





# ANALYTICAL MODEL DEVELOPMENT RELATED TO MECHANICAL DEFORMATION AND INITIATION OF PBXs

Richard Bouma and Antoine van der Heijden









#### Introduction

- Goal: understanding of mechanical deformation and initiation of PBXs below shock initiation threshold
- > Secondary goal: understanding the role of crystal quality
- > Example of mechanical deformation test
- > Intra- and/or intergranular sliding friction
  - Intra → model with shear rate dependence
  - > Inter  $\rightarrow$  model with pressure, shear rate and duration dependence
    - Analytical model for thermo-chemical decomposition due to local heat flux is needed
    - > Experiment and model of laser heating of metal covered materials







## **Deformation in energetic materials**

- > Examples of deformation of energetic materials in munitions
  - > Accidental deformation
  - Imposed deformation during functioning
  - > Deformation required before functioning
  - Deformation-induced functioning
- Scales of deformation processes
  - Macro >> meso >> micro
  - Munition with energetic material >> plastic bonded explosive with particulate features >> crystal







## **Explosion-driven deformation**

- > From left to right:
  - > 5 cm steel tube filled with sand
  - > 10 cm steel tube filled with PBX
  - > 5 cm steel tube filled with sand
  - Rubber + plastic explosive layer on full length to create deformation
    - > Thickness plastic explosive layer is varied









#### **PBXN-109**

> 3, 4 and 5 mm deformation charge





Meuken *et al.*, shear initiated reactions in energetic and reactive materials, 2006







# Modeling of energetic materials at the meso-scale

- > 1) fit continuum model with particle-specific features to experimental data
- 2) simulate representative volume element and determine collective mechanical behaviour
- 3) simulate the mechanical behaviour with spatially resolved explosive grains and binder



Zhou et al., a Langrangian framework for analyzing fracture and heating of PBXs under impact loading, 2011







Confinement cell

Plunger

PBX 9501

#### Intra- and intergranular sliding friction sensitivity

Skidmore *et al.*, Microstructural effects in PBX9501 damaged by shear impact, 1999











## Intragranular sliding friction Ballistic Impact Chamber

- Background is 1) relation between rate of energy dissipation and rate of plastic deformation of **deforming crystal**, and 2) determined deformation rates at initiation.
- Experiment is attempt to measure plastic deformation rate at initiation site at moment of initiation of polymer and explosive crystal compound.
- Namkung et al., Plastic deformation rate and initiation of crystalline explosives, 2002



| HMX(125 μ)                                | $.7 \times 10^4$            |
|-------------------------------------------|-----------------------------|
| HMX(5 μ)                                  | $.8 \times 10^4$            |
| HMX(5 µ, calculated)                      | $1 \times 10^{4}$           |
| RDX(calculated)                           | $1 \times 10^{4}$           |
| IH-H7-D                                   | $2 \times 10^4$             |
| IH-H7-D2                                  | $2 \times 10^{4}$           |
| IH-H7-F                                   | 7 x 10 <sup>4</sup>         |
| Comp B                                    | 7 x 10 <sup>4</sup>         |
| TNT                                       | $> 2 \times 10^{5}$         |
| TNT(calculated)                           | 2 x 10 <sup>5</sup>         |
| PBXN-109(heated)                          | 1.4 x 10 <sup>5</sup>       |
| PBXN-109                                  | $1.7 \times 10^{5}$         |
| PBXW-128                                  | $2 \times 10^{5}$           |
| TATB(calculated)                          | $> 2 \times 10^{5}$         |
| PBX-9502                                  | $> 3 \times 10^{5}$         |
| Detonation (All Materials,<br>calculated) | a few times 10 <sup>6</sup> |







