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ABSTRACT 

Operating in a coastal environment, with a multitude of boats of different sizes, detection of small extended targets is 
only one problem. A further difficulty is in discriminating detections of possible threats from alarms due to sea and 
coastal clutter, and from boats that are neutral for a specific operational task. Adding target features to detections allows 
filtering out clutter before tracking. Features can also be used to add labels resulting from a classification step. Both will 
help tracking by facilitating association. Labeling and information from features can be an aid to an operator, or can 
reduce the number of false alarms for more automatic systems. 

In this paper we present work on clutter reduction and classification of small extended targets from infrared and visual 
light imagery. Several methods for discriminating between classes of objects were examined, with an emphasis on less 
complex techniques, such as rules and decision trees. Similar techniques can be used to discriminate between targets and 
clutter, and between different classes of boats. Different features are examined that possibly allow discrimination 
between several classes. Data recordings are used, in infrared and visual light, with a range of targets including rhibs, 
cabin boats and jet-skis.   
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1. INTRODUCTION 

Tasks of naval forces are more frequently taking place in coastal environments. Such environments introduce specific 
challenges in building an operational picture for situational awareness. For example, clutter may be caused by breaking 
waves and coastal backgrounds, and may be more irregular than at open sea. Also, ships that are encountered not only 
include larger vessels, such as merchant boats, fishing trailers and frigates, but especially smaller boats, such as cabin 
boats and jet-skis. Finding those ships that are of interest for an operational task (such as intercepting smugglers), or 
those ships that could pose a threat, is a challenging task. Performing those tasks is often done by a human operator, 
based on radar information and using electro-optical sensors for final identification. The operator may be helped by a 
system that adds information from electro-optical sensors automatically, assisting him in selecting targets for further 
inspection, and helping in classifying ships as targets of interest. The process of finding targets of interest can be defined 
as separate steps, from sensor data acquisition and detection to classifying a target as a threat or smuggler. Some of these 
steps may be done by an operator, some automatically, adding information for the operator to use, by labeling detected 
objects. 

At TNO a research programme “Electro-optical sensor systems” for the Dutch ministry of Defence is examining several 
aspects of the use of electro-optical systems, from (near)-future system concepts to the image processing chain [12]. 
Work on image enhancement is described in [8]. The project “Classification and clutter reduction” is part of this 
programme and examines ways of adding information in the process to assist an operator in classifying ships, with an 
emphasis on small targets in a coastal environment. This includes what information can be extracted, and how this can be 
used to discriminate between different classes, at different levels. Examples of such levels are discriminating between 
objects or clutter, big or small ships, less interpretable classes (such as flat or tall, (a)symmetric, intricate shape or not),  
or type of ships (such as frigate, merchant vessel, fishing trailer, cabin boat, jet-ski). Whether such a discrimination is 
possible, depends on many things. Which features can be determined that are of use for discriminating between classes? 
Which methods for automatic discrimination can be applied? How to handle the use of features in a database, or the lack 
thereof? In this paper we present ongoing work in this project. A general description of a classification process is given, 
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consisting of several steps where features are determined and used to label detections. Examples are given how features 
allow discrimination between targets and clutter, and of discrimination between small extended targets from infrared and 
visual light imagery. The influence of the aspect angle (defining how the object is seen by the sensor) is discussed, and it 
is shown how knowledge of the aspect angle makes features more useful in the classification process.   

The process is discussed in the next section, In Section 3, results for clutter reduction are shown. In Section 4, the 
dependency on aspect angle of height profiles is discussed. This dependency is also apparent when looking at small 
targets, as shown in Section 5. In this section, several features are computed and several classifiers have been applied to 
discriminate between small targets. Finally, a conclusion is given in Section 6. 

 

2. DESCRIPTION OF PROCESS AND DATA 

Figure 1 shows a representation of the process of adding information to detected objects. Several steps add information. 
The segmentation step is the link from detection to the rest of the process, as the shape of the detection is of more 
importance than it is in the detection step itself, where mostly only contrast is used. The work described in this paper 
relates to the steps in the process between detection and showing object information to an operator. The column on the 
left of the flow describes a process that runs continuously in a loop. It describes an automatic process for detection in 
electro-optical sensor data, which could be used instead of radar, or (more often) in addition to radar tracks (in a multi-
sensor process). In automatic detection there is a trade-off between detection probability and false alarm rate. Especially 
when interested in small boats in a coastal environment, false alarms cannot be avoided without compromising detection 
results. When a process is used to filter away false alarms, a higher detection probability for targets of interest can be 
achieved, with fewer false alarms. Clutter reduction is discrimination between targets of interest and other alarms. 
Tracking can also be used for filtering false alarms, by using information in time, such as track lifetime or temporal 
behavior of features. Other methods of labeling detected objects as belonging to one of different classes are used to add 
information to the tracks.   

