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ABSTRACT

This paper studies change detection of LWIR (Lorav@/Infrared) hyperspectral imagery. Goal is torionp target
acquisition and situation awareness in urban asthsrespect to conventional techniques. Hyperspeand
conventional broadband high-spatial-resolution detee collected during the DUCAS trials in ZeebreigBelgium, in
June 2011. LWIR data were acquired using the ITRE&mal Airborne Spectrographic Imager TASI-60Q thzerates
in the spectral range of 8.0-11ub (32 band configuration). Broadband data were isgedwsing two aeroplane-
mounted FLIR SC7000 MWIR cameras. Acquisition & images was around noon. To limit the numberlséfalarms
due to atmospheric changes, the time interval batwiee images is less than 2 hours. Local co-ragjish adjustment
was applied to compensate for misregistration srirothe order of a few pixels. The targets inda& that will be
analysed in this paper are different kinds of viglsicChange detection algorithms that were applietievaluated are
Euclidean distance, Mahalanobis distance, Chrommear(CC), Covariance Equalisation (CE), and Hyplabo
Anomalous Change Detection (HACD). Based on Rec&perating Characteristics (ROC) we conclude tWdtR
hyperspectral has an advantage over MWIR broadblaadge detection. The best hyperspectral detectdACD
because it is most robust to noise. MWIR high gphaisolution broadband results show that it hedpspply a false
alarm reduction strategy based on spatial procgssin
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1. INTRODUCTION

Within the DUCAS projectseven European countries work together on imgtdaeget acquisition and situation
awareness in urban areas. One of the goals isntbioe hyperspectral and high spatial-resolutioiva@nd passive
sensors, and to compare those with conventionbhtgaes. To facilitate joint research and developnaedata
acquisition campaign was organised at Zeebruggdegje, in June 2011. Among the acquiring sensors tha ITRES
Thermal Airborne Spectrographic Imager TASI-8G0LWIR hyperspectral imager that was operate@KR IMAA,
Italy. The conventional sensors to compare withewaio aeroplane-mounted FLIR SC7000 M\WHRoadband high-
spatial-resolution cameras, with an Indium Antintedetector, that were operated by FOI, Sweden. Tdgepshows
the analysis and performance of those data in agatibin with vehicle change detection. In our opinahiange
detection is the most effective strategy to deteldicated targets in urban environments if no arpsipectral
information is available. Anomaly detection in unt@nvironments generally results in a significamtber of false
alarms. An alternative strategy based on two ssdoeimages is spectral matchingssuming that the potential targets
of interest in the first image are known to sanpkdr spectra. Change detection algorithms thastumdied in this paper
are Euclidean distance, Mahalanobis distance, @gtonme (CC), Covariance Equalisation (CE), anddtlyplic
Anomalous Change Detection (HACD). Evaluation iselby computing Receiver Operating CharacterigReC)
based on in-situ collected ground truth.
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2. HYPERSPECTRAL AND BROADBAND DATA
2.1 LWIR hyperspectral data and pre-processing

Collecting data with the TASI-600, chosen was f@2aband configuration with 109.5 nm spectral witkiVHM).
Spectral range is 8.0-11un. Spatial resolution of the images is 0.60 m. preeessing of the TASI-600 data includes
spectral calibration, radiometric calibration (spakradiancepW cmi? sr* nm%), blinking pixel removal, and
georeferenciny In doing this CNR IMAA used a combination of ITREoftware and their own algorithms, the latter
mainly for blinking pixel removal. Images that aedected to analyse change detection performanceaeguired on 27
June 2011, the first image at UTC 11:53 and therstimage at UTC 13:11 (Fig. 1). Area of interes230 x 140 m.
Weather conditions were clear sky and sunny. Senfeetness during acquisition was below 15 %. Aingerature at
UTC 12:00 was 30C. Planning was also to apply atmospheric comactnd if possible Temperature-Emissivity
Separation (TES), but those are delayed. Sincadfeisitions are 1 hour and 18 minutes apart, githwre and
temperature are assumed to be nearly similar. Grereing RMSE of the selected acquisitions ism.@8 pixels), but
co-registration seemed to be significantly bettethie areas where relocated vehicles were prddentever, additional
co-registration adjustment is necessary to reche@timber of false alarms. Ground truth was cabkbétom the
selected TASI images and high spatial-resolutidhagih) visual images acquired during the same peariduine (Fig. 2).
Eighteen relocated vehicles were identified.
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Figure 1. TASI images and area of interest of 2% 2011 UTC 11:53 (left) and UTC 13:11 (right). Retll=45um; Green
= 9.70um; Blue = 8.05um. Spatial resolution is 0.60 m.
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2.2 MWIR broadband data and pre-processing

