
 

Abstract— Ground based emitters can be located with a 
receiver installed on an airborne platform. This paper discusses 
techniques based on Doppler frequency and differential phase 
measurements (interferometry). Measurements of the first 
technique are provided, while we discuss and compare the 
theoretical accuracy of both. In addition, we demonstrate the use 
of simulated annealing for finding flight tracks that lead to the 
smallest location error. 

Index Terms— emitter location, Doppler frequency, 
interferometry, track optimization 

I. INTRODUCTION 

Ground based emitters (like radar systems) transmit signals 
that can be used to estimate the emitter position from an 
aircraft. For example, a time series of Doppler frequencies 
(modulated on the emitter frequency) and/or phase 
measurements (interferometry) can be used. This is discussed 
for Doppler measurements in [1] and [4]. The latter article 
compares also Doppler and interferometric measurements. 
Both articles deal with simulated data only. We conducted an 
experiment in which Doppler data was acquired of air traffic 
control radars. The particulars and location accuracy results 
are given in Section II, in conjunction with an analysis of the 
sensitivity of the accuracy to some parameters. This sensitivity 
information can be used to adjust the flight track of the 
measuring platform so as to achieve a better accuracy. Section 
III repeats the sensitivity analysis for the interferometric case. 
Section IV demonstrates the benefit of combining Doppler and 
interferometric measurements. An interesting problem is that 
of finding the flight track that leads to the best location 
accuracy. A solution is for example provided in [6]. We use 
simulated annealing and show that this flexible Monte Carlo 
method provides almost identical results (Section V). Finally, 
in Section VI two software tools we developed and used for 
this research are considered. 

II. LOCATION WITH DOPPLER FREQUENCIES

A. Theory 
Due to aircraft movement, the radio frequency (RF) received 
on board from a ground based emitter contains a Doppler 
frequency shift. This component depends on the emitter 
location, amongst other. By combining it with aircraft position 

This work was sponsored by the Netherlands Ministry of Defence under 
the EW research program V408. 

and velocity measurements one can estimate the emitter 
location. The basic algorithm is outlined in Figure 1. 

Figure 1 - Flow diagram for the basic Doppler based emitter location algorithm. 

The algorithm calculates the model frequencies from the 
current estimate of the emitter location and the aircraft 
position and velocity with the ),( xtf  term of the 
measurement equation 
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x is the four dimensional vector (xe  ye  ze  f0) which consists of 
the RF and 3D location. The measured frequency )(~ tf is the 
emitter frequency minus a small term, the Doppler frequency 
shift, plus measurement noise ν(t). The Doppler shift depends 
on the line-of-sight component of the aircraft velocity, which 
is the aircraft speed v times the vector dot-product of the 
aircraft unit velocity )(ˆand)(ˆ tt uv , the unit vector pointing 
from the emitter to the receiver. The algorithm minimizes the 
least squares sum S
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to find the optimum vector x. This non-linear four-parameter 
minimization problem is solved with the standard iterative 
Gauss-Newton method [1, 3].  

B. Measurements 
We performed measurement flights sampling several air traffic 
control radars. These radars transmits at four slightly different 
RFs near 2.8 GHz. The chirped waveform complicates 
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consistent pulse-to-pulse frequency estimation. However, the 
chirp is mirror symmetric around a certain time t0:

000 2)()( fttfttf =Δ++Δ− . (3) 

We utilized this symmetry by estimating the central frequency 
f0 at t0, separately for each of the four RFs [2]. Figure 2 
compares measured (averaged over the four RFs) and 
calculated Doppler frequencies as a function of time for a 
particular measurement. The large variation in Doppler 
frequency indicates that the aircraft was manoeuvring 
considerably. Along the track the aircraft-emitter distance 
varied from 55 to 77 km, with the aircraft speed being near 
90 m/s. 
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Figure 2 – Measured and calculated Doppler frequencies. The standard deviation 
of the difference is 19 Hz. 

The calculated Doppler frequencies stem from the model, with 
the emitter location and RF being the least squares solution. 
We extended the basic four parameter algorithm to incorporate 
the additional RFs. We combined all possible combinations of 
the four frequencies (i.e., 1, 2, 3 or 4 frequencies) and found 
that the use of more frequencies does not always lead to a 
higher accuracy. The location error is on average about 
2.2 km, which amounts to a relative error of ~ 3 %. The 
largest contribution to this error is due to the frequency error 
caused by the complicated (chirped) waveform. Another factor 
is the rather low aircraft speed. 

