
Analysis of Revenue Improvements with
Runtime Adaptation of Service Composition

Based on Conditional Request Retries

Miroslav Živković1 and Hans van den Berg1,2

1 TNO, Brassersplein 2,
2612 CT Delft, The Netherlands
miroslav.zivkovic@tno.nl

2 University of Twente, PO Box 217,
7500 AE Enschede, The Netherlands

Abstract. In this paper we consider the runtime service adaptation
mechanism for service compositions that is based on conditional retries.
A single retry may be issued while a concrete service within composition
is executed. This retry could either invoke the same concrete service or
a functionally equivalent service implementing the same task. We deter-
mine the optimal moments to terminate the current request and replicate
it. The calculation of these moments for each task within the workflow
is based on different QoS parameters from Service Level Agreements,
like services’ response–time distributions and cost–relating parameters.
The calculations are performed taking into account the remaining ac-
tual time–to–deadline, and the benefit of conditional retry mechanism
is illustrated by simulations. We further discuss the impact of costs and
response–time distributions’ parameters to the solution at hand.

Keywords: Service Oriented Architecture, Optimal Retry Policies, Watch-
dog Timer, Hazard Rate

1 Introduction

Composite web services in a service oriented architecture (SOA) aggregate web
services that may be deployed and executed within different administrative do-
mains. In the orchestrated scenario composite web service provider acts as an
orchestrator that invokes the aggregated services according to a pre–defined
workflow. The workflow is based on an unambiguous functionality description
of a service (“abstract service”), and several alternatives (“concrete services”)
may exist that match such a description [1]. With respect to functionality, all
concrete services that match the same abstract service are identical.

For commercial success of the composite web service, it is important that the
service provider is able to offer the service at attractive price-quality ratios. To
this end, the composite service provider (CSP) negotiates Service Level Agree-
ments (SLAs) with the client and third party domains. A service level agreement

Prepublication of:
Zivkovic, M. & Berg, J.L. van den (2012). Analysis of revenue improvements with runtime adaptation of service
composition based on conditional request retries. In 1st European Conference on Service-Oriented and Cloud
Computing, ESOCC 2012, 19-21 September 2012, Bertinoro, Italy (pp. 169-183). http://
dx.doi.org/10.1007/978-3-642-33427-6_12

(SLA) is a legal contract that specifies the minimum expectations and obliga-
tions that exist between a service provider and a service consumer [2]. Due to
the high variability of the service environment, the SLA violations could occur
relatively often, leading to providers’ losses and customer dissatisfaction.

One of the possible approaches to mitigate the problem of SLA violations
is to optimize the running composition instances by adaptation of the compo-
sition itself at runtime. In general, the adaptations could be done by means
of service rebinding/substitution, or via structural adaptation of the composi-
tion [3], [11]. When adaptation is done by service substitution, a service within
the composition is exchanged by another one, where, in ideal case both services
are functionally equivalent. On the other hand, an interesting possibility that
may be applicable in order to satisfy the agreed SLA is to trigger the retry ac-
tion hoping that the fault was transient [4]. The two basic issues that need to
be addressed for any of the mentioned approaches are (1) when to perform the
adaptation, and (2) how much does it cost (time, money, etc.)?