The two FLIR SC7000 MWIR cameras that were usedéguiring conventional broadband infrared dataewer
operating at 3.2m and 4.8um, both with a spectral width of 600 nm (FWHM). 8gbresolution of the images is 0.25
m. Pre-processing of the MWIR data includes radivimealibration (radiance, W sr?), mosaicking, and
georeferencing. Images that are selected to aneha®ge detection performance on 27 June 2011, avepgred at
UTC 12:17 and at UTC 13:38 (Fig. 3). Additional remistration was applied by using a first orderypoimial in
combination with nearest-neighbour resampling. Regas that the residual co-registration error wago a few pixels
in certain regions, but (as in the TASI imagesh#igantly better in regions where relocated vedgcivere situated.
Here too additional co-registration adjustmentdsassary to reduce the number of false alarms.r@drtyuth was
collected directly from the selected FLIR imageig(B). Twenty-two relocated vehicles were ideptdfi

Figure 3. FLIR MWIR images and area of interestd8ne 2011 UTC 12:17 (left) and UTC 13:38 (right)d Re3.9um;
Cyan = 4.8um. Spatial resolution is 0.25 m.

Figure 4. FLIR MWIR colour composite (left) and graunuth (right). Red = 3.9m, UTC 13:38; Cyan = 3.8m, UTC
12:17.

3. METHODOLOGY

The evaluation of LWIR hyperspectral imagery and N\¥roadband imagery in the context of several ghan
detection strategies is done at object level, afpatial clustering of target pixels. We will shtvat this has implications
to the computation of ROC curves.
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3.1 Changedetection algorithms

Basically, change detection boils down to the déffece between two successive zero-mean spectralnesaent
vectorsx andy of the same geospatial position or pixel. Theltésueferred to as the residual vector:

o=x-y 1)
The Euclidean distance is simply the length of thesttor:
d(x,y) =3 2)
The Mahalanobis distance is relative to the comagamatrixI” of the residual vector:
d(x,y)=6"T" (3)

To compensate for calibration, color balance, arrdil differences, several prediction strategieshmafollowed. Both
that will be discussed are based on the followirgrives:

X = (xx" > )
Y =(yy") ©)
C=(xy") (6)

The first strategy is Chronochrome (CC) processing® 1%

dcc =x-CY 7y 7
Here the second part is the predictiox aft the time ofy. The distance can be computed by using Eq. (3yepldce
the residual vector with Eq. (7). The second sgnate Covariance Equalisation (CE) **

e =X - XYty (8)

Comparative studies have shown that CC and CEuapassed in performance by applying segmentedrlinea
predictiort® or distribution-based detectioh’. The latter, also referred to as Hyperbolic AnanalChange Detection
(HACD) is described by:

sork sl ST 2

Herea stands for a measure of anomalousness, sinc@fg.r(ot a distance-based metric anymore. The HA€@ctor
is designed to be more robust to image noise, ihlyeffects, and spectral differented\ll detectors in this paper
except Euclidean distance are based on a globabagip, by estimating sample statistics over thelevhnage instead
of over a local region.

3.2 Local co-registration adjustment

To account for co-registration errors, and instefithproving georeferencing accuracy, changes eacomsidered in

the area around a pix&lFor instance, by comparing the measurement veaidth the 3 x 3 area around the geospatial
position of measurement vectprand considering the minimum distance as thedstshate of change. By doing this in
the opposite direction as well, and consider thgimam of both minima as the best estimate, we lyefdllowing
expression:

d; = max{min(d (X; ’yijD/v))’ min(d (Xijow Y )» (10)
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HereW s the area around the geospatial position of i@ under test. In case of HACD detection, the distahin
Eqg. (10) can be replaced by the measure of anoséas in Eq. (9).

