

MERITS

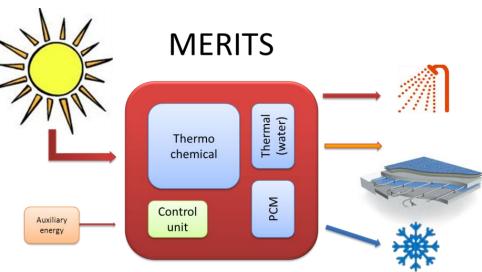
More Effective use of Renewables including compact seasonal Thermal energy Storage

ENER/FP7/295983/MERITS

Ruud Cuypers, Christophe Hoegaerts - TNO, the Netherlands

www.merits.eu

dr. ir. Ruud Cuypers, TNO Van Mourik Broekmanweg 6 2628 XE Delft, The Netherlands T: +31(0)888 662 472 E: ruud.cuypers@tno.nl



Contents

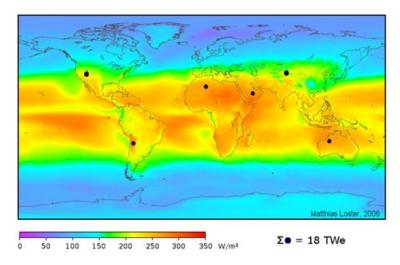
- > Ambition & Rationale
- Introduction thermochemical storage
- MERITS overview + goals
 - Energy supply
 - Energy storage
 - > Energy delivery
- MERITS outcomes
- Consortium Partners
- Industrial Platform
- > Timeline

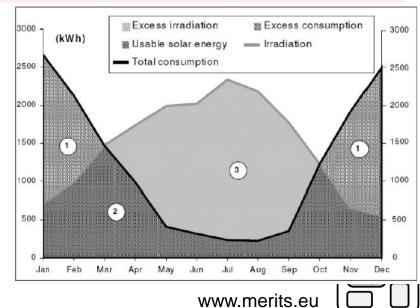
EU ambition

- > Energy neutral built environment in 2050
- > Proposed measures: trias energetica
 - 1) Lower energy use, decrease losses
 - 2) More renewable energy
 - 3) More efficient use of fossil energy

> Built environment

- > Passive measures: compact building, insulation!
- > Active measures: PV, thermal, wind, water
- > Heat pumps, low T heating, efficient system lay-out (short pipes etc.)
- Through the thermal battery developed within MERITS the renewable energy harvested in summer is available throughout the year!

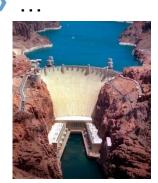


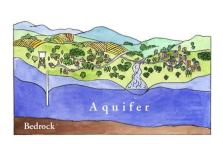


Rationale: Why seasonable energy storage?

- Solar energy suffices & highest potential for sustainable future
- In NL → 110W/m² (year average) only 3 times below maximum(!)
- But low intensity when most needed in winter
- \rightarrow Seasonal storage!

	Utilization 2005 [EJ]	Technical potential [EJ/yr]
Biomass	46.3	160 - 270
Geothermal	2.3	810 - 1545
Hydro	11.7	50 - 60
Solar	0.5	62,000 - 280,000
Wind	1.3	1250 - 2250
Ocean	-	3240 - 10,500