C. Additional findings from simulations 
The minimum least squares algorithm estimates four 
parameters. This can be reduced to two. The estimation of RF 
f0 can be eliminated by minimizing the sum  
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instead of the sum of Eq.(2), with  

),(~ ''
0 xfffm −= . (5) 

Subtraction of the time average m removes a constant offset in 
the bracketed term of Eq.(4). Instead of fitting the RF f0, we 

use a (fixed) measured RF f0’, which gives an error of at most 
the maximum Doppler frequency + measurement noise. It can 
be shown that the estimated location is quite insensitive to f0’, 
which legitimates the use of a measured value. The algorithm 
is also fairly insensitive to the emitter height. Using zero 
height for the emitter is therefore valid for our test area (The 
Netherlands). This reduces the basic four parameter algorithm 
to a two parameter one: only the 2D position x’= (x y)T is 
estimated. However, the dimensionality of the algorithm does 
not clearly influence the accuracy or stability. 
We also investigated the influence of the measurement time on 
the location error. On average, the error decreases with larger 
measurement time, but large excursions to small and large 
errors occur. This is at least partially due to the measurement 
noise, which gives different errors for different realizations. 

D.  Accuracy 
It is possible to derive relations between measurement errors 
and system parameters, and location errors. We will use the 
basic algorithm that estimates four parameters (location + RF) 
but will restrict ourselves to the errors in the x- and y-
coordinates of the location. The Cramér-Rao Lower Bound 
(CRLB) for these errors is derived in Appendix A. It also 
shows how to derive an expression for the dependence of the 
location error on the RF (measurement) error. The following 
table summarizes the dependence of the location error (x- and 
y-coordinates) on four more quantities for which analytical 
relations could be derived. The results are also valid for the z-
error because the z-direction is not fundamentally different 
from the other two. 

quantity location error dependence 
frequency error σf σf

aircraft velocity error σv σv

aircraft position error σp σp

RF f0 1/f0

time interval dt √dt (dt< 1 s) 

Table 1 – Linear dependencies of location errors for Doppler location. 

Note the difference between the top three quantities, which are 
errors, and the lower two, which are not. For example, the 
location error is linearly proportional to an error in the 
measured velocity itself, and inversely proportional to the RF. 
Errors in the right column can be combined by taking the 
RMS value. 

III. INTERFEROMETRIC LOCATION

Interferometric emitter location uses two separated antennas 
mounted on an airborne platform, in order to estimate the 
location of a ground based emitter. The setup is given in 
Figure 3. The antennas separated by the baseline length d
receive the signal of the emitter, and the phase difference is 
used in the location procedure. 
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Figure 3 – Measurement geometry. 

The measured phase difference [rad] between the primary and 
secondary antenna is 

( ) )()()(2)(~ ' tttt δα
λ
πα +−= rr , (6) 

with 

λ  emitter wavelength [m] 
r   vector from the primary antenna to the emitter [m] 

'r  ditto for the secondary antenna (closest to the front of the 
aircraft) [m]. 

δα  phase measurement noise [rad] 

Because the baseline is small compared to the emitter 
distance, a good approximation for this equation is 

)()(sin2)(~ ttdt δαβ
λ
πα += , (7) 

with β the angle between the perpendicular to the baseline 
and the Line Of Sight (LOS). This equation shows that for 
baselines d< λ/2 the phase is always contained in the 
interval [-π, π] (neglecting noise), i.e., no wraparound 
occurs. This is the condition for Short Baseline 
Interferometry (SBI). In Long Baseline Interferometry 
(LBI) d≥ λ/2 and wraparound can occur, and measures 
should be taken to enable recovery of the unwrapped phase. 
In the same manner as for the previous Doppler case we 
can derive relations for the estimation errors for SBI, see 
Table 2. 

quantity location error dependence 
phase error δα δα
aircraft attitude errors σθ σϕ max(σθ, σϕ)
baseline length d 1/d
wavelength λ λ
time interval dt √dt (dt< 1 s) 

Table 2 – Linear dependencies of location errors for SBI. 

We assumed in the above that the baseline is parallel to the 
fuselage. For LBI these relations hold at most approximately. 
Some of the dependencies can be derived by noting 
similarities between Eq.(1) and Eq.(7), if the latter is rewritten 
as 

)()(ˆ)(ˆ2)(~ 0 tttd
c
ft δαπα +⋅= ud , (8) 

with ud ˆandˆ  unit vectors in the baseline and LOS directions, 
respectively. For example, because f0 (~ 1/λ) occurs in the 
same role in Eq.(1) and (7) the dependency is the same.  
The relations of Tables 1-2 were confirmed by numerical 
simulations. Those of Table 2 also agree with the specific 
analytical solution for the straight track example of [4]. 

IV. COMBINING DOPPLER AND INTERFEROMETRIC LOCATION 

Appendix B shows that combining (different) measurements 
always increases the accuracy. This is an example of low level 
fusion, i.e., combining Doppler and phase measurements 
directly. We compare this with high level fusion (averaging 
position estimates) for the combined Doppler and 
interferometric technique in Figure 4. 
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Figure 4 – Low and high level fusion compared. The ellipse area decreases from 
top to bottom in the legend (Doppler, ..., Combined). 

