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ABSTRACT

Blur estimation is an important technique for supeolg®n, image restoration, turbulence mitigation, deblurend
autofocus. Low-cost methods have been proposed for blur &@stimbelowever, they can have large stochastic errors
when computed close to the edge location and biased estistabther locations. In this paper, we define an effticie
accurate and precise estimate that can be computedeatgbdocation based on the first-order derivative. Our method i
compared and benchmarked against previous state-of-thrantesults show that the proposed method is fast, unbiased
and with low stochastic error.
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1. INTRODUCTION

Blur estimation is a technique that can be used for npaagtical applications, such as super resolution [bodge
restoration, turbulence mitigation [8][9], quantificatior],[@8eblurring and autofocus [16]. Many algorithms have been
proposed to perform blur estimation in images and video. dhoat survey, we show that some are computationally
inefficient, and some require higher-order polynomials. &seem very efficient and robust, but have large stdchast
errors when computed close to the edge location and systegrrors at other locations, as will be shown aralyaed.

In this paper, we present an efficient, accurate and prétis estimator that can be computed at the edge location.
Furthermore, it is robust against small variations dudiglmcation or noise. The novel estimator is based onitste f
order derivative. Our method is compared and benchmarkedsagaevious state-of-the-art methods under different
levels of blur, dislocations and noise to gain insighhin tobustness. The capabilities and limitations of botle-stat
the-art and our methods are analyzed and described. The expidimesults show that the presented method is fast,
unbiased and with low stochastic error.
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2. OVERVIEW OF EXISTING METHODS

2.1 Assumptionsand notation

We assume that an image contains blur that locally candakeled as a convolution with an isotropic Gaussian point-
spread function (PSF). Furthermore, we assume that theeigcw@gains at least a few regions where the luminance
distribution is a straight step-edge that does not itenfvith other patterns. The blur will be estimated locatlthese
step edges, and the blur is not required to be uniformtbeexhole image.

In this paper, we will use the following notations. The blustgh edge in image,$ parameterized by the under- and
upper bound Yand U respectively, step-height H (H =,J- U;) and the Gaussian blur with standard deviatign
Reblurring the image with Gaussian blur kerrgJsndo, (whereo, < o) will generate the reblurred imageg>$ and
Sy(X), with a total blurring o, = V(0,%+ 0,2) andoy, = V(0,>+ 0,°) respectively. The first- and second-order Gaussian
derivatives [4] in the x-direction will be denoted gsand L, in y-direction as |.and L, and in the gradient direction
L, and L,,. Most of the equations below are applied exactly at the cehtee step-edge, unless specified differently.

2.2 Overview of existing methods
In this subsection, we will discuss five types of methfodblur estimation.
1) Direct model fit

The first type uses a direct fit of a model for the psimtead function (PSF) or the edge-spread function (ESF). For
example, Pham [15] fits an error-function (erf) modeih® edge profile that contains pairs of edge locatidsets and
edge-intensities.

2) Third-order polynomials

The second type is based on third-order polynomials. Kagdegdl4] emphasizes that the signal-to-noise ratio
decreases for higher order polynomials. Therefore, theg to use coefficients of the lowest order possiblehéirt
approach, they need at least coefficients up to ordez thrsolve the edge parameters.
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Inspired by the work of Kayargadde, we can make a siméaration for Gaussian derivatives instead of theimhiter
coefficients. In this case the equation becomes:

O = |~ 2)
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Eq. 2 can also be applied close to the edge location. Wheiecephctly at the center of the edgg, s 0, so at the
edge location the equation reduces to:

Lw

Ota = [~ Lovww 3
Chiang e.a. [6] also proposed to use a cubic polynomial:
+s Q' (x)

Otq = 7‘2_5: =- Q///zcx): s = ,rZ - 4r(x - xO)z (4)

at the edge location (xgkit reduces to the same solution as Eq. 3.
3) Distance to zero-crossings of third-order derivative