Ways of energy storage

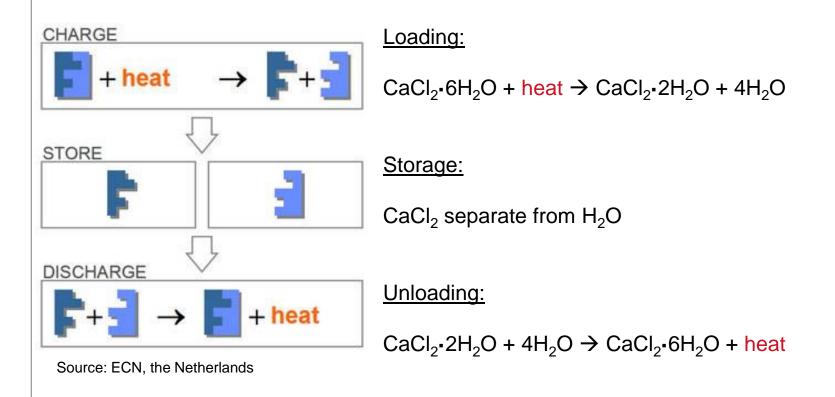
- > Sensible heat (boiler, borehole)
- > Latent heat (PCM)
- Thermochemical (e.g. silica gel, zeolite, salt hydrates)
- Electrochemical (batteries)
- Gravitational (artificial lake)
- Pressurized air (e.g. underground)
- Bio-fuel (e.g. sugar cane)


innovation for life

1 year's worth of thermal energy per household (52 GJ; year 2000)

- 1.4 m³ crude oil (36 GJ/m³)
 - 1.6 m³ gasoline (32 GJ/m³)
- 2.4 m³ (bio)ethanol (22 GJ/m³)
- 2.5 m³ coal (20.5 GJ/m³)
- 10 m³ wood (5.4 GJ/m³ , $RV_{wood} = 20\%$)
 - 17 m³ Na₂S (3 GJ/m³)
- 18 m³ CaCl₂ (2.8 GJ /m³)
- 43 m³ Ni-MH battery (1.2 GJ/m³)
- 43 m³ H₂, 100 bar (1.2 GJ/m³)
- 104 m³ sodium-acetate tri-hydrate (PCM) (0.40 GJ/m³)
- 144 m³ lead-acid battery (0.36 GJ/m³)
- > 210 m³ water with $\Delta T = 60 \circ C (0.25 \text{ GJ/m}^3)$
- 577 m³ vanadium redox battery (0.09 GJ/m³)
- > 1500 m³ methane (0.035 GJ/m³)
- > 2100 m³ groundwater with $\Delta T = 6 \circ C (0.025 \text{ GJ/m}^3)$
- > 4377 m³ H₂, 1 bar (0.012 GJ/m³)

www.merits.eu

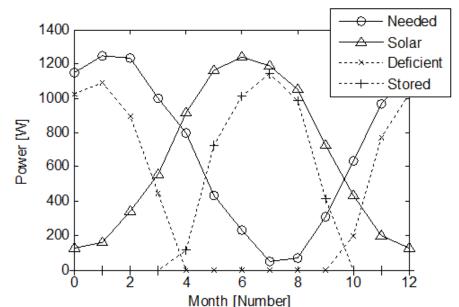

innovation

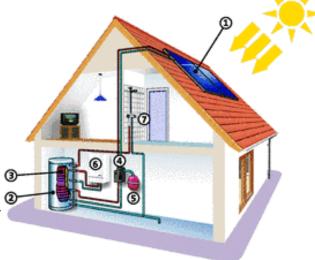
What is thermochemical storage? (adsorption / absorption)

Thermochemical storage materials

	Advantages	Disadvantages					
Adsorption (silicagel, zeolite,)	Physically stable	Low E/V, T-generation					
Absorption (CaCl ₂ , MgCl ₂ , Na ₂ S,)	High E/V, T-generation	Corrosivity, cyclability, stability					
Other (Metal oxides, hydrides, solutions, suspensions)	Various (e.g. high E/V, liquid, easily pumpable)	Various (e.g. TRL is low, corrosivity, high T's, P's needed)					

- Choice of material depends on
 - Available temperature for charging & working temperature for discharging
 - > Safety & toxicity $(H_2S (g), NH_3 (g))$
 - Instrumentation & costs (available space, high pressure / vacuum)





Case – Thermochemical storage, passive house

- > Heating demand 2020: 20GJ/year
 - (prognosis continental climate)
- Storage for cold season 10GJ
- TCM volume ~10m³ (~1GJ/m³)
- Solar collectors ~17m² (~1.2GJ/m²y)
- Solar boiler for short term storage & delivery

innovation

Source: Solarpraxis AG

MERITS overview & goals – Rechargeable heat battery

- To develop, demonstrate and evaluate a compact seasonal thermal storage system based on novel high-density materials that can supply the required heating and cooling in houses with <u>up to 100% renewable</u> energy sources...
- > ... with the aim of market introduction within reasonable time afterwards.
- Renewable energy supply collectors
- Materials, components, system hardware
- Control strategy for loading/unloading software
- → Demonstration!