The right side of the figure shows less frequent labeling 
of objects with information, as it is not done for each 
image. This includes more complicated processing, and 
is also the part of the process that may involve an 
operator. For example it can provide information that 
helps an operator in making a decision on the nature of 
the target. When linked to tracks, it can make use of 
time dependent features. It improves long time tracking, 
by making association over time more robust. Other 
sensors may be involved in the process, for example 
radar tracks could trigger the process to obtain 
information from an image for that track. Data from 
other sensors can also help by adding more accurate 
distance and aspect angle information to the features 
computed from the electro-optical data. 

Several of the functions described in Figure 1 include 
the computation of features, and using features to label 
an object as belonging to one class or another, or assign 
probabilities of the object belonging to classes. This 
selection can be made using rules determined by hand, or automatically learned. The latter should be done with care, 
checking that the system did train on the relevant information. In literature, for classification of ships (or similarly 
aircrafts) often more complex features describing the extracted shape are used. Examples are moments [1, 4, 10, 11] and 
Fourier descriptors [11, 14]. Methods for training include Principal Component Analysis [6] and neural networks [1, 10].  
We examined the use of moments, with respect to aspect angle dependence and for use in discriminating targets that 
have segmentations that consist of much less pixels than generally used.  

In order to discriminate between classes based on features, image data with relevant information is needed to find how 
features define the classes.  Often the number of objects in available data sets is limited. In other words, many targets of 

 

Fig. 1. Process of adding information to detected objects. 
Input are images, all other lines indicate object 
information (including segmentation, features, track 
information, labels from labeling) 

Proc. of SPIE Vol. 6969  69690B-2



Li .4

 
 

 

 

interest are not covered by the examined data. Also, in many cases not enough information about the data is known to 
fully exploit it. Ideally, everything affecting the features should be known, e.g., type of ship, location (distance), aspect 
angle, atmospheric conditions, and waveband. As this is not always the case, this often poses a problem when 
researching possible features and methods, but will also be a problem in practical applications. Automatic training may 
lead to unexpected results. The fact that not all possible targets are in a training set, also limits the use of an automatic 
classifier. There should be enough intelligence in the process to define a class that contains the targets not covered by the 
defined classes, so they can be labeled as unknown.  

 

Table 1. Data used for algorithm development and testing 

No. Name Description Target information 

1 SPITS Visible light, single images, many ships No target information  

2 SURFER 3-5µ and visible light sequences. Several small 
targets 

Targets, distance, sea state, meteo. 

3 Rotterdam 3-5µ, 8-12µ, visible light. Sequences. Harbor, 
small known targets and targets of opportunity. 

3 known targets (with some distance 
information), and unknown targets. 

4 MCG/8 
Stavanger 

8-12µ. Frigate.  One known target with accurate distance 
and aspect angle information. 

5 Simulated 
frigate data 

Simulated silhouettes of a frigate of same type as 4 Known target (not entirely correct model). 
Known distance and aspect angle and 
meteo. 

6 SPITS 
simulation  

Simulated IR images, three targets Known targets with distance and aspect 
angle (see also [2]) 

 

 

 
Fig. 2. Example of some of the data sets.  Shown is contrast scaled to local 

background variations. Rectangles indicate automatic detections of targets and 
background. Top images are from IR recordings, bottom from visual light. 

 

 

 Fig. 3. Example of 
targets from data sets 1 
and 6. The top three are 
simulated using 
EOSTAR [9].  

 

Limited data sets can be used to examine parts of a process for discriminating between classes, to get an idea of usability 
of features and methods, and to examine dependencies on parameters such as distance and aspect angle. Artificial data, 
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simulated from models of ships, may be used to augment available data, or fill in gaps in databases. We simulated data 
using TNO software EOSTAR [9]. Data used in our research is described in Table 1. Some examples of the different 
data is shown in Figures 2 and 3, including simulated data of small targets [2].  

