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Abstract In this paper, nonlinear resonances in a cou-
pled shaker-beam-top mass system are investigated
both numerically and experimentally. The imperfect,
vertical beam carries the top mass and is axially ex-
cited by the shaker at its base. The weight of the
top mass is below the beam’s static buckling load.
A semi-analytical model is derived for the coupled
system. In this model, Taylor-series approximations
are used for the inextensibility constraint and the cur-
vature of the beam. The steady-state behavior of the
model is studied using numerical tools. In the model
with a single beam mode, parametric and direct res-
onances are found, which affect the dynamic stabil-
ity of the structure. The model with two beam modes

This research is supported by the Dutch Technology
Foundation STW, Applied Science Division of NWO and the
Technology Programme of the Ministry of Economic Affairs
(STW project EWO.5792).

R.H.B. Fey (�) · H. Nijmeijer
Department of Mechanical Engineering, Eindhoven
University of Technology, PO Box 513,
5600 MB Eindhoven, The Netherlands
e-mail: R.H.B.Fey@tue.nl

N.J. Mallon
TNO Built Environment and Geosciences, Centre for
Mechanical and Maritime Structures, PO Box 49,
2600 AA Delft, The Netherlands

C.S. Kraaij
IHC Lagersmit BV, PO Box 5, 2960 AA Kinderdijk,
The Netherlands

not only shows an additional second harmonic reso-
nance, but also reveals some extra small resonances
in the low-frequency range, some of which can be
identified as combination resonances. The experimen-
tal steady-state response is obtained by performing a
(stepped) frequency sweep-up and sweep-down with
respect to the harmonic input voltage of the amplifier-
shaker combination. A good correspondence between
the numerical and experimental steady-state responses
is obtained.

Keywords Nonlinear resonances · Dynamic
buckling · Beam with top mass · Parametric
excitation · Bifurcations · Nonlinear mode
interaction · Experiments

1 Introduction

The function of many structures in engineering prac-
tice is to carry a static load. To minimize costs, it is of-
ten desired to reduce the mass of the supporting struc-
ture as much as possible, while retaining a high stiff-
ness. Thin-walled structures are often applied for this
purpose (e.g. in aerospace and civil engineering), be-
cause of their favorable (high) stiffness to mass ratio.
It is well-known that thin-walled structures are liable
to buckling and static buckling analysis is often car-
ried out to assess their static stability. In many situa-
tions, additionally to the static load, a dynamic load is
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present, e.g. due to motions of the base of the struc-
ture. These situations require assessment of the dy-
namic stability of the structure. Especially excitation
frequencies, which bring the structure into resonance,
may induce dynamic buckling/instability (large mo-
tions and deformations) of the structure. This may lead
to damage to the structure or even to total collapse of
the structure.

In the literature, modeling and analysis for dynamic
stability assessment of structures received increasing
attention in the last decade. A well-known phenom-
enon, which may affect the dynamic stability of a
structure, is the occurrence of parametric resonance.
Good textbooks for studying the parametric resonance
phenomenon and which can be used for dynamic
stability assessment of structural elements such as
beams, plates, and (cylindrical) shells are among oth-
ers [1–3].

In this paper, nonlinear resonances in a coupled
shaker-beam-top mass system are investigated both
numerically and experimentally. The imperfect, ver-
tical, slender beam carries a top mass and is cou-
pled to and axially excited by the shaker at its base.
The top mass can only move in vertical direction.
The boundary conditions of the beam are clamped-
clamped. A schematic overview of the system is given
in Fig. 1. This can be seen as an archetype system for
studying the dynamic stability of a load carrying, thin-
walled structure. The weight of the top mass causes a
compressive prestress, but is not large enough to cause
static buckling. The harmonic base excitation, how-
ever, may induce dynamic buckling due to parametric
and/or direct resonance.

In literature, not many papers consider parametric
excitation of beams with a point mass attached to the
beam. In [4, 5], the top mass is completely free in
contrast to the situation in the current paper. In [6],
parametric excitation of a horizontal, simply supported
elastic beam with a point mass attached to one end is
studied. This point mass can only move in horizontal
direction. Initially, the geometry of the beam is per-
fectly straight and the beam is without static prestress.
Parametric resonance motions are obtained using the
method of multiple scales. Stability and bifurcations
are investigated by considering the relation between
response amplitude and excitation frequency and the-
oretical predictions are confirmed by experiments.

Fig. 1 Base-excited slender beam with top mass

In the current paper, a semi-analytical modeling ap-
proach is used resulting in a low-dimensional model.
Geometric imperfections of the beam and linear as
well as quadratic viscous damping are taken into ac-
count. The model also includes models of the ampli-
fier and shaker used in the experiments. Advanced
numerical tools are used for calculating branches of
periodic solutions and their local stability and for
bifurcation analysis. In combination with the low-
dimensional semi-analytical model, these tools per-
mit fast parameter studies. Single- and two-mode
discretizations for the beam are considered in ob-
taining steady-state responses. Numerically obtained
steady-state response results are validated by experi-
ments.

The situation, where the weight of the top mass ex-
ceeds the static buckling load of the beam, although
not discussed in the current paper, is certainly worth-
while mentioning from an application point of view.
Namely, in this buckled situation, the beam may serve
to dynamically isolate the top mass from the vibrating
base, see [7, 8].

The outline of this paper is as follows. In the next
section, the semi-analytical amplifier-shaker-structure
model will be derived and discussed. In Sect. 3, the
experimental set-up of the base-excited slender beam
with top mass will be introduced. The steady-state re-
sponse results, predicted by the semi-analytical ap-
proach and obtained experimentally, will be compared
in Sect. 4. Finally, in Sect. 5, conclusions and recom-
mendations will be presented.
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2 Semi-analytical model

At the experimental set-up used, see Sect. 3, base ex-
citation of the slender beam is realized by supplying
an amplified harmonic input voltage to an electrody-
namic shaker system. The resulting base acceleration
will not be purely harmonic, will not have a constant
amplitude but will be influenced by the dynamics of
the shaker system carrying the slender beam with top
mass. Response results for voltage excitation can thus
not directly be compared with results for a prescribed
harmonic base acceleration as considered in [9]. To
be able to compare the experimental results with the
semi-analytical results in a quantitative manner, the
equations of motion for the base-excited slender beam
with top mass will be coupled with a model of the
shaker. The derivation of this coupled model is the
topic of this section.

2.1 Modeling of the slender beam with top mass

Figure 1 shows the beam under consideration with
length L, width b, and thickness h. The beam is very
slender, i.e. h � L. Consequently, the displacements
of the beam will be dominated by changes in curvature
allowing to assume the beam to be inextensible. In ad-
dition, the slender beam is considered to be initially
not perfectly straight. In the initial stress free state, the
transversal shape of the slender beam is denoted by
v0(y). The axial displacement field relative to the ab-
solute axial base displacement Ub(t) is indicated by
u(t, y) and the transversal displacement field relative
to v0(y) by v(t, y).

