

Comparison between IM fragment and EFP impact

for life

Gert Scholtes, Peter Hooijmeijer and Ries Verbeek, TNO Netherlands Gert.Scholtes@tno.nl tel: +31 (0)6 2280 1250 www.tno.nl/ammunitionsafety

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

TNO innovation for life

Introduction

- One of the most common threats in the military Out of Area Operations is the IED-EFP
 - Direct danger to the personnel
 - Hit in a vehicle's munition bunker →catastrophic event with many casualties
 - The development of IM munitions is already a major step towards increased munition safety
 - Question at "IM technology workshop" held at "Instituut Defensie Leergangen", The Hague, The Netherlands in June 2011: Is IED-EFP a bigger/different threat than the IM fragment (STANAG 4496) ??

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

Literature on EFP (C. Weickert and P. Gallagher; K. Weimann)

o innovation for life

Figure 3. Pojectile velocity (VP) and projectile form at different charge lengths (LC).

Arbitrary chosen EFP; 2 types, velocity of 2100 m/s

innovation for life

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

Fragment impact experiment

- STANAG IM test Fragment: cylinder of 14.3 mm diameter, 15.6 mm long and 18.6 grams at velocity of 2530 +/- 90 m/s
- Munition: 100 mm/ 90mm warhead Shaped charge with composite casing, High solid loading HMX based explosive
- > Aluminium casing of warhead and copper liner

TNO innovation for life

TNO IM Fragment impact 50 mm gun (STANAG 4496)

TNO innovation for life

High speed recording bullet vs fragment impact

Fragment impact experiment

• Test 1: velocity 2510 m/s, off-centre hit \rightarrow burning of SC

• Fragment impact 2 at 2570 m/s: in centre→ detonation

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

Grid and materials in Ansys-Autodyn

Simulation of fragment impact (center)

THO innovation for life

After penetration of fragment (no reaction of explosive simulated)

NO innovation for life

Velocity and pressures; speed drop of 1000 m/s

Fragment impact (off-center impact)

Simulation of off-center impact

innovation for life

Summary Fragment impact

- Very high pressures with long duration
 - Central impact: 0.8 µsec at 8 MPa and 3.7 µsec at 5 MPa; some over 8 GPa
 - Off Central impact: 1.2 µsec at 6.5MPa

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

Impact of 19 mm EFP (2100 m/s)

o innovation for life

EFP velocity decrease (19 mm) ~200 m/s

AUTODYN-3D v13.0 from ANSYS

27 mm EFP impact

Simulation of 27 mm EFP at 2100 m/s

o innovation for life

Velocity decrease of EFP (27 mm) ~ 350 m/s Effect. surface 5.7 cm² (twice the value of 19 mm EFP = 2.8 cm²)

Part Summary (Ident 0 - efpimpact02)

Shock pressure EFP

EFP summary

- EFP 19 mm:
 - large area with long shock pulses over 3 MPa,
 - several peaks 1-2 µsec up to 6 Mpa
- EFP 27 mm:
 - Large area with long shock pulses up to 5-6 Mpa (1-2 µsec)

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

innovation for life

Fragment - 19 mm EFP comparison More high pulses for fragment impact

Fragment - 27 mm EFP comparison More pulses around 6 MPa for EFP

Fragment

innovation for life

- Introduction
- Literature on EFP's
- Fragment impact Experiment
- Model/ FI Simulation
- EFP simulation results
- First comparison
- Worst case scenario
- Summary

Simulation of FI near end of warhead

Fragment impact near the end of the warhead

TNO innovation for life

Pressure waves

TNO innovation for life

Summary

- Comparison IM fragment at around 2530 m/s and EFP's at 2100 m/s
- Experiment:
 - Fragment impact in centre \rightarrow Detonation
 - Off centre impact burning i.s.o. detonation
- Simulation:
- EFP impact at 2100 m/s quite comparable to IM fragment impact for thin-walled warheads
- But
 - In case of barrier (protection) probably EFP is in favour due to higher velocity after penetration
 - Thick walled warhead: rarefaction wave is important
 - Confirmation is needed
- Strong dependency on configuration (barriers of walls and reflection waves): Worst case is not in the area with large amounts of explosives!