
Improved Anonymity for Key-trees

Thijs Veugen1,2 and Michael Beye1⋆

1 Information Security and Privacy Lab, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, The Netherlands

M.R.T.Beye@tudelft.nl
2 Technical Sciences, TNO, The Netherlands

thijs.veugen@tno.nl

Abstract. Randomized hash-lock protocols for Radio Frequency IDen-
tification (RFID) tags offer forward untraceability, but incur heavy search
on the server. Key trees have been proposed as a way to reduce search
times, but because partial keys in such trees are shared, key compromise
affects several tags. Buttyán et al. have defined measures for the result-
ing loss of anonymity in the system, and approximated their measures
by means of simulations. We will further improve upon their trees, and
provide a proof of optimality. Finally, an efficient recursive algorithm is
presented to compute the anonymity measures.

Keywords: RFID, hash-lock protocol, key-tree, anonymity, anonymity
set, authentication delay

1 Introduction

We consider the problem of authenticating many Radio Frequency IDentifica-
tion (RFID) tags through randomized hash-lock protocols, in an efficient way.
The tags are authenticated towards the reader through a challenge-response
mechanism. Each tag authenticates itself using some secret key combined with a
random value (nonce), and to authenticate the tag, the reader will have to check
the keys of all tags in order to find a match. Since this task is very intensive for
the reader, an authentication tree is used. Each leaf of the tree represents a tag,
and each edge corresponds to a specific key. Every tag is assigned the keys that
lie on its path from the root of the tree (see Figure 1). During the authentica-
tion protocol, a tag is authenticated step by step, i.e. edge by edge, such that
the computational load of the reader, and thus the total authentication time, is
lowered.

However, the authentication mechanism should still remain secure. If hard-
ware-level tampering is taken into account, keys that were assigned to compro-
mised tags can become known to the adversary. Because partial keys are shared
between neighboring tags in the tree, several additional tags may be partially

⋆ Part of this research was performed at TNO for a master’s thesis for the University
of Utrecht (UU). Special thanks go to Gerard Tel (UU) for his advice.

Veugen, P.J.M. & Beye, M. (2013). Improved Anonymity for Key-trees. In Hoepman,
J.H. & et al (Eds.), Radio Frequency Identification. Security and Privacy Issues. 8th
International Workshop, RFIDSec 2012, Nijmegen, The Netherlands, July 2-3, 2012,
Revised Selected Papers (pp. 31-43). Berlin : [etc] : Springer.
http://dx.doi.org/10.1007/978-3-642-36140-1_3

broken as well. How to construct the tree such that the number of (partially)
broken tags will be minimal in case of one or more compromises?

This paper considers the trade-off between efficiency (minimizing authentica-
tion time), and security (minimizing the number of partially compromised tags),
of such authentication mechanisms. While Buttyán, Holczer and Vajda [4] chose
to keep the number of tags equal to the number of leaves in the tree, our main
contribution will be to allow it to increase.

The layout of this paper is as follows: Section 2 will outline related work, with
an emphasis on Buttyán et al.’s previous work on the optimization of hash-trees.
In Section 3, the optimization problem is modified resulting in an improved solu-
tion, and its effect is quantified. Finally, conclusions will be drawn in Section 4.
Lengthy proofs of three theorems are found in the appendices.

2 Related Work

Hash-chain protocols are meant to provide forward untraceability, by updating
tag IDs in a one-way manner. This way, past IDs cannot be recovered, even
through tampering. Examples are OSK (by Ohkubo, Suzuki and Kinoshita in
[13]) and Yeo and Kim’s protocol [18]. In [2], Avoine and Oechslin suggest apply-
ing time-memory trade-offs (based on Hellmann tables [7]) to hash-chain proto-
cols (namely OSK and an improved version thereof). Hash-chain protocols have
weaknesses, including protocol exhaustion (when the end of a chain is reached,
continued updating of tag IDs will make them traceable) and desynchroniza-
tion (server and tag chains can become out of sync if tags are queried by third
parties).

A different class of hash-based authentication schemes called Hash-lock pro-
tocols (due to Weis et al.) was devised to solve the aforementioned problems.
Tags are locked and unlocked, using hashes of their ID as the key. The static
hash-lock scheme [17] is vulnerable to both replay attacks and tracking, but in
the same paper, Weis, Sarma, Rivest and Engels offer the randomized hash-lock
scheme as a solution to such attacks: it adds tag freshness (a nonce generated
by the tag) to prevent reader impersonation and tracking. The nonce is used as
a challenge, and is hashed together with the tag’s ID to form a one-time-use au-
thentication key (the expected response). Juels and Weis [8] later added reader
freshness to also prevent tag impersonation.

Note that precomputation cannot be used in these protocols, because the
use of freshness makes the search space too large – one would need to compute
values not only for each tag, but for each tag ID in combination with all possible
nonces. Other solutions are required to reduce search complexity.

Molnar and Wagner were the first to propose using a tree of secrets for
RFID tags [9]. Although originally used for a system built around exclusive-OR
and a pseudo-random function, it can be applied to other challenge-response
building blocks. Damg̊ard and Østergaard Pedersen [5] use the same concept,
but speak of correlated keys. Nohara, Nakamura, Baba, Inoue and Yasuura in
their “K-steps protocol” ([10], also dubbed NIBY) propose to apply trees to the

hash-lock setting. They use the term group IDs rather than correlated keys, and
their trees are unconventional (being of non-uniform depth). Note that all these
approaches use a sequence of group- and sub-group IDs to quickly and gradually
narrow down a tag’s identity. As Molnar and Wagner mention, partial keys in
such a tree should be chosen independently and uniformly from a key space of
sufficient entropy. Failure to do so would make the system vulnerable to attack.
If partial keys are chosen properly, the adversary will have a large key space to
search, while the owner of the system can efficiently search through a limited
subspace (the actual tree).