The length of an infinitesimally small piece of the
beam in the initial state satisfies [10]

ds2 = dy2 + (v0,y dy)2. (1)

Due to the inextensibility assumption, the length of ds

remains constant. In the deformed state this length sat-
isfies [10]

ds2 = (dy + u,y dy)2 + ([v0,y +v,y ]dy
)2

. (2)

By combining (1) and (2), the following inextensibility
constraint results:

u,y =
√

1 − 2v0,y v,y −v,2
y − 1. (3)

In the adopted Cartesian coordinate system [x, y],
the centerline of the deformed imperfect beam is de-
scribed by the curve [X(t, y), Y (t, y)], where

X(t, y) = v0(y) + v(t, y) and Y(t, y) = y + Ub(t) +
u(t, y). The exact curvature of this curve follows from
[11]

κ = X(t, y),y Y (t, y),yy −X(t, y),yy Y (t, y),y

(X(t, y),2
y +Y(t, y),2

y )
3
2

, (4)

and can be evaluated in terms of (derivatives of) v0(y)

and v(t, y) solely, after substitution of (3). It is as-
sumed that, depending on the maximum deflection,
the constraint (3) and the curvature (4) can be accu-
rately approximated by their Taylor-series expansions
in v,y and v0,y up to nth order with n sufficiently high.
For example, the third-order expansions of (3) and (4)
yield

u,y = −v0,y v,y −1

2
v,2

y , (5)

κ = κ0 + v,yy +1

2
(v0,yy +v,yy )v,2

y

+ v,yy v0,y v,y −1

2
v,yy v0,

2
y , (6)

where κ0 = v0,yy − 3
2v0,yy v0,

2
y is (in this case) the

third-order approximation of the initial curvature.
Higher-order approximations include higher-order
terms in v,y and v0,y .

The kinematic boundary conditions for the transver-
sal displacement field of the clamped-clamped beam,
see Fig. 1, are

v(t,0) = v(t,L) = 0 and

v(t,0), y = v(t,L), y = 0.
(7)

Each of the following modes a priori obeys these con-
ditions:

vi(y) = cos
[
(i − 1)πy/L

] − cos
[
(i + 1)πy/L

]
,

i = 1,2,3, . . . (8)

Using these modes, the transversal displacement field
is discretized as

v(t, y) =
N∑

i=1

Qi(t)vi(y), (9)

where Qi(t) [m] are N generalized degrees of free-
dom (DOFs). In a similar fashion, the initial shape
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of the beam, i.e. the geometric imperfection, is dis-
cretized as

v0(y) =
Ne∑

i=1

1

2
eihvi(y), (10)

where ei are dimensionless imperfection parameters
and Ne ≤ N . After discretization of v0(y) and v(t, y),
the corresponding axial displacement field u(t, y) can
be computed by integrating an nth-order expansion of
(3). Subsequently, the absolute axial displacement of
the top mass, see Fig. 1, follows from

Ut(t) = Ub(t) + u(t,L). (11)

Note that (in general) Ut depends in a nonlinear fash-
ion on the DOFs Qi .

The kinetic energy Tbeam and the potential energy
Vbeam of the beam with top mass are determined by

Tbeam = 1

2
ρA

∫ L

0
v̇2 dy + 1

2
mtU̇

2
t , (12)

Vbeam = 1

2
EI

∫ L

0
(κ − κ0)

2 dy + mtgUt , (13)

where A = bh is the cross-sectional area, I = bh3/12
is the second moment of area, ρ is the mass density,
E is the Young modulus of the beam, g is the acceler-
ation due to gravity, and mt is the top mass. Note that
the axial and rotatory inertia of the beam are neglected,
i.e. the case ρAl � mt and h/L � 1 (as stated before)
is considered. Damping of the beam is modeled by in-
cluding a linear and a quadratic viscous damping force
for each DOF Qi : Fd = −ciQ̇i −cq,i |Q̇i |Q̇i , where ci

is the linear viscous damping constant and cq,i is the
quadratic viscous damping constant for DOF Qi . With
respect to the damping of slender beams, addition of
quadratic damping improves the agreement between
theoretical and experimental results in many studies
[5, 12, 13]. These generalized damping forces result
in the following Rayleigh dissipation function

Rbeam =
N∑

i=1

(
1

2
ciQ̇

2
i + 1

3
cq,isign(Q̇i)Q̇

3
i

)
. (14)

Energy and work expressions (12)–(14) will be used to
derive the coupled shaker-structure model in Sect. 2.3.

Fig. 2 Model of the electrodynamic shaker: (a) electrical part
including amplifier, (b) mechanical part

2.2 Shaker model

The linear model of the electrodynamic shaker is de-
picted in Fig. 2, where the electrical part and the
mechanical part are presented separately. Figure 2(a)
shows the electrical part of the model including the
power amplifier Gamp. Here, I (t) represents the cur-
rent, R the coil resistance, L the coil inductance, κc the
current-to-force constant, and Eback(t) = −κcU̇b(t)

the back voltage. The power amplifier operates in volt-
age mode. More specifically, in the frequency domain

E(jω) = Gamp(jω)E0(jω), (15)

where Gamp(jω) (with j2 = −1) is a frequency de-
pendent amplifier gain, E the harmonic output voltage
and E0 the harmonic input voltage.

Figure 2(b) shows the mechanical part of the
model. The mass of the shaker armature mb is a part
of the total moving mass of the lower linear sledge
mo, see Fig. 1. The latter also includes the mass of
the bottom clamping of the slender beam, see Sect. 3.
The elastically suspended shaker armature mass is ex-
cited by the electromagnetic force Femf(t) = κcI (t)

and is modeled as a single DOF structure with mass
mb , stiffness kb , viscous damping cb , and DOF Ub . It
should be noted that for the mechanical modeling of
the shaker, the shaker base is assumed to be rigidly
connected to the fixed world. If this assumption is not
followed, the resulting mechanical part of the shaker
model would have more DOFs and unknown parame-
ters to be identified, see for example [14].

