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Abstract. This study explores the effects of various spatiotemporal dynamic texture characteristics
on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns
has been studied extensively. In contrast, the emotional experience of visual dynamic textures is
still largely unknown, despite their natural ubiquity and increasing use in digital media. Participants
watched a set of dynamic textures, representing either water or various different media, and self-
reported their emotional experience. Motion complexity was found to have mildly relaxing and
nondominant effects. In contrast, motion change complexity was found to be arousing and dominant.
The speed of dynamics had arousing, dominant, and unpleasant effects. The amplitude of dynamics
was also regarded as unpleasant. The regularity of the dynamics over the textures’ area was found to
be uninteresting, nondominant, mildly relaxing, and mildly pleasant. The spatial scale of the dynamics
had an unpleasant, arousing, and dominant effect, which was larger for textures with diverse content
than for water textures. For water textures, the effects of spatial contrast were arousing, dominant,
interesting, and mildly unpleasant. None of these effects were observed for textures of diverse
content. The current findings are relevant for the design and synthesis of affective multimedia content
and for affective scene indexing and retrieval.
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1 Introduction

This study explores the effects of visual dynamic textures on human emotional experience.
Dynamic textures are spatially repetitive, time-varying visual patterns that repeat or seem to
repeat themselves over time. Dynamic textures extend the notion of self-similarity (central
to conventional image texture) to the spatiotemporal domain. A dynamic texture may either
be continuous or discrete. Discrete textures have clearly discernible parts (eg, a group of
marching ants or fluttering leaves), whereas continuous textures represent media that are
either continuous (eg, water or a waving flag that covers the entire field of view) or practically
indiscernible thereof (eg, a waving field of grass seen from far away). Dynamic textures
occur in nature and in videos of waves, moving clouds, smoke, fire, fluttering flags or foliage,
traffic scenes, and moving masses of humans seen from a bird’s eye view. Recently, dynamic
textures have also appeared on large-scale digital billboards and electronic wallpaper
(Huang and Waldvogel 2005). Dynamic textures are thus ubiquitous, and knowledge of
their emotional effects may have important implications for the design and experience of
our daily environment.

It has long been recognized that the emotional connotations of static visual textures are
highly relevant for the appreciation of, for example, textile (Kim et al 2005), wall-paper, and
surface coating (Wang 2009). As a result, the perceptual and emotional properties of static
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textures in general (eg, Machajdik and Hanbury 2010; Mao et al 2003), and the effects of
their color distribution in particular (eg, Lucassen et al 2011; Simmons and Russell 2008),
have been well documented. It appears that the human visual system is optimized for the
perception of natural images (Field 1987, 1994; Parraga et al 2000), which typically have
fractal-like spatiotemporal spectra (Billock 2000; Billock et al 2001a, 2001b). The amplitude
spectra of dynamic natural textures closely follow an inverse power law relationship:

A( f − s, ft ) = c f −β
s f −α

t (1)

where fs and ft are, respectively, the spatial and temporal frequency, with 0.9 ≤ β ≤ 1.2
(M = 1.08; Billock 2000), and 0.61 ≤α≤ 1.2 (Billock et al 2001b). Spatial amplitude spectra
approaching a f −1 distribution are typically considered pleasant, which is also reflected in
EEG (Hagerhall et al 2008) and skin conductance (Taylor et al 2005) response. Deviations
from a spatial f −1 distribution are perceived as unpleasant or uncomfortable (Fernandez
and Wilkins 2008; Juricevic et al 2010; O'Hare and Hibbard 2011). White noise or 1/ f 0 is
perceived as disorder, while f −2 is considered monotonous (Mao et al 2003). The functional
visual brain circuitry that conveys the spatial frequency information is closely related and
functionally linked to the circuitry that conveys emotional information (eg, Adolphs 2004;
Amaral et al 2003). Emotional response to images may therefore indeed be modulated by
their spatial frequency content (Delplanque et al 2007). Research on visual art indicates
that complexity correlates positively with interest and has a non-linear relationship with
pleasure (Forsythe et al 2011). Some of these findings have been used to develop algorithms
that generate visual textures with a desired aesthetic perception, such as (non-)elegance and
(dis-)like (eg, Groissboeck et al 2010).

The emotional experience of haptic (eg, Salminen et al 2011) and auditory (eg, Bigand
et al 2005; Gomez and Danuser 2007) repetitive patterns has also been studied extensively.
Music is well known to arouse strong emotional responses in people (Juslin and Västfjäll
2008). For instance, it is typically found that tempo is positively related to arousal (Bresin and
Friberg 2000; Husain et al 2002) but mainly for popular music and in a non-linear manner
(Kellaris and Kent 1993). Tempo is also positively related to happiness and negatively to
sadness, while irregularity is negatively appraised and volume is generally positively related
to arousal (Bresin and Friberg 2000).

In contrast, the emotional experience of visual dynamic textures is still largely unknown.
Recently, dynamic textures have found applications in many different areas, such as an-
imation (Chuang et al 2005), video classification (eg, Zhao and Pietikainen 2007), video
retrieval (eg, Péteri and Chetverikov 2006; Smith et al 2002), and video synthesis (eg, Chan
and Vasconcelos 2005; Constantini et al 2008; Doretto et al 2003; Lai and Wu 2007; Zhang and
Wangbo 2007), and in the visualization of time-dependent vector fields (eg, Post et al 2003;
Weiskopf et al 2003). The need to control their emotional effects is therefore increasing.

Visual imagery is one of the mechanisms through which auditory stimuli may induce
emotion (Juslin and Västfjäll 2008). Musical characteristics such as repetition, melody,
rhythm, and tempo are especially effective in stimulating vivid mental imagery (McKinney
and Tims 1995). Music and visual information reciprocally influence emotion: music
enhances the emotional experience of images (Baumgartner et al 2006), while visual stimuli
in turn effectively modulate the structural and emotional experience of music (Boltz et al
2009). Visual imagery and music have a common temporal nature. It has been suggested
that rhythm may be the link between the two (Chen et al 2011). It has indeed been shown
that people “hear” purely visual rhythms (Guttman et al 2005), and that auditory signals
drive perceived visual temporal rate (Recanzone 2003). Thus it seems that the brain attempts
to create an emotional and structural congruent unified percept. Although music can be
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modeled by dynamic textures (Barrington et al 2010), it is unknown whether the emotional
response to visual dynamic textures resembles the response to music with similar temporal
characteristics.