We analyse the runtime adaptation of the orchestrated service composition
that is based on conditional retry mechanisms. For each task within the service
workflow a concrete service has been selected based on some end–to–end opti-
mality criteria, i.e. the service composition has been determined. Services that
are not selected are “placed” in the pool of the functionally equivalent services.
The concrete services’ SLAs contain response–time probability density function,
as well as the invocation costs, while the end–to–end SLA contains end–to–end
deadline that CSP promises to its clients, as well as reward/penalty (for CSP)
when the promised hard deadline is met/missed. We illustrate our scheme in
Figure 1. When task i is executed by the concrete service that implements it
(CSi(1)), the orchestrator starts the “watchdog timer” with the timeout count
value that is set to θi for the execution of the selected service. When the counter
expires and there is no response generated from the invoked service, the orches-
trator terminates the original request, and initiates a new service invocation for
the same task (i.e. makes a retry). The new invocation could be submitted, e.g.
to the same concrete service as illustrated in Figure 1 for task 2, when time-
out counter value θ2 becomes zero. This may be the case when there is a single
implementation of a given workflow task. In case there is more than one imple-
mentation of a given task i, the new invocation (retry) could be submitted to
another concrete service (e.g. CSi(2)). In the latter case dynamic binding may
be required, and once the response from alternative is generated, the execution
proceeds with the execution of the next service from the initial composition.
When the response from the concrete service is generated before the timeout ex-
pires, the orchestrator executes the next task within the workflow. The counter
of the timer is set to the new value, e.g. θi+1, and so on, till all tasks within
the workflow have been executed. Based on the fact whether the end–to–end
deadline is then met or not, the CSP is rewarded or penalised.

In this paper we analyse the proposed conditional request retry mechanism
when a single retry is made. This single retry for the executed service is made
when, based on service’s response–time distribution, it becomes “clear” that

θ2

…
Late,

penalty V

θ1 θN-1 θN

Deadline D=δp

On time,

reward R
CS1(1)

CS1(2)

CS2(1) CSN(1)

CSN(2)CSN-1(2)

CSN-1(1)

Fig. 1. Runtime service adaptation with conditional retries.

the guarantees presented within SLA are jeopardized. In general case, the much
faster and more expensive alternative is then executed, which makes it possible
for CSP to claim the reward from it’s clients. We analyse how the (optimal)
values of timeout counter values θi could be determined, i.e. the procedure to
calculate the time instances when retry should be attempted. We illustrate the
impact of response–time distributions and invocation costs specified by services’
SLAs to the solution at hand. We indicate which distributions may be considered
when retry mechanism is to be applied, and the potential revenue improvements
of our scheme. For a given example we determine the optimal position of the
retry, i.e. we give an answer to the question whether it would be better to perform
the retry the sooner or later during the workflow execution.

The paper is organized as follows: in the next Section we give details of the
related work. In Section 3 we describe the system model and the assumptions
taken. In Section 4 we explain how to determine the optimal timer values. Based
on this analysis, we describe the simulation results for a couple of scenarios in
Section 5 and conclude the paper with possible directions for the future work in
Section 6.

2 Related work

QoS–aware service composition within SOA is usually static process, i.e. it deals
with determining the “best” available service for the abstract composition during
the deployment, e.g. by maximizing some utility function [14] or by combining
the local selection and global optimization [15]. The methods an approaches deal
with the optimization in a static manner, i.e. the optimal compostion does not
change at runtime. More recent work in this area focuses on dynamic, runtime

composition solutions and adaptations [9, 10, 12]. For each task invocation, the
orchestrator dynamically binds the task of the abstract composition to an ac-
tual implementation (i.e., concrete service), selecting it from the pool of service
providers that offer it. Due to the dynamic service composition it may happen
that every composite service request is served by different composition. The ser-
vice selection is driven by the solution of a suitable optimization problem, which
is reduced to the linear optimization problem [9], or the optimization is based
on evolutionary computation [10] or is based on the principles of dynamic pro-
gramming [12]. However, none of [9,10,12] consider the possible applicability of
retry mechanisms, i.e. the possibility of service adaptation while actual task is
executed.

The retry mechanisms as self–healing solution for temporarily unavailable
services, have been identified and classified, among others, in [3, 4]. The per-
formance of the retry mechanisms has been analysed in detail by van Moorsel,
Wolter, et. al. in [5–7]. Their work has focused on optimal retry mechanisms
for a single service in order to minimize the completion time. The number of
retries could either be finite or infinite, and the completion time when restarting
must be less than without restarting. Okamura et. al. in [8] analyse the optimal
restart policies when deadline is given. First, they prove that, time–fixed restart
time is the best policy even in non–stationary control setting under the as-
sumption of unbounded restart opportunities. They also analyse the problem of
optimal restart when a deadline is given and develop on–line adaptive algorithms
for estimating the optimal restart time interval via reinforcement learning. The
solutions mentioned focus on minimization of completion time. None of these so-
lutions analyse the problem using the penalty or reward of any kind. The cost of
the retries are defined as additional time to re–issue the service request. Besides,
the retry mechanism is analysed from the single service point of view.