The trade-off that exists between efficiency and security in tree-based proto-
cols was already pointed out by Avoine and Oechslin [2], with respect to Molnar’s
original trees. Because tags share their partial keys, if one tag is compromised
(i.e. has its memory probed through invasive tampering), an adversary learns
partial keys for several other tags as well. This will enable him to decipher their
responses in some of the verification steps, resulting in reduced anonymity and
facilitating tracking.

A paper of particular interest is by Buttyán, Holczer and Vajda [4], where
the concept of trees with variable branching factors is introduced, to better
preserve anonymity in case of attack. Our work provides an optimization of
Buttyán’s solution, allowing the number of leaves in the tree to increase beyond
the number of tags.

2.1 Adaptive adversaries and metric

Altough this work is dedicated to static adversaries that choose compromised
tags in a random way, some interesting relations can be found with other papers
on adaptive adversaries that selectively choose compromised tags possibly based
on some extra (side-channel) knowledge about the tags.

As in [4], we use the average anonymity set size as a metric for the level
of privacy. In this metric each (subsequent) tag is considered equally likely to
be compromised and therefore suits the static adversary model. Because in the
adaptive adversary model different (groups of) tags could be distinghuished,
Nohl and Evans [11] propose to measure information leakage in bits (or nats)
which allows quantifying the potential gain of an adversary.

In succeeding work Nohl and Evans [12] investigate the trade-off between
level of privacy and the cost of protection suggesting an optimal tree of depth
two. A similar tree was found in [1] by Avoine, Buttyán, Holczer and Vajda who
try to further improve the balance between complexity and privacy in a new
authentication protocol. In short, the tags are divided into λ groups, where each
group shares a group-key. Every tag also has an ID. This group-based scheme
can be seen as a tree of depth 2, where every group-ID is tried, but the last
stage (unique ID) only requires one decryption instead of exhaustive search.
This means that the tree can be even wider at the top than a Buttyán tree, and
thus attains a higher anonymity score.

However, we choose not to follow this example because we believe that the
group-based authentication protocol in [1] has inherent flaws. Its suspected weak-

ness lies in the fact that the final stage of narrowing down IDs is essentially
skipped (the unique ID can be simply decrypted and read). If an attacker can
choose his tags with some confidence, he can very quickly remove all anonymity
within the system by choosing one tag from each group. Tree-based systems still
preserve some measure of anonymity in these cases.

Recently, Beye and Veugen [3] analysed the case of adaptive adversaries in
trees with variable branching factors. They suggest a so called Hourglass tree
that provides both efficient authentication and privacy protection against intense
targeted attacks. A similar approach could be used to extend our results from
static to adaptive adversaries.

2.2 Notation

In this paper we use the following notation, thereby generalizing Buttyán’s no-
tation in [4]:

– T = {t1, · · · , tN}: set of all tags in the system
– N : size of T , or actual number of tags in the system
– B = (b1, . . . , bd): a “branching factor vector” (or tuple), representing a tree

of depth d
–

∑

(B): shorthand for
∑d

i=1 bi, or the sum over all elements in B

–
∏

(B): shorthand for
∏d

i=1 bi, or the product over all elements in B
– N ′: number of leaves in the tree (

∏

(B)), or maximum number of tags in the
system, N ′ ≥ N

– c: number of compromised tags
– P (ti): helper function that returns the anonymity set to which tag ti belongs

(see Definition 1)
– Pj : anonymity set j, 1 ≤ j ≤ ℓ
– S̄: average size over all anonymity sets in a given configuration
– S̄c(B): expected value of S̄, averaged over all configurations containing c

compromised tags in the tree with branching factor vector B (see Defini-
tion 2)

– R(B): resistance to single member compromise for a tree with branching
factor vector B

– Rc(B): resistance to c member compromise for a tree with branching factor
vector B, Rc(B) = S̄c(B)/N ′

2.3 Buttyán Trees

Buttyán et al. [4] observed the time-anonymity trade off and noted that narrow,
deep trees allow faster search; it is wide, shallow trees that provide more anonym-
ity. Clearly, if many tags share the same partial keys, many tags can be excluded
from the search space after each authentication stage, thus making search faster.
The increased anonymity can be intuitively explained by the fact that when
partial keys are shared between fewer tags, the amount of information gained by
compromising a single tag is limited. Buttyán uses the concept of anonymity sets

(Pfitzmann and Köhntopp [14], Samarati and Sweeney [15], Dı́az [6]) to quantify
matters.

Definition 1. Assume a tag ti sends a given message m (or participates in a
protocol execution). For an observer O, the anonymity set P (ti) contains all
tags that O considers possible originators of m. Because all tags in P (ti) are
indistinguishable to O, ti is anonymous among the other tags in the set.