In this study, observer experiments were performed to assess emotional experience as
a function of the spatiotemporal characteristics of visual dynamic textures. Participants
watched a set of dynamic textures, representing either water or a collection of various media,
and self-reported their emotional experience.

Based on knowledge about the emotional experience of auditory stimuli, it is hypoth-
esized that (i) temporal regularity is positively related to pleasure, (ii) both the speed and
amplitude of movement are positively related to arousal and negatively to relaxation, and (iii)
complexity of motion and changes therein is positively related to interest. The hypothesized
(baseline) structural model is graphically represented in Figure 1. Note that since this model
is by nature exploratory, all spatiotemporal variables predict all emotional response variables.

Figure 1. Hypothesized structural model describing the interrelations between temporal (left) and
spatial (right) dynamic texture characteristics and human emotional response (middle). Blue (positive)
and red (negative) colors indicate hypothetical path polarity (the sign of the correlation). d1-d5
represent residual disturbance terms.
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2 General methods
2.1 Dynamic textures
Two stimulus sets were created from a total of 56 different dynamic textures that were
manually selected from the DynTex database (Péteri et al 2010). Both sets had a high diversity
of spatiotemporal characteristics. The first set consisted of 30 continuous dynamic textures
representing only water (eg, sea, ponds, fountains, waterfalls, rivers; Figure 2). This collection
will be called the “Water Set”.(1) The second set consisted of 36 textures representing both
continuous and discrete textures of various semantic content (eg, crawling ants, fluttering
leaves, rippling water, moving traffic, flickering candles; Figure 3). This collection will be
called the “Mixed Set”.(2) Both sets had 9 water textures(3) in common.

Figure 2. The Water Set, consisting of 30 different dynamic water textures from the DynTex database.
See the animated version of this figure here.

A set with elements representing a homogeneous medium from a single category (the
Water Set) was used in an attempt to minimize potential confounding affective and cognitive
effects of semantic image content. Also, the results obtained with this set may be related to
earlier results that have been obtained for static water pictures (Nasar and Lin 2003).

In the classification phase of the experiments the textures were presented in their original
format (720 × 576 pixels, 25 fps). In the rating phase the textures were displayed at 1/3 of
their original size (240 × 192 pixels, 25 fps).

(1)The 30 dynamic textures in the Water Set had the following identifiers in the DynTex database:
6ame100, 54ab110, 54pf110, 54pg110, 55fa110, 64adf10, 64adl10, 64cb810, 571b110, 571b310, 644c610,
647b110, 647b210, 647b410, 647b710, 647b810, 647c310, 648e510, 649dd10, 649de10, 649h310, 649i410,
649i810, 649ic10, 6484f10, 6484i10, 6485110, 6485210, 6487510, 6489510.
(2)The 36 dynamic textures in the Mixed Set had the following identifiers in the DynTex database:
6ame100, 6ammi00, 54ab110, 54ac110, 54pf110, 64aa410, 64ab410, 64ab510, 64ad410, 64ad910,
64adb10, 64adf10, 64adl10, 571b110, 571b310, 571c110, 571d110, 644a910, 645ab10, 645b710, 645c110,
645c220, 645c610, 646c410, 646c510, 648b610, 648dc10, 649ha10, 6481f10, 6482c10, 6484d10, 6486b10,
6482210, 6485110, 6485310, 6489510.
(3) The following 9 textures were included in both stimulus sets: 6ame100, 54ab110, 54pf110, 64adf10,
64adl10, 571b110, 571b310, 6485110, 6489510.

http://i-perception.perceptionweb.com/misc/i02/i0477_Animated_Water_Set.gif
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Figure 3. The Mixed Set, consisting of 36 different dynamic textures from the DynTex database. See
the animated version of this figure here.

2.2 Spatio-temporal texture descriptors
The DynTex database also provides 10 structural descriptors for each dynamic texture,
together with annotations that are based on a careful analysis of the underlying physical
process that is represented (Péteri et al 2010).

The following five descriptors were used in the present study to quantify the temporal
characteristics of the dynamic textures. TrajectoryType describes the complexity of motion
and varies from still to straight to curving to oscillating to irregular, with values ranging from
1 to 5, respectively. AppearanceChange similarly describes the complexity of the change
in the texture’s appearance (eg, colour shifting) and varies from no change to directed to
oscillating to irregular, with values 1 to 4, respectively. SpeedFrequency describes the speed of
dynamics and varies from low to medium to high, with values ranging from 1 to 3, respectively.
Amplitude describes the extent of the dynamics and varies from small to medium to large,
with values ranging from 1 to 3, respectively. TemporalRegularity describes the regularity in
terms of the former two variables over time and varies from low to medium to high, with
values ranging from 1 to 3, respectively. Together, SpeedFrequency, TemporalRegularity, and
AppearanceChange describe the temporal frequency content of a dynamic texture, while
TrajectoryType and Amplitude relate to the optic flow in the stimulus pattern.

In addition, the following three descriptors were used to quantify the spatial characteris-
tics of the dynamic textures. SpatialRegularity describes the amount of spatial variation in the
dynamics (ie, the amount of different patterns occurring simultaneously) and varies from low
to medium to high, with values 1 to 3, respectively. SpatialScale describes the scale of spatial
variation between the moving parts of the texture and varies from fine to medium to coarse,
with values ranging from 1 to 3, respectively. SpatialContrast analogously describes the extent
of spatial variation between the moving parts of the texture and varies from low to medium to
high, with values ranging from 1 to 3, respectively. Together, SpatialRegularity, SpatialScale,
and SpatialContrast describe the spatial frequency content of a dynamic texture.

http://i-perception.perceptionweb.com/misc/i02/i0477_Animated_Mixed_Set.gif
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The temporal MainClass descriptor from the DynTex database was not used in this study,
since it represents a rather subjective complex construct charactering the overall motion
type. A fourth spatial descriptor called Density represents the discernability of the texture’s
individual parts and varies from sparse to medium to dense to continuous with values
ranging from 1 to 4, respectively. In this study Density is only used in the analysis of the
observer results for the Mixed Set, since this descriptor inherently applies only to textures
showing discrete elements and not to continuous media.