The dynamics of the shaker are described by the
two coupled ODEs [15]

Lİ + RI + κcU̇b = E(t),

mbÜb + cbU̇b + kbUb = κcI + Fstr,
(16)

where the relation between E and E0 in the frequency
domain is given by (15). The force exerted to the
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Table 1 Parameters of
shaker model cb 278 [kg/s] L 2.6 × 10−3 [H] Pamp –88.3 [–]

mb 3.0 [kg] κc 11.5 [N/A] bamp 1.4 · 10−3 [s−1]

kb 5.28 × 104 [N/m] R 0.9 [�]

shaker mass by the structure it carries (the beam with
top mass) is denoted by Fstr, which in general de-
pends on Üb , generalized DOFs Qi , and their first
and second time derivatives. The parameters of the
shaker model are identified using frequency domain
techniques, see [16] for more details. During the iden-
tification procedure of the unknown parameters of the
shaker-amplifier system, the bare shaker was used, i.e.
Fstr = 0 [N]. A frequency dependency of the amplifier
gain defined by

Gamp(jω) = Pamp(jωbamp + 1), (17)

is adopted to obtain a good fit of the shaker-amplifier
dynamics for the frequency range of interest (0–300
[Hz]). Note that, using (17), the time domain version
of (15) becomes

E(t) = Pamp
(
bampĖ0(t) + E0(t)

)
. (18)

This equation can simply be substituted in (16). Note
that E0 is a known harmonic function of time. The
identified parameter values for the shaker model are
listed in Table 1.

Equation (16) can be written in first-order form
based on the three states I,Ub, U̇b . In this way, a
3 × 3 system matrix, describing the dynamic proper-
ties of the bare shaker, is obtained. Using the parame-
ter values from Table 1, the following three eigenval-
ues of the system matrix are found: λ1 = −278 [rad/s]
and λ2 = λ̄3 = −80.4 + 124j [rad/s]. Eigenvalue λ1

is dominated by the properties of the electric circuit
of the shaker. The imaginary parts of eigenvalues λ2

and λ3, corresponding to a damped eigenfrequency of
124/(2π) ≈ 19.7 [Hz], are dominated by the stiffness
and mass of the shaker. The real parts of eigenvalues
λ2 and λ3 are influenced by the mechanical damping
as well as the properties of the electric circuit.

2.3 The coupled shaker-structure model

The coupled shaker-structure model will be derived by
following a charge-displacement formulation of La-
grange’s equations [17]. In this formulation, energy

and work expressions of the coupled structure are for-
mulated in terms of mechanical DOFs and (in this
case) a single additional charge coordinate q . The first
time derivative of q constitutes the current through the
electrical part of the shaker model, i.e. q̇ = I .

The total set of N + 2 DOFs is collected in the col-
umn

Q∗ = [Q1, . . . ,QN,Ub, q]T , (19)

where DOFs Qi are the N generalized DOFs of the
beam, see (9).

In the model of the slender beam, the axial mo-
tions are defined with respect to an arbitrary base mo-
tion Ub . For the coupled shaker/structure system, the
energy/work expressions and the Rayleigh dissipation
function now become

M = 1

2
Lq̇2 + κcq̇Ub,

T = Tbeam + 1

2
moU̇

2
b ,

V = Vbeam + 1

2
kbUb

2, (20)

R = Rbeam + 1

2
cbU̇

2
b + 1

2
RI 2,

δWnc = E(t)δq,

where M is the magnetic energy of the moving coil
of the shaker and δWnc is the virtual work done by
the output voltage of the amplifier E(t) [17]. Defining
the Lagrangian L of the complete system by L = T +
M − V , the final coupled set of equations of motion
can be determined by

d

dt
L,Q̇∗ −L,Q∗ +R,Q̇∗ = bE(t), (21)

where b = [0, . . . ,0,1]T is an N + 2 dimensional col-
umn vector. Among others, this will lead to an explicit
expression for Fstr, the force exerted to the shaker
mass by the slender beam with top mass, which was
introduced in (16).

To illustrate some of the key features of the model,
the equation of motion of the slender beam structure
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is given for single-mode expansions of v(t, y) and
v0(y), i.e. N = Ne = 1 in (9)–(10), and using third-
order Taylor-series approximations according to (5)–
(6). This results in two ODEs for the shaker, see (16),
which are coupled to the following single equation of
motion for the beam with top mass

M(Q1)Q̈1 + G(Q1, Q̇1) + C(Q̇1)

+ p1
[
1 − r0(1 + Üb/g) − p2e

2
1

]
Q1 + K(Q1)

= p3e1r0(1 + Üb/g), (22)

where

r0 = mtg

Pc

(23)

is the ratio between the static load due the weight of
the top mass and the static Euler buckling load of the
(perfect) beam (Pc = 4π2EI/L2). Furthermore, Üb is
the base acceleration, which follows from (16).

In (22), the following abbreviations are used

p1 = 8π4EI

L3
, p2 = π2h2

4L2
, p3 = h

2
p1,

M(Q1) =
[

3

2
ρAL + mtπ

4

L2

(
h2e2

1 + 4he1Q1 + 4Q2
1

)]
,

C(Q̇1) = c1Q̇1 + cq,1|Q̇1|Q̇1, (24)

G(Q1, Q̇1) = 2mtπ
4

L2
Q̇2

1 (he1 + 2Q1) ,

K(Q1) = 2π6EI

L5

(
8Q3

1 + 9he1Q
2
1

)
.

As can be noted, due to the nonlinear equations (5)–
(6), (22) contains inertia nonlinearities in M(Q1)Q̈1

if mt > 0 and stiffness nonlinearities in K(Q1). For
e1 = 0, the inertia nonlinearities are of the softening
type (mass increases for increasing |Q1|), whereas the
stiffness nonlinearities are of the hardening type (stiff-
ness increases for increasing |Q1|). C contains linear
and quadratic dissipative forces. G contains centrifu-
gal and Coriolis forces. Furthermore, Q1 is excited
by Üb in a parametric manner and for e1 �= 0 also
in a direct manner. In the static situation, for e1 = 0,
the linear stiffness term becomes negative for r0 > 1,
indicating that the trivial static solution Q1 = 0 be-
comes unstable, if the static Euler buckling load is ex-
ceeded; note that this does not depend on the order of
the Taylor-series expansion.

It should be noted that, depending on the mode con-
sidered and/or the relative weight of the added discrete
mass, inertia nonlinearities can change resonances of
the beam from hardening type to softening type, see
[5, 12, 18].

2.4 Discretizations and parameter identification

In Sect. 4, experimental steady-state response results
will be compared to results based on semi-analytical
models. For this, two semi-analytical models will be
used: a model based on a single-mode discretization
of v and v0 (N = Ne = 1, see (9) and (10)) and a
model based on a two-mode discretization of v and
v0 (N = Ne = 2). Later on in this paper, these two
models will be respectively referred to as the 1-MODE
model (this beam model coupled to the shaker model
actually has five states: Q1, Q̇1,Ub, U̇b, I ) and the 2-
MODE model (this model has two additional states:
Q2, Q̇2). All numerical responses presented in this pa-
per are based on models using third-order Taylor series
expansions of the inextensibility constraint (3) and the
curvature (4), i.e. (5)–(6). By considering higher-order
expansions of the exact kinematics and a multi-mode
discretization, it is shown in [9] that the third-order
single-mode semi-analytical model can (to a large ex-
tent) accurately describe the first harmonic resonance
and the first (large amplitude) 1/2 subharmonic reso-
nance of the base-excited (initially unbuckled) slen-
der beam. It is noted that for accurate steady-state re-
sponse prediction of an initially buckled beam, in gen-
eral higher-order approximations of the exact kinemat-
ics are required [19].