Anonymity sets provide a sliding scale for anonymity, where belonging to a
larger set implies a greater degree of anonymity. Total anonymity holds if the set
encompasses all possible originators in the whole system (one is indistinguishable
among all N tags in T), and belonging to a singleton set implies a complete lack
of anonymity.

key 2 key 3

key A key B key C

key α

key D

key β

Tag 1Aα
(broken)

Anonymity
sets

key 1

Fig. 1. Hash tree with a single broken tag [4]

To measure the level of anonymity offered by a tree, Buttyán looks at the
level of anonymity provided for a randomly selected member. This expected size
of the anonymity set that a randomly selected member will belong to, is denoted
S̄. One could also view it as the average anonymity set size over all tags, as
shown in Equation 1 [4]. Note that S̄ can be computed for any given scenario
where a tree is broken into anonymity sets. Note that, for c > 1, the sizes of
anonymity sets within the tree can vary, as different configurations of broken tags
are formed. Configurations containing the same (number and size of) anonymity
sets are considered identical, because sets can always be ordered in ascending
order without loss of generality.

S̄ =

N
∑

i=1

|P (ti) |

N
=

ℓ
∑

j=1

|Pj |

N
|Pj | =

ℓ
∑

j=1

|Pj |
2

N
, (1)

where P (ti) is a function that returns the anonymity set to which tag ti belongs,
Pj denotes an anonymity set and ℓ is the number of sets.

Buttyán then defines R, the resistance to single member compromise, as S̄
computed for a scenario where a single tag is broken, and then normalizing the
result (as in Samarati and Sweeney [15] generalized by Dı́az [6]). Note that be-
cause we can freely order the anonymity sets, c = 1 leads to a single unique
configuration. With its range of [0, 1], R = S̄

N
is independent of N , allowing

for easy comparison between systems of different sizes. In the scenario of single
member compromise as depicted in Figure 1, the number of anonymity sets is
equal to d+ 1.

We will refer to trees with a constant branching factor as “Classic trees”.
Buttyán proposes the use of trees with different, independent branching factors
on each level, sorted in descending order as shown in Figure 1. Trees will be
described by their branching factor vectors B = (b1, . . . , bd), where the variables
bi (1 ≤ i ≤ d) are integers larger than 1 denoting the branching factor at level i.

Buttyán et al. in [4] reach the conclusion that the branching factors near the
root contribute more to S̄ and R. For trees with variable branching factors this
means that a deep, top heavy tree can potentially outperform a shallow classic
tree.

They present a greedy algorithm that recursively finds the branching factor
vector B that maximizes R, given a number N of tags and a maximum authen-
tication delay Dmax. It starts with the prime factorization of N and tries to
combine prime factors as long as the sum

∑

(B) (authentication delay) remains
acceptable. An important assumption is that the number of leaves in the tree is
equal to the number of tags, i.e.

∏

(B) = N .
However, Buttyán recognizes that trees need to stand up to more than single

tag compromise. We suggest to express S̄ for the general case as follows:

Definition 2. S̄c(B) expresses S̄ as the average over all
(

N
c

)

possible distri-
butions of c compromised members across the tag set T which consists of the
N =

∏

(B) leaves of the tree represented by branching factor vector B.

Our notation is a natural extension of Buttyán’s S̄〈−〉, directly incorporating
B and c. Depending on how each successive member is picked from the tree,
different anonymity sets are broken down.

3 Improved Hash-trees

Our main observation is that Buttyánś condition
∏

(B) = N can lead to inferior
solutions. Particularly when the number N has large prime factors, resulting in
a small number of candidate branching factor vectors. We prefer the condition
∏

(B) ≥ N , which we will show leads to better results. An added advantage in
practice is that it allows to maintain a small buffer of extra keys (see discussion
in Section 3.1). Our optimization problem now becomes:

Problem 1. Given the total number N of members and the upper bound Dmax

on the maximum authentication delay, find the vector B = (b1, . . . , bd) that

maximizes R(B) subject to the following constraints:

∏

(B) =
d
∏

i=1

bi ≥ N , and
∑

(B) =
d

∑

i=1

bi ≤ Dmax . (2)

The anonymity measure R(B) used here refers to the full tree with
∏

(B) =
N ′ tags, of which exactly one is compromised, i.e. c = 1. Theorem 3 will later
show that the same holds for the anonymity measure of the partial tree with
N ≤ N ′ tags.

Theorem 1. The maximal R(B) under the constraints
∏

(B) ≥ N and
∑

(B) ≤
Dmax is achieved by the lexicographically largest vector B that satisfies these
constraints.

The proof of Theorem 1 is given in the Appendix. The following theorem,
whose proof is in the appendix, shows how to optimize the product of a branching
vector, while keeping the sum constant and ignoring the lexicographic order.
The notation (3∗) is used to denote a (possibly empty) branching factor vector
of arbitrary dimension consisting solely of factors 3.

Theorem 2. Let D ≥ 2 be a fixed integer and let
∏max

D be the largest product
∏

(B) attained by branching factor vectors B with sum
∑

(B) = D. Then this
maximal product is attained by branching factor vectors B with

∑

(B) = D that
have one of the following shapes: (3∗), (4, 3∗) or (3∗, 2).

So when searching for the vector B that optimizes
∏

(B), it is sufficient to search
within the limited set of vectors that have one of the above described shapes. In
fact, the value D mod 3 directly determines which of the three shapes should be
chosen (see Appendix B).