2.3 Apparatus
Dell Precision 490 PC computers were used to present the dynamic textures to the observers
and to register their response. The computers were equipped with Dell 19-inch monitors,
with a screen resolution of 1280 × 1024 pixels, and a screen refresh rate of 60 Hz. Observers
used standard mouse pointers to indicate their response and to move the dynamic textures
on the screen.

2.4 Participants
It has previously been observed that the emotional experience of (static) textures is invariant
for age, gender, personality and social class (Nasar and Lin 2003). Convenience sampling was
therefore used to select the 107 participants of this study.

The experimental protocol was reviewed and approved by TNO internal review board on
experiments with human participants and was in accordance with the Helsinki Declaration
of 1975, as revised in 2000 (World Medical Association 2000). The participants gave their
informed consent prior to testing. The participants received a modest financial compensation
for their participation.

2.5 Analyis
SPSS 19 (www.spss.com) was used for the statistical analysis of the data. IBM SPSS AMOS
19 (Arbuckle 2010) was used evaluate the (hypothetical) baseline model shown in Figure 1
through covariance structure analysis.

Structural equation modeling (SEM) is a very general statistical modeling technique
widely used in the behavioral sciences (eg, MacCallum and Austin 2000). SEM provides
a very general and convenient framework for statistical analysis that includes several
traditional multivariate procedures, such as factor analysis, path analysis, regression analysis,
discriminant analysis, and canonical correlation as special cases. The basic idea differs from
the usual statistical approach of modeling individual observations. In multiple regression or
ANOVA the regression coefficients or parameters of the model are based on the minimization
of the sum of squared differences between the predicted and observed dependent variables.
SEM approaches the data from a different perspective. Instead of considering variables
individually, the emphasis is on the covariance structure. Parameters are estimated in
structural equation modeling by minimizing the difference between the observed covariances
and those implied by a structural or path model. Among the strengths of SEM is the ability to
construct latent variables: variables which are not measured directly, but are estimated in
the model from several measured variables, each of which is predicted to 'tap into' the latent
variables. This allows the modeler to explicitly capture the unreliability of measurement in
the model, which in theory allows the structural relations between latent variables to be
accurately estimated. Structural equation models are usually represented by a set of matrix
equations and visualized by graphical path diagrams.

SEM allows both confirmatory and exploratory modeling; it is suited to both theory
testing and theory development. Confirmatory modeling usually starts out with a hypothesis
that gets represented in a causal model. The concepts used in the model must then be
operationalized to allow testing of the relationships between the concepts in the model. The
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model is tested against the obtained measurement data to determine how well the model fits
the data. The causal assumptions embedded in the model often have falsifiable implications,
which can be tested against the data. With an initial theory, SEM can be used inductively by
specifying a corresponding model and using data to estimate the values of free parameters.
The initial hypothesis usually requires adjustment in light of model evidence.

We assessed the overall fit of the hypothesized model to the data using several goodness-
of-fit measures, such as the χ2 goodness-of-fit test; the Comparative Fit Index (CFI; Bentler
1990); the model residual, measured by the Root Mean Square Error of Approximation
(RMSEA; Steiger 1990); and relative goodness of fit, measured by the Akaike Information
Criterion (AIC; Akaike 1974, 1987). A significantχ2 statistic may suggest that the hypothesized
model does not adequately fit the observed data, whereas a non-significantχ2 suggests model
adequacy. However, this index is sensitive to sample size and violations of the assumption
of multivariate normality. Therefore, alternative fit indices are generally used (Schermelleh-
Engel et al 2003). The CFI indexes the relative change in model fit as estimated by the
noncentral chi-square of a target model versus the independence model. The RMSEA
measures the discrepancy due to approximation and is relatively independent of sample size.
The AIC adjusts χ2 for the number of estimated parameters.

3 Experiment I: Affective dynamic texture descriptors
A preliminary experiment was performed to select the most appropriate adjectives describing
the affective properties of dynamic textures. The widely used and well-validated Pleasure-
Arousal-Dominance (PAD) emotional state model (eg, Arifin and Cheung 2007; Mehrabian
1996) was used in this study to encode the affective characteristics of the dynamic textures.
This model states that the emotional spectrum can reliably be described along three
bipolar dimensions: pleasure-displeasure (ie, affect), relaxed/aroused (ie, intensity), and
controlling/controlled (ie, dominance). The participants’ emotional response to their viewing
of the dynamic textures was measured by self-report through the use of a scoring list of
affective adjectives. Self-report has been shown to be a reliable measure of emotional
reactions to audio-video clips and is consistent with five peripheral physiological signals:
galvanic skin resistance (GSR), electromyograms (EMG), blood pressure, respiration patterns,
and skin temperature (Soleymani et al 2008).

3.1 Methods
3.1.1 Affective terms . A list of 58 candidate affective adjectives was compiled from a literature
study (eg, Cerf et al 2007; Fujiwara et al 2006; Küller 1975; Masakura et al 2006; Russell 1980;
Russell et al 1981; Russell and Pratt 1980; see Figure 4). These 58 candidate adjectives were
first divided into 10 categories. Eight categories corresponded to the ends of the four axes of
Russell’s circumplex model of affect (Pleasure, Arousal, Interest, Relaxation [Russell 1980];
see upper section of Figure 4). The remaining two categories corresponded to the ends of the
Dominance scale (Figure 4 lower section). Then, a scoring list was made which listed all 58
candidate terms in a spatial layout that grouped the 52 adjectives in the Pleasure, Arousal,
Interest, and Relaxation categories according to a circumplex ordering (Figure 4 upper
section) and listed the 6 adjectives in the Dominance category in a separate section (Figure 4
lower section). The circumplex ordering was achieved by mapping the eight categories from
Russel’s model onto the eight outer cells of a 3 × 3 square matrix (see also the left button
section of Figure 6).