The semi-analytical models have a number of pa-
rameters, i.e. imperfection and damping parameters,
which must be experimentally identified. In addition,
to cope with small model errors, the Young modulus
E is considered as a parameter to be identified. Con-
sequently, the 1-MODE model has four unknown pa-
rameters (i.e. e1, c1, cq,1, and E) and the 2-MODE
model has seven unknown parameters (i.e. e1, c1,
cq,1, e2, c2, cq,2, and E). The numerical values for
these parameters are identified by fitting periodic so-
lutions, calculated using the semi-analytical models,
to measured periodic solutions using a weighted least-
squares method. In this method, harmonic steady-state
responses are used for 11 different excitation frequen-
cies (i.e. for 35, 37, 55, 60, 67, 74, 77, 91, 103, 121,
and 136 [Hz]) on stable parts of the harmonic branch,
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see Sect. 4. In general, responses around resonances
are useful to identify damping parameters, whereas
low-amplitude solutions are useful to identify geo-
metric imperfections. The identification results are ro-
bust; using different periodic solutions results in mi-
nor changes of the identified parameter values. More
details on the applied identification procedure can be
found in [20] and [21].

3 Experimental set-up

Both a picture and a schematic overview of the exper-
imental set-up are depicted in Fig. 3. The base exci-
tation of the slender, steel beam is realized by using
an electrodynamic shaker system. The slender beam
is clamped between two linear sledges with very low
friction in axial direction. The linear sledge at the top
side of the beam is based on air bearings. This sledge

with clamping block acts as the rigid top mass mt .
The top mass can be increased by mounting additional
masses on top of the upper linear sledge. At the bottom
side of the beam, a linear sledge is realized by an elas-
tic support mechanism based on folded leaf springs.
This elastic support mechanism is included, since the
shaker armature suspension has a very low rotational
stiffness. The bottom linear sledge is mounted rigidly
on top of the shaker. The moving mass of the lower
linear sledge, including the mass of the bottom clamp-
ing block and the mass of the shaker armature, equals
mo = 3.2 [kg]. The beam used for the experiments
is made of spring steel. The material and geometric
properties of the beam are listed in Table 2. As stated
before, note that the value for the Young modulus E

later will be used as a parameter to be identified to ac-
count for (small) model errors. This will be discussed
in more detail later. Obviously, the identified Young

Fig. 3 Picture and
schematic overview of the
experimental set-up: (a) top
linear sledge (top mass)
based on air bearings,
(b) slender beam, (c) laser
vibrometer, (d) elastic
support mechanism for the
base, (e) electrodynamic
shaker
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Table 2 Material and geometrical properties of the slender steel
beam

E∗ 2.0 × 1011 [N/m2]

ρ 7850 [kg/m3]

L 180 [mm]

b 15 [mm]

h 0.5 [mm]

∗ this parameter will be further refined during the identification
procedure with the experimental results

modulus should not differ too much from its well-
known value for steel given in Table 2.

At the experimental set-up, the base excitation is
introduced by supplying a harmonically varying input
voltage

E0(t) = vd sin(2πf t) [V], (25)

to the power amplifier, where vd is the voltage ampli-
tude and f = 1/T is the excitation frequency. The out-
put voltage of the power amplifier E(t), see Fig. 3, is
supplied to the shaker. The amplifier works in a volt-
age mode of operation, i.e. the output voltage of the
amplifier is kept proportional to its input voltage. No
active feedback is used to control the acceleration of
the base Üb . Consequently, the resulting acceleration
of the shaker (and thus the effective axial force on the
slender beam with top mass) will not be proportional
to the input voltage E0(t) as given by (25), but will be
influenced by the dynamics of the shaker system car-
rying the slender beam with top mass. Due this fact, it
is essential to derive a coupled shaker/structure model
to be able to compare numerical results with experi-
mental results as has been done in Sect. 2.

A laser vibrometer (Ono Sokki LV 1500) is used
to measure the transversal velocity (v̇) at one point of
the beam. In the static equilibrium state obtained for
zero input voltage (E0 = 0 [V]), the vibrometer is lo-
cated at beam height y = L/4 (see Fig. 1). Note that y

is measured relative to the base motion Ub . In the dy-
namic situation, the vibrometer measures the transver-
sal velocity of the beam at a height L/4 − Ub,dyn(t)

relative to the static equilibrium position of the base,
where Ub,dyn(t) is the dynamic part of the base dis-
placement caused by a non-zero input voltage E0. The
vibrometer was not mounted so as to follow the shaker
movements, since the vibrometer is sensitive and sus-
ceptible to damage caused by vibrations. The signal
of the laser vibrometer is numerically integrated to

obtain measurements in terms of transversal displace-
ments v. To avoid drift during the numerical integra-
tion, the measurement signal is filtered using a high
pass filter with a cut-off frequency of 1.6 [Hz]. The
data-acquisition and input signal generation is per-
formed using a laptop with Matlab/Simulink in com-
bination with a TUeDACS AQI.1 A sample frequency
of 4 [kHz] is used. Note that Ub,dyn(t) � L/4. There-
fore, the experimentally observed transversal veloc-
ity and displacement at L/4 − Ub,dyn may be com-
pared to the numerically obtained signals v̇(t,L/4)

and v(t,L/4).

4 Steady-state response results

In this section, experimental steady-state response re-
sults for the base-excited slender beam with top mass
will be compared with semi-analytical results obtained
for the 1-MODE model and the 2-MODE model, see
Sect. 2. The experimental steady-state results are ob-
tained using harmonic excitation according to (25) for
a constant voltage amplitude vd and a stepwise vary-
ing excitation frequency f = 1/T . This procedure
is called a stepped sine frequency sweep. For each
case, a sweep-up (the excitation frequency is incre-
mentally increased) and a sweep-down (the excitation
frequency is incrementally decreased) is performed
using a step size of 	f = 0.5 [Hz]. For each discrete
value of f , the signals are saved during Ne = 150 ex-
citation periods. The data during the first Nt = 50 pe-
riods are not used to minimize transient effects.