When considering Problem 1, we know that whenD = Dmax and
∏max

D < N ,
there can be no solution that satisfies both constraints. On the other hand, when
∏max

D ≥ N , there is at least one solution. The obvious way to find the branching
factors of the lexicographically largest solution, is to take a greedy approach. It
means that the first branching factor is optimized first, then the second, etc.
The algorithm depicted in Figure 2, which is denoted further on by Algorithm 2,
takes N and Dmax as input and solves this problem recursively [16]. A specific
branching factor is allowed, when a suitable tail (according to Theorem 2) with
a large enough product exists.

3.1 Consequences of Larger Trees

Algorithm 2 can lead to trees that exceed the strictly required number of leaves
(with N ′ > N). We argue that this has practical advantages, but should also be
taken into account when judging the anonymity of such trees.

A larger tree will allow for addition of tags at a later time, which may be
desirable in practice. Ideally, creating and balancing a tree should be done only
once, and therefore the tree should accommodate all the tags ever expected to

function B = VB_f(N, d_{MAX}) % VB = Veugen-Beye

Precondition: d_{MAX} > 1

Postcondition:

B is the lexicographically largest vector satisfying

prod(B) >= N and sum(B) <= d_{MAX}

B := [d_{MAX}]; % Start with a tree of depth one

while (prod(B) < N) and (b_1 > 2)

b_1 := b_1 - 1; % next candidate for b1

prod(B) := b_1 * prod^{MAX}_{d_{MAX} - b_1};

% maximal product given first factor b_1

end;

if

prod(B) < N -> "No solution exists.";

d_{MAX} - b_1 <= 1 -> B := b_1; % no tail left;

else -> B := [b_1 VB_f(N/b_1, d_{MAX} - b_1)];

% find next branching factor

end;

Fig. 2. Recursive function for finding an optimal solution B of Problem 1

enter the system. In systems where growth is anticipated, having a larger tree
that is ready for the future is good practice.

Also, since we are defending against tampering attacks, replacement of com-
promised tags should be taken into consideration. Replacement tags should con-
tain new key material, lest they be reintroduced with keys that are already fully
disclosed (immediately limiting their anonymity). Having unused leaves in the
tree seems ideal for this purpose.

When choosing which leaves to actually use as tags (initially and for replace-
ments), we suggest to select a sufficient number of branches at the level d − 1
at random, and to randomly initialize tags from these branches. This to create
a subtree of initialized tags that is as close to the original (optimal) shape as
possible, without introducing order in the system which might be exploited.

Finally note that tags corresponding to uninitialized leaves in the tree cannot
be encountered by adversaries in the field. For this reason, they do not contribute
to the size of the set among which targets need to be distinguished. However,
given that the resistance is actually the average anonymity set size normalised
per tag, it should intuitively remain roughly equal. This is formally proven in
the following theorem.

Theorem 3. If N tags are placed uniformly at random in a tree with
∏

(B) =
N ′ > N , then the expected resistance Rc to c member compromise satisfies

Rc(B) < Rc < Rc(B) +
N ′ −N

N2

Because of the result of Theorem 3, whose proof is in the appendix, it makes
sense to estimate the resistance Rc by the full tree resistance Rc(B). This con-
tradicts with previous work of Beye-Veugen [3] who gratuitously used a scaling
factor N

N ′
to adjust their anonymity measures. There is a flaw in the proof of their

Theorem 4 where they pose that E[1
N

∑N

i=1
|P (ti)|

N
] = E[1

N

∑N ′

i=1
|P (ti)|

N
] which

explains the erroneous appearance of the factor N
N ′

. However, with respect to
their full paper it is only a minor flaw and doesn’t affect their main conclusions.

3.2 Comparison of performance

Since our search space is larger than Buttyán’s, our trees potentially perform
better in two ways:

1. Given the same maximal delayDmax, we might find a lexicographically larger
tree that provides better anonymity (increase in R).

2. Given the same (or at least not worse) resistance to compromise R, we might
find a tree with lower

∑

(B) thus decreasing the authentication delay.

The results of both approaches are depicted in Table 1 where for three dif-
ferent categories 1000 random instances (N,Dmax) have been generated and the
results have been averaged. The intervals for the parameters N and Dmax have
been chosen such that their sizes resemble those of Buttyán.

N Dmax # of solvable instances Average Average
min max min max Buttyán Our work increase in R decrease in D

1000 10000 40 120 221 1000 0.0126 10.6290

10000 100000 50 150 101 1000 0.0112 20.0099

100000 1000000 60 180 46 1000 0.0160 27.1087

Table 1. Increase of performance given 1000 random instances

Remarkably, a huge number of instances turn out to be unsolvable within
Buttyán’s optimization problem. Analysis learns that this is due to the large
prime factors of these values of N which raise the delay to an unacceptable level.
Indeed, the minimally achievable delay in Buttyán’s setting equals the sum of
all prime factors of N . As argued in Theorem 1, our minimally achievable delay
is roughly 3 log3 N (when all branching factors are three, see Theorem 2) which
explains that all instances are solvable within Problem 1.

To obtain better insight in our actual improvements, the performance of the
101 solvable instances with 104 ≤ N ≤ 105 and 50 ≤ Dmax ≤ 150 is analyzed
in more detail by two histograms showing the distribution of the increase in R
(Figure 3(a)) and the decrease in D (Figure 3(b)) respectively over 50 equally
sized bins. Figure 3(a) shows e.g. that we were able to increase the resistance of
compromise of 2 instances by a value between 0.0392 and 0.04.