3.1.2 Participants. A total of 24 participants (14 males and 10 females), ranging in age from
18 to 55 years (M = 36.2, SD = 15.9) participated in this experiment.
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3.1.3 Stimuli. The stimuli were 36 highly diverse (with respect to spatial and temporal
characteristics, and with respect to semantic scene content) dynamic textures from the
DynTex database.(4)

3.1.4 Procedure. Before starting the experiment the participants read the experimental
instructions. These instructions explained that the participants should attribute the most
appropriate adjectives from a given list of candidate affective adjectives to each of presented
dynamic textures. The participants were informed about the nature of Russell’s circumplex
model of affect (Russell 1980), and in particular about the fact that affective terms close
to each other on the perimeter of the circumplex refer to similar emotions while terms on
opposite sides of the same bipolar axis are mutually exclusive. The participants were asked
to select at least one term from the entire set of 8 categories representing the circumplex
model of affect. They were allowed to select more than one term, and terms in adjacent (in
the circumplex model) categories, with a maximum of three terms from a single category.
Additionally, they were asked to select at least one term from each of the two dominance
categories. It was emphasized that the participants should ignore the semantic content of
the video clips and base their judgments solely on the spatiotemporal characteristics of the
textures, preferably using their first impression. Each participant privately watched the entire
stimulus set and performed the experiment self-paced without any time restrictions. The
experiment typically lasted about an hour.

3.2 Results
Four adjectives had item-total correlations smaller than 0.3 or reduced Cronbach’s alpha
inter-item reliability score in the category below 0.7 and were therefore deleted for lack of re-
liability. Finally, the two most frequently scored adjectives in each category were selected (see
bold printed adjectives in Figure 4), and categories on opposite ends of the circumplex model
were joined. The result was a list of 28 appropriate affective terms. The resulting dimensions
were Relaxation (disturbing, nervous – tranquil, restful), Pleasure (uncomfortable, unpleasant
– beautiful, pleasant), Arousal (passive, lazy – active, lively), Interest (boring, monotonous
– stimulating, interesting), and Dominance (weak, inconspicuous – strong, conspicuous).
These five dimensions were used to measure emotional response in the rest of this study.
The two additional dimensions Complexity (complex, organized – simple, disorganized) and
Regularity (regular, fluent – irregular, choppy) were adopted to measure the participants’
impression of, respectively, the spatial and temporal textures characteristics (see Figure 6).

4 Experiment II: Affective rating of dynamic textures
A second experiment was performed to measure the degree to which the affective classifiers
determined in Experiment I applied to each of the dynamic textures of the Water Set and
the Mixed Set. In addition, the spatiotemporal characteristics of the dynamic textures were
investigated through the concepts of spatial complexity and temporal regularity.

4.1 Participants
The set of dynamic water textures was judged by 38 participants (22 males and 16 females),
whose age ranged from 19 to 64 years (M = 37.0, SD = 16.2). The set of mixed dynamic textures
was judged by 45 participants (23 males and 22 females), ranging in age from 18 to 64 years
(M = 34.8, SD = 17.5).

(4)The 36 dynamic textures had the following identifiers in the DynTex database:
644a910,645ab10,645b710,645c110,645c220,645c610,646c410,646c510,648b610,648dc10,649ha10,
6481f1, 6482c10,6484d10,6486b10,6482210,6485110,6485310,6489510,6ame100,6ammi00,54ab110,
54ac110, 54pf110,64aa410,64ab410,64ab510,64ad410,64ad910,64adb10,64adf10,64adl10,571b110,
571b310,571c110,571d110.
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Figure 4. Upper 3 rows: Eight categories of candidate affective adjectives ordered corresponding to
Russell’s circumplex model of affect (Pleasure – middle row, Arousal – middle column, Interest –
lower-left to top-right diagonal, Relaxation – top-left to lower right diagonal [Russell 1980]; see also
Figure 5). Lower row: Two categories corresponding to the Dominance scale (left: non-dominant; right:
dominant). The two most frequently selected adjectives in each category are printed in bold.

4.2 Procedure
Before starting the experiment the participants read the experimental instructions. These
instructions explained the experimental procedure, the stimulus presentation programme,
and its response buttons, and showed screen shots from all stages of the experiment.
The instructions emphasised that the participants should ignore the semantic content
of the dynamic textures and should base their judgments solely on their spatiotemporal
characteristics, preferably using their first impression. The participants were also informed
about the nature of Russell’s circumplex model of affect (Russell 1980), and in particular
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Figure 5. A two-dimensional representation of the self-report affect circumplex space, with 8 circularly
ordered affective states represented by two adjectives each (after Russell 1980). The horizontal axis
corresponds to Pleasure, the vertical axis to Arousal, the right-diagonal to Interest, and the left-diagonal
to Relaxation.

about the fact that affective terms close to each other on the perimeter of the circumplex
refer to similar emotions, while terms on opposite sides of the same bipolar axis are mutually
exclusive. The participants were asked to select at least one and most two (adjacent) affective
terms from the left response button section and to select exactly one term on each of the 3
rows on the right response button section. The participants could indicate their selection by
placing the cursor successively over the corresponding response buttons on the screen and
clicking a mouse button (see Video 1).

An experimental run consisted of two parts. In the first part of the experiment the
participants attributed each dynamic texture the appropriate affective and spatiotemporal
classification terms. In the second part of the experiment, the participants rank ordered the
dynamic textures according to the classification terms that had been attributed in the first
part of the experiment.

