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1. Introduction  
Night vision cameras are widely used for military and law enforcement applications related 
to surveillance, reconnaissance, intelligence gathering, and security. The two most common 
night-time imaging systems are low-light-level (e.g., image-intensified) cameras, which 
amplify the reflected visible to near infrared (VNIR) light, and thermal infrared (IR) 
cameras, which convert thermal energy from the midwave (3 to 5 microns) or the long wave 
(8 to 12 microns) part of the spectrum into a visible image. These systems create images with 
a single (one-dimensional) output per pixel.  As a result their ability to discriminate different 
materials is limited. This can be improved by combining systems that are sensitive to 
different parts of the electromagnetic spectrum, resulting in multiband or hyperspectral 
imagers. The number of different outputs increases dramatically by combining multiple 
sensors (e.g. up to N2 for two sensors, when the number of different outputs for each sensor 
is N), which in turn leads to a significant increase in the number of materials that can be 
discriminated. The combination of multiple bands allows for meaningful color 
representation of the system output. It is therefore not surprising that the increasing 
availability of fused and multiband infrared and visual nightvision systems (e.g. Bandara et 
al., 2003; Breiter et al., 2002; Cho et al., 2003; Cohen et al., 2005; Goldberg et al., 2003) has led 
to a growing interest in the (false) color display of night vision imagery (Li & Wang, 2007; 
Shi et al., 2005a; Shi et al., 2005b; Tsagaris & Anastasopoulos, 2006; Zheng et al., 2005).  
In principle, color imagery has several benefits over monochrome imagery for surveillance, 
reconnaissance, and security applications.  The human eye can only distinguish about 100 
shades of gray at any instant. As a result, grayscale nightvision images are sometimes hard 
to interpret and may give rise to visual illusions and loss of situational awareness. Since 
people can discriminate several thousands of colors defined by varying hue, saturation, and 
brightness, a false color representation may facilitate nightvision image recognition and 
interpretation. For instance, color may improve feature contrast, thus enabling better scene 
segmentation and object detection (Walls, 2006). This may allow an observer to construct a 
more complete mental representation of the perceived scene, resulting in better situational 
awareness. It has indeed been found that scene understanding and recognition, reaction 
time, and object identification are faster and more accurate with color imagery than with 
monochrome imagery (Cavanillas, 1999; Gegenfurtner & Rieger, 2000; Goffaux et al., 2005; 
Oliva & Schyns, 2000; Rousselet et al., 2005; Sampson, 1996; Spence et al., 2006; Wichmann et 
al., 2002).  Also, observers are able to selectively attend to task-relevant color targets and to 
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ignore non-targets with a task-irrelevant color (Ansorge et al., 2005; Folk & Remington, 1998; 
Green & Anderson, 1956). As a result, simply producing a false color nightvision image by 
mapping multiple spectral bands into a three dimensional color space already generates an 
immediate benefit, and provides a method to increase the dynamic range of a sensor system 
(Driggers et al., 2001).  However, the color mapping should be chosen with care and should 
be adapted to the task at hand. Although general design rules can be used to assure that the 
information available in the sensor image is optimally conveyed to the observer (Jacobson & 
Gupta, 2005), it is not trivial to derive a mapping from the various sensor bands to the three 
independent color channels, especially when the number of bands exceeds three (e.g. with 
hyperspectral imagers; Jacobson et al., 2007). In practice, many tasks may benefit from a 
representation that renders a nighttime scene in daytime colors. Jacobson & Gupta (Jacobson 
et al., 2007; Jacobson & Gupta, 2005) therefore advise to use a consistent color mapping 
according to a natural palette. The use of natural colors facilitates object recognition by 
allowing access to stored color knowledge (Joseph & Proffitt, 1996). Experimental evidence 
indicates that object recognition depends on stored knowledge of the object’s chromatic 
characteristics (Joseph & Proffitt, 1996). In natural scene recognition paradigms, optimal 
reaction times and accuracy are obtained for normal natural (or diagnostically) colored 
images, followed by their grayscale version, and lastly by their (nondiagnostically) false 
colored version (Goffaux et al., 2005; Oliva, 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Wichmann et al., 2002).  When sensors operate outside the visible waveband, artificial 
color mappings generally produce false color images whose chromatic characteristics do not 
correspond in any intuitive or obvious way to those of a scene viewed under natural 
photopic illumination (e.g. (Fredembach & Süsstrunk, 2008)). As a result, this type of false 
color imagery may disrupt the recognition process by denying access to stored knowledge. 
In that case observers need to rely on color contrast to segment a scene and recognize the 
objects therein. This may lead to a performance that is even worse compared to single band 
imagery alone (Sinai et al., 1999a). Experiments have indeed convincingly demonstrated that 
a false color rendering of night-time imagery which resembles natural color imagery 
significantly improves observer performance and reaction times in tasks that involve scene 
segmentation and classification (Essock et al., 1999; Sinai et al., 1999b; Toet & IJspeert, 2001; 
Vargo, 1999; White, 1998), whereas color mappings that produce counterintuitive 
(unnaturally looking) results are detrimental to human performance (Krebs et al., 1998; Toet 
& IJspeert, 2001; Vargo, 1999). One of the reasons often cited for inconsistent color mapping 
is a lack of physical color constancy (Vargo, 1999). Thus, the challenge is to give nightvision 
imagery an intuitively meaningful (“naturalistic”) and stable color appearance, to improve 
the viewer’s scene comprehension and enhance object recognition and discrimination 
(Scribner et al., 1999). Several techniques have been proposed to render night-time imagery 
in color (e.g. (Sun et al., 2005; Toet, 2003; Tsagiris & Anastassopoulos, 2005; Wang et al., 
2002; Zheng et al., 2005)). Simply mapping the signals from different nighttime sensors 
(sensitive in different spectral wavebands) to the individual channels of a standard color 
display or to the individual components of perceptually decorrelated color spaces, 
sometimes preceded by principal component transforms or followed by a linear 
transformation of the color pixels to enhance color contrast, usually results in imagery with 
an unnatural color appearance (e.g. Howard et al., 2000; Krebs et al., 1998; Li et al., 2004; 
Schuler et al., 2000; Scribner et al., 2003). More intuitive color schemes may be obtained 
through opponent processing through feedforward center-surround shunting neural 
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networks similar to those found in vertebrate color vision  (Aguilar et al., 1998; Aguilar et 
al., 1999; Fay et al., 2000a; Fay et al., 2000b; Huang et al., 2007; Warren et al., 1999; Waxman 
et al., 1995a; Waxman et al., 1997). Although this approach produces fused nighttime images 
with appreciable color contrast, the resulting color schemes remain rather arbitrary and are 
usually not strictly related to the actual daytime color scheme of the scene that is registered. 
In the next section we give an overview of some recently developed color mapping schemes 
that can give false color multiband nightvision imagery a natural color appearance. First we 
present a simple false color mapping scheme that is inspired by previous color opponent 
processing schemes. Although this scheme produces fused false color images with large 
color contrast and preserves the identity of the input signals (thus making the images 
perceptually intuitive), the resulting color representation is not strictly natural looking (Toet 
& Walraven, 1996). We therefore developed a statistical extension of this coloring method 
which produces colorized multiband nightvision imagery with a regular daylight color  
appearance (Toet, 2003). This mapping transfers the first order statistics of the color 
distribution of a given color reference image to the multiband nighttime images, thereby 
giving them a similar color appearance as the reference image.  In its original form this 
method is computationally expensive. However, computational simplicity (enabling real-
time implementation) can be achieved by applying the statistical mapping approach in a 
lookup-table framework.  Although the statistical mapping approach yields a natural color 
rendering, it achieves no color constancy, since the mapping depends on the relative 
amounts of the different materials in the scene (and will therefore change when the camera 
pans over or zooms in on a scene). We therefore developed a sample-based color mapping 
scheme that yields both color constancy and computational efficiency (Hogervorst & Toet, 
2008a; Hogervorst & Toet, 2008b; Hogervorst & Toet, 2010). In contrast to the statistical color 
mapping method, the sample based color transfer method (for which a patent application is 
currently pending: Hogevorst et al., 2006) is highly specific for different types of materials in 
the scene and can easily be adapted for the task at hand, such as the detection of 
camouflaged objects. After explaining how the sample based color transformation can be 
derived from the combination of a given multi-band sensor image and a corresponding 
daytime reference image, we will dicuss how it can be deployed at night and implemented 
in real-time. 