On the other hand, Yousefi et. al. in [13] describe a strategy for QoS aware
service selection which takes advantage of the existing variability in QoS data
to provide higher quality services with less cost compared to the conventional
QoS aware service selection methods. In their method, each request is replicated
over multiple independent services to achieve the required QoS. This strategy is
clearly sub–optimal as it implies un–necessary request replications (and there-
fore higher costs) for all those requests that meet the required QoS without
request replication. Our approach optimizes request replication from the point
of increasing the profit of composite service provider. Therefore, we aim to issue
request replication only when it is really meaningful.

3 Considered system model

In this section we describe the model of the system that we will use for further
analysis. We furhtermore adopt some assumptions for the considered system for
the model illustrated in Figure 1.

The assumptions and the main features of our model are:

– We observe the sequential workflow that consists of N tasks to be executed
by the orchestrator. How to aggregate some of frequently used workflow
patterns and transform the workflow into the sequential one is illustrated,
e.g. in [12].

– The selection of candiate services for each task i, i = 1, . . . N has been
performed, and there are at most Mi = 2 alternative (concrete) services
to be considered, denoted by CSi(j), j = 1, 2. We call the initial service
composition the static service composition (SSC).

– We adopt the convention that CSi(1) is the service selected for static service
composition.

– A watchdog timer with timeout value θi is associated to workflow task i.
Once the timeout expires, and there is no response from the selected service,
a retry attempt is made.

– There is only one retry attempt. When request replication is made, the timer
is not used till response is obtained.

– When the response is obtained by the orchestrator before θi expires, the next
task (i+ 1) in the workflow is executed, by service CSi+1(1)

– In case timer θi expires without response generated, the orchestrator invokes
the functionally equivalent alternative service CSi(2) (conditional request
replication). In case there is only one service implementing the particular
task, the orchestrator attempts a single retry using the same concrete service
(i.e. CSi(1)).

In model illustrated at Figure 1 we see the second task is implemented by only
one service, and therefore the retry takes place by this service. It is naturally
possible this service is temporarily unavailable, or unavailable for a longer period
of time. In the latter case multiple retries or some other mechanisms may be
applicable, but we do not consider such problem in this paper.

Each concrete service CSi(j), i = 1, . . . , N, j = 1, 2 has a response time
represented by the random variable Di,j ≥ 0. We model the response-time of
each concrete service as a black box, which means that Di,j is a random variable
for which respective cummulative distribution function (CDF), or equivalent
probability density function (PDF) is given. The CDFs and PDFs for concrete
services are denoted by Fi,j and fi,j , respectively. For each concrete service
CSi(j), i = 1, . . . , N, j = 1, . . . ,Mi, there is an SLA agreed between the indi-
vidual service provider (ISP) of that service and the composite service provider
(CSP). This SLA contains the following elements:

– The response–time cummulative distribution function, Fi,j .
– The execution cost ci,j [money unit] per single invocation. From the ISP

viewpoint, this value represents reward.

The composite service provider agrees the following SLA with its clients:

– The end-to-end response time penalty threshold δp [time unit].
– The fraction of response time realisations pe2e that should be within the

deadline δp.

– The reward R [money unit] that the CSP gets for executing a single request
within penalty deadline δp.

– The penalty V [money unit] that the CSP pays to the end customer when
the agreed end-to-end deadline is not met.

We therefore adopt a constant penalty function for the composite provider, i.e. a
constant payment needs to be made if a given end–to–end response time thresh-
old value is surpassed.

We assume that response times of concrete services are mutually indepen-
dent, as the services are usually deployed by different service providers. Under
this assumption of independence, the end–to–end response time distribution can
be determined by taking the convolution of the respective concrete service dis-
tributions. Besides, the end–to–end response time distribution of the composite
service is therefore calculated as

Fe2e = F1,1 ? F2,1 ? · · · ? FN,1,

where ? operator represents convolution. For examples how to calculate the end–
to–end response time distribution of some other frequently used workflow design
patterns, see [12].