As explained before, the dynamic steady-state re-
sponse of the beam is experimentally characterized us-
ing the measured velocity signal V̇L/4(t) = v̇(t,L/4−
Ub,dyn), and its corresponding displacement signal
VL/4(t) = v(t,L/4 −Ub,dyn) obtained by filtering and
numerical integration of V̇L/4(t). Based on these two
signals, the following averaged peak-to-peak ampli-
tudes are determined

˜̇V L/4 = 1

Nm

Nm−1∑

k=0

(
max
Tm

v̇(k)(t,L/4 − Ub,dyn)

− min
Tm

v̇(k)(t,L/4 − Ub,dyn)
)
, (26)

1http://www.tuedacs.nl/, TUeDACS Advanced Quadrature In-
terface.

http://www.tuedacs.nl/
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ṼL/4 = 1

Nm

Nm−1∑

k=0

(
max
Tm

v(k)(t,L/4 − Ub,dyn)

− min
Tm

v(k)(t,L/4 − Ub,dyn)
)
, (27)

where Tm = (Ne − Nt)T /Nm, T is the excitation
period, Nm = 5 [-] is the number of records, and
k refers to the kth record. Because Tm = 20, the
peak-to-peak amplitude of a 1/20th subharmonic so-
lution still can be estimated. This is not possible any-
more for subharmonic solutions with a period time
longer than 20T and aperiodic solutions. Averaging
is applied to cancel measurement noise to some ex-
tent.

Experimental steady-state results will be presented
for two different beams (named beam 1 and beam 2),
which have the same dimensions and material prop-
erties (see Table 2), but have slightly different geo-
metric imperfections and damping behavior, as will
be illustrated. In this section, the numerical steady-
state results for the 1-MODE and 2-MODE models
are obtained using the software package AUTO97
[22], which is capable of: (1) calculating branches
of periodic solutions of a nonlinear dynamic sys-
tem for a varying system parameter, (2) analyzing
the local stability of these branches using Floquet
theory, and (3) detecting local bifurcations on these
branches. More theoretical background on these top-
ics can be found in [23]. Branches with stable periodic
solutions will be plotted using solid lines, whereas
branches with unstable periodic solutions will be plot-
ted using dashed lines. Furthermore, cyclic fold bi-
furcations will be indicated by symbols ‘o’ and pe-
riod doubling bifurcations will be indicated by sym-
bols ‘�’. Numerical peak-to-peak values equivalent
to quantities defined in (26) and (27) are obtained
as follows. In AUTO97, the equations of motion
given by (21) are programmed in first-order form.
This means that the periodic solutions are available
in state space, i.e. in terms of Q∗, see (19), and its
first time derivative. By substituting DOFs Qi in (9)
and their first time derivatives in the first time deriv-
ative of (9), v(t,L/4) and v̇(t,L/4) are obtained,
from which directly the peak-to-peak values can be
derived.

4.1 Steady-state responses for beam 1

In Fig. 4, the experimentally obtained frequency–
amplitude plot (both in terms of dimensionless dis-

Fig. 4 Frequency–amplitude plot in terms of velocity ˜̇V L/4

(top) and in terms of displacement ṼL/4/h (bottom) for beam 1
with vd = 0.03 [V] and mt = 0.51 [kg] (experimental versus
semi-analytical results based on 1-MODE model)

placement ṼL/4/h [-] and velocity ˜̇V L/4 [m/s]) is de-
picted by means of black dots for beam 1 with vd =
0.03 [V] and mt = 0.51 [kg], i.e. r0 = 0.135. Both
frequency sweep-up and frequency sweep-down re-
sults are plotted. Experimentally, large frequency hys-
teresis intervals can be observed between 58–68 [Hz]
and 92–142 [Hz]. In this figure, also steady-state re-
sponse results are depicted based on the semi-analytic
1-MODE model. The identified parameter values for
this case are listed in the first column of Table 3. As
can be noted, the Young modulus E is identified to be
a little bit lower than the theoretical value. This may
be due to a combination of the following three facts:
(1) in the set-up, the clamped-clamped boundary con-
ditions will not be as ideal as considered in the model,
(2) for the discretization of v, see (9), not the exact
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Table 3 Identified
parameter values based on
experimental results
obtained for vd = 0.03 [V]
and mt = 0.51 [kg]

Parameters beam 1, 1-MODE beam 2, 1-MODE beam 2, 2-MODE

e1 [–] 1.24 1.36 1.36

c1 [Ns/m] 0.04 0.0 0.0

cq,1 [kg/m] 0.20 0.20 0.2

e2 [–] – – 0.04

c2 [Ns/m] – – 0.04

cq,2 [kg/m] – – 0.0

E [N/m2] 1.92 × 1011 1.95 × 1011 1.95 × 1011

Table 4 Eigenfrequencies
fi and damping ratios ξi of
linearized models with
parameters according to
Table 3 and mt = 0.51 [kg]

beam 1, 1-MODE beam 2, 1-MODE beam 2, 2-MODE

f1 [Hz] 18.1 18.1 18.1

ξ1 [–] 0.489 0.489 0.489

f2 [Hz] 72.7 73.1 73.1

ξ2 [–] 0.0034 0.001 0.001

f3 [Hz] – – 215.8

ξ3 [–] – – 0.007

vibrational eigenmodes are used, which will result in
a model, which overestimates the resonance frequen-
cies, and (3) in the model, axial inertia and axial strain
of the beam are not included, which may also result in
a small overestimation of the resonance frequencies of
the model.

For beam 1, the eigenfrequencies and damping
ratios of the resulting 1-MODE model linearized
around the static equilibrium position are listed in
the first column of Table 4. The lowest eigenfre-
quency of the model (f1) corresponds to a suspen-
sion mode of the shaker, i.e. the mode shape is domi-
nated by Ub . This mode is highly damped (although
still undercritically damped). The second eigenfre-
quency of the model (f2) corresponds to the first
bending mode of the beam, i.e. the mode shape
is dominated by Q1. This mode is very weakly
damped.

Next, the obtained steady-state responses as de-
picted in Fig. 4 are discussed in more detail. The
responses computed with the semi-analytical model
show a second superharmonic resonance at f ≈ f2/2,
a harmonic resonance at f ≈ f2, and a 1/2 subhar-
monic resonance (the latter branch contains periodic
solutions with period 2T ). The first two resonances are
caused by direct excitation, see the right-hand side of
(22). The 1/2 subharmonic resonance is a parametric
resonance, since it is caused by parametric excitation

(in the expression for the linear stiffness, a periodic
time dependent term is present), see (22). This para-
metric resonance is initiated at two period doubling
bifurcations near f = 2f2, which are indicated by two
‘�’ symbols. All three resonances show a softening
type of behavior due to the inertia nonlinearities and
are qualitatively similar as found for the case of a har-
monic base acceleration, which is numerically inves-
tigated in [9]. Cyclic fold bifurcations are indicated
by symbols ‘o’ and are found on all three resonance
peaks.