2. Color mapping 
2.1 Center-surround opponent-color fusion 
Opponent color image fusion was originally developed at the MIT Lincoln Laboratory 
(Gove et al., 1996; Waxman et al., 1995a; Waxman et al., 1996a; Waxman et al., 1996b; 
Waxman et al., 1997; Waxman et al., 1999) and derives from biological models of color vision 
(Schiller, 1982; Schiller, 1984; Schiller et al., 1986; Schiller, 1992) and fusion of visible light 
and infrared (IR) radiation (Newman & Hartline, 1981; Newman & Hartline, 1982). 
In the case of color vision in monkeys and man, retinal cone sensitivities are broad and 
overlapping, but the images are contrast enhanced within bands by spatial opponent 
processing (via cone-horizontal-bipolar cell interactions) creating both ON and OFF center-
surround response channels (Schiller, 1992). These signals are then contrast enhanced 
between bands via interactions among bipolar, sustained amacrine, and single-opponent-
color ganglion cells (Gouras, 1991; Schiller & Logothetis, 1990), all within the retina. Further 
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color processing in the form of double-\-opponent-color cells is found in the primary visual 
cortex of primates (and the retinas of some fish).  Opponent processing interactions form the 
basis of such percepts as color opponency,  color constancy,  and color contrast,  though the 
exact mechanisms are not fully understood. Double-opponent-color processing has been 
applied to multispectral IR target enhancement (Gove et al., 1996; Waxman et al., 1995b). 
Fusion of visible and thermal imagery has been observed in several classes of neurons in the 
optic tectum (evolutionary progenitor of the superior colliculus) of rattlesnakes (pit vipers), 
and pythons (boid snakes),  as described by (Newman & Hartline, 1981; Newman & 
Hartline, 1982). These neurons display interactions in which one modality (e.g. IR) can 
enhance or depress the response to the other sensing modality (e.g. visible) in a strongly 
nonlinear fashion. Such interactions resemble opponent-processing between bands as 
observed in primate retina. 
For opaque surfaces in thermodynamic equilibrium, spectral reflectivity ρ and emissivity ε 
are linearly related at each wavelength λ: ( ) 1 ( )ρ λ ε λ= − . This provides a rationale for the 
use of both on-center and off-center channels when treating infrared imagery as 
characterized by thermal emissivity (Toet et al., 1997). 
In the opponent-color  image fusion methodology the individual input images are first 
enhanced by filtering them with a feedforward center-surround shunting neural network 
(Grossberg, 1988). This operation serves  
1. to enhance spatial contrast in the individual visible and IR bands, 
2. to create both positive and negative polarity IR contrast images, and  
3. to create two types of single-opponent-color contrast images. 
The resulting single-opponent-color contrast images represent grayscale fused images that 
are analogous to the IR-depressed visual and IR-enhanced visual cells of the rattlesnake 
(Newman & Hartline, 1981; Newman & Hartline, 1982). 