In case of SSC, the execution costs for the composite service provider are
defined as

Ce2e = c1,1 + c2,1 + · · ·+ cN,1,

where ci,1, i = 1, . . . , N is the execution cost per individual composite service
CSi(1), i = 1, . . . , N . We take here that CSi(1) is the service selected during
service composition, as already explained.

In case that there is no conditional request replication, the party that owns
the orchestrator, i.e. composite service provider has to perform the simple cost
analysis for the given end–to–end deadline δp, parameters R, V and Ce2e. Rep-
resenting the end–to–end reponse time by random variable De2e, whose response
time distribution is Fe2e, the probability for a successful response within δp is
defined by pe2e = P{De2e ≤ δp} = Fe2e(δp). The expected revenue per request
for composite service provider in case of SSC could therefore be calculated as

E[Re2e] = −Ce2e + pe2e ·R− (1− pe2e) · V =

= −Ce2e − V + pe2e · (R+ V).

Our goal is to apply the runtime adaptation, i.e. dynamic service composition
(DSC) by means of conditional request replication in order to increase the rev-
enue of the composite service provider, CSP. In order to do that, we need to
identify the optimal values θ∗i , i = 1, . . . , N of the timer(s) associated with the
execution workflow. The optimality is represented as the profit merit for the
composite service provider (CSP).

4 Analysis of the retry mechanism

Based on the model description given in Section 3, in this section we will perform
analysis of our solution, i.e. the conditional request replication mechanism. We

will first illustrate for which response–time distributions the considered mecha-
nism could be considered. Then we perform the analysis of the request replication
for the last task in the workflow, and subsequently, we analyse the request repli-
cation for other tasks in the workflow. We define the formulae that could be used
to find the optimal timeout values.

4.1 Response–time distribution

As illustrated in [5–7] when θi is restart time, and random variables D and Dθ

represent response times without and with retries, the retries could be considered
only when expected response time with retry E[Dθ] is smaller than response time
without retries E[D], which is defined as

E[D] < E[D − θ|D > θ].

Based on this condition, it may be concluded that services with heavy–tailed
response–time distributions could be considered for retries. The reason for this is
that heavy–tailed distributions have considerable probability mass for relatively
high values of response–times. The good indicator of the distributions’ suitability
for retries is hazard rate. If T is an absolutely continuous non-negative random
variable (r.v.), its hazard rate function h(t), t ≥ 0, is defined by

h(t) =
f(t)

1− F (t)
=
f(t)

F̄ (t)
,

where f(t) is probability density function (PDF) of r.v. T , F (t) is cummulative
distribution function (CDF) of T , and F̄ (t) is the so called survival function of
r.v. T . For a single service, and no costs involved, under assumptions that

– the restart of a task terminates the previous attempt
– the successive trials are independent

hazard rate is indicative whether retry may be benefitial. The retries are bene-
fitial for services with decreasing hazard rate; it does no harm to retry services
with constant hazard rate, and retries should not be done for services with in-
creasing hazard rate.

Therefore, the recommendations for the services with respect to response–
time distributions are:

– Services with heavy–tailed response–time distributions could be used for
request replication.

– When task is implemented by a single service that has no decreasing hazard
rate, whether the request replication is benefitial should be determined tak-
ing into account the costs of execution and expected reward/penalty in such
a case.