The bifurcation points mark the boundaries for
frequency hysteresis intervals. At these bifurcation
points, large sudden jumps in the peak-to-peak val-
ues occur during the frequency sweep-up and the
frequency sweep-down. The frequency hysteresis in-
terval for the second superharmonic resonance near
f ≈ f2/2 is very small because the frequencies, at
which the two cyclic fold bifurcations occur, are very
close to each other. The boundaries of the frequency
hysteresis interval associated with the harmonic res-
onance are marked by cyclic fold bifurcations at 58
[Hz] (a jump occurs to the low-amplitude branch in the
sweep-down) and 68 [Hz] (a jump occurs to the high-
amplitude branch in the sweep-up). The boundaries of
the frequency hysteresis interval associated with the
1/2 subharmonic (parametric) resonance are marked



Nonlinear resonances in an axially excited beam carrying a top mass: simulations and experiments

by a cyclic fold bifurcation at 92 [Hz] (a jump occurs
to the low-amplitude branch in the sweep-down) and
a subcritical period doubling bifurcation at 142 [Hz]
(a jump occurs to the high-amplitude branch in the
sweep-up).

In the experimental sweep-up and sweep-down, at
frequencies, where sudden jumps in the peak-to-peak
values occur as explained above, sometimes experi-
mental peak-to-peak values are visible in between the
values for the high amplitude branch and the low-
amplitude branch. Most clearly this is visible near 58
[Hz] and 92 [Hz] in the sweep-down. In theory, at
these frequencies a discontinuous jump in the peak-
to-peak value occurs. In the frequency sweep exper-
iments, transient effects are the cause of these inter-
mediate peak-to-peak values. Recall that in the exper-
iment the frequency sweep is carried out stepwise and
that each excitation frequency is kept constant for 150
periods, see the introduction of Sect. 4. For the deter-
mination of a peak-to-peak value in the experiment,
for each excitation frequency only the last 100 peri-
ods are taken into account. For the frequencies cor-
responding to the intermediate peak-to-peak values, a
number of 50 periods is apparently not high enough to
let the transient damp out. Obviously, if the peak-to-
peak value suddenly changes from 4 m/s to 0.1 m/s,
such as in e.g. the sweep-down near 92 Hz, it takes
some time before the transient has damped out. This
phenomenon is also visible in the sweep-down near
58 Hz and even also for the sweep-up near 142 Hz (a
single black dot is visible just above the 0.1 m/s line,
almost coinciding with the vertically oriented dashed
curve).

In this paper, the harmonic resonance is not sig-
nificantly smaller than the subharmonic resonance in
contrast to results found in [9]. This may be due to
the fact that in the current paper, the amplitude of the
base acceleration does not remain constant if the ex-
citation frequency is varied. Especially near f = f1

(not visible in Fig. 4), where the resonance related to
the suspension mode of the shaker occurs, the base
acceleration will show an increase in amplitude. Fur-
thermore, the identified quadratic damping parameter
cq,1, see Table 3, is relative large with respect to the
parameter values considered in [9]. During the para-
meter identification procedure it is found that inclu-
sion of quadratic damping is essential to get good fit
results, especially around the harmonic resonance and
the 1/2 subharmonic resonance. The beneficial influ-
ence of the quadratic damping on the quality of the fit

between numerical results and experimental results is
also observed in [5, 12] and for cubic damping in [24].

In general, the experimental steady-state results are
in good correspondence with the semi-analytical re-
sults. However, some discrepancies can be noted. First
of all, the experimental results show a somewhat larger
amplitude, especially in the peaks of the harmonic
and the subharmonic resonance (both in terms of
˜̇V L/4 [m/s] and ṼL/4/h [-]). Furthermore, the exper-
imentally obtained frequency–amplitude plots show at
a number of (small) frequency regions, small peaks
and/or small jumps, which are not present in the semi-
analytical results. These peaks can be most clearly
observed in the frequency–amplitude plot in terms

of ˜̇V L/4 [m/s] (see upper plot of Fig. 4), for exam-
ple near the top of the harmonic resonance (f ≈ 60
[Hz]) and along the subharmonic resonance branch
near f = 120 [Hz]. More comments on these peaks
will be given at the end of this section. From now on,
the frequency–amplitude plots will only be presented

in terms of ˜̇V L/4 [m/s], since from these plots details
in the steady-state responses can be distinguished best.

As stated before, the imperfection and damping pa-
rameters of the 1-MODE model for beam 1 are iden-
tified using the experimental response obtained for
vd = 0.03 [V] and mt = 0.51 [kg]. For further vali-
dation, the response predicted by this model is com-
pared with experimental results for a higher excita-
tion amplitude, i.e. vd = 0.04 [V], see the upper plot
of Fig. 5, and for a larger top mass, i.e. mt = 1.01
[kg], see the lower plot of Fig. 5. Except for the fact
that for vd = 0.04 [V], the 1/2 subharmonic branch
of the semi-analytical model continues to a lower ex-
citation frequency, the semi-analytical results are in
this case again in good correspondence with the ex-
perimental results. For mt = 1.01 [kg], both the 1/2
subharmonic resonance and the harmonic resonance
of the semi-analytical model continue to lower excita-
tion frequencies than observed in the experimental re-
sults. In this sense, the nonlinear damping characteris-
tics, identified for one load case, cannot predict exactly
the damping characteristics for another load case (the
amount of overhang of the resonance curves is mainly
influenced by the damping parameters). Nevertheless,
for both cases shown in Fig. 5, the semi-analytical re-
sults based on the 1-MODE model are in satisfactory
correspondence with the experimental results.
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Fig. 5 Frequency–amplitude plots for increased excitation am-
plitude (top) and increased top mass (bottom) (experimental
versus semi-analytical results based on 1-MODE model for
beam 1)

4.2 Steady-state responses for beam 2

For beam 2, experimental steady-state results will first
be compared with results for the 1-MODE model and
subsequently with results for the 2-MODE model, see
Sect. 2. For the 1-MODE model, the identified para-
meter values are listed in the second column of Ta-
ble 3. The eigenfrequencies and damping ratios of the
resulting 1-MODE model for beam 2 (again linearized
around the static equilibrium position) are listed in the
second column of Table 4. For the largest part, the
identified parameter values are comparable to those
obtained for beam 1. However, now the linear damp-
ing coefficient c1 is identified zero. Note that this does
not result in a zero damping ratio for the first beam
mode f2 (see Table 4), since this mode has some

Fig. 6 Frequency–amplitude plot for beam 2 with
vd = 0.03 [V] and mt = 0.51 [kg] (experimental versus
semi-analytical results based on 1-MODE model)

(linear) coupling with the heavily damped suspension
mode of the shaker.