Previous projects of consortium partners

- > MODESTORE
- > HESTOR
- > HYDES
- > MESSIB
- > PREHEAT
- E-Hub
- > EINSTEIN

- \rightarrow Large potential of solar energy demonstrated
- → Modeling of systems/components on-going
- → Compact sorption storage demonstrated
- \rightarrow PCM's development on-going
- \rightarrow Sorption materials research on-going
- \rightarrow Integration in system addressed
- \rightarrow Training activities organized
- \rightarrow Public awareness increased
- \rightarrow Seasonal storage within range
- > MERITS: the next step!
 - \rightarrow enhanced materials
 - \rightarrow enhanced reactor set-up
 - \rightarrow seasonal storage to be demonstrated across EU

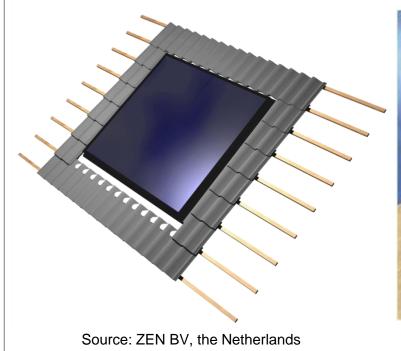
innovation

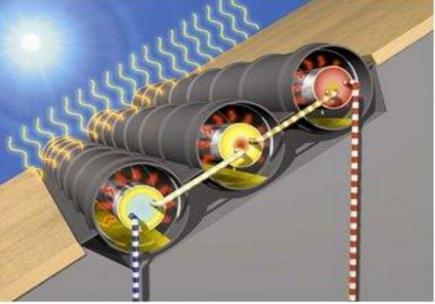
The - on the horizon

- > Seasonal thermal energy storage for 1 family house
- > Challenges:
 - Compact (4-8m³), minimize losses
 - Multiple T's: tap water, space heating, cooling
 - > Safe, reliable, sustainable
- > 3 main developments:
 - > Energy supply: Solar collectors
 - > Energy storage: Storage materials & components
 - > Energy delivery: System design & integration
- Main task:
 - To demonstrate new and effective thermal energy storage technology as prototype as part of a overall system concept

3 main developments

- Renewable Energy Supply: Solar collectors + integration of storage
- > Energy storage: Enhanced materials, reactor + components
- > Energy delivery: System integration



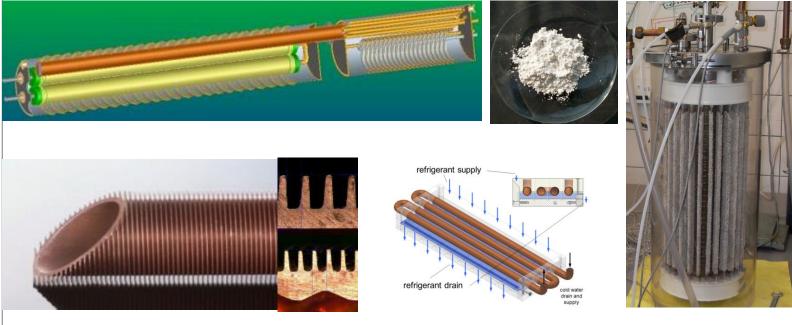


innovation

3 main developments

- **Renewable Energy Supply: Solar collectors + integration of storage** >
- Energy storage: Enhanced materials, reactor + components >
- Energy delivery: System integration >