Another property that we consider for response–time distributions is so called,
bimodal, or, in general case, multi–modal distribution. A bimodal distribution

Fig. 2. A typical bimodal response–time distribution, with 80% of the values smaller
than 14 seconds.

is a continuous probability distribution with two different modes, [16]. These
appear as distinct peaks (local maxima) in the probability density function, as
shown in Figure 2. It appears that number of services deployed today may have
multi–modal or bimodal reponse–time distribution, see [17]. The example distri-
bution at given figure indicates that majority of responses are generated within
δ = 14 seconds, and the probability this happens is 80%. When choice is to
be made between cheap alternative that has bimodal response–time distribution
and very expensive service which indicates that response is generated within 5
seconds with, e.g. 95% probability at much higher execution cost, it seems to us
reasonable to adopt the following strategy:

1. Use cheaper bimodal (or heavy–tailed) service as the first choice during
service composition

2. Set the timeout value to the value that is related to the first maximum (i.e.
slightly higher)

3. When the timeout value expires, terminate the current request, and then
execute the very expensive alternative.

In case when there is a single implementation of the workflow task, the strategy
may be:

1. Calculate the hazard rate of the response–time distribution
2. In case when response–time distribution is with decreasing hazard rate, calu-

late optimal moments for retries, and set the timeout value to one of the
calculated thresholds.

3. In case when response–time distribution is with non–decreasing hazard rate,
do not perform the retry mechanism.

In what follows, we will consider the case of expensive services with response–
time modelled as lognormal distribution. The support of this distribution are

non–negative real values, which overcomes well with the fact that the response–
time cannot be negative. Also, the choice of parameters µ and σ of this distri-
bution allow to easily model different response–time distributions.

The PDF f(t) of the lognormal distribution is defined as

f(t) =
1

t
√

2πσ2
· e−

ln t−µ
2σ2 , t ≥ 0.

where µ and σ are so called location parameter and the scale parameter, respec-
tively.

4.2 The last task analysis

Let us suppose that for the example sequential workflow with N tasks, the first
N −1 tasks have been executed with the elapsed time τ , which means the time–
to–deadline for the last task is dn = δp − τ . In order to simplify the notation,
let us write cN,i = ci, fN,i = fi, FN,i = Fi, i = 1, 2. Further, let us denote the
execution costs of the tasks already executed by CE (see Figure 3). The expected
reward E1 in case that there is no replication mechanism (SSC) is

E1 = −c1 +R · F1(dn)− V · (1− F1(dn))− CE
= −CE − c1 − V + (R+ V) · F1(dn).

The expected reward consists of costs incurred for the tasks executed (CE), the
cost of the last task execution (c1), the reward R that is obtained when the task
is executed within given deadline dn with probability Fn, and the penalty V that
is paid when deadline dn is not met, with probability 1 − Fn. Naturally, when
dn <= 0 we have that Fn = 0 – in other words, there is “no chance” the deadline
would be met. When our approach is applied the expected reward denoted by
E1→2 is

E1→2 = −c1 +R·F1(θn)− CE + (1− F1(θn))·
·{−c2 +R·F2(dn − θn)− V · (1− F2(dn − θn))}.

In this case we see that the reward is obtained either when the first service
completes the execution before timeout value θn expires, which happens with
probability F1(θn). With probability 1 − F1(θn) we make a conditional retry.
When the retry is made, the deadline for the second service is dn − θn and this
deadline is met with probability F2(dn − θn), which means that, when timeout
expires after θn and retry is made, CSP obtains reward R with probability
(1 − F1(θn)) · F2(dn − θn). The similar reasoning could be made for the case
when penalty is to be paid by CSP.

In order for our method to be applicable, there exists at least one θ such that
E1(θ) ≤ E1→2(θ), 0 < θ < dn. The optimal value θn = θ∗n is the one for which
E1→2 reaches maximum at interval (0, dn). The value θ = θ∗n for which E1→2

reaches maximum is determined by solving

∂E1→2

∂θ
|θ=θ∗n = 0.

CSN(2)

CSN(1)

Late, V

θN

On time, R

Remaining time to deadline, dN

c1

c2

Fig. 3. The execution of the last task with the conditional request replication. Remain-
ing time to deadline is dn, and the timout value of the timer is θn.