3. CLUTTER REDUCTION 

In general, detection is a trade-off between detection probability and false alarm rate. Often, automatic detection 
algorithms for small targets at sea are based on statistical assumption about contrast of a target with background. Setting 
a threshold on contrast related to these statistical properties (for example the standard deviation for an assumed Gaussian 
distribution) allows some control of the amount of false alarms. When the threshold is set too high, small targets will not 
always be detected. Clutter reduction is a process of discriminating detections related to possible targets of interest from 
detections due to the background, allowing the false alarms to be filtered out. This allows a lower detection threshold 
(and higher detection probability), with a lower false alarm rate.  

Since clutter reduction is part of the continuous real-time processing loop (see Figure 1), only simple features can be 
computed for the (possibly many) detections. Often, the size of a detection in pixels is used. However, this does not 
allow discriminating small targets at a distance, from sea clutter nearby.  In an earlier project “SURFER” [3], a large 
dataset was used to determine features for small targets (including zodiacs and kayak), and sea clutter. It was found that 
simple features comparing the variation of intensity on a detection with that of nearby background, allowed for a good 
separation between targets and clutter for very different sea states and several bands.   

 

Fig. 4. Results of track filtering and clutter reduction. The left image shows all detections. The middle image shows only 
tracks that last for at least 15 frames (0.3s). The right image shows the result after filtering using features based on 
simple statistics of spatial target intensity. The only detection left is a kayak.  Some bad pixels (black) are visible below 
the kayak. 

Elimination of false alarms may also be done using tracking. Many causes of sea clutter are short lived, with only some 
white caps lasting several seconds. Filtering tracks that only last less than a fraction of a second will already remove 
many false tracks, as shown in Figure 4. In this mid-wave infrared recording of a kayak at sea, there are many detections 
due to waves, but filtering on track lifetime leaves only some white caps. These, and almost all other short-duration 
detections, are easily filtered out with the described features, as shown in the right figure. The thresholds used on these 
features were such that each would not filter all clutter, but the combination only rarely passes a white cap, and almost 
always detects the kayak.  

4. ASPECT ANGLE DEPENDENCY IN MEASURED AND SIMULATED SHIP PROFILES 

In operational use, when discriminating between classes, the total of classes should encompass all possible ships that are 
encountered. This may include an ‘unknown’ class for ships that are not described by the known features. Describing the 
classes by features, requires enough data to determine whether an encountered ship belongs to that class. For example, 
when classes are as detailed as types of frigates, data of all types should be available, and all ships for which there is no 
data, will be unknown. This requires large databases, that will most often not be complete. Further, many features 
depend on distance, aspect angle and even weather. Even simple features such as area or width of a detection are 
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different when a target is seen from another distance or angle. Distance dependency may be eliminated if the distance 
(and therefore scale) is known. Some features, such as width/height ratio, do not depend on distance, but many 
discriminating ones, such as area, are. Dependence on aspect angle is more complicated. 

When the aspect angle is not taken into account when determining the range for a feature for different classes, these 
ranges will often overlap. This prevents the use of this feature for separating these classes. Either features should be 
made invariant to aspect angle, or the aspect angle of the target should be known and the ranges for the feature should be 
known for different aspect angles. This can be helped by data from other sensors. For example, a radar track can give a 
distance and aspect angle estimate. A laser range profile provides complimentary information as it gives information 
perpendicular to that of the camera. Using a laser range profile for discriminating ships is shown in [7]. 

Making a silhouette aspect angle independent is not completely possible, as it depends on both width and length of the 
object, and parts may be occluded at certain angles. This means not only data is needed for many ships, but also for 
different aspect angles. This is especially true for more complicated features, such as profiles, used to correlate a 
measured silhouette to a database.  

We looked at the influence of aspect angle on the profile in real measurements of a frigate (dataset 4 in Table 1) and on 
profiles determined from images simulated using a 3D model of the same type of frigate. The data has some limitations, 
because of segmentation artifacts in the measured data, the 3D model not being entirely correct, and not having an 
absolute measure how well profiles are alike, compared to those of other ships.  It does however give a good indication 
of how aspect angle influences profiles. 

 
Fig. 5. Silhouettes simulated from a 3D model of a frigate, at aspect angles of 0, 10, 20, 40, 70 and 90 degrees. 