The line segment at the right is the aircraft track. It is clear 
that low level fusion performs better than high level fusion. In 
the former case the error ellipse is entirely inside those of the 
separate techniques. This is not true for the high level ellipse. 

V. TRACK OPTIMIZATION

Finding the flight track providing the smallest location error in 
a fixed amount of time has been the subject of previous 
research [6]. We used Simulated Annealing (SA) [3] to solve 
this problem. This is a method to solve high dimensional 
problems approximately. The method borrows its name from a 
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method (‘annealing’) for cooling a liquid slowly (if a liquid is 
cooled down slowly it crystallizes. This ordered final state has 
(almost) minimal energy. This minimization process is 
mimicked by SA). We start with a certain non-optimal track 
consisting of straight segments. The track, parameterized by 
the segment angles and a constant segment length, is than 
varied to find a (local) minimum. In doing this, it is allowed 
(with a certain probability P) to (temporarily) become even 
more non-optimum. In this way it circumvents sticking to a 
bad local minimum. The probability P decreases with time. So 
a sequence of (on average) decreasing local minima is visited. 
Mostly, the global minimum is not found. However, many 
high dimensional minimization problems exhibit many local 
minima which are almost as deep as the global one. SA will 
than often find such a near-optimal minimum. Figure 5 shows 
optimal paths of 100 SA runs for LBI.  
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Figure 5 - Optimal paths from simulated annealing The red dot indicates the 
emitter location. 

The tracks start at (0, 0) with the emitter being at (10, 20) km. 
A track consists of 40 segments of length 1 km (aircraft speed 
250 m/s). Constraints are easily incorporated into the SA 
approach. We used two constraints: 

1. The acceleration cannot exceed 20 m/s2 (2g). This causes 
the smooth, circular appearance of the tracks. 

2. The closest approach distance is 5 km. This accounts for 
the empty circle around the emitter. 

We optimised for minimum error ellipse area. The numbers at 
the end of the tracks indicate the final minimum area. The 
tracks ending closest to the emitter have a minimum error 
ellipse area of about 120-150 m2. This is similar to findings 
for bearing measurements [6]: optimal tracks starting “near” 
the emitter tend towards the emitter while, on the other hand, 

optimal tracks starting farther away tend to keep manoeuvring 
at a distance. Optimization finds the right balance between the 
accuracy gain due to approaching and manoeuvring. 
In [6] an example with bearing measurements is used, and the 
determinant of the FIM (detFIM) is maximized. As a check, 
we solved this particular optimization problem with SA. The 
results are in Table 3. K is the (constant) aircraft speed times 
the total flight time divided by the initial range to the emitter. 
It indicates the degree to which the emitter is within reach. 
Small K lead to manoeuvring at a fixed range, while large K
lead to track extending towards the emitter. The SA approach 
provides up to 3 % better results. The SA optimal tracks look 
very similar to [6]. 

K= 0.1 K= 0.2 K= 0.4 K= 0.6
Ref. [6], 
Table I 

1.7202E-4 7.6456E-4 0.0044 0.0190 

Simulated 
annealing 

1.7402E-4 7.7487E-4 0.0045 0.0195 

Table 3 – detFIM for various optimal trajectories compared. 

VI. SOFTWARE TOOLS

Two software tools were developed to estimate and compare 
the performance of location algorithms. 

A. Algorithm analyzer 
Figure 6 shows the user interface of the algorithm analyzer 
tool. 

Figure 6 – User interface for the algorithm analyzer. 

The algorithm analyzer implements location algorithms based 
on measurements of: 

1. Doppler frequency 
2. Bearing 
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3. Interferometry: 1 platform + 2 antennas / 1 platform + 3 
antennas / 2 platforms with 1 antenna each. 

4. Time difference of arrival (TDOA). 
5. Combinations 1-2 and 1-3. 

Typical output is shown in Figure 7: CRLB ellipses on a 
spatial grid. 
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Figure 7 – Typical output of the algorithm analyzer for Doppler location. 

The shape of the ellipses depends on the position. For 
example, the x-coordinate estimate of an emitter at (50, 0) km 
is much worse than its y-coordinate estimate. The weaving 
lines indicate the aircraft track. The lower line is the xy-
projection, the upper line the xz-projection (the average 
altitude is 10 km).  

B. Dynamic analyzer 
The dynamic analyzer is used to interactively input an aircraft 
track while the location errors for the Doppler LBI location 
technique are updated continuously. Figure 8 shows the input 
(left) and output (right). In this way it is possible to 
interactively assess the influence of manoeuvring on error 
ellipse size and orientation, and the rate of accuracy increase. 