Elementary transformations give the following expression

f1(θ∗n)

1− F1(θ∗n)
+

c2
R+ V

· f1(θ∗n)

1− F1(θ∗n)
· 1

1− F2(dn − θ∗n)
=

=
f2(dn − θ∗n)

1− F2(dn − θ∗n)
.

which could also be represented as

f1(θ∗n)

1− F1(θ∗n)
·
{

1 +
c2

R+ V
· 1

1− F2(dn − θ∗n)

}
=

=
f2(dn − θ∗n)

1− F2(dn − θ∗n)
,

or, equivalently

h1(θ∗n) ·
{

1 +
c2

R+ V
· 1

1− F2(dn − θ∗n)

}
= h2(dn − θ∗n),

where h1 and h2 are hazard–rate functions, represented by

h1(t) =
f1(t)

1− F1(t)

h2(t) =
f2(t)

1− F2(t)
.

We see that, other than results from [5–8] cost structure plays important
role in determining the optimal timout value θ∗n. Besides the optimal value does

not depend from the costs of the first attempt (c1 in above example). It is
trivial to determine the θ∗n when the same service (CSN (1)) is considered for the
reattempt.

4.3 Analysis of other tasks in the workflow

We turn our attention to other tasks in the workflow now. Due to the lack of
the space, we would consider the case when there is a single retry within the
workflow possible, and would like to determine whether it would be best to apply
the given retry scheme either for a) the first task in the workflow, b) the last
task N in the workflow or c) the task i in the workflow where i 6= 1, i 6= N .

In order to do the fair analysis, we would consider that all services CSi(1) have
the same execution cost c1. The response–time distributions of the first service
in case a), the last service in case b) and service i in case c) are identical and
represented by the same bimodal distribution. In all three cases the remaining
N − 1 response–time distributions are identical (not necessarily bimodal). We
want to determine the optimal position (from the revenue point of view) for the
alternative service that has execution cost c2 > c1, and which response–time
distribution is lognormal.

Let us analyse the case when retry is considered for the first task in the
workflow. Since all response time distributions are known, it is easy to calculate
the convolution distribution for the tasks 2 − N . This means that we have the
following cases:

– A: The response from the first service is generated before the retry time-
out value θ1, and end–to–end deadline δp is met. The execution costs are

−
N∑
i=1

ci,1 = −N · c1, and reward is R.

– B: The response from the first service is generated before the retry timeout
value θ1, and end–to–end deadline δp is not met. The execution costs are

−
N∑
i=1

ci,1 = −N · c1, and penalty V is incurred.

– C: The response from the first service is not generated before the retry
timeout value θ1, so alternative service is invoked. The end–to–end deadline

δp is met. The execution costs are −c2 −
N∑
i=1

ci,1 = −c2 −N · c1, and reward

is obtained.
– D: The response from the first service is not generated before the retry

timeout value θ1, , so alternative service is invoked. The end–to–end deadline

δp is not met. The execution costs are −c2 −
N∑
i=1

ci,1 = −c2 − N · c1, and

penalty V is paid.

Similar analysis could be performed when the retry is applied at the last workflow
task, or when retry is considered for workflow task i, i 6= 1, i 6= N . The
detailed analysis will be omitted here, but, it is no surprise that the biggest

benefit is when retry mechanism is applied for the last workflow task. This may
be explained by the following reasoning: when executing the first task, it is
possible to wait a little bit longer before the response is obtained, as the second
task, with smaller time–to–deadline is more critical. Therefore it is better to
replicate request for the latter task(s) then former. When request is replicated for
former task(s) the execution costs increase while the remaining time to deadline
decreases significantly. In other words, any longer response times for the first
task may be accounted with by the latter task(s). This holds in general for the
problem at hand, as any outliers for first task(s) in the workflow may be of
limited impact to the final outcome.

5 Experiments

Due to the limited space, we will show here just the very basic experimental
results. These apply to the last task in the workflow, and as explained in Sec-
tion 4 we consider cheap service with bimodal response–time distribution as the
one selected during the initial service composition. The alternative is expensive
service with statistically “superior” lognormal response–time distributions. The
bimodal distribution is illustrated in Figure 2 and the two modes have mean
values of 10 and 20, respectivelly. The mixture coefficient is 80%, which means
that 80% values of response time have the mean of 10, while the remaining 20%
values of response time belong to the mode with the mean value of 20. The mean
value of lognormal distribution has been set to 0.25, while the variance of this
distribution has been set to 4.