The third type of methods for blur estimation is basedihe distance between the zero-crossings of the thira-orde
derivative. Elder and Zucker [11] estimate the amounblof by measuring the distancg between the two zero-
crossing of the third derivative (hw):

Opq = d3/2 (5)
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Bae and Durand [1] proposed an improvement of Elder and ZucKerTHdy found that the localization of the zero-
crossings of the third derivative is not robust. Thereforstead of measuring the distance between the actual zero
crossings, they used a brute-force strategy to fit plaltinodels of the second derivative at different scalebe pixel
responses and find the distance with the least square éttiog

4) First-order derivative and step height

The fourth type of methods for blur estimation is basadhe gradient magnitude and the step height. Zhang [17]
proposed a least-squares fit for solving H agdbased on an equation that uses a first-order derivati\a multiple
scales connected by edge focussing:

H
LoVome, = pries Q
Dijk et al. [7] proposed to use a similar relation:
Hog
M, = - 7

In this equation we see that the derivativg)(Was replaced by a the normalized derivativeXsihd therefore the term
‘0, was added in the equation. The responsgwés computed for multiple scales, and the measured responses
were fitted to the theoretical responses. The minimizditowas done by the Levenberg-Marquardt method using 8
different scales.

Of course, the equation of [17] can easily be singaifby removing, at both sides. Furthermore, the edge height H can
be calculated directly based on the average intensity am ®de of the edge (excluding a transition range). Regentl
Cao [5] published this simplification that allows direct gutation of the amount of blur without a minimization or
fitting procedure:

- me (8)
5) Zeroth-order blur at two scales

The fifth type of blur estimation uses (zeroth-ordeidgive) Gaussian blurring kernels at different scatksand Haan
[12][13] proposed an approximation based on two blurring kerfidlsy showed clearly better results than Elder and
Zucker [11].

Oq 0p . — So—Sa (9)
(6p=0g)R+0p’ Sa=Sb

Op

Computation of the ratio R at the edge location is redt defined, because the intensity of a blurred step-egigains
at half step-height at the center location for differeatess and thus the denominator of the ratSpapproaches zero.
So, this ratio is unstable at the edge center and hastlarge stochastic error when it is computed close tedge
location. Computation at another location results in a systermrror.

3. FIRST-ORDER DERIVATIVE-BASED METHODS
We aim for low-cost accurate and precise local blumegion based on the first-order derivative.
Therefore, we will exclude the following.

» To obtain accurate and precise results, we will exclugleeln-order approaches because they are more expensive
to compute and because the signal-to-noise ratio desréasthem. Recent results [12] already showed better
performance based on a lower-order method.

» To obtain low-cost results, we will exclude methods thguire a minimization or fitting procedure because it is
computationally inefficient. This will enable a fapafallel) implementation (e.g., on graphical processiritgs un
GPU'’s).

We will include the approach based on the gradient magnitudstemdheight (similar to Cao [5]):
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Op = (LWL\/E)Z —04° (10)

And we propose the following novel approach based on the gradignitode at two different scales:

_ |op*-Poa® o, _ (Lwa 2
om [ -

where 1, , and L, are the gradient magnitudes at sealendo, respectively.

Eqg. 11 was obtained by solving the following well-known equatfonshe gradient magnitude at a blurred step-edge at
x=0 for g,
2

H x H x2
= ez P (_ﬁ)' Lws = 52 5 exP (—ﬁ) (12)

Furthermore, we extended this approach by using onlynvetion up to the first-order derivatives, to handle small
dislocations and to avoid root-finding or interpolation at sub-vimations.

5y Prag? L s exp(-[erm 12220 p)] ’
G=|"55 o P= o2 (13)
Ly, b* exp(—[erf_l(ZaTl—l)] )
The extension in Eq. 13 was obtained by solving the foligwiquation of the blurred step edge for the complete term
x?(20,2)), which is inside the exponent of Eq. 12.