Figure 8 – Output of the interactive dynamic analyzer. Upper right: error 
ellipses. Lower right: ellipse sizes as a function of time. 

VII. APPENDICES

A. The CRLB 
To arrive at the CRLB we first compute the N×4 Jacobian 
matrix [ ]fzyx hhhhH |||= [1]. Vector hx follows from 

partially differentiating Eq.(1) with respect to xe:

( ))()·(0 ttuv
cr
f

xxx uvh −=  (9) 

with r the radar-emitter distance. hy (hz) is simply obtained by 
changing x into y (z) in this equation. Differentiation with 
respect to f0 gives  

c
tt

f
)()·(1 uvh −=  (10) 

We now substitute the N position and frequency 
measurements to get the N×4 matrix H. The 4×4 element 
Fisher Information Matrix (FIM) is defined as 

J = HTC-1H, (11) 

with C the covariance matrix: the variance 2
fσ of the RF error 

noise process ν(t) of Eq.(1) times the N×N element unity 
matrix. The FIM is projected on the xy-plane by 

Jproj = [P J-1PT]-1, (12) 

with the projection matrix defined as 

=
0010
0001

P . (13) 

The 2×2 matrix Jproj defines the CRLB ellipse that contains on 
average 39 % of the estimated locations. The short and long 
axis lengths of this ellipse are twice the square roots of the 
reciprocal eigenvalues of Jproj.
The above can be used to find analytical expressions for the 
effect of input parameters on the location accuracy. We give 
an example for the RF error fσ :

Jproj = [P J-1PT]-1= [P [HT (σf
2×I)-1 H]-1 PT]-1=

[P [HT H]-1 PT]-1 / σf
2 ≡ K / σf

2.  (14) 

The eigenvalues of Jproj are 1/σf
2 times the eigenvalues of 

matrix K, and hence linearly proportional to the RF error. 

B. The CRLB of combined methods 
This appendix is devoted to the problem of deriving the error 
ellipse of a combined method (e.g., Doppler and LBI) in terms 
of the ellipses of its constituting methods. We first show the 
result in Figure 9. It shows ellipses of the separate (dotted, 
dashed) and combined methods (solid). 
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Figure 9 – Error ellipses of separate and combined methods. 

The direction of the straight line segment is arbitrary. It 
crosses the origin. r1, r2 and r3 are the distances between the 
origin and the intersection of the black line with the dotted, 
dashed and solid curves, respectively. The following equation 
now holds: 

.
2

2
2

1

21
3

rr

rrr
+

=  (15) 

It can be proven to be consistent with the three curves being 
ellipses. We proceed to sketch a proof of this equation. 

An error ellipse follows from a 2D (projected) Fisher 
information matrix J. The ellipse corresponding to a FIM J
can be drawn by taking a unit vector x and plotting the points 
J-1/2x while rotating this vector along the unit circle. From 
Appendix I follows that the Jacobian matrix of combined 
methods consist of two stacked sub-matrices, corresponding to 
the two measurement types. From this and Eq.(11) follows 
that the combined FIM is the sum of the individual ones.  
Assume the separate methods have Fisher matrices J1 and J2.
Than the combined method has Fisher matrix J3= J1+J2.
Because of the way an error ellipse is related to the Fisher 
matrix we may write 

uxJ 1
2/1

1 r=−  (16) 

uyJ 2
2/1

2 r=−  (17) 

( ) uxJJzJ 3
2/1

21
2/1

3 r=+= −−  (18) 

The unit vectors x, y and z have generally a different direction. 
The matrix multiplications at the left hand transform them all 
in the same direction u (also a unit vector). This vector 
represents the direction of the straight line segment in Figure 
9. The top equation is transformed as follows: 

2
1

11
2/1

1
1
r

r T ==− uJuuxJ , (19) 

By transforming Eq.(17) and (18) similarly and combining the 
results we arrive at Eq.(15). The result can be generalized. If n
measurements with ‘ellipse sizes’ ri (i= 1...n) are combined to 
one with r one gets 

2
1

1
2

1
−

=
=

n

i ir
r . (20) 

This implies that the combined ellipse is located entirely 
inside all other ellipses. 

VIII. CONCLUSIONS

Experiments showed that ground based emitter locations can 
be estimated from an airborne platform with a relative 
accuracy of 3%, using Doppler frequency measurements. 
Some analytical relations for the theoretical accuracy of 
Doppler and interferometry based methods were given. 
Combining error ellipses of Doppler and interferometric 
methods (or any other combination of single location 
methods) turned out to give an error ellipse which bears a 
simple relations with the error ellipses of the single methods. 
Simulated annealing turned out to be a useful technique to find 
optimal tracks. The results for a particular case were slightly 
better than those reported elsewhere. 
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