3.3 Object recognition

Since operators who deal with target acquisitioth situation awareness, are generally more intatestebjects (e.g.
vehicles, buildings) than in pixels, clusteringfgplied to those pixels that are spatially conredBecause at this stage
we deal with binary detection masks, a simple negjoowing spatial clustering scheme is used.

3.4 Falsealarm reduction

If the spatial resolution of the images is highwgig false alarm reduction based on spatial featisreften applied.
Many spatial features exist that define the sizk strape of a target. Due to time constraints wewet able to fully
investigate this topic, which is a field of resdane itself. But to include some level of falseratereduction in
evaluating hyperspectral against broadband, weeapplfilter on the target size in square meteas€d on the number
of pixels) as a single feature.

3.5 Computation of ROC curves

Comparison of the detected target objects and ¢iieund-truth positions, and obtaining ROC curiebased on
association techniques that are common in for iestan target trackirtd Basis for association is their geospatial
distance. The following procedure is applied:

1. Change detection (Section 3.1, 3.2)

2. Spatial clustering into target objects and optilyrfalse alarm reduction (Section 3.3, 3.4)
3. Compute centre-of-gravity of each object
4

Compute Euclidean distance between all centresafily and all ground-truth positions, resultingain
distance matrix

Sort distance matrix (smallest distance first)
Start association with smallest distance (an olgjantonly once be associated to a ground-truthipoki

Stop association if maximum distance is reachedifmam distance = half size of the target + geoesiee
error relative to ground truth), non-associateckoty are considered as false alarms

8. Repeat this procedure with a different thresholdreate ROC curve: fraction of associated objgash@bility
of detection) versus the number of non-associabgetts per unit area (number of false alarms)

4. RESULTSAND DISCUSSION

Applying the abovementioned change detection gfisewithout false alarm reduction resulted inR@C curves of
Fig. 5. A local co-registration adjustement windofib x 5 pixels was applied, that is in line wittetco-registration
accuracy of both TASI and FLIR MWIR images. Maximditance in association (Section 3.5, point 7) eassen to
be 2.5 m, half the size of an average vehicle. &ewencing error with respect to the ground tratbdnsidered 0 m
since the ground truth positions of the relocatekicles were obtained from the images under testid. 5 we see that
the TASI LWIR hyperspectral data in combinationhditACD shows the best results. Applying false alageohuction
according to Section 3.4 resulted in the ROC cuofdsig. 6. Here the threshold is set to 14 that corresponds to
three pixels in the TASI data, and to 18 pixelthie FLIR MWIR data. We see that the performanceéldR MWIR
significantly improves, opposite to TASI that doeg change much. Still TASI in combination with HR®utperforms
FLIR MWIR, but that is not true for the other det#s. In general, in LWIR and MWIR the contrastdidappeared
vehicles (i.e. present in first image, not presersiecond image) is larger than that of appearéithes (i.e. not present
in first image, present in second image) due tahkemal shadows that are left behind by the disagd vehicles.

Reason why the variation in performance of TASItfar different detectors is larger than for FLIR MR\Is the higher
contribution of thermal noise in TASI. Looking aetoutput of all detectors we see that Mahalan@lits or without
CC, CE) shows more noise than the output of HA@®, aso Fig. 7. Apparently the distribution-baséxOB detection
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strategy as described in Section 3.1 pays off &8IT Similar observations are shown by Théflém case of injecting
noise in one of the original images. Note that G@heer increases the noise at the output of theadldalobis detector
which explains the worst ROC. In case of FLIR MWiRadband, results illustrate that if the imagagain less
thermal noise, the results of the different chaghgection strategies are much closer. Here thelsghgetector,
Euclidean distance, shows an interesting altereatimo false alarm reduction is applied.
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Figure 5. TASI LWIR (left) and FLIR MWIR (right) vehie change detection ROC curves with local co-registma
adjustement (no false alarm reduction). The uriadi0,000 mequals an area of 100 m x 100 m.
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Figure 6. TASI LWIR (left) and FLIR MWIR (right) vehie change detection ROC curves with local co-registta
adjustement after rejecting all changes of 12land smaller.
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Figure 7. Mahalanobis distance of the residualoregeft) and HACD anomalousness (right) with locatregistration
adjustment based on the TASI images of Fig. 1.