Lw,a

e a9
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20f,

= U x co —
Se=U; + 5 (1 + erf(gmﬁ)),e
For the term (-%(20°)), the same computation is made and both terms are stétin Eq. 12 to derive Eq. 13. This
allows us to avoid using the assumption that x=0.

We will compare the two first-order derivative apptoes of Eq. 11 and 13 to the method of Hu and Haan9QEand
the method of Cao (Eqg. 10).

4, EXPERIMENT AND RESULTS
4.1 Syntheticimage data

To quantitatively analyze the performance of the methiglsised a one-dimensional blurred step edgewith white
Gaussian noiseo( = 0.001). Of course, the methods can also be applietilid-dimensional images, which will make
them even more robust to the effects of noise [2]. The adsthivere applied without dislocation (dx = 0) and with
dislocation (dx > 0). The step-height for Eq. 10 and Eq. 13determined as an average of the 7 pixels negrTis
implementation was chosen to perform blur estimation irocall neighborhood, as with the other methods. The
parameters for the five experiments (A-E) are desciithd@ble 1.

Table 1. Parameters of the five synthetic expertméh-E).

Experiment a, g, O dx
A 0.7-74 3.0 1.4*ag, 0.0
B 0.7-7.4 3.0 1.4*ag, 0.5
C 2.C 3.0-31.€ 1.4*qg, 0.C
D 2.C 3.C 1.4*g, 0.004-0.5
E 0.7 3.0 1.4 *ag, 0.004 - 0.5

Results of the synthetic experiment are shown in Table ¢h Eav in this table shows a different experiment (A-E) and
each column shows a different method (Eq. 9, 10, 11 and 48). fleethod gives an estimatiand) of the original blur.
On the vertical axis of each figure the relative ersosliown § = (O.s; .00)/ O,). On the horizontal axis, the varying
parameter is shown, which is for the five experiment&jAo,, 0, 05 dx and dx respectively.
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As expected, all methods — except our novel Eq. 13 — showtearstic error when they are applied at another location
than the center of the edge (dx > 0.1), especially when thimalrblur is small §, < 1.5). This systematic error hampers
efficient implementation with a computation at pixel locasio

The results show that the method of Hu and Haan (Eg. 9) oftenléwageastochastic error when the dislocation is small.
For this method, there is always a trade-off betweersatic and stochastic errors (see Experiment ‘E’). I§ gives
acceptable results when three conditions are met< o, (because they use an approximation) and dx > 0.05 (to avoid
the stochastic error) anm, > 2 (to avoid errors due to dislocation). The firshdition hampers a local application,
because large re-blurring kernelgare more likely to interfere with neighboring structureadAhe third condition is
also problematic since the standard deviation of thei®8fen smaller than 2.

The approaches based on the first-order derivative (EqL11@nd 13) give good results. The approach based on Cao
(Eq. 10) deteriorates wheao4< g,). Furthermore, we observe in Experiment ‘C’ that thishoe also deteriorates when
(0o << Ty).

The best performance is given by the approach based.dBEghich corrects for small dislocations.

Table 2. Results of the five synthetic experimd®E) for four methods (Eq. 9, 10, 11, 13). Thetwml axis shows
the relative errorg(= (Oest -00)/ Oo) and the horizontal axis shows the varying paramaftthe experiment.

Exp “ S & S(Eq.9) “LW& H (Eqg. 10) L“W,a& Lws (EQ. 11) Up to 1% ord (Eq. 13)
| i |
_ o \k e
2o P
C
D
T —

Proc. SPIE, vol. 8399, 839904, page 5/ 8



4.2 Real imagedata

We applied the blur estimation methods (Eqg. 9, 10, 11 and 18% teameraman’ image at different levels of added blur
(op = 0.0 — 7.0). The main difference between this imagesgnthetic data is that it contains not only one strastgyp
edges but also curved edges and neighboring structures. Theirelgeare selected by using the zero crossings of the
second-order derivative,l, and a minimal gradient magnitudg.LThe edge pixels are dilated to select a narroworegi
near the edge and the blur estimates are further dilatetptove the visibility in the figures of this paper. The hoets
were applied witho, = 2.0 ando, = 2.8. Figure 1 shows an example of the four different austiat ¢, = 4.0). Note the
stability of the blur estimators at non-straight regicsuch as the elbow.