The achievable increment in R may seem modest but is comparable with
Buttyán’s improvement with respect to the Classic tree. The advantage will be
more significant for larger values of c as shown in Figure 4(b). The attainable
slump in authentication delay by our new trees can be considered substantial. So
besides from the fact that many instances are unsolvable in Buttyán’s setting,
our trees outperform Buttyán’s trees on both higher R and lower Dmax.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

1

2

3

4

5

6

7

8

(a) Resistance to compromise

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

(b) Delay

Fig. 3. Histograms of improved performance over 101 random instances

3.3 Multiple compromised tags

Subsection 3.2 has already shown that our proposal yields lexicographically
larger B’s than Buttyán’s approach, and consequently better anonymity mea-
sures when c = 1. The computation of resistance to compromise Rc(B) becomes
more difficult for c > 1. Buttyán noted that computing S̄c(B) is hard, and there-
fore suggested an alternative measure S̄0 corresponding with an even distribution
of c compromised tags across T which he used to approximate S̄c(B).

Proposition 1. Although not stated explicitly in [4], S̄0 actually represents the
worst-case choice of c compromised tags across T resulting in the minimal value
of S̄.

Proof. Assume that we are allowed to choose tags to be compromised sequen-
tially, with the aim to minimize the average anonymity set size. The first com-
promised tag leads to a unique configuration (as described further on). Each

subsequent compromised tag leads to a new configuration, with more anonymity
sets (of varying, decreasing size). To minimize the average set size in the re-
sulting configuration, the next tag to be compromised should be chosen from
(one of) the largest anonymity set(s) in the current configuration. When sorting
anonymity sets in ascending order, we observe that this is equivalent to choosing
tags (as) evenly (as possible given the tree structure) across T . By induction,
our claim holds for any c. ⊓⊔

Buttyán[4], and Beye and Veugen [3] used simulations to approximate S̄c(B),
but we present an efficient algorithm for recursively computing the exact resis-
tance and compare our approach to Classic and Buttyán trees by means of
numerical computations.

Let Uc(B) =
∑N

i=1 |P (ti)| be the anonymity set size added over all tags,
after c particular tags from the tree with branching factor vector B have been
compromised. We would like to compute

S̄c(B) =
Ūc(B)
∏

(B)

where Uc(B) is averaged over all possible choices of c out of
∏

(B) tags. Note
that resistance Rc(B) to c-member compromise equals S̄c(B)/

∏

(B).
When one tag of the N =

∏

(B) tags of the tree with branching factor vector
B = (b1, b2, . . . bd) is compromised, the tree falls into d + 1 anonymity sets (see
[4] and Figure 1). The first anonymity set S0 consists of the compromised tag,
the other d sets Sj , 1 ≤ j ≤ d, correspond to the subtrees with branching factor
vector (bj−1, bj+1, . . . , bd) and therefore have size |Sj | = (bj−1)bj+1 . . . bd. This
leads to the following recursive relation for computing Ūc(B).

Ūc(b1, b2, . . . bd) =
∏d

i=1 b
2
i if c = 0

1 + Ūc−1(bd − 1) if c > 0 and d = 1

1 +
∑c−1

i=0

∑d

j=1 f
j
i · Ūi(bj − 1, bj+1, . . . , bd) if c > 0 and d > 1

where the frequencies f j
i are readily computed for 0 ≤ i < c, 1 ≤ j ≤ d by

binomial coefficients:

f j
i =

(

|Sj |
i

)(

N−1−|Sj |
c−1−i

)

(

N−1
c−1

)

and which represent the relative number of ways to choose i tags from anonymity
set Sj and the remaining c−1− i tags from the other anonymity sets. Note that

f j
i = 0 whenever i > |Sj | or c− 1− i > N − 1− |Sj |.

We wrote a recursive MATLAB function ASf to recursively compute
[Ū0(B), . . . , Ūc(B)] = ASf (B, c) which is available at our site [16].

While similar figures arise for larger values of N we compute, as in [4], S̄c(B)
for the configuration with N = 303 = 27000 and Dmax = 3 · 30 = 90 to make a
fair comparison. The optimal tree computed by Buttyán is (72, 5, 5, 5, 3), slightly

improved by our Algorithm 2 to (73, 5, 3, 3, 3, 3). Figure 4(a) compares their
S̄c(B) with the classic tree B = (30, 30, 30) that has constant branching factors.

Buttyánś optimal tree for the second configuration (N,Dmax) = (453, 3 ·
45) = (91125, 135) is (81, 25, 15, 3), which is further increased by Algorithm 2 to
(116, 5, 3, 3, 3, 3, 2). In Figure 4(b) their S̄c(B) is compared with the classic tree
B = (45, 45, 45). We will discuss how these results relate to our hypotheses and
claims.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of compromised tags

A
ve

ra
ge

 a
no

ny
m

ity
 s

et
 s

iz
e

Our work
Buttyan
Classic

(a) N = 303 and Dmax = 90

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Number of compromised tags

A
ve

ra
ge

 a
no

ny
m

ity
 s

et
 s

iz
e

Our work
Buttyan
Classic

(b) N = 453 and Dmax = 135

Fig. 4. Comparison of S̄c(B) for two configurations

In both figures, our tree outperforms, as expected, both the Buttyán and
the classic tree in terms of S̄c(B). We observe that the performance of our
tree in no case drops below that of the Buttyán tree. The difference between
both configurations is explained by the prime factorizations of 30 = 5 · 3 · 2
and 45 = 5 · 3 · 3 which gives a little more playground to Buttyán in the first
configuration. In the second configuration, the gain of Buttyán’s tree with respect
to the Classic tree is comparable to our gain with respect to Buttyán’s tree. Given
that our tree has a 0.0073 higher resistance to single member compromise than
Buttyán’s tree, the improvement in R of the second configuration is even less
than expected by a random instance as shown in Table 1. The reason is that
both N ’s have more small prime factors than expected on average.