Source: De Beijer RTB BV, the Netherlands


Pictures are examples as developed in previous projects

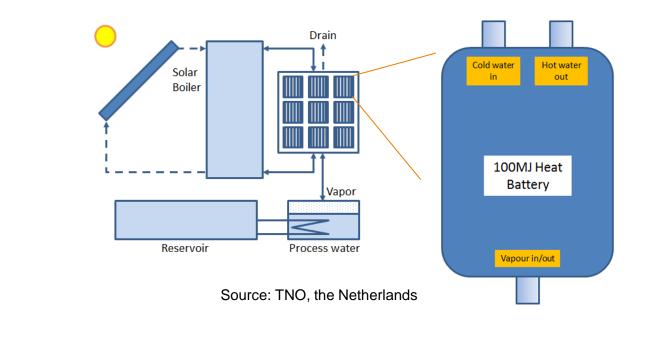
3 main developments

- Renewable Energy Supply: Solar collectors + integration of storage
- > Energy storage: Enhanced materials, reactor + components
- > Energy delivery: System integration

Sources: TNO & ECN, the Netherlands; Fraunhofer ISE, Germany

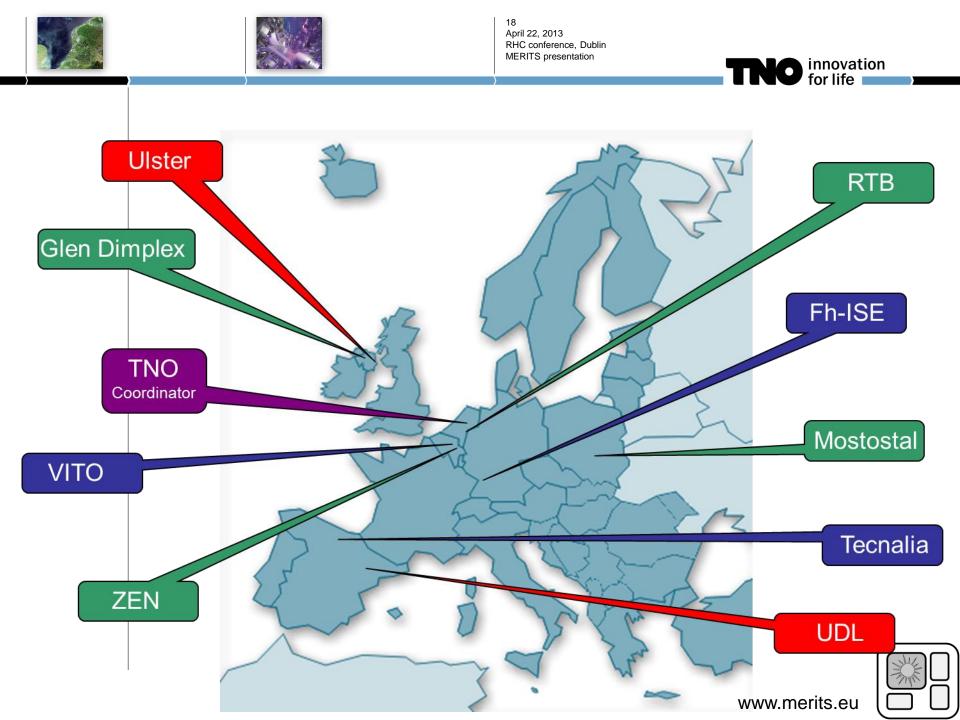
Pictures are examples as developed in previous projects www.merits.eu

innovation



3 main developments

- Renewable Energy Supply: Solar collectors + integration of storage
- > Energy storage: Enhanced materials, reactor + components
- > Energy delivery: System integration



Main results - detail

- > Specification of Seasonal Storage System (WP2)
- Solar collector prototype & test results (WP3)
- Characteristics of new/modified TCM and PCM material: input data for model (WP4)
- Computer model of energy storage sub-system (WP4)
- Production of Prototype energy storage sub-system; lab tested (WP4/5)
- > Blue-print of overall energy system design, including control (WP5)
- Report on the overall energy system: demonstration and field test results for various climatic zones (WP6)
- Report on market analysis and business model (WP7)
- 3 peer reviewed papers + 1 patent (WP8)