 

 

 
Fig. 6. Height profiles of a frigate simulated from a 3D model for aspect angles from 0 to 90 degrees. Width and height are 

normalized.  Small aspect angles result in the largest profiles, with least intricate shape. Each line shows what the top 
of the silhouette looks like when viewed from a certain angle, stretched to a single width. 

 
Figure 5 shows examples of simulated silhouettes of a frigate. It is clear that near head-on the appearance is very 
different from the side view. However, for angles in between, there are much less differences. This is also visible in 
Figure 6 where the profiles are shown for profiles of a simulated frigate at angles from 0 (head-on) to 90 (side view) 
degrees. The profiles are scaled to have the same width, and height.  
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The profiles show that there is only limited variation between many aspect angles, but when approaching a head-on 
view, the profile changes dramatically. The same is seen when looking at profiles from the real measurements. 

To have a closer look at the similarities between height profiles, a difference measure was used, defined by: 

∑ −=
x

jiij xfxfD )()(   (1) 

Where indices indicate profile functions f for different angles. The difference is summed for all horizontal locations and 
is a measure for the area between the plots of two profiles. For this, all profiles are resampled to have the same number 
of points as the widest profile.  

a)      b)  
Fig. 7. Difference between profiles of a frigate at different angles.  a) for simulated profiles b) for measured profiles. A 

higher value (whiter in the figure) indicates a larger difference.  

Figure 7 shows these values computed for all combinations between the profiles, both for the simulated and measured 
ones. Even though the values do not give an absolute measure, it is clear that differences between profiles for nearby 
angles (near the diagonal) are small. Further, the near head-on profiles are much different from all other profiles. 
Compared to those differences, profiles for angles from 20 to 90 degrees are very comparable, as seen in the bottom rows 
of the figures. Although for measured profiles the figure is a bit more irregular, the same conclusions can clearly be 
drawn for simulated and measured data. 

 

5. DISCRIMINATION BETWEEN SMALL TARGETS 

5.1 Introduction 

In this section results are shown of ongoing research on the usability of features for discriminating between targets at 
different levels. Topics of this research are how well ships of different shapes can be distinguished, and what general 
information about size, shape or type can be obtained from simple features, even when the target is only observed as a 
few pixels high. The latter occurs for example when targets are at larger distance, and a system more aimed at detection, 
with corresponding smaller instantaneous field of view, provides the image of the target. An example of such a system is 
the sensor described in [8], which is a staring array, consisting of uncooled long-wave infrared cameras for detection, 
and color cameras for observing the targets. As 12 cameras have to span 360 degrees, resolution on a distant (small) 
target is limited.  

Features that were examined are simple ones (e.g., based on dimensions, intensity variation) and moments (describing 
shape). Both are influenced by target distance and aspect angle. In the next sections, the use of these features for 
discriminating small targets is discussed, applied to data recorded in Rotterdam harbor (dataset 3 in Table 1).  
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5.2 Rotterdam data 

Data was recorded in Rotterdam harbor in the Netherlands for a rhib, a water-taxi (a small cabin boat used in Rotterdam 
to transport people) and a jet-ski [8]. Recordings were made in two infrared bands, and visible light. Examples of the 
rhib and water-taxi recordings in the longwave IR band (recorded with an AIM QWIP camera) are shown in Figure 8.  

 Ca. 500 m Ca. 1000 m 

 

 

Water-taxi 

  

 

 

Rhib 

  

Fig. 8. Long-wave infrared recordings of water-taxi and rhib at different distances (indicated as planned distances of 500 and 
1000m), in Rotterdam. 

 

For distance, there is only a rough value for some recordings as a maneuver was planned at a certain distance. In order to 
examine the influence of distance and aspect angle, these values have to be estimated.  

The distance is estimated from the camera height and the angle between the horizon and the bottom of the detection, 
where it touches the water. Since both camera height above the water and the horizon (automatically detected from the 
water-land transition) are not accurately known, the distance estimate is not perfect, but it does allow sorting detections 
by distance.  

The aspect angle is estimated from the observed width of the detections, converted to real dimensions using the 
estimated distance and camera resolution. Taking the largest and smallest observed width, allows estimating the width 
and length of the targets. A simple formula describes how the observed width depends on these dimensions and aspect 
angle. The aspect angle can then be computed from the observed width of a detection by inverting this formula. 
Especially at larger distances, where the error in horizon location has the largest influence, the estimate is often incorrect. 
Due to estimating the horizon too low, the distance is overestimated, as is the width after correcting for distance. To 
compensate for this, the aspect angle (computed from this width) is scaled to better map between 0 and 90 degrees.  