In each Figure we observe a turning point where the classic tree starts to
outperform the other two trees. This occurs at c ≈ 2b1. At this point, the de-
crease of S̄ slows causing the graph to seemingly settle into a steady minimum.
We can explain this by the fact that at around this point, the last very large
anonymity set is expected to have been broken down, because each top-level
branch can be expected to contain at least one compromised tag. Because subse-
quent compromised tags then fall into smaller sets, the adversary will learn little
new information; he has obtained the most important keys in the tree already. In
such a worrying scenario, what little amount of anonymity tags have left depends
upon the keys in lower branches. Classic trees retain slightly more anonymity,

because they have larger branching factors at the bottom levels. However, given
the (by then) minimal values of S̄ overall, the absolute advantage is not large.

4 Conclusions and Future Work

Our proposed Algorithm 2 yields better results than Buttyán’s original approach,
when it comes to finding the lexicographically largest B. We have provided proof
that the solution is optimal in terms of optimization problem 1. The problem
that many instances are unsolvable within Buttyán’s optimization setting has
been solved by our modification. The solvable instances can be further optimized
by our algorithm to either increase the resistance to compromise as expressed
by Rc(B), or to lower the authentication delay. Algorithm 2 can result in trees
with N ′ ≥ N , which can be advantageous in growing systems or when replac-
ing compromised tags, and whose resistance to compromise has been proven
commensurably.

For future research it might be interesting to precisely investigate to what
extend Rc(B) increases by lexicographically larger B for c > 1. Our recursive
formula for computing Rc(B) opens up this possibility. This could even be ex-
tended to adaptive adversary scenarios as described in [3].

References

1. Gildas Avoine, Levente Buttyán, Tamas Holczer, and Istvan Vajda. Group-based
private authentication. In IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pages 1–6, 2007.

2. Gildas Avoine and Philippe Oechslin. A Scalable and Provably Secure Hash Based
RFID Protocol. In International Workshop on Pervasive Computing and Com-
munication Security – PerSec 2005, pages 110–114, Kauai Island, Hawaii, USA,
March 2005. IEEE, IEEE Computer Society.

3. Michael Beye and Thijs Veugen. Privacy for key-trees with adaptive adversaries.
In 7th International ICST Conference on Security and Privacy in Communication
Networks (SecureComm), London, 2011.

4. Levente Buttyán, Tamás Holczer, and István Vajda. Optimal Key-Trees for Tree-
Based Private Authentication. In In Proceedings of the International Workshop on
Privacy Enhancing Technologies (PET), June 2006. Springer.

5. Ivan Damg̊ard and Michael Østergaard Pedersen. Rfid security: Tradeoffs between
security and efficiency. In Topics in Cryptology CT-RSA 2008, volume 4964/2008
of Lecture Notes in Computer Science, pages 318–332, 2008.

6. Claudia Dı́az. Anonymity Metrics Revisited. In Shlomi Dolev, Rafail Ostrovsky,
and Andreas Pfitzmann, editors, Anonymous Communication and its Applications,
number 05411 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

7. M. Hellman. A cryptanalytic time-memory trade-off. In Information Theory, IEEE
Transactions on, volume 26, pages 401–406, July 1980.

8. Ari Juels and Stephen A. Weis. Defining Strong Privacy for RFID. In PERCOMW
’07: Proceedings of the Fifth IEEE International Conference on Pervasive Com-
puting and Communications Workshops, pages 342–347, Washington, DC, USA,
2007. IEEE Computer Society.

9. David Molnar and David Wagner. Privacy and security in library RFID: issues,
practices, and architectures. In CCS ’04: Proceedings of the 11th ACM conference
on Computer and communications security, pages 210–219, New York, NY, USA,
2004. ACM.

10. Yasunobu Nohara, Toru Nakamura, Kensuke Baba, Sozo Inoue, and Hiroto Ya-
suura. Unlinkable identification for large-scale rfid systems. Information and Media
Technologies, 1(2):1182–1190, 2006.

11. Karsten Nohl and David Evans. Quantifying information leakage in tree-based
hash protocols (short paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors,
ICICS, volume 4307 of LNCS, pages 228–237. Springer, 2006.

12. Karsten Nohl and David Evans. Hiding in groups: On the expressiveness of privacy
distributions. In 23rd International Information Security Conference (SEC 2008),
Milan, sep 2008.

13. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic Ap-
proach to “Privacy-Friendly” Tags. In RFID Privacy Workshop, MIT, MA, USA,
November 2003.

14. Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservability, and
pseudonymity - a proposal for terminology. In Hannes Federrath, editor, Design-
ing Privacy Enhancing Technologies, volume 2009 of LNCS, pages 1–9. Springer-
Verlag, 2001.

15. Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity
when disclosing information. In Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems (PODS), page
188, Seattle, WA, USA, 1998.

16. Thijs Veugen and Michael Beye. Matlab code for ”improved anonimity of hash-
trees”. In RFIDsec. http://isplab.tudelft.nl/content/improved-anonimity-hash-
trees, 2012.

17. Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest, and Daniel W. Engels.
Security and Privacy Aspects of Low-Cost Radio Frequency Identification Systems.
In Dieter Hutter, Günter Müller, Werner Stephan, and Markus Ullmann, editors,
SPC, volume 2802 of LNCS, pages 201–212. Springer, 2003.

18. Sang-Soo Yeo and Sung Kwon Kim. Scalable and Flexible Privacy Protection
Scheme for RFID Systems. In Refik Molva, Gene Tsudik, and Dirk Westhoff, edi-
tors, European Workshop on Security and Privacy in Ad hoc and Sensor Networks
– ESAS’05, volume 3813 of LNCS, pages 153–163, Visegrad, Hungary, July 2005.
Springer-Verlag.

A Proof of Theorem 1

In this appendix we proof Theorem 1. By B\{b1, · · · , bj}, we denote the vector
(bj+1, . . . , bd), where 1 ≤ j ≤ d.

The first observation is that for an optimal B,
∑

(B) = Dmax, otherwise
Dmax −

∑

(B) could be added to any element of B without violating the con-
straints while increasing R(B). So we assume

∑

(B) = Dmax in the proof, which
uses four Lemmas, similar to the Lemmas of Buttyán’s work [4]. It’s also clear
that an optimal B will have branching factors at least 2. The first Lemma,
Lemma 1, shows that a branching vector can always be improved by ordering
its elements in decreasing order. Lemma 3, using some bounds from Lemma 2,

shows that given two branching factor vectors, the one with the larger first ele-
ment is always at least as good as the other. Lemma 4 generalizes Lemma 3 by
stating that given two branching factor vectors the first j elements of which are
equal, the vector with the larger (j + 1)-st element is always at least as good as
the other.

These Lemma’s together show that a lexicographically larger branching factor
vector will always be at least as good as the lexicographically smaller branching
factor vector (in case

∑

(B) = Dmax), so indeed the solution with maximal R(B)
to Problem 1 is achieved by the lexicographically largest vector that satisfies the
constraints.

Lemma 1. Let B be a branching factor vector, and let B∗ be the vector that
consists of the sorted permutation of the elements of B in decreasing order. If B
satisfies the constraints of Problem 1, then B∗ satisfies them too, and R(B∗) ≥
R(B).

Proof. Since
∏

(B) is not altered by the permutation, we can refer to Buttyán’s
proof [4] of Lemma 1. ⊓⊔

Lemma 2. Let B = (b1, . . . , bd) be a sorted branching vector (i.e. b1 ≥ b2 ≥
. . . ≥ bd). We can give the following lower and upper bounds on R(B):

(

1−
1

b1

)2

≤ R(B) ≤ R(b1) =
1 + (b1 − 1)2

b21

Proof. The lower bound is identical to Buttyán, hence the proof [4] is as well.
The upper bound is an improvement w.r.t. Buttyán, and is proven as follows.
Let M =

∏

(B), then
∏

(B\bd) = M/bd. We derive for d > 1:

R(B) =
1

M2



1 + (bd − 1)2 +
d−1
∑

i=1

(bi − 1)2
d
∏

j=i+1

b2j





=
1

M2



1 + (bd − 1)2 +
d−2
∑

i=1

(bi − 1)2
d
∏

j=i+1

b2j + (bd−1 − 1)2b2d





= R(B\bd)−
b2d
M2

(

1 + (bd−1 − 1)2
)

+
1

M2

(

1 + (bd − 1)2 + (bd−1 − 1)2b2d
)

= R(B\bd) +
2− 2bd
M2

< R(B\bd)

and by recursively applying this inequality also R(B) ≤ R(b1). ⊓⊔

Lemma 3. Let B = (b1, . . . , bd) and B′ = (b′1, . . . , b
′
d′) be two sorted branching

factor vectors (i.e. b1 ≥ b2 ≥ . . . ≥ bd, b′1 ≥ b′2 ≥ . . . ≥ b′d′) that satisfy the
constraints of Problem 1. Then, b1 > b′1 implies R(B) ≥ R(B′).

Proof. We first prove the statement for b′1 ≥ 3. From Lemma 2 we know that

R(B′) ≤
1 + (b′1 − 1)2

b′1
2

and

R(B) ≥

(

1−
1

b1

)2

>

(

1−
1

b′1 + 1

)2

which follows from the fact that b1 > b′1. A straightforward calculation shows

that (1− 1
b′
1
+1)

2 ≥
1+(b′

1
−1)2

b′
1

2 whenever b′1 ≥ 3, and thus R(B) ≥ R(B′).

So the remaining case is b′1 = 2. Since B′ is ordered, each element of B′ will
equal 2. If d′ = 1 then by our previous assumption Dmax =

∑

(B′) = 2, but
this contradicts Dmax =

∑

(B) ≥ 3, so we know d′ ≥ 2. The resistance R(B′)
is readily computed as R(B′) = 1

3 (2 · 4
−d + 1), which will be at most 3

8 (when
d′ = 2). Since R(B) ≥ (1− 1

b1
)2 > (1− 1

3)
2 = 4

9 , it follows that also in this case
R(B) ≥ R(B′). ⊓⊔

Lemma 4. Let B = (b1, . . . , bd) and B′ = (b′1, . . . , b
′
d′) be two sorted branching

factor vectors (i.e. b1 ≥ b2 ≥ . . . ≥ bd, b′1 ≥ b′2 ≥ . . . ≥ b′d′) that satisfy the
constraints of Problem 1. Let j, 1 ≤ j < min(d, d′), be such that bi = b′i for all
i, 1 ≤ i ≤ j, and bj+1 > b′j+1, then R(B) ≥ R(B′).