For the given deadline δp, and the last task in the workflow, the initial selec-
tion is cheap service. When timeout θ expires, the retry is made and expensive
service is selected. We have varied the timeout value 0 ≤ θ ≤ δp and determined
the expected revenue for given θ. The overview of the simulation parameters and
their values used for the experiments are given in Table 1.

Table 1. Overview of model parameters

Parameter Definition Value

f1 Response–time distribution of CSi(1) Bimodal
f2 Response–time distribution of CSi(2) Lognormal
c1 Cost of invocation of CSi(1) 1
c2 Cost of invocation of CSi(2) 10
δp End–to–end deadline
R Reward per request within deadline δp 20
V Penalty per request not completed within deadline 50
E Expected revenue without request replication

E1→2 Expected revenue with request replication
G Gain of expected revenue
θi Timeout value for execution of the task

Fig. 4. Overview of the revenue gains for conditional request replication. In clock-
wise direction, starting from the top left corner, the deadline δp is 18, 15, 9 and 12,
respectively.

The relative gain of expected revenues is calculated as G = E1→2−E
E . The

value of the deadline δp has decreased from 18 down to 3. The simulation results
are shown in the graphs presented in Figure 4 and these are also summarized in
Table 2. The following observations and conclusions could be made:

– The scheme has its benefits for certain range of given deadlines, and when
applicable, a “window of opportunity” for a retry. This interval becomes
smaller as the remaining time to deadline becomes smaller.

– The gain increases as the remaining time to deadline increases. This is the
consequence of the fact that it is easier to meet the deadline with the retry
when there is more remaining time.

– The gains are possible with retry scheme even when the selected service is not
the optimal one. For example, the expected reward for more expensive service
(with lognormal response time distribution) is higher for all deadline values
≤ 20. Therefore, one may consider to select this expensive and fast service
in such a case. However, we see that, when deadline is, e.g. 18, it is better to
first select cheap and slow service, and, only when there is no response till
e.g. 13 seconds, make a retry. By applying this scheme, much more revenue
may be generated for the service provider. This is a consequence to the fact,
that a lot of requests would be served by slow service (for given example well
over 50%) and the execution costs differ 10 times.

– There is no gain of the proposed scheme when δp ≤ 9. In such a case the
initial service selection should be the fast (and expensive) service. This is
noticable from the graph given for δp - the expected reward for the whole
range of retry moments with initial choice of expensive service is bigger than
expected reward of retry scheme, which in turn is bigger than the expected
reward when initial choice is cheap (and slow) service.

Table 2. Summary of experimental results

Deadline (δp) Retry moment θ∗ Revenue: with retry without retry Revenue gain(%)

18 13.5 16.8 9.94 69.1
15 13.4 16.5 9.91 66.4
12 11.3 14.5 9.88 46.7

6 Summary and future work

In this paper we considered the runtime service adaptation mechanism for service
compositions that is based on conditional retries. A single retry to the same or
alternative service may be issued while task within composition is executed. We
have analysed the impact of different QoS parameters, namely response–time
distributions and cost parameters to the applicability of the scheme, and the
potential revenue gain for the composite service provider.

The analysis has been performed for a relatively simple sequential work-
flow, under assumption that response–time distributions are accurate and time–
invariant. In practise, however, these distributions change over time, e.g. due
temporary overload of the service, and need to be estimated. The estimation
is based on response–time measurements over a finite time interval, and there-
fore may change over time. This needs to be addressed by methods that would
recalculate the timeout values, with the main issue of optimal number of recal-
culations. Next to it, we plan to investigate applicability of the retry mechanism
for different workflow patterns and more complex workflows.

Yet another possibility to extend the research is to find the optimal retry
mechanisms when penalty function is linearly increasing, with or without the
cap. In such a case the minimization of the response time, even when penalty
deadline is missed may be the optimal retry scheme.