An algorithm for automatic detection of small targets at sea was used to obtain target segmentations of the boats, used in 
part of the results. This method is based on a constant false-alarm-rate detector and a background estimation that 
incorporates statistical changes in a sea background. This is an updated version of the detection method described in [3]. 
Although it works well in most cases, there were some difficulties in consistently detecting the targets when they were 
near the water-land border. As automatic detection is not part of this research, the targets were indicated manually, and 
an automatic segmentation was then performed at the indicated target position. In some cases, part of the wake of the 
boats may be included in the segmentation. No manual correction was made for this.  
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5.3 Simple features 

A number of features are examined, based on: 

• Dimensions of detection, in pixels. Most are scale independent (e.g., height/width ratio) 

• Real dimensions, using the distance estimate (area, width, height) 

• Intensity (total contrast, maximum contrast, standard deviation of intensity, standard deviation of intensity 
compared to background) 

Most of these should be distance independent, either because they are not depending on scale, or because the distance 
estimate was used to convert pixel-based values to real dimensions. As an example, Figure 9 shows the estimated area as 
function of distance, for the three targets. The distance estimate becomes less correct at larger range, resulting in a 
general trend upwards. Still it is clear that in general, the jet-ski is distinguishable from the other two, and the rhib shows 
a slightly larger area than the water-taxi. It should be noted, that these data include all aspect angles, resulting in the large 
variations near distance values of 400 and 800 m, where the targets went around in a circle. At largest distances, 
detections are only a few pixels high, resulting in larger variations as well. 

 
   Distance [m]                         Aspect angle [degree] 

Fig. 9. Estimated area (in m2), left as function of distance (in m), right as function of aspect angle (rough estimate, in 
degrees). Triangles: jet-ski, circles: water-taxi, crosses: rhib 

 

 
Aspect angle [degrees] 

Fig. 10. Estimated Height (in m) as function of estimated aspect angle. Triangles: jet-ski, circles: water-taxi, crosses: rhib 
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When plotting the area as function of aspect angle, it becomes however clear that there are differences between values 
for rhib and water-taxi. Knowing the aspect angle would in this case help, and make a distinction between rhib and 
water-taxi possible in many, but not all, cases.  

Area could also be corrected for aspect angle in much the same way as aspect angle was estimated from width as 
explained above. This is the case for all features that depend on aspect angle because they are computed from the 
detection width. In our case, this would however result in a simple dependence defined by our formulas, and give no 
insight in the actual behavior. Some features are already aspect angle independent, as Figure 10 shows for estimated 
height.  

Using several features will allow to make a distinction between the three targets in many cases. Note that all values 
shown in the figures are the many occurrences of the same targets in an image sequence. When the majority shows a 
clear separation of features for the different targets, combining observations will increase reliability of the information. 
 

5.4 Moments 

For classification of ships, often more complex features are used, that describe the distribution of the detected silhouette, 
using segmentations of observed ships consisting of many pixels. Examples are Fourier descriptors [11,14] and moments 
[1, 4, 10, 11]].  Moments are computed using the difference of the coordinates of each detected point to an average value, 
raised to a certain power and summed. Moments describe features as size ratios, symmetry, eccentricity, etc. An example 
of moments applied to some of the targets from visual light recordings (dataset 1 in Table 1), are shown in Figure 11.  

 
Fig. 11. Moments computed for different ships and some false alarms.  Varying combinations of the shown moments allow 

differentiation between different ships, based on ratios and shape. 
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There, combinations of moments are plotted. Trends can be seen separating different shapes, such as flat (container 
ships), high (sailing boats) and irregular (clutter). 