Proof. It is easy to show that R(B) =
(

b1−1
b1

)2

+ 1
b2
1

·R(B\b1). Therefore, since

b1 = b′1, R(B) ≥ R(B′) whenever R(B\b1) ≥ R(B′\b′1). By recursively ap-
plying this rule, and using Lemma 3, which shows that R(B\{b1, . . . , bj}) ≥
R(B′\{b′1, . . . , b

′
j}), the proof is complete. The proof of Lemma 4 is similar to

the proof of Buttyán’s Lemma 4 [4]. ⊓⊔

B Proof of Theorem 2

This appendix contains the proof of Theorem 2.

Proof. Let B be a branching factor vector with
∑

(B) = D. The proof is given
by considering different cases.

Suppose B has a branching factor bi equal to 1. Since
∑

(B) ≥ 2, there must
be another branching factor bj . Then, we could add bi to bj to increase

∏

(B)
without modifying

∑

(B), meaning
∏

(B) 6=
∏max

D . Therefore, an optimal B
(with

∏max

D) contains no branching factor equal to 1.
Suppose B has a branching factor bi ≥ 5. Since (bi − 3) · 3 > bi, we can

increase
∏

(B) without modifying
∑

(B), by making an extra factor 3, meaning
∏

(B) 6=
∏max

D . Therefore, an optimal B contains only branching factors 2, 3 or
4.

Suppose B has two branching factors bi = bj = 4 (i 6= j). Since 3 · 3 · 2 =
18 > 16 = 4 · 4, we can increase

∏

(B) without modifying
∑

(B) by changing

bi and bj to 3 and adding an extra 2, meaning
∏

(B) 6=
∏max

D . Therefore, the
optimal B contains at most one branching factor 4.

Suppose B has two branching factors bi = bj = 2 (i 6= j). Since 2 · 2 = 4,
we could just as well substitute these branching factors by a single 4, making
B lexicographically larger. Therefore,

∏max

D can be attained by at most one
branching factor 2.

Suppose B has two branching factors bi = 2 and bj = 4. Since 2 · 4 = 8 <
9 = 3 · 3, we can increase

∏

(B) without modifying
∑

B by substituting both
factors by 3, meaning

∏

(B) 6=
∏max

D . Therefore, an optimal B will not contain
both branching factors 2 and 4.

By considering these five cases, it follows that
∏max

D will be attained in one
of the following cases:

1. B contains only 3’s;
2. B contains one 4 and an arbitrary number of 3’s;
3. B contains one 2 and an arbitrary number of 3’s.

Consequently when
∑

(B) = D, and we order the elements descendingly,
∏max

D

will be attained by:

1. B = (3∗), when D mod 3 = 0;
2. B = (4, 3∗), when D mod 3 = 1;
3. B = (3∗, 2), when D mod 3 = 2. ⊓⊔

C Proof of Theorem 3

In this appendix Theorem 3 is formally proved.

Proof. Intuitively, the average size of an anonymity set is decreased by a factor
N
N ′

when N ′ − N tags are removed from the full tree. Therefore, the expected
resistance should not decrease. We first proof this for N ′ = N + 1 and use the
result to generalize the statement to arbitrary N .

Let P1, . . . Pℓ be the anonymity sets of the full tree after c tags have been
compromised, so

∑ℓ

j=1 |Pj | = N ′. The average anonymity set size over all tags

S̄N ′ will equal

S̄N ′ =

ℓ
∑

j=1

|Pj |
2

N ′

Note that S̄N ′ is an instantiation of S̄c(B) for a particular choice of c compro-
mised tags. When one tag is uniformly chosen to be removed, the probability

that this tag is chosen from the jth anonymity set will equal
|Pj |
N ′

. So the average
anonymity set size over all remaining N tags S̄N will equal

S̄N =

ℓ
∑

j=1

|Pj |

N ′
·
1

N







(|Pj | − 1)2 +

ℓ
∑

i=1,i6=j

|Pi|
2







We derive

ℓ
∑

j=1

|Pj | ·







(|Pj | − 1)2 +

ℓ
∑

i=1,i6=j

|Pi|
2







=

ℓ
∑

j=1

|Pj | ·

{

1− 2|Pj |+

ℓ
∑

i=1

|Pi|
2

}

= N ′ − 2

ℓ
∑

j=1

|Pj |
2 +N ′

d
∑

i=1

|Pi|
2

and thus N ·N ′ · S̄N = N ′ + (N ′ − 2)N ′S̄N ′ or

N · S̄N = 1 + (N ′ − 2)S̄N ′

Finally, choose ǫ, 0 < ǫ < N ′, such that S̄N ′ = N ′−ǫ, then N ′+N ′(N ′−2)S̄N ′ =

S̄N ′+ǫ+N ′(N ′−2)S̄N ′ = ǫ+(N ′−1)2S̄N ′ , and thus RN = S̄N

N
= 1+(N ′−2)S̄N′

N2 =
ǫ+(N ′−1)2S̄N′

N ′·N2 = RN ′ + ǫ
N ′·N2 . It follows that RN and RN ′ are almost equal:

RN ′ < RN < RN ′ +
1

N2

Since this holds for every choice of c compromised tags, it also holds for the
average case. The generalized upperbound for 1 ≤ N < N ′ easily follows. ⊓⊔