A typical run went as follows. After the participants had read the instructions, the
experimenter selected the appropriate set of dynamic textures (ie, either the water or the
mixed set) and started the test programme in the texture classification mode. The test
programme then presented the first dynamic texture of the test set in the upper half of
the screen, while the lower half of the screen showed two sections with response buttons
(Figure 6). The buttons in the left section correspond to categories from Russell’s circumplex
model of affect (Pleasure and Arousal; Russell 1980). The buttons in the right response
section correspond, respectively, to Dominance (weak, inconspicuous – strong, conspicuous),
spatial Complexity (complex, organized – simple, disorganized), and temporal Regularity
(regular, fluent – irregular, choppy). The participants then classified the texture by pressing
the buttons labelled with the affective and structural terms that corresponded most closely
to their impression of the texture. A button changed colour when activated. A previous
classification could be undone by pressing an activated button a second time. When they
were satisfied with their classification, the participants could press a button labelled “Next”

http://i-perception.perceptionweb.com/misc/i02/i0477_Video.mp4
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Figure 6. Screen layout during the affective classification phase of the experiment. The dynamic texture
is shown on top. Buttons in the left section correspond to the Pleasure –Arousal scale. Buttons in the
right section correspond to, respectively, Dominance (weak, inconspicuous – strong, conspicuous),
SpatialStructure (complex, organized – simple, disorganized), and TemporalStructure (regular, fluent –
irregular, choppy).

to proceed to the next dynamic texture. When all textures in the test set had been labelled
the test programme displayed a message that the rating phase would start when the “Next”
button was pressed again. In the rating mode, the participants successively rank ordered the
dynamic textures with respect to each of the classification terms that they had previously
attributed to the textures during the first part of the experiment. Because of this procedure,
a different number of dynamic textures (ranging from 0 to the cardinality of the test set)
may correspond to (and therefore need to be rated for) a given classification term. This
procedure was chosen to restrict the experimental time (rating all textures with respect to all
classification terms takes a large amount of time, and may easily lead to observer fatigue),
and to keep the participants motivated (rating many textures with respect to terms that
obviously don’t apply may easily induce boredom).

In the rating mode, all dynamic textures in a given category (ie, textures to which a given
classification term had been attributed) were initially shown in the upper part of the screen
(Figure 7a). A scale bar in the middle of the screen showed the current classification term
together with the range of the scale (ie, the degree to which the classification term applies to
the dynamic texture: ranging from 0 = “not at all” to 1 = “very much”). A participant could
then drag the dynamic textures from the upper part of the screen to the lower part using
a mouse (Figure 7b). The horizontal position of the midpoint of a dynamic texture patch
is adopted as its value on the rating scale. When all dynamic textures in a category had
been ordered with respect to their common classifier, the participant could proceed to the
next texture category by pressing a button that appeared in the upper part of the screen
(Figure 7c). Before this button was pressed, the order of the dynamic textures could still be
adjusted.

The test programme allowed the simultaneous presentation of an arbitrary number
of video clips on a regular computer. Hence, all textures could dynamically be presented
simultaneously at their full frame rate. If there were more textures in a category than could
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Figure 7. Screen layout during the affective rating phase of the experiment. This example illustrates
the rating of dynamic water textures. (a) Initially, all dynamic textures in a given category are shown
in the upper part of the screen. A scale bar in the middle of the screen shows the classification term
(in this example: Active, Lively) and the range of the scale (ie, the degree to which the classification
term applies to the dynamic textures: ranging from 0 = “not at all” to 1 = “very much”). (b) Participants
can drag the dynamic textures from the upper part of the screen to the lower part using a mouse. The
horizontal position of the midpoint of a dynamic texture patch is adopted as its value on the rating
scale. (c) When all dynamic textures in a category have been ordered with respect to their common
classifier, the participant can proceed to the next texture category by pressing a button that appears in
the upper part of the screen. Before pressing this button, the order of the dynamic textures can still be
adjusted.

simultaneously be represented in the upper display area, the programme initially showed
only the first elements of the category. Each time a texture was moved to the lower part of
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the screen, a new element from the category appeared in the display area that had become
available in upper part of the screen, until finally all textures in the category were represented
on the screen.

The experiments were performed self-paced without any time restrictions. A single run
typically lasted between 30 and 45 minutes.

4.3 Preliminary analyses
The mean rating scores were computed for each texture in both (Water and Mixed) datasets
and for all classification terms. The two resulting datasets with scores on the spatiotemporal
characteristics (Table 1) and mean scores for the emotional response variables for each
texture (Table 2) were then used as groups in the model of Figure 1, which was trimmed and
then analysed for multi-group invariance.

Absolute values of the multivariate kurtosis and all the endogenous variables’ skew and
kurtosis values were less than 3, and none of the endogenous variables had p-values smaller
than .05 for the Kolmogorov-Smirnov and Shapiro-Wilk normality tests. Linearity was found
roughly between only certain variables, but for these cases no curvilinear relationships were
found either. Box-plots and Mahalanobis distances revealed no significant outliers. No other
assumptions were violated. All statistical model assumptions were thus found to hold.

The response variables Complexity and Regularity are directly related to the spatiotem-
poral stimulus descriptors from the DynTex database: Regularity represents an overall
impression of TrajectoryType, SpatialRegularity, TemporalRegularity, and AppearanceChange,
while Complexity refers to an overall impression of SpatialContrast, Amplitude, SpeedFre-
quency, and SpatialScale. Hence, it is of interest to know to what extent these descriptors
indeed explain the participants’ impressions of the dynamic textures. A regression analysis
was therefore performed with Complexity as the dependent variable and the spatio-temporal
texture descriptors as the independent variables. R2 was 0.576. When the analysis was
performed with Regularity as the dependent variable, R2 was 0.596. Hence, the spatio-
temporal descriptors indeed adequately explain the participants’ impressions of the textures.

Table 1. Descriptive statistics (Mean and Standard Deviation) of the spatiotemporal characteristics of
the Water and Mixed stimulus sets. See text for an explanation of the descriptors.

Descriptor Water textures Mixed textures

M SD M SD

Trajectory type 3.733 1.081 3.597 1.189
Appearance change 3.400 1.020 2.778 1.180
Speed frequency 2.333 0.547 2.250 0.500
Amplitude 1.300 0.837 1.500 0.878
Temporal regularity 1.733 0.450 1.861 0.351
Spatial regularity 1.667 0.606 1.694 0.467
Spatial scale 1.767 0.504 1.778 0.540
Spatial contrast 1.500 0.509 1.722 0.513

4.4 Model modification
Firstly, all regression paths in the initial model from Figure 1 that were not significant for both
(water and mixed) data sets were deleted one by one, starting with the paths with the highest
p-values and working down. All regression paths were then one by one constrained to be
equal across the data sets, starting with the paths that had the greatest inter-set differences in
regression coefficients and p-values. Constraints were kept only if they did not significantly
degrade the model fit (ie, if they resulted in an insignificant increase in χ2). Since the two
datasets result from two different observer populations watching different dynamic texture
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Table 2. Descriptive statistics (Mean and Standard Deviation) of the emotional (Relaxation, Pleasure,
Arousal, Interest, Dominance), spatial (Complexity), and temporal (Regularity) response variables of
the Water and Mixed stimulus sets. See text for an explanation of the descriptors.