As moments are computed from pixel coordinates (see equation 2 for central moments), they depend on distance, and 
camera resolution: 

    
∑∑ −−=

x y

j
c

i
cij yxfyyxx ),()()(µ

    (2) 

where i and j indicate the order for x and y direction. (xc,yc) is the centre-of-mass, and function f in our case is equal to 1 
or zero. A modified version allows computation of more scale invariant moments (equation 3 [13]), defined by: 
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These moments, up to order 3 (resulting in 16 moments), were computed for the three targets. Figure 12 shows three of 
these moments. The middle picture shows the moment of order (0,3), which is related to horizontal pixel distribution, 
seen from the side at distances of 500m and 1000m, and going in two directions. The water-taxi has an even distribution 
of detected pixels, as its value is close to zero and there is no difference when going to the left or to the right. The rhib 
clearly has its pixels distributed unevenly, resulting in a non-zero value, and sign change when changing direction. The 
jet-ski is a bit more irregular. For the larger targets, there is no clear difference between the values at the two distances, 
showing that the computed moments are indeed scale invariant. When looking at the different moments shown in the 
figure, it can be seen that for some moments, the difference between two of the targets is small, and they may not be 
distinguishable. However when looking at other moments, these two targets may show large differences. For example, 
jet-ski and water-taxi have almost the same moment of order (0,2), but show clear differences for order (3,0).  

 

 
 (0,2)    (0,3)     (3,0) 

Fig. 12.  Scale invariant moments for rhib (-.), water-taxi (--) and jet-ski (-), at distances of 500 (x values 1 to 40) and 
1000m (x values 41 to100), for side views, going from left to right (x 1-20 and 41-70) and right to left (x 21-40 and 71-
100). Orders (0,2),(0,3) and (3,0) are shown. 

 

These results are for side views only. When looking at values for all aspect angles (estimated as described in Section 
5.2), differences are less clear, as shown in Figure 13, where the moment of order (0,2) is shown as an example. Looking 
at a range of values that can occur for a target over all angles, it is clear that there is a huge overlap between the targets. 
Without any knowledge of the aspect angle, it will not be possible to distinguish the targets based on these moments. 
When an estimate is known however, there are clear differences, with much smaller overlap. The order (0,2) moment for 
example, shows that the water-taxi generally has the lowest value, rhib the highest, with jet-ski somewhere in the middle, 
but overlapping with the others. Combining different moments may then allow a discrimination between the targets. This 
is shown in Figure 14, where the (0,3) and (3,0) moments are plotted against each other, for the side views of the three 
targets. Although there is still some overlap, there are clear clusters for the three targets, with the rhib being split in two 
(for two different orientations). Several classifiers were used to automatically determine these clusters. The figure shows 
three, computed using the PRTOOLS software [5].  
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Fig. 13. Scale invariant moment order (0,2) for rhib (crosses), water-taxi (circle) and jet-ski (triangle) as function of 

estimated aspect angle. 

 
 

 
Fig. 14.  Results of different classifying methods separating clusters for rhib (crosses), water-taxi (plus-signs) and jet-ski 

(circle), using k-nearest neighbor classifier, Parzen classifier, Normal densities based quadratic classifier. 

 

6. CONCLUSION 

This paper discussed the procedure of adding information to detected objects, by using features to label a target as 
belonging to different classes. Results from ongoing research were shown that illustrate aspects of this process, and that 
are of importance in labeling (small) targets in a coastal environment. Clutter reduction is an example of very basic 
labeling. It is shown that false alarms due to clutter can effectively be removed using track information and by using 
simple features such as statistics of target intensity variations.  

Height profiles of a measured and simulated frigate were examined for influence of aspect angle. It was observed that 
most variation is in a limited range of angles near the head-on view. Variation from about 30 to 90 degrees was limited, 
when normalizing the profile for observed width. 

The presented results obtained using simple features and moments for small targets, show that it is possible to use them 
to discriminate between small targets, even when their segmentation is only a few pixels high. A single one of the 
features may not be enough, but a combination of features allows to distinguish between targets in many cases. Using 
several scale invariant moments, a clear difference is visible, but information about size is lost, and intensity of the 
detection is not taken into account. It makes therefore sense to combine such features with simple features such as area, 
and intensity variations over the target. The latter could also be used to compute more complicated moments.  

Features should preferably be invariant to how the object is viewed, such as scale (due to distance and camera resolution) 
and aspect angle.  Where distance dependencies can partly be corrected for and introduce mostly inaccuracies, different 
aspect angles may result in entirely different values. It is clear that in order to be able to distinguish between targets, 
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having an estimate for the aspect angle is a necessity. Such an estimate may be obtained from track information from 
other sensors (such as radar), or roughly estimated from the data, if enough observations at different angles are made. 

Further work is being done on the described and other features, clutter reduction, labeling and visualization in order to 
assist an operator in identifying targets of interest. 
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