(d) (f)

Figure 1. Blur estimation methods applied to thexeaman image with added biog = 4.0. Blurred input image (a),
selected edge pixels (b), blur estimation method%g), Eq. 10 (d), Eq. 11 (e) and Eq. 13 (f). &aof the color
bar is [0 — 7], where 4 is the level of appliedrbidote the very unstable estimation of Eq. 9 tbg small
variation due to dislocation and corners of Eq(e)land the stable and accurate estimation of theL & (f).

Table 3 and Figure 2 show the average and standard devidtitvesestimated blur in the cameraman image at different
levels of additional blur. This figure shows that Eq. @asnpletely unstable and it shows that Eq. 11 and 13 are mor
accurate than Eq. 10.

In Table 3, the spread of Eq. (11) and Eg. (13) seemworme different at, = 4.0, although Figure 2e and 2f show a
clear difference in stability. This is caused by the orixtof blur values on the left and right side of the imayyhen
these estimates are separated it shows on the left §ide045 and 3.9 + 0.2 for Eq. (11) and (13) respectively,and
the right side 3.9 + 0.8 and 3.4 £ 0.7 for these equations.clddasly shows a much more stable estimate of Eq. (13) at
places where a step edge is present.
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Table 3. Average and standard deviation of themeg&d blur in the cameraman image at differentléegbadditional
blur (Op).

M ethod 0,=0 op=1 gp=2 0p,=3 Op=4 0a=5 0p,=6 Op=7
Eq. (9) 52+82| 40+20 45+x1y 6.6+29 23.4+139 23.66:/1337+3319 28.1+124
Eq.(10) | 1.4+0.8 2.0+08 25+0/6 3.3+0.5 3.9+0/4 44 +0.3.7+0.2 5.0+£0.2
Eqg.(11) | 1.3+21 17+1p 2.0+0{8 3.0+0.7 4.1+0{8 5.2+0.8.0+0.6 7.2+0.7
Eq.(13 | 1.1+0.7|1.3+1.C|1.7+06| 2.6+0.¢ | 3.6 + 06 4.6 +0.5 5.5+ 05 6.6 + 04

estimated blur

added blur

Figure 2. Average estimated blur (vertical axisjliferent levels of added blur (horizontal axis).

Results on real data confirm results on synthetic dateEidpad is completely unstable. The example in Figusadwed
that Eq. 11 is sensitive to dislocations and corners and thtitatige results in Figure 2 showed that Eq. 10 is
hampered by a systematic error. The results on syntheticeal data show that Eq. 13 gives the best blur estitnate
Eqg. 11 also gives acceptable results close to the edg®ioaad it is even easier to compute.

5. CONCLUSIONSAND FUTURE WORK

Blur estimation is an important technique for many prattipplications, such as super resolution, image resiorati
turbulence mitigation, deblurring and autofocus. Many nieples have been proposed to perform blur estimation in
images and video. In this paper, we presented an efficieatrate and precise blur estimator that can be computed at
the edge location. Furthermore, it is robust against sraaihtions due to dislocation or noise. The robustness agains
dislocation allows an efficient implementation based on agatjn at pixel locations in the neighborhood of an edge.
The novel estimator is based on the first-order derivative. @ethod is compared and benchmarked against previous
state-of-the-art methods ([5][12]) under different lewldblur, dislocations and noise to gain insight in the roimss.

The capabilities and limitations of each of the metheese analyzed and described. The experimental rests that

the presented method is fast, unbiased and with low stticlegror.
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