Response variable Water textures Mixed textures

Mean SD Mean SD

Relaxation 0.551 0.242 0.560 0.177
Pleasure 0.548 0.222 0.536 0.184
Arousal 0.479 0.249 0.454 0.211
Interest 0.460 0.209 0.451 0.156
Dominance 0.480 0.239 0.496 0.154
Complexity 0.479 0.249 0.448 0.178
Regularity 0.522 0.233 0.538 0.186

sets, the resulting path constraints indicate that the corresponding relationships are invariant
across populations and texture types, and consequently have high internal and external
validity and high replicability. The comparative model fit over the independence model,
measured by the Comparative Fit Index (CFI), the model residual, measured by the Root
Mean Square Error of Approximation (RMSEA), and the relative goodness of fit, measured by
the Akaike Information Criterion (AIC), are all better for the final than for the unconstrained
model, and changes in these statistics were generally in line with changes in χ2. After adding
the valid constraints, no p-values exceeded 0.25, so the model was not further trimmed. The
final model is presented in Figure 8.

4.5 Final results
Table 3 reports the regression path coefficients of the final model shown in Figure 8 (the
coefficients are not included in this figure to prevent clutter). For the standardised regression
coefficients, values below 0.3 can be considered as weak, values between 0.3 and 0.5 as
modest, and values larger than 0.5 as strong.

TrajectoryType was a modest, positive predictor of Relaxation for the water textures:
water in complex motion was perceived as relaxing. However, this relation may be specific
for homogeneous or water textures, since no such relation was observed for dynamic
textures with diverse content. There was a trend towards significance for a relation between
TrajectoryType and Pleasure. This relation was positive for water textures, but negative for
textures of diverse content, providing tentative support that (like in visual art) the relation
between pleasure and complexity is non-linear. Linearity tests correspondingly found only
very rough linearity. TrajectoryType had a weak, negative correlation with Arousal and
Dominance for both stimulus sets, indicating that arousal and dominance both increase
with motion complexity. In sum, motion complexity generally has a slightly relaxing and
weakening effect on the perception of a dynamic texture, while its effect on pleasure may be
non-linear.

AppearanceChange correlated positively with Arousal and Dominance and negatively
with Relaxation. The effects were all weak for the Water Set and modest for the Mixed Set. All
relations were invariant between the two texture sets and thus had high validity. In contrast
with the complexity of motion itself, the complexity of changes in the motion of a texture is
thus perceived as dominant and arousing.

SpeedFrequency correlated modestly and positively with Dominance and Arousal, and it
correlated weakly and negatively with Relaxation and Pleasure. All relations were invariant
between the two texture sets. As such, the speed of a texture’s dynamics has a dominant
and arousing effect that is regarded as unpleasant. Amplitude only predicted Pleasure, and
the correlation was negative and invariant between the two texture sets: it was modest for
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Figure 8. The final model. Dashed lines represent relationships that vary per texture set.

the Water Set and weak for the Mixed Set. That is, the extent of a texture’s dynamics has an
unpleasant effect. TemporalRegularity, which describes the regularity of the previous two
variables, had a modestly positive correlation with Pleasure for the Water Set, but no relation
for the Mixed Set. The desirability of dynamic regularity in textures may thus be content
specific.

SpatialRegularity correlated weakly positively with Relaxation. Correspondingly, there
was a weak and negative correlation with Arousal. SpatialRegularity also correlated weakly
positively with Pleasure. Its relation with Dominance was modestly negative, and the relation
with Interest was weakly negative. All relations were invariant between the two texture
sets, except the relation with Relaxation, and that relation also did not vary in strength. In
conclusion, a texture with more regularity in space, or less different dynamics occurring
simultaneously, elicits somewhat more relaxation and pleasure and less interest, and is
perceived as less dominant.

SpatialScale correlated negatively with Relaxation and positively with Arousal. All effects
were weak, except the negative correlation with Relaxation for the Mixed Set, which was
modest. SpatialScale also correlated weakly positively with Dominance. Its relation with
Pleasure was modestly negative for the Water Set and strongly negative for the Mixed
Set. All relations were invariant between the two texture sets. Similar to the speed of a
texture’s dynamics, the relative surface area of the dynamics has an unpleasant, arousing,
and dominant effect, which is greater for the Mixed Set than for the Water Set.
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Table 3. Regression coefficients for the paths in the final structural equation model. For estimates that
are different for the two (water and mixed) stimulus sets, the values are reported as [estimate water
set]/[estimate mixed set].