Acknowledgment

Part of this work has been carried out in the context of the IOP GenCom
project Service Optimization and Quality (SeQual), which is supported by the
Dutch Ministry of Economic Affairs, Agriculture and Innovation via its agency
Agentschap NL.

References

1. C. Preist, “A conceptual architecture for semantic web services,”. In Proc. Inter-
national Semantic Web Conference (ISWC 2004), 2004.

2. Christopher Ward, Melissa J. Buco, Rong N. Chang, and Laura Z. Luan: A Generic
SLA Semantic Model for the Execution Management of e-Business Outsourcing
Contracts. Lecture Notes in Computer Science, 2002, Volume 2455/2002, 249-257.

3. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework
for Executing Adaptive Web-Service Processes. IEEE Software vol. (24), pp. 39-46
(2007).

4. L. Baresi, C. Ghezzi, S. Guinea, H. Krämer: Towards Self-healing Composition of
Services. In Contributions to Ubiquitous Computing, pp. 27–46, Springer, 2007

5. A. van Moorsel, K. Wolter: “Analysis of Restart Mechanisms in Software Systems”.
IEEE Trans. on Software Engineering, vol. (32) pp. 547–558, August, 2006.

6. A. van Moorsel, and K. Wolter: “Optimal restart times for moments of completion
time”. In IEEE Proc. of Software Engineering vol. 151(5), pp. 219-223, 2004.

7. K. Wolter: “Stochastic Models for Restart, Rejuvenation and Checkpointing”. Ha-
bilitation thesis, Humboldt-University, Berlin, Germany, 2008.

8. H. Okamura, T. Dohi, and K. S. Trivedi: “On–Line Adaptive Algorithms in Au-
tonomic Restart Control”. In Autonomic and Trusted Computing, LNCS, Volume
6407/2010, pp. 32–46, Springer Verlag, Berlin Heidelberg, 2010.

9. V. Cardellini, E. Casalicchio, V. Grassi, and F. L. Presti, “Adaptive management of
composite services under percentile-based service level agreements,” in Proceedings
of International Conference on Service-Oriented Computing 2010 (ICSOC 2010),
2010, pp. 381–395.

10. P. Leitner, W. Hummer and S. Dustdar, “Cost–Based Optimization of Service
Compositions”, Journal Trans. on Services Computing (TSC). To appear.

11. P. Leitner, W. Hummer, B. Satzger and S. Dustdar, “Stepwise and Asynchronous
Runtime Optimization of Web Service Compositions”, Web Information System
Engineering WISE 2011. Lecture Notes in Computer Science, 2011, Volume 6997,
pp. 290–297.

12. M. Živković, J. W. Bosman, H. van den Berg, R. van der Mei, H. B. Meeuwis-
sen and R. Núñez–Queija: Run-time Revenue Maximization for Composite Web
Services with Response Time Commitments, 26th IEEE Conference on Advanced
Information Networking and Applications, AINA, 2012.

13. A. Yousefi, and D. G. Down, “Request Replication: An Alternative to QoS Aware
Service Selection”, in Proceedings of the 2011 IEEE Conference of Service Oriented
Computing and Applications, (SOCA 2011), pp. 1–4, 2011.

14. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,
“QoS–aware middleware for web services composition,” IEEE Transactions on
Software Engineering, vol. 30, no. 5, pp. 311–327, 2004.

15. Y. Yang, S. Tang, Y. Xu, W. Zhang and L. Fang: “An Approach to QoS-Aware
Service Selection in Dynamic Web Service Composition”. In 3rd IEEE Int. Conf.
on Networking and Services (ICNS 2007), pp. 18-23, 2007.

16. Wikipedia: Bimodal distribution. http://en.wikipedia.org/wiki/Bimodal_

distribution.
17. L. Chen, J. Yang, L. Zhang, “Time Based QoS Modeling and Prediction for Web

Services”, in Proceedings of the 2011 International Conference of Service Oriented
Computing, (ICSOC 2011), LNCS 7084, pp. 532-540, 2011.