In Fig. 6, the experimentally obtained frequency–
amplitude plot and the corresponding 1-MODE model
response are depicted for beam 2 for the same load-
ing conditions as considered for beam 1 in Fig. 4
(vd = 0.03 [V], mt = 0.51 [kg]). Similar to Fig. 4, also
in Fig. 6 the steady-state response results based on the
1-MODE model are in good correspondence with the
experimental results. Furthermore, in addition to the
three large resonance peaks, also in this frequency–
amplitude plot small resonance peaks (and associated
small jumps) can be noted in small frequency ranges.
Again a very clear (small) jump occurs near the top of
the harmonic resonance near f = 60 [Hz] and another
one along the subharmonic resonance branch near
f = 120 [Hz], see enlargements A and B in Fig. 6.
Projections of the experimental response on the phase
plane spanned by VL/4(t) and V̇L/4(t) and the corre-
sponding Poincaré mappings, i.e. period T sampled
values of VL/4 plotted against period T sampled val-
ues of V̇L/4, close to these two jumps, are depicted in
Fig. 7. At f = 58 [Hz], at the left side of the jump, see
enlargement A in Fig. 6, the Poincaré map shows a sin-
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Fig. 7 Phase-plane projections and Poincaré mappings for
four experimentally obtained responses for beam 2 with
vd = 0.03 [V] and mt = 0.51 [kg]

gle dot, indicating a harmonic response. However, at
f = 60 [Hz], at the right side of the jump, see enlarge-
ment A in Fig. 6, the Poincaré map shows two dots,
indicating a 1/2 subharmonic response. Similarly, for
the scenario depicted in enlargement B in Fig. 6, for
f = 117 [Hz] the response is 1/2 subharmonic and for
f = 119 [Hz] the response has become 1/4 subhar-
monic.

These additional small branches with subharmonic
responses are not captured by the 1-MODE model. To
examine if the experimentally observed period dou-
bling behavior is due to nonlinear interaction with the
second beam mode v2, a semi-analytical model with
two beam modes (the 2-MODE model) is derived, see
Sect. 2. In Fig. 8, the steady-state response predicted
by the 2-MODE model is compared with experimen-
tal results obtained for beam 2 and vd = 0.03 [V] and
mt = 0.51 [kg] (same values as used in Fig. 6). The
experimental results in Figs. 6 and 8 are obviously
identical. The identified parameter values are listed in
the last column of Table 3 and the eigenfrequencies
and damping ratios of the 2-MODE model linearized
around the static equilibrium position are listed in the
last column of Table 4. A very small geometric im-
perfection related to the second bending mode of the
beam is identified: e2 = 0.04 [-]. In the parameter
identification for the second mode no quadratic damp-
ing is found, i.e. cq,2 = 0 [kg/m].

Fig. 8 Frequency–amplitude plot for beam 2 with
vd = 0.03 [V] and mt = 0.51 [kg] (experimental versus
semi-analytical results based on 2-MODE model)

As can be noted in Fig. 8, inclusion of the second
beam mode in the model instigates a second harmonic
resonance with softening around f = 215 [Hz]. This
second harmonic resonance is observed at a slightly
lower frequency in the experimental results. Further-
more, and in correspondence with the experimental re-
sults, in the semi-analytical results for the 2-MODE
model at the 1/2 subharmonic branch near f = 123
[Hz], two period doubling bifurcations (indicated by
two ‘�’ symbols) resulting in a branch with 1/4 sub-
harmonic responses are observed, see enlargement B
in Fig. 8. Note that for clarity no experimental results
are shown in the enlargements. The 1/4 subharmonic
branch itself exhibits three cyclic fold bifurcations re-
sulting in two (separate) stable parts of the branch.
Due to its complexity, this branch cannot be easily
compared with the experimental results in this region,
see the experimental results depicted in enlargement
B of Fig. 6 (here only results for a frequency sweep-
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down are shown). Nevertheless, it can be noted that
for the semi-analytical results, the 1/4 subharmonic
response continues to a lower excitation frequency as
observed experimentally. This larger overhang is pos-
sibly due to the fact that in the semi-analytical model
for the second mode no quadratic damping is taken
into account. A similar phenomenon occurs in the top
of the first harmonic resonance. Again in correspon-
dence with the experimental results, near f = 61 [Hz]
two nearly coinciding period doubling bifurcations oc-
cur (again indicated by two ‘�’ symbols), from which
now a 1/2 subharmonic branch bifurcates, see enlarge-
ment A.

Furthermore, in the semi-analytical results near
f = 72 ≈ f3/3 [Hz], see enlargement A in Fig. 8,
a small 3rd superharmonic resonance can be distin-
guished, which is related to the second beam mode
with eigenfrequency f3, see the last column of Table 4.
This superharmonic resonance cannot be seen in the
experimental results. However, the frequency interval,
in which this resonance occurs, is so small that it is
possibly missed in the frequency sweep due to a too
coarse frequency step. Subsequently, a very small 2nd
superharmonic resonance related to the second beam
mode can be observed near f = 108 ≈ f3/2 [Hz],
both on the high-amplitude 1/2 subharmonic branch
and on the low-amplitude harmonic branch. This reso-
nance can be seen more clearly in the semi-analytical
response than in the experimental response. Finally, a
very small resonance can be seen on the 1/2 subhar-
monic branch near f = 144 ≈ 2f3/3 [Hz]. Two cyclic
fold bifurcations associated with this resonance are in-
dicated by ‘o’ symbols. Also here, this resonance can
be seen more clearly in the semi-analytical response
than in the experimental response.

For further validation, power spectral densities
(PSDs) of the experimentally and semi-analytically
obtained transversal velocities, i.e. V̇L/4(t) and
v̇(t,L/4), are compared in Fig. 9 for f = 58 [Hz]
and f = 60 [Hz], and in Fig. 10 for f = 117 [Hz]
and f = 119 [Hz]. In these PSD plots, the dimension-
less frequency axis of the PSD F/f is normalized by
the excitation frequency f . For the semi-analytical re-
sults, which are based on the 2-MODE model, the lo-
cations of the eigenfrequencies corresponding to the
first two bending modes of the beam, i.e. f2 and f3

(see the last column of Table 4), are indicated. Re-
call that the experimental responses corresponding to
these four excitation frequencies were also plotted in

Fig. 7. First, consider Fig. 8 showing the PSDs of the
harmonic response at f = 58 [Hz] and the 1/2 subhar-
monic response at f = 60 [Hz]. At f = 58 [Hz], fre-
quency contributions to the harmonic response can be
found at F/f ∈ {1,2,3, . . .}. The harmonic resonance
of the first beam mode is clearly indicated by a dom-
inating contribution at F/f = 1 ≈ f2/f . At f = 60
[Hz], frequency contributions to the 1/2 subharmonic
response can be found at F/f ∈ { 1

2 ,1, 3
2 ,2, 5

2 , . . .}.
The contribution of the first beam mode is still domi-
nating at F/f = 1 ≈ f2/f , but a very important con-
tribution of component F/f = 7