Path Unstandardised
regression
weight

S.E. p Standardised
regression
weight

Trajectory type → relaxation 0.092/−0.001 0.030/0.018 0.002/0.952 0.38/−0.007
Trajectory type → pleasure 0.045/−0.033 0.024/0.019 0.063/0.086 0.178/−0.191
Trajectory type → arousal −0.042 0.017 0.015 −0.175/−0.240
Trajectory type → dominance −0.032 0.014 0.023 −0.157/−0.227
Appearance change → arousal 0.070 0.018 <0.001 0.276/0.397
Appearance change → dominance 0.044 0.014 0.002 0.201/0.306
Appearance change → relaxation −0.060 0.016 <0.001 −0.234/−0.39
Speed frequency → pleasure −0.136 0.033 <0.001 −0.27/−0.334
Speed frequency → dominance 0.130 0.032 <0.001 0.318/0.383
Speed frequency → arousal 0.177 0.038 <0.001 0.373/0.425
Speed frequency → relaxation −0.104 0.035 0.003 −0.219/−0.288
Amplitude → pleasure −0.135 0.031 <0.001 −0.411/−0.172
Temporal regularity → pleasure 0.269/−0.016 0.059/0.065 <0.001/ 0.805 0.439/−0.027
Spatial regularity → relaxation 0.125/0.097 0.053/0.047 0.018/0.038 0.29/0.249
Spatial regularity → pleasure 0.085 0.032 0.008 0.188/0.195
Spatial regularity → arousal −0.066 0.038 0.079 −0.155/−0.148
Spatial regularity → dominance −0.113 0.032 <0.001 −0.308/−0.313
Spatial regularity → interest −0.066 0.040 0.101 −0.188/−0.202
Spatial scale → relaxation −0.146 0.034 <0.001 −0.283/−0.436
Spatial scale → pleasure −0.212 0.033 <0.001 −0.387/−0.560
Spatial scale → arousal 0.100 0.038 0.008 0.195/0.260
Spatial scale → dominance 0.098 0.031 0.002 0.221/0.311
Spatial contrast → dominance 0.178/−0.069 0.059/0.038 0.002/0.070 0.407/−0.210
Spatial contrast → interest 0.141/−0.010 0.071/0.049 0.047/0.831 0.339/−0.035
Spatial contrast → arousal 0.253/−0.033 0.063/0.049 <0.001/0.504 0.496/−0.081
Spatial contrast → pleasure −0.155/0.080 0.052/0.044 0.003/0.069 −0.287/0.201
Spatial contrast → relaxation −0.198/0.032 0.063/0.042 0.002/0.445 −0.386/0.092

Table 4. Proportions of explained variance (R2) for the dependent variables.

Pleasure Arousal Dominance Interest Relaxation

Water set 0.734 0.554 0.475 0.150 0.560
Mixed set 0.571 0.492 0.530 0.042 0.496

SpatialContrast had no relations with the emotional response variables for the Mixed Set.
For the Water Set, it correlated modestly positively with Arousal and a modestly negatively
with Relaxation. SpatialContrast furthermore correlated weakly negatively with Pleasure
and modestly positively with both Interest and Dominance. In conclusion, the effects of a
water texture’s degree of spatial variation are arousing, dominant, mildly unpleasant, and
interesting. These effects are not seen for textures of diverse content.

Table 4 presents the proportions of explained variance for the dependent variables.
In line with the many significant predictors, explained variance was around 50% for all
variables except Pleasure for the water textures and Interest in general. Proportions around
50% are typically considered a significant amount for indeterminate concepts like emotions
(Kline 2010, p. 185; denotes values below 1% as small, 10% as typical or medium, and
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Table 5. Variances of the predictor variables.

Predictor Water set Mixed set

σ2 S.E. p σ2 S.E. p

Trajectory type 1.129 0.296 <0.001 1.372 0.329 <0.001
Appearance change 1.007 0.264 <0.001 1.353 0.324 <0.001
Speed frequency 0.289 0.076 <0.001 0.243 0.058 <0.001
Amplitude 0.677 0.177 <0.001 0.750 0.180 <0.001
Temporal regularity 0.196 0.051 <0.001 0.120 0.029 <0.001
Spatial regularity 0.356 0.093 <0.001 0.212 0.051 <0.001
Spatial scale 0.246 0.064 <0.001 0.284 0.068 <0.001
Spatial contrast 0.250 0.066 <0.001 0.256 0.061 <0.001
d1 (relaxation) 0.029 0.008 <0.001 0.016 0.004 <0.001
d2 (pleasure) 0.019 0.005 <0.001 0.017 0.004 <0.001
d3 (arousal) 0.029 0.008 <0.001 0.021 0.005 <0.001
d4 (interest) 0.037 0.010 <0.001 0.021 0.005 <0.001
d5(dominance) 0.025 0.007 <0.001 0.013 0.003 <0.001

values above 30% as large). These results also indicate that the selected spatio-temporal
video characteristics adequately characterise a dynamic texture with regard to its effects
on emotional response. Even the values for Interest are more in the range of “typical” than
“small”. Table 5 reports the variances of all the predictors and the residual error terms. All
variances were significant. This finding indicates that there was significant variability in the
spatio-temporal characteristics of the selected dynamic textures. Note that, in agreement
with the high proportions of explained variance, the variances of the residual error terms are
small relative to those of the predictors.

5 Discussion
The relation between various spatiotemporal characteristics and emotional experience was
studied for visual dynamic textures. Motion complexity was found to have mildly relaxing
and nondominant effects. In contrast, motion change complexity was found to be arousing
and dominant. The speed of dynamics had arousing, dominant and unpleasant effects. The
amplitude of dynamics was also regarded as unpleasant. The regularity of the dynamics may
interact with video content in eliciting emotions. The regularity of the dynamics over the
textures’ space was found to be uninteresting, nondominant, mildly relaxing, and mildly
pleasant. The spatial scale of the dynamics had an unpleasant, arousing, and dominant
effect, which was larger for textures with diverse content than for water textures. For water
textures, the effects of spatial contrast were arousing, dominant, interesting, and mildly
unpleasant, but none of these effects were found for textures of diverse content.

These results only partially agree with the hypotheses, which demonstrate that the
effects are domain specific and the hypotheses cannot easily be derived from literature
on other sensory domains, such as the studies on the emotional response to auditory or
tactile stimuli. Hypothesis (i)—temporal regularity is positively related to pleasure—was only
supported for the set of water textures: no relation was found for the set of mixed textures.
Hypothesis (ii)—both the speed and amplitude of movement are positively related to arousal
and negatively to relaxation—was supported for the speed of the dynamics, but not for
their amplitude. Amplitude did not significantly correlate with either Arousal or Relaxation.
Finally, hypothesis (iii)—complexity of motion and change therein is positively related to
interest—was not even partially supported. Neither motion complexity nor motion change
complexity correlated significantly with Interest.
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The present study shows that the speed of a texture’s dynamics has a dominant and
arousing effect. This finding agrees with the result of an earlier study on static imagery
of water textures where it was found that stillness is perceived as relaxing and that (the
impression of) movement is perceived as exciting (Nasar and Lin 2003). The current finding
that complexity correlates positively with pleasure for water textures agrees with the earlier
results that composite water textures are preferred over simple ones (Nasar and Lin 2003),
and that complexity correlates positively with interest in visual art (Forsythe et al 2011).
The present result that complexity, speed, and amplitude of movement all serve to increase
arousal also agrees with similar findings from the tactile domain, where it was found that
“Smooth” stimuli elicit a lethargic feeling, and “Prickly” elicits a nervous feeling, while
an increase in frequency and amplitude is positively correlated with the intensity of the
emotional response (Suk et al 2009).