2.2 Pixel based opponent-color fusion 
Inspired by the opponent-color fusion approach (Waxman et al., 1995a; Waxman et al., 
1996a; Waxman et al., 1996b; Waxman et al., 1997; Waxman et al., 1999), we derived a 
simplified (pixel based) version of this method, which fuses visible and thermal images into 
false color images with a relatively natural or intuitive appearance.  
Let I1 and I2 be two input images with the same spatial resolution and dynamic range. The 
common component of both signals is computed as the morphological intersection: 

 { }1 2 1 2Min ,I I I I∩ =  (1)  

The unique or characteristic component I* of each image modality remains after subtraction 
of the common component: 

 1 1 1 2 2 2 1 2;I I I I I I I I∗ ∗= − ∩ = − ∩  (2) 

The characteristic components are emphasized in the fused image by subtracting them from 
the opposite image modalities. The color fused image is then obtained by mapping these 
differences to respectively the red and green bands of a RGB false color image. The 
characteristic components of both image modalities can be further emphasized by mapping 
their difference to the blue band of the fused false color image, so that the final mapping is 
given by (Toet & Walraven, 1996):  
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In case of visual and thermal input images, I1 = Vis and I2 = IR. Because the method is 
computationally simple it can implemented in hardware or even be applied in real-time 
using standard processing equipment (Aguilar et al., 1998; Aguilar et al., 1999; Waxman et 
al., 1999). The resulting color rendering enhances the visibility of certain details and 
preserves the specificity of the sensor information. In addition, it has a fairly natural color 
appearance (Fig. 1 and Fig. 2). The resulting images agree with our natural associations of 
warm (red) and cool (blue). To further enhance the appearance of the fused results, the R, G, 
B channels can be input to a color remapping stage in which, following conversion to H, S, V 
(hue, saturation, value) color space, hues can be remapped to alternative “more natural'” 
hues, colors can be desaturated, and then reconverted back to R, G, B signals to drive a color 
display. Because of the enhanced color contrast and its intuitive appearance this color fused 
image representation is expected to improve both visual target detection and recognition 
performance are expected to benefit in terms of both speed and precision. Two observer 
studies were performed to test this hypothesis.  
In the first observer study we used grayscale intensified visual and thermal images, and 
color fused motion sequences, depicting scenes in which a person walked across a rural 
scene with man-made objects (Toet et al., 1997). The reference (terrain) features were 
represented with high contrast in the intensified visual images (Fig. 2a) and low contrast in  
 