Industry Platform

- > Advisory body for MERITS consortium
 - > Stream-line research towards usable products
 - > Align project results with reference market needs
 - Suggest appropriate routes towards market up-take
- \rightarrow Guarantee adoption of results by industry
- > Members are selected on the basis of recommendation by consortium
- > MERITS industry partners chair Platform
- > Each geographical area has local Platform-meetings
- Platform kick-off: last March
- > End of project: workshop for dissemination of final project results

	imeline
2012	Oct 1 2012 - now: Specification of Seasonal Storage System, requirements
2013	1 st half 2013: Collector improvement, material selection, preliminary system design 2 nd half 2013: Demonstration of cooling system, component & material testing
2014	2014: Detailed system design, implementation of enhanced materials & components for lab-demonstrator
2015	Early 2015: Manufacturing of 3 demonstration set-ups
2016	From 2015: Demonstration across EU (UK, Poland, Spain)
2017	Oct 2016: end of project

TNO innovation for life

FP7 projects: cooperation!

- MERITS: 1 of 4 compact thermal storage projects funded
- Similar developments, similar problems!
 Exchange of knowledge / progress
 Exchange of solutions

→ periodic meeting between the projects?
> Open for discussion

MERITS

More Effective use of Renewables including compact seasonal Thermal energy Storage

ENER/FP7/295983/MERITS

Ruud Cuypers, Christophe Hoegaerts

TNO, the Netherlands

www.merits.eu

dr. ir. Ruud Cuypers, TNO Van Mourik Broekmanweg 6 2628 XE Delft, The Netherlands T: +31(0)888 662 472 E: ruud.cuypers@tno.nl

Subscribe to our newsletter!

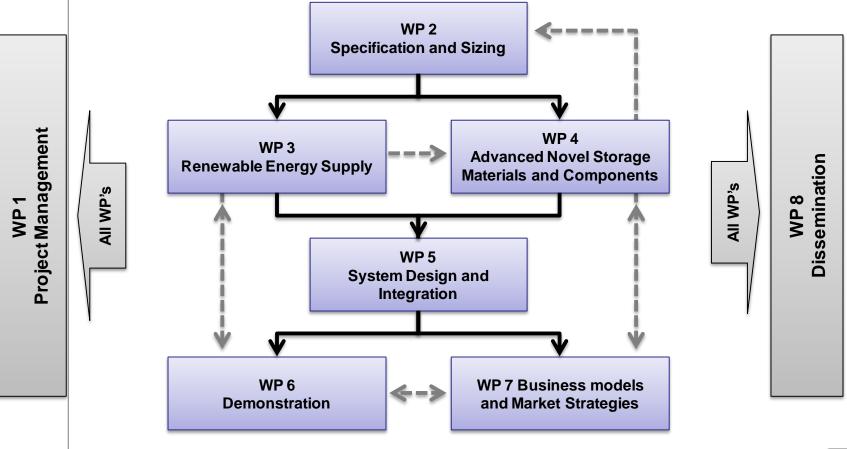
MERITS

More Effective use of Renewables including compact seasonal Thermal energy Storage