Certain findings are of particular interest. AppearanceChange correlated positively with
Arousal and Dominance and negatively with Relaxation, and these relations were all weak
for the water textures but moderate for the textures of diverse content. This discrepancy in
strength may have occurred because water textures all have relatively high and invariant
motion change complexity (Mwater= 3.400, SDwater = 1.020; Mmixed = 2.778, SDmixed = 1.180),
so that participants watching the Water Set may have adapted to its effects while participants
watching the Mixed Set had less opportunity to adapt.

The effects of SpatialContrast also differed greatly between the two texture sets. Spatial-
Contrast correlated significantly with several emotional response variables for the Water Set,
but it was not a significant predictor for any variable in the Mixed Set. It is hypothesised
that this distinction occurs because the spatial contrast of the diverse textures exists
predominantly between different objects (eg, cars, flora), for which different dynamics are
naturally expected. Conversely, the spatial variation of water textures occurs within the same
homogeneous water mass and may in consequence be perceived as more unexpected and
chaotic. To informally test this hypothesis, a regression analysis was performed with Spatial-
Contrast*Density as the predictor of the emotional response variables. Density is additional
annotation in the DynTex database and describes the discernability of a texture’s individual
parts and varies from sparse to medium to dense to continuous, with values ranging from 1
to 4, respectively. A significant interaction between Densityand SpatialContrast was found
for Relaxation (p= 0.046; β = –0.334) and Arousal (p = 0.023; β = 0.378), providing tentative
support for the hypothesis.

Interest was an outlier with regards to the relatively low amount of its variance that could
be explained by the spatiotemporal texture characteristics. It is hypothesised that interest is
primarily determined by content, although spatio-temporal texture characteristics evidently
play a significant role as well.

The current rating procedure was adopted because it was observed in earlier experiments
that participants tend to forget their responses for similar samples shown earlier in a trial
when samples are shown individually one after the other (Lucassen et al 2011). This would
increase the response variability and reduce intra- and inter-observer correlations. A possible
limitation of the present emotional response rating procedure is that it may be prone to bias.
In this study, the participants assigned the stimuli to several emotional classes during a first
viewing and ranked all stimuli in each class during a second viewing. Hence, habituation
(both by repeated viewing of the same stimuli and by simultaneously viewing all stimuli in the
same class) may have diminished the emotional response during the second viewing of the
textures, which would imply that the results underestimate the true effects. A procedure in
which the stimuli are rated individually may be less prone to this type of bias. Also, presenting
each texture individually instead of the simultaneous presentation of all previously selected
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textures eliminates relativity biases. In this study, the participants (despite their instructions)
may merely have rated the textures relative to the other textures that were simultaneously
presented, instead of using the absolute scale of 0 to 1. Fortunately, no statistical problems
were observed as a result of the chosen methodology, and all indicators of the study’s validity
were favourable. As most of the relations were invariant across the two stimulus sets (ie,
for different textures and participants), the results (though exploratory) had high internal
and external validity. The selected spatio-temporal characteristics furthermore explain
large amounts of the emotional response variance and thus adequately characterise the
dynamical textures. After standardisation, the observed relations were stronger for the mixed
textures than for the set of water textures. This suggests that the current findings may even
underestimate the emotional effects of dynamic textures in real life. In addition, the current
results may also underestimate these effects because of the small angular size of the stimuli
that were used (about 18 deg). In real life dynamic textures may fill a much larger part of the
visual field of the observer, which may significantly enhance the effects that were observed
here (eg, Lin et al 2007).

Taking into account the high prevalence of dynamic textures in nature and their increasing
importance in digital media, the current findings may have important practical implications
for designers and observers of dynamic sceneries. Possible applications are the synthesis of
affective multimedia content (eg, backgrounds for games, video clips, or digital wallpaper;
eg, Houtkamp et al 2008), the design of restorative or healing environments (Dijkstra et al
2006), and affective video retrieval (Hanjalic 2006, Hanjalic and Xu 2005). For instance, virtual
environments can be made emotionally more compelling by introducing dominant and
arousing dynamic textures, such as large and fast breaking waves, that heighten tension
and create dramatic effects (Houtkamp et al 2008). Similarly, the restorative value of healing
environments may benefit from the introduction of relaxing dynamic textures like slowly
undulating water surfaces or waving corn fields (Dijkstra et al 2006). Displays on empty train
stations may stimulate the lonely or bored traveller by showing interesting and complex
dynamic patterns, while the same displays may have a relaxing effect on hurried and aroused
travellers by showing simple and slow moving patterns when stations are crowded and
tension mounts (Van Hagen 2011). Most spatiotemporal dynamic texture descriptors from
the DynTex database have a direct relation with computer vision algorithms (Péteri et al
2010). The relation between these descriptors and human emotional experience therefore
enables the automatic indexing and retrieval of affective video content.

Future research could investigate the hypothesised explanations for some of the current
findings, such as a non-linear relationship between complexity and pleasure, that spatial
contrast evokes emotional responses only if it occurs within the same object and that interest
is predominantly a result of content. Interaction effects between the relationships that were
observed in this study could also be explored. It would also be interesting to compare the
results for the Water Set with those obtained for other continuous or semi-continuous media
(eg, waving textile or grass), to investigate whether the difference between the results for
the Water Set and the Mixed Set reflects a semantic component or the fact that not all
observer impressions are captured by the current set of descriptors. Finally, it could be tested
if the results of this study can be extrapolated to non-recurrent textures, which would be of
significance for the emotional experience of people’s entire visual surroundings.
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