parametrized unknown vector and Θyx as the (Nα + 1) × (MFNF ) matrix form of θ

Θyx = yxT =








y1x1 y1x2 . . . y1xMFNF

y2x1 y2x2 . . . y2xMFNF

...
...

. . .
...

yNα+1x1 yNα+1x2 . . . yNα+1xMFNF








. (43)

The matrix Θyx is a rank 1 matrix. We also define the data matrix

ΦN =








a11 (1) a12 (1) . . . a(Nα+1)(MFNF ) (1)
a11 (2) a12 (2) . . . a(Nα+1)(MFNF ) (2)

...
...

. . .
...

a11 (N) a12 (N) . . . a(Nα+1)(MFNF ) (N)








.

where N := (Nα + 1) MFNF .

The system of equations in Eq. (41) can now be written as a linear system

ΦNθ = d. (44)

We use the following TSA14 to obtain an estimate of y∗ and x∗:

Step 1. Compute the LS estimate

θ̂ =
(
ΦT

NΦN

)−1
ΦT

Nd; (45)
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Step 2. Construct Θ̂yx from θ̂ and let

Θ̂yx =

min(Nα+1,MFNF )
∑

i=1

σiµiν
T
i (46)

be its SVD, where µi, i = 1, . . . , Nα +1 and νi, i = 1, . . . ,MFNF are Nα +1, MFNF -dimensional orthonormal
vectors, respectively;

Step 3. Let sµ denote the sign of the first nonzero element of µ1. Define the estimates as

x̂ = sµσ1ν1, ŷ = sµµ1. (47)

The LS solution θ̂ in the first step of the above algorithm gives an estimate of the over-parametrized unknown
vector θ. The second step computes the optimum x̂ and ŷ as solutions of

arg min
x∈R

MFNF ,y∈RNα+1

∥
∥
∥Θ̂yx − yxT

∥
∥
∥

2

F
. (48)

The estimates x̂ and ŷ are provided by the SVD of Θ̂yx, which is proved to be optimal in lemma A.1 in16 .
Because the second step is globally optimal over all vector space, the convergence of this algorithm depends on the
convergence of the over-parametrized LS problem in the first stage. The system in step 1 is a large-scale sparse
linear system and can be solved using specific methods that take advantage of this structure (see for example
the LSQR algorithm in22). LSQR is the implementation of a conjugate-gradient type method for solving sparse
linear equations and sparse least-squares problems

min
θ

‖ΦNθ − d‖
2
2 + λ ‖θ‖

2
2 , (49)

where the matrix ΦN may be square or rectangular (over-determined or under-determined), and may have any
rank. The scalar λ is a damping parameter. If λ > 0, the solution is ”regularized” in the sense that a unique
solution always exists, and ‖θ‖2 is bounded. Theoretically, LSQR converges in N steps, but in practice a solution
is found in a considerably smaller number of iterations. Such an iterative method can also be implemented in
a parallel configuration as shown in23 in order to speed up computations. If the first stage converges, then
x̂ → x∗, ŷ → y∗ in the second stage.

5. SIMULATIONS

The simulations presented here consider isoplanatic image formation, namely the PSF is considered space invari-
ant over the entire field of view. We give simulation results for two algorithms: the bilinear algorithm presented
in Section 4 (bilinear) and the PD algorithm in Eq. (22). The image formation process in Eq. (27) is consid-
ered without additive noise. We assume that the aberration function in Eq. (2) is sampled on a 32 × 32 grid.
Two cases are presented, were the rms error of the wavefronts is 0.5 rad (w1) and 0.3 rad (w2). We further
approximate the wavefront with a series as in Eq. (2) using 14 Zernike coefficients. As stated in Section 2, the
coefficients in Eq. (17) of the PSF in Eq. (16) are precomputed using a grid of 32 × 32 points over a pupil of
diameter D = 1 m. The wavelength considered is 550 nm. We present simulations considering a 64 × 64 pixel
scene (which is a low-contrast synthetic image of the solar surface) (d1) and a 64× 64 pixel point source (we will
denote it by d2) and .

We simulate our data by first generating wavefronts with Kolmogorov statistics with r0 = 0.2 m. Then we
perturb each Zernike mode, starting with defocus, by a known quantity, more exactly we use 12 diversities.
The values of the diversity shapes used are 0.3 rad corresponding to each Zernike mode. Next, we compute the
corresponding PSFs in each case and perform the convolution (see Eq. (27)) to obtain the images. In order to
remove the edge effects that appear because of the fast Fourier transforms, we use a Hanning window to apodize
the images. We also subtract a constant intensity from the image such that the average intensity of the apodized
image is zero. We simulate 50 realizations of the wavefront and compute the estimates (we present here only
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the wavefront estimates, although the computation of object estimates is inherent to the method). The bilinear
solution is biased, so we computed this bias and subtract it from the estimates. The results are presented as
follows. We solve the system of bilinear equations and the PD algorithm using as stopping criteria for LSQR a
tolerance of 1e − 2 or a maximum of 10 iterations. Fig. 1 plots the mean and variance of the absolute values of
the differences between the real parameters and the estimated ones in four cases (from left to right): (w2, d1),
(w1, d1), (w2, d2), and (w1, d2). In Fig. 2 we plot the computational times and ratios of computational times in
the four cases.
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Figure 1: Mean (left) and variance (right) of the absolute values of the differences between estimated and real
Zernike coefficients (in radians)
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Figure 2: (left) Computational times; (right) Ratios of computational times

The solution of the bilinear problem can be used as an initial estimate for the PD algorithm. In Fig. 3
we can see computational times for PD when using as initial estimate zero and the bilinear solution (more
precisely, on the left we plot the computational time of PD with initial value zero and on the right the sum of
the computational times corresponding to computing the bilinear solution and to the PD algorithm having as
initial value the previously computed solution).
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Figure 3: Computational times [sec] for PD with initial value zero (red), bilinear (blue) for 50 experiments

6. CONCLUSIONS

We have developed a new method for estimating aberration parameters and an unknown object estimation in
case of imaging through turbulence. This method is based on the linearization of the wavefront for small values
of the aberrations. A systems of bilinear equations is solved to obtain the estimates. Because this method is
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explicit in the unknown object and it involves solving a large-scale linear system of equation, it is very well suited
either for wavefront estimation with small objects or post-processing. In the case of small objects, the method
shows potential to be used as a wavefront sensor in real time control schemes in adaptive optics.
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