ENER/FP7/295983/MERITS

Ruud Cuypers, Christophe Hoegaerts – TNO, the Netherlands

www.merits.eu


From here: backup slides

Interaction between WP's

TNO innovation for life

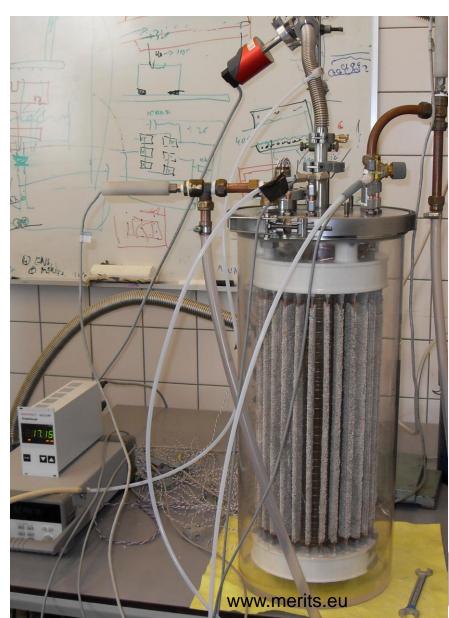
Work packages

Work Package	Goal	WP Leader
WP1 - Project Management	Deliverables on time, Solve contractual or IPR issues, Document control on Sharepoint, MERITS point of contact	TNO (Christophe Hoegaerts)
WP2 - Specification and Sizing	Define the Boundary Conditions of the MERITS Systems, definition of specifications	Ulster (Philip Griffiths)
WP3 - Renewable Energy Supply	Characterisation, optimization, building and test of renewable energy technology, i.e. solar collector for MERITS system	TNO (Bart de Boer)
WP4 - Advanced Novel Storage Materials and Components	Selection of novel advanced materials, component (e.g. evaporator/condensor) and storage system development and lab test	UDL (Luisa F. Cabeza)
WP5 - System Design and Integration	Effective integration and lab testing of the MERITS storage system (building integration, (dis)charging, thermal output, control)	Tecnalia (Carol Pascual)
WP6 - Demonstration	Field test of 2 existing systems (o.a. Solabcool) and MERITS system (for 3 climate zones)	Ulster (Philip Griffiths)
WP7 - Business Models and Market Strategies	Pave the way for market introduction of MERITS system (market needs, business models, relevant rules and standards)	RTB (Rob ter Steeg)
WP8 - Dissemination	Disseminate project results to outside world	Fraunhofer (Gerrit Füldner)
	V	www.merits.eu (

))