]

Figure 8. TASI LWIR (left) and FLIR MWIR (right) veHie change detection after false alarm reductionesponding
with the optimum detector (HACD) and threshold$-j. 6.

In the analysis so far we considered the smalédiffices in time interval, area of interest, andlifferences in
wavelength negligible. Coming back to Fig. 6, amd¢e how the detection results look like for optimdetectors and
threshold, Fig. 8 shows examples of TASI and FLIR/NR. Here we see that in case of FLIR MWIR falsgrals are
more often caused by buildings (roofs) and thedidstwvs, which suggests that the MWIR channels comtdiigher
contribution of reflection in comparison with eni@s Something that seems to be confirmed by thegas in Fig. 3,
where the radiance of 3\8n is higher than of 4.8m for certain objects (again mainly roofs) giveaittreddish colour.
This put forward the idea to compare TASI and FMR/IR assuming the same image characteristics (nuwfieands,
bandwidth, spatial resolution) and see what thieidihce between LWIR and MWIR actually is. TherefdASI was
spectrally resampled to two bands (respectivelyugizand 9.2um) by averaging two times six bands to a bandwadth
roughly 600 nm. FLIR MWIR was spatially resampledatground resolution of 0.60 m. Change detecti@iegies
without false alarm reduction applied to these ltssare shown in Fig. 9. Here we see that LWIR#&akear advantage
over MWIR, and that we can not neglect the diffessnin wavelength.

Comparing Fig. 5 with Fig. 9 it is interesting &esthat it pays to apply HACD to 32 LWIR bands.(TASI) instead of
2 broader LWIR bands. Looking at the other detecitois clear that the thermal noise has reducedvever, what we
can not evaluate is the performance of LWIR hypersjal data compared to LWIR high spatial-resolutiata. In case
of FLIR MWIR, a higher spatial resolution in comation with false alarm reduction yields the bestdR@&rformance.
The somewhat irregular shapes of the ROC curvesaarged by the object-level evaluation: at cettaiesholds objects
will be combined causing the probability of detentdr the number of false alarms to drop.
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Figure 9. TASI LWIR (left) and FLIR MWIR (right) vehie change detection ROC curves with local co-regdistna
adjustement after resampling to two bands withexspl width of 600 nm (FWHM) and a spatial resointof 0.60 m (no
false alarm reduction). Note the drop in probapibit detection of FLIR MWIR for Mahalanobis and HACBxt is due to
spatial clustering of two target objects into ofbgeot.

5. CONCLUSIONSAND RECOMMENDATIONS

Based on the results obtained in this study welodechat in target detection and situation awassrmd urban areas,
LWIR hyperspectral has an advantage over MWIR Hvaad change detection if a strategy is chosendhrabust to
the thermal noise in the hyperspectral imageryhisistudy that strategy is Hyperbolic AnomalousiGie Detectioh

1 MWIR high spatial-resolution broadband resultsvghhat it helps to apply a false alarm reductitategy based on
spatial processing. In general, in LWIR and MWIIR ttontrast of disappeared vehicles (i.e. preseiimsinmage, not
present in second image) is larger than that oéapga vehicles (i.e. not present in first imagesgnt in second image)
due to the thermal shadows that are left behinthbylisappeared vehicles.

To support these conclusions it will be interestingnvestigate other atmospheric conditions, rigte imagery, and
other urban environments. With that are topics saagcthe effects of atmospheric corrections, TentperedEmissivity
Separation (TES), and local detection strategiasdstimate sample statistics over local regiostead of the whole
image®. To improve the change detection performance gti Bpatial-resolution broadband sensors, a moboeise
false alarm reduction strategy will likely pay dif. a new experiment it is recommended to alsaigkelLWIR high
spatial-resolution sensors, next to LWIR hyperspésensors, for comparison.
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