2 ≈ f3/f has (sud-
denly) appeared, which obviously is missing in the
PSD of the harmonic response at f = 58 Hz. This
can be observed for the semi-analytical response as
well as for the experimental response. It can be con-
cluded that at f = 60 [Hz] an internal resonance is
found, which is caused by nonlinear interaction be-
tween the first and second beam mode. A similar phe-
nomenon can be seen in Fig. 10. At f = 117 [Hz],
frequency contributions to the 1/2 subharmonic re-
sponse can be found at F/f ∈ { 1

2 ,1, 3
2 ,2, 5

2 , . . .}. The
1/2 subharmonic resonance of the first beam mode
is clearly indicated by a dominating contribution at
F/f = 1

2 ≈ f2/f . At f = 119 [Hz], frequency contri-
butions to the 1/4 subharmonic response can be found
at F/f ∈ { 1

4 , 1
2 , 3

4 ,1, . . .}. The contribution of the first
beam mode is still dominating at F/f = 1

2 ≈ f2/f ,
but in addition a very important contribution of com-
ponent F/f = 7

4 ≈ f3/f has (suddenly) appeared,
which obviously is missing in the PSD of the 1/2 sub-
harmonic response at f = 117 Hz. This can again be
observed for the semi-analytical response as well as
for the experimental response. Also at f = 119 [Hz] it
can be concluded that an internal resonance is found,
which is again caused by nonlinear interaction be-
tween the first and second beam mode. It is of interest
to note that a two-to-seven internal resonance between
the first two beam bending modes is also observed ex-
perimentally in [25].

In conclusion, the 2-MODE model can qualita-
tively explain the experimentally observed small ex-
tra resonances and period doubling behavior at the top
of the first harmonic resonance and on the 1/2 subhar-
monic branch. For a better quantitative match of these
(and other) dynamic response details, the damping and
imperfection parameters of the model may need to be
further refined and, possibly, also more beam modes
must be included in the model. Moreover, more de-
tailed experiments based on smaller frequency sweep
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Fig. 9 Power Spectral
Density of the response
(semi-analytical results
based on 2-MODE model
versus experimental results)
obtained for beam 2 with
vd = 0.03 [V],
mt = 0.51 [kg], f = 58
[Hz] (top) and f = 60 [Hz]
(bottom)

increments 	f may be necessary for (improved) iden-
tification of the (additional) damping and imperfection
parameters. This, however, is considered to be out of
the scope of this paper. Nevertheless, it has been il-
lustrated that, using a semi-analytical approach, the
steady-state dynamic response can be studied in detail.

5 Conclusions and recommendations

In this paper, the dynamic stability of a slender beam
carrying a top mass has been investigated. The weight
of the top mass is well below the static buckling load.

The beam is dynamically excited at its base by means
of an amplifier-shaker system with a harmonic input
voltage.

A semi-analytical model has been derived for a
base-excited slender beam carrying a top mass. The
beam has been assumed to be inextensible. The nonlin-
ear inextensibility constraint as well as the nonlinear
expression for the curvature of the beam have been ap-
proximated by third-order Taylor-series expansions. In
the model, geometrical imperfections of the beam have
been taken into account. Furthermore, the beam model
includes linear as well as quadratic viscous damping
forces. This structural model has been extended by
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Fig. 10 Power Spectral
Density of the response
(semi-analytical results
based on 2-MODE model
versus experimental results)
obtained for beam 2 with
vd = 0.03 [V], mt = 0.51
[kg], f = 117 [Hz] (top)
and f = 119 [Hz] (bottom)

coupling it to a linear model of the shaker (with am-
plifier).

The resulting low-dimensional coupled model has
been combined with numerical tools for efficient cal-
culation of branches of steady-state solutions of the
system and their local stability, and for detection of
bifurcation points on these branches.

An experimental set-up has been built and used
to validate the numerically obtained steady-state re-
sponses. In the experiments, frequency sweep-up and
sweep-down has been performed with respect to the
harmonic excitation voltage. Shaker and amplifier pa-
rameters have been identified experimentally for the

bare amplifier-shaker system. Damping and imper-
fection parameters of the semi-analytical model have
been identified by using a least-squares method, which
fits numerically obtained periodic solutions as good as
possible to experimentally obtained periodic solutions.

Frequency–amplitude curves have been calculated
for both one-mode and two-mode discretizations of the
beam. For the one-mode discretization, already a good
match between numerical and experimental steady-
state responses is obtained. The main resonances be-
ing a parametric 1/2 subharmonic resonance, a har-
monic resonance, and a second superharmonic reso-



Nonlinear resonances in an axially excited beam carrying a top mass: simulations and experiments

nance (all related to the first beam mode) are pre-
dicted well. Also the frequencies, at which (period
doubling and cyclic fold) bifurcations are calculated,
correspond well with the frequencies, at which exper-
imentally sudden jumps in the response amplitude are
observed during the frequency sweep-up and sweep-
down. The two-mode model shows some additional
resonances. Next to the (expected) second harmonic
resonance also some smaller resonances (and extra bi-
furcations associated with these resonances) occur in
the low-frequency range. Some of these resonances
can be identified as combination resonances of the
two beam modes. These additional resonances are also
found in the experiments.

The results presented in this paper in principle only
refer to the coupled shaker-beam system and therefore
depend on the particular shaker used. The input volt-
age is harmonic with constant amplitude, but, since the
system is nonlinear, the shaker force is not purely har-
monic and has frequency dependent amplitude. The
shaker dependency can be avoided by ensuring har-
monic forcing at constant amplitude at different ex-
citation frequencies by using a feedback controlled
shaker. It is important to note, however, that the non-
linear resonance phenomena presented in the current
paper still occur if the bottom of the beam is harmoni-
cally excited with constant amplitude. This is demon-
strated by simulations in references [9, 16]. To some
extent, this is not really a surprise, since the shaker dy-
namics are linear. Moreover, the resonance frequency
(at 18.1 Hz) of the mode, where the shaker vibration
dominates, is clearly below the interesting frequency
range for the beam carrying the top mass (30–160 Hz).
One could say that the shaker has been ‘designed’ in
such a way that its dynamics does not qualitatively al-
ter the dynamics of the beam carrying the top mass
with harmonic base excitation.

As already concluded, good agreements with ex-
periments were obtained with only one or two sim-
ple assumed modes for the beam. Therefore, as a sug-
gestion for future research, analytical approximations
for the frequency–amplitude curves might be attain-
able, using e.g. a perturbation method. At least this
could give simple analytical expressions for the back-
bone curves (no damping or forcing) of the frequency–
amplitude curves, providing the important relation be-
tween free oscillation frequency and amplitude.
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Creative Commons Attribution Noncommercial License which

permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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