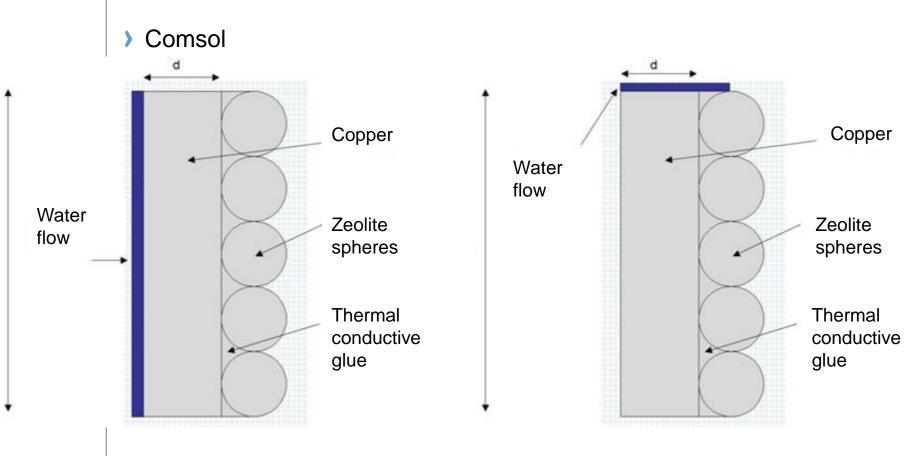
SE planning

MERITS Technical Schedule	2012		~	010				2014						15				2016	
Calender Year	2012	4	20	013	110	110	110	2014		05	0.0		20		107	140		2016	145
Project Month	1	4 7		10	13	16	19	22	2	25	28	31		34	37	40	43		46
Project Planning																			
WP2 Specification and Sizing		•							++					******			*****		
WP3 Renewable Energy Supply		MS1			•					0									
WP4 Adv. Nov. Storage Mat. & Comp.					MS2		•			MS3				_					
WP5 System Design and Integration WP6 Demonstration							MS4			MS6			MS5						
WP7 Bus. models&Market Strategies					-			_			_			_		MS7			MS
																10157		_	MS
Systems Engineering Activities					_					_									
Trade-offs		TCM SA																	
Reviews		SRR/ADI	R/SFR		PDR		MTR	CDR		TRR1		TRR2					PTR		
Design activities																			
Preliminary design (T5.2; D5.4)		Te	ecnalia	а															
Detailed design (T5.4; D5.7)				TTT	M Tec	nalia; TN													
Commercial Design (T6.2; D6.4)							1	የቦንስ.										Uls	ter; RTB
Manufacturing and Integration																			
Manufact. of 3 Demonstrators (T6.2)										RTB									1
Demo Integration (T6.2)		1111																	
Shipment (T6.2)		- 1111																	
Integration into demo building (T6.2)				1111															
Demonstrator Testing																			
Demonstrator 1 T6.1		Solabo	distant 1																
Demonstrator 2 T6.1				Season	al storag	e demo; T	'BD												
Demonstrators T6.2		111																	
Lab testing				\prod						Li	ab testin	8							
Maritime Climate					_										l (Ulster		_		4
Continental		11	\setminus \square										P		Mostos	tal)	_		
Mediteranean			+ +		_									Spair	n (UDL)				
Component testing and development			$\sqrt{1}$																
Solar Collector (T3.1;T3.3)		11		/ T	NO; ZEN						_								
Integration condensers/Evaporators (T3.2	2)	de			RTB														
Cond/HX/Evap (T4.2;T4.3)				Fraur	hofer; ۱	vno		_											
New Material development																			
Improvements existing materials (T4.1)					UDL;	RTB													
New (Future) Developments																			
New TCS Materials (WP4.1b)							0	DL: TCM	devel	opmentfor	future u	ise							
ADR: Architecture Design Review		PDR:	Prelimi	nary De	sign Revie	w				SRR: S	ystem F	Requireme	ents Re	view					+
CDR: Critical Design Review				st Revie					+ +		ask x.y								
Dx.y: Deliverable x.y		SA: S	ystem A	Architect	ure							Chemical	storag						
MSx: Milestone x		SFR:	System	Function	nal Review	N				TRR: T	est Rea	diness Rev	view	WV	vw.m	erits	.eu		
MTR: Mid-term Review														La	aurens v	an Vliet;	March	18, 20)13



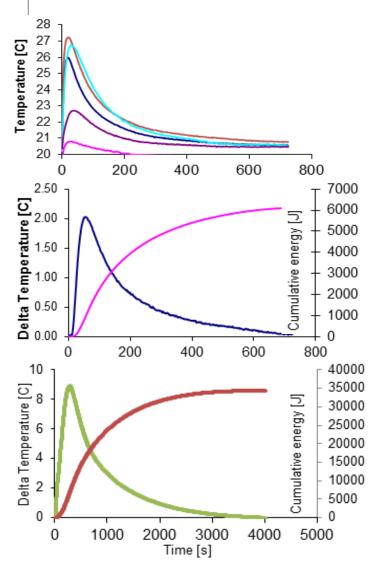
Experimental

- > Working vacuum demo-reactor
- Good thermal contact
 - > Evap/cond.
 - > Ads/des.
- > Fast mass-transport


L

28 April 22, 2013 RHC conference, Dublin MERITS presentation

Modeling



TNO innovation for life

Experimental results

- Very fast reaction times (3 5 mins)
- ∆T(zeo) ~ 7 °C

- Moderate Temperatures
- ∆T(out-in) ~ 2 °C

- > Thicker layers
- Slower reaction times (10 20 mins)
- ∆T(out-in) ~ 9 °C
- 0.60 kW/kg specific output power
- 0.3 GJ / m³ specific capacity

MERITS

More Effective use of Renewables including compact seasonal Thermal energy Storage

ENER/FP7/295983/MERITS

Ruud Cuypers, Christophe Hoegaerts - TNO, the Netherlands

www.merits.eu

dr. ir. Ruud Cuypers, TNO Van Mourik Broekmanweg 6 2628 XE Delft, The Netherlands T: +31(0)888 662 472 E: ruud.cuypers@tno.nl