#### **PBXN-109**

> 3, 4 and 5 mm deformation charge



















#### **PBXN-109**, maximum shear rate



- ▶ 4 mm, 1.19 10<sup>5</sup> s<sup>-1</sup>
- ▶ 5 mm, 1.51 10<sup>5</sup> s<sup>-1</sup>



o innovation for life





Richard Bouma ANALYTICAL MODEL DEVELOPMENT



BIC





 $\frac{h_0}{h} \frac{dh}{dt}$  $\frac{d\gamma}{dt} \approx \frac{r_0}{h^2} \sqrt{\frac{r_0}{h^2}}$ 







Richard Bouma ANALYTICAL MODEL DEVELOPMENT



# Compression sequence

- Primary
  - compression by striker (equation by
  - Namkung and Coffey
- > Rebound striker
- Secondary impact
- Initiation in PBXs
  often noted after
  primary
  compression







innovation

 $F_c$ 

# Intergranular sliding friction Friction between particles

- 1) Hertz contact stress
- > 2) Work due to sliding motion
- 3) Thermo-chemical decomposition due to local heat flux

Browning, microstructural model of mechanical initiation of energetic materials, 1995 Gruau *et al.*, ignition of a confined high explosive under low velocity impact, 2009









# Intergranular sliding friction Browning model

- ▶ 1) Hertz contact stress → analytical
- > 2) Work due to sliding motion  $\rightarrow$  analytical
- > 3) Thermo-chemical decomposition due to local heat flux → numerical
  - > Today: only model for HMX-PBX and applied to Steven impact test
- > Typical outcome of modelling effort is a threshold that demonstrates influence of pressure, shear rate and duration, e.g.  $p^{2/3} \left(\frac{d\gamma}{dt}\right)_{max}^{1.27} t_{ign}^{1/4}$
- An analytical model for thermo-chemical decomposition due to a local heat flux is needed for wider applicability







# Local heat flux – initiation of energetic materials

- Thermal explosion where thermal diffusion within explosive is rate limiting  $\frac{E_a}{RT_{cr}} = \ln(\frac{a^2 \rho QZE_a}{\delta \lambda RT_{cr}^2})$ step
  - Frank-Kamenetskii, calculation of thermal explosion limits, 1939
- Critical temperature applied locally to an explosive covered with a thin  $\frac{E_a}{RT_{cr}} = \ln(\frac{2a^2\rho Q}{\lambda t})$ metal sheet, and
  - Rubencik, on the initiation of high explosives by laser radiation, 2007





Infinite cylinder with TNT of radius a (left), laser illumination of TNT with spot of radius a (right)







# Local heat flux – laser initiation of munitions

- > Time to ignition needs to be considered
- In laser initiation of munitions the approach by Rubencik *et al.* is to calculate required temperature rise  $\Delta T$ , and then calculate the timelag  $\tau$  related to a finite casing thickness I (note that radius laser beam is neglected)  $\tau = \frac{\rho c l \Delta T}{\tau} + -$
- Time lag equation is verified through numerical simulation

> Stuivinga, future use of HE laser systems, 2011





 $F_c$ 

Ryn

 $F_c$ 





#### Local heat flux

- Heat will diffuse laterally from contact area of two crystals, heat will also diffuse radially because of small dimension of contact area
- > Hypothesis taking into account finite radius and thickness effects

$$\tau = \tau_1 + \frac{l^2}{6D} \qquad \qquad \tau_1 = \frac{\rho c l \Delta T}{\alpha l \left(1 - \exp\left(-\frac{a^2}{4D\tau_1}\right)\right)}$$

- Al is to be replaced by the rate at which work due to sliding friction is dissipated in Hertz contact area of radius a and which is function of normal pressure p
- > Definition of thickness I is still a problem in crystal-crystal contact







# Local heat flux with temperature measurement compared to model

- > Experimental laser radiation onto 4 mm steel with PMMA backing
  - > 100, 200, or 300 W and 10, 25 or 50 mm diameter spot
  - > Thermocouples at steel/PMMA interface at 10 mm distances
  - > 2D-calculations with one set of thermal properties reproduce all experimental data