   
                                                 (a)                                                           (b) 

   
                                                 (c)                                                            (d) 
Fig. 1. Visual (a) and thermal (b) input images. (c) Result of mapping (a) and (b) to 
respectively the green and red channels of an RGB display. (d) Result of the mapping 
defined by equation. 



 Vision Sensors and Edge Detection 

 

110 

   
                        (a)                                                     (b)                                              (c) 

   
                        (d)                                                     (e)                                              (f) 

Fig. 2. Scene representing a person walking along the outside of a fence. Visual (a) and 
thermal (b) input images. (c) Result of mapping (a) and (b) to respectively the green and red 
channels of an RGB display. (d) Result of the mapping defined in equation . (e) Reference 
image used in the spatial localization task. (f) Image used to assess baseline localization 
performance. 
the thermal images (Fig. 2b), while the opposite was the case for the image of the person. All 
details were represented in the color fused images (Fig. 2d). During the localization 
experiments, individual frames from the motion sequences and for each of the three image 
modalities (visual, thermal and color fused) were briefly (1 s) and in random order 
presented to human observers. After the presentation of each frame a schematic grayscale 
image was shown representing only the reference features on a homogeneous background 
(e.g. Fig. 2e). Observers were asked to indicate the perceived position of the person in the 
scene by placing a mouse controlled cursor at the corresponding location in the schematic 
reference image. The position of the reference image on the display screen was given a small 
random variation to prevent participants from using cues from afterimages. Baseline 
performance was assessed using schematic images, similar to the reference image, but with 
a binary image of the person at his actual location in the corresponding frames (e.g. Fig. 2f). 
The results show that observers can localize a person in a scene with a significantly higher 
accuracy and with greater confidence when they perform with color fused images, 
compared to the individual image modalities (visible and thermal; Toet et al., 1997). 
In the second observer study we used grayscale visual and thermal (8-12 μm) motion 
sequences, and color fused motion sequences, depicting a mountain range in the 
background and grasslands in the foreground, with infantry soldiers, vehicles, and a smoke 
screen (Fig. 3). The visual and thermal motion sequences are a subset (images 37--93) of the 
MS01 Test Sequence that consists of 110 corresponding image pairs, registered at CFB 
Valcartier (Sévigny, 1996).  Both a tow truck and a helicopter move across the scene during 
the registration period. The infantry soldiers are not visible in the visual images (Fig. 3a-c), 
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(a)                                                     (b)                                              (c) 

     
(d)                                                     (e)                                              (f) 

     
(g)                                                     (h)                                              (i) 

     
                        (j)                                                      (k)                                              (l) 

   
(m) 

Fig. 3. Left to right: successive frames of a time sequence. Top-down: video (a-c), thermal (d-
f), grayscale fused (g-i), and color fused (j-l) images. (m) Schematic reference image. 
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because they are obscured by the smoke screen. However, they can easily be perceived in 
the thermal images (Fig. 3d-f), where they appear as small hot spots. In the visual images, 
the visibility of the helicopter ranges from barely visible to not visible (when it flies behind 
the smoke screen: Fig. 3f). In the thermal images there is almost no contrast between the 
foreground (grassland) and the background (the mountain range). Also, the mountain range 
and the sky have little contrast in the thermal images (the skyline of the mountain range is 
barely visible). The contrast between the sky and the top of the mountain range is much 
larger in the CCD images. The visual and thermal images were color fused using equation  3 
(see Fig. 3j-l). Fig. 3g-i shows the luminance component of Fig. 3j-l. Both the graylevel fused 
(Fig. 3g-i) and the color fused (Fig. 3j-l) images represent all details of interest. However, in 
the grayfused images, where details are represented by different shades of gray, it is 
sometimes hard to visually segment the scene, because there are no visible boundaries 
(edges) between different physical objects with the same mean luminance. For instance, in 
the visual images the smokescreen has a high luminance (is very bright). In the thermal 
images, the warmer (barren) parts of the grassland and the helicopter are represented as 
bright regions. As a result, there is sometimes very little contrast in the grayfused images 
between the smokescreen and respectively the helicopter and the grassland. In the color 
fused images, the additional color contrast leads to an effortless perceptual segmentation of 
the scene. We measured the accuracy with which observers can determine the position of 
the helicopter in a briefly (600 ms) presented motion sequence, for visual, thermal, and color 
fused image sequences.  Only a limited portion (a restricted field of view) of the entire scene 
was displayed during each test interval. The field of view was randomly positioned on the 
dynamic battlefield scene. This experimental paradigm simulates a field of view search of 
the display of a moving camera scanning over a larger field of regard. For each individual 
frame a corresponding reference image was constructed, representing a segmented version 
of the background of the original scene (mountain range, grassland, and sky; see Fig. 3m). 
After watching each movie fragment, observers were asked to indicate the location where 
the helicopter was last seen, by placing a mouse-controlled cursor over the schematic 
reference image. This task requires observers to quickly determine (a) the location of 
reference contours, and (b) the location of the target at each stimulus presentation. This 
involves rapid visual scene segmentation. The performance in this relative spatial 
localization task depends on the accuracy with which the position of the helicopter can be 
perceived relative to the contours of the mountain range. The results of this experiment 
show that the accuracy with which observers can determine the position of a helicopter in a 
briefly presented and randomly positioned window on a dynamic battlefield scene is 
significantly higher for color fused images than for the individual visual and thermal images 
(Toet et al., 1997). The color fused images probably represent all relevant features at a 
sufficiently large perceptual contrast to allow rapid visual identification of the spatial layout 
of the scene, thereby enabling subjects to perform the task. We also observed that a 
restriction of the field of view results in a significant increase in the localization error for the 
visual and thermal image modalities, but not for the fused image modalities. 
The false color mapping defined by equation 3 has also been successfully applied in other 
domains, like the fusion of retinal images (Kolar et al., 2008; Laliberté et al., 2002; Laliberté et 
al., 2003) and the fusion of infrared and synthetic images (Simard et al., 1999; Simard et al., 
2000).   
In ophthalmology, visual fundus images are often used in combination with fluorescein 
angiogram images. Visual images of the retina clearly represent hard exudates. Fluorescein 
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angiogram images represent the macula, the arteries and veins at high contrast, thus 
allowing the detection of occluded and leaking capillaries, microaneurims, macular edema, 
and neovascularization. Using the mapping defined by equation 3 to fuse visual fundus 
images with fluorescein angiogram images provides better color contrast rendering than 
other opponent-color fusion methods, thus enhancing diagnostic performance and reducing 
visual workload (Laliberté et al., 2002; Laliberté et al., 2003).  It was for instance found that 
this mapping clearly represents neovessels and depicts the macula at high contrast 
(Laliberté & Gagnon, 2006) Fig. 4. shows two examples of the fusion of grayscale visual 
fundus images (Fig. 4a and d) with corresponding fluorescein angiogram images (Fig. 4b 
and e).  The fused images (Fig. 4c and f) represent the interesting details like the vascular 
network (purple veins) and the exudates (yellow lesions) with large color contrast. When 
using equation 3 to fuse thermal and autofluorescent images of the retina (Kolar et al., 2008), 
the resulting false color images provide higher contrast for the hyperfluent areas of the 
autofluorescent images (which are symptoms for glaucoma in its early stages) and clearly 
represent the position of the optic nerve head from the infrared image.  
Simulated flight tests with fused infrared and synthetic imagery showed that the fusion 
technique defined by equation 3 preserves all features relevant for obstacle avoidance, and 
significantly improves detection distances for all simulated visibility conditions (Simard et 
al., 1999; Simard et al., 2000). 
 

   
(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 4. Photographs (a,d) and fluorescein angiogram images (b,e) and their color fused 
representation (c,f). 

2.3 Statistical color transform 
Although the overall color appearance of images produced with the opponent-color fusion 
scheme is fairly intuitive, some details may still be depicted with unnatural colors. In this 
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section we present a method that gives multiband nighttime images the appearance of 
regular daylight color images by transferring the first order color statistics from full color 
daylight imagery to the false color multiband nightvision imagery. The method is based on 
a technique that was developed to enhance the color representation of synthetic imagery 
(Reinhard et al., 2001). The outline of the method is as follows.  As input the method 
requires a false color RGB image. This can be produced by mapping the 2 or 3 individual 
bands (or the first 2 or 3 principal components when the sensor system delivers more than 3 
bands) of a multiband nightvision system to the respective channels of an RGB image. Next, 
the false color RGB nightvision image and a regular full color daylight reference image are 
both transformed into the perceptually decorrelated lαβ opponent color space (Ruderman et 
al., 1998). Then, the mean and standard deviation of each of the 3 color channels of the 
multiband nightvision image are set equal to those of the reference image: 
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β β ββσ

∗ = −

∗ = −

∗ = −

 (4) 

where 〈 〉 denotes the mean, σ  the standard deviation, and the index r refers to the reference 
image. 
Finally, the multiband nightvision image is transformed back to RGB space for display. The 
result is a full color representation of the multiband nightvision image with a color 
appearance that closely resembles the color appearance of the daylight reference image. The 
daylight reference image should display a scene which is similar (but not necessarily 
identical to) the one displayed by the multiband nightvision image. The order of the 
mapping is irrelevant, since the following procedure effectively rotates the color coordinate 
axes of the false color multiband nightvision images such that these will be aligned with the 
axes of the referenced daylight color image in the final result. 
The statistical color transform is computationally expensive and therefore not suitable for 
real-time implementation. Moreover, although it can give multiband nighttime imagery a 
natural daylight color appearance, it can not achieve color constancy for dynamic imagery  
(Zheng & Essock, 2008), because the actual mapping depends on the relative amounts of 
different materials in (i.e. the composition or statistics of) the scene. Large objects in the 
scene will dominate the color mapping. As a result, the color of objects and materials may 
change over time when the sensor system pans over (or zooms in on) a given scene. We 
therefore developed a fixed lookup table based version of this statistical color mapping 
which is (1) computationally efficient, so that it can easily be deployed in real time, and 
which (2) yields constant object colors.  
The new lookup table based statistical color transfer approach is illustrated in Fig. 5. for a 
multi-band image consisting of two channels. First, the two sensor images are mapped on 
two of the three channels of an RGB image. In this particular example (Fig. 5c) the visual 
band is (arbitrarily) mapped to R (red channel) and the near-infrared band is mapped to G 
(green channel). The result is the red-green false-color representation of the multi-band  
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(a)                                                     (b)                                              (c) 

  
                         (d)                                                     (e)                                               

Fig. 5. Visible (a) and near infrared (b) image. (c) False color image obtained by assigning (a) 
to the green and (b) to the red channel of an RGB false color image (the blue channel is set to 
zero). The inset in this figure represents all possible combinations of signal values that can 
occur in the two sensor bands (upper left: both sensors give zero output; lower right: both 
sensors give maximal output). (d) Arbitrary reference daylight color image.  (e) Result of 
mapping the first order statistics of the reference image (d) to the false color nighttime 
image (c). The inset in this figure represents the result of applying the same transform to the 
inset of (c), and shows all possible colors that can occur in the recolored sensor image (i.e. 
after applying the color mapping).  

image shown in Fig. 5c. The statistical color transform can then be derived from the first 
order statistics of respectively (a) Fig. 5c and (b) a given daylight color reference image, like 
the one shown in square inset in Fig. 5d. The application of this statistical color transform to 
an input table of 2-tuples representing all possible sensor output values yields an output 
table containing all possible color values that can occur in the colorized nighttime image. 
The in- and output table pair defines the statistical color mapping and can therefore be 
deployed in a color lookup table transform procedure. The square inset in Fig. 5c represents 
the table of all possible two-band signal values as different shades of red, green and yellow. 
Application of the statistical color transform to the inset in Fig. 5c yields the inset shown in 
Fig. 5e. In a lookup table paradigm the insets in Fig. 5c and Fig. 5e together define the 
statistical color mapping. For any color in the false-color representation of Fig. 5c the 
corresponding color after application of the statistical color transform can easily be found by 
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(1) locating the color in the inset of Fig. 5c, and (2) finding the color at the corresponding 
location in the transformed inset in Fig. 5e. For instance, a pixel representing a high 
response in the visual channel and low response in the near infrared channel is represented 
with a red color (high value of red, low value of green) in the inset in Fig. 5c. In the inset of 
Fig. 5e the same pixel appears in a brownish color. The color transformation can thus be 
implemented by using the inset pair of Fig. 5c and Fig. 5e as color lookup tables. Then, the 
false color image Fig. 5c can be transformed into an indexed image using the red-green color 
lookup table (the inset of Fig. 5c). Replacing the color lookup table of the indexed image Fig. 
5c by the transformed color lookup table (the inset of Fig. 5e) then transforms Fig. 5c into 
Fig. 5e.  Note that the color mapping scheme is fully defined by the two color lookup tables. 
When all possible combinations of an 8-bit multi-band system are represented, these color 
lookup tables contain 256x256 entries. When a color lookup table with less entries is used 
(e.g. only 256), the color mapping can be achieved by determining the closest match of the 
table entries to the observed multi-band sensor values.  
Once the color mapping has been derived from a multi-band nighttime image and its 
corresponding reference image, and once it has been defined as a lookup table transform, it 
can be applied to different and dynamic multi-band images. The advantage of this method 
is that the color of objects only depends on the multi-band sensor values and is independent 
of the image content. Therefore, objects keep the same color over time when registered with 
a moving camera. Another advantage of this implementation is that it requires minimal 
computing power. Once the color transformation has been derived and the pair of color 
lookup tables that defines the mapping has been created, the new color lookup table 
transform can be used in a (real-time) application.  

2.4 Sample based color transform 
In spite of all the afore-mentioned advantages of the lookup table based statistical color 
transform, there is still room for improvement. For instance, in this paradigm there is no 
strict relationship between sensor output values and object color, since the statistical 
approach inherently only addresses the global color characteristics of the depicted scene. In 
this section we will describe an alternative lookup table based method for applying natural 
colors to multi-band images, which alleviates this problem since it does not rely on image 
statistics. The color transformation is derived from a corresponding set of samples for which 
both the multi-band sensor values and the corresponding natural color (RGB-value) are 
known (Hogervorst et al., 2006). We will show that this method results in rendered multi-
band images with colors that match the daytime colors more closely than the result of the 
statistical approach. In contrast to the statistical method, the derivation of the color mapping 
requires a registered image pair, consisting of a multi-band image and a daytime reference 
image of the same scene, sine the pixels serve as samples in this approach. Once the color 
mapping has been derived it can be applied to different multi-band nighttime images. 
Again, we will implement the color transformation using a color lookup table 
transformation, thus enabling real-time implementation. 
The method is as follows. Given a set of samples (pixels) for which both the multi-band 
sensor output and the corresponding daytime colors are known, the problem of deriving the 
optimal color transformation is to find a transformation that optimally maps the N-
dimensional (e.g. in our examples N = 2) multi-band sensor output vectors (one for each 
sample) to the 3-D vectors corresponding to the daytime colors (RGB). The mapping should 
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minimize the difference between the modeled colors and the measured colors. Moreover, 
the transformation should predict the mapping of untrained samples. Several methods exist 
to derive a suitable mapping, such as neural networks and support vector machines. What 
constitutes a suitable mapping is determined by the function that is minimized. Also the 
statement that the difference between the modeled colors and the measured colors is 
minimized should be formalized. We will minimize the average perceptual color difference 
between the modeled color and the measured color. More precisely, we will minimize the 
average squared distance between the perceptual color vectors lαβ (see (Ruderman et al., 
1998)). We will describe a (relatively) simple implementation that is not focused towards 
finding the theoretical optimum mapping, but that will lead to robust and good results and 
can be understood intuitively. We will now describe our new method for deriving a natural 
color transformation using the example shown in Fig. 6. Fig. 6a depicts the full color 
daytime reference image, which is in this case a color photograph taken with a standard 
digital camera. Figs. 6b and c respectively show a visible and near-infrared image of the 
same scene. Fig. 6f shows the result of applying daytime colors to the two-band night-time 
sensor image using our new color mapping technique. 
The method works as follows. First, the multi-band sensor image is transformed to a false-
color image by taking the individual bands (Fig. 6b and c) as input to the R and G channels 
(and B when the sensor contains three bands), referred to as the RG-image (Fig. 6e). In 
practice any other combination of 2 channels can also be used (one could just as well use the 
combinations R & B or B & R). Mapping the two bands to a false color RGB-image allows us 
to use standard image conversion techniques, such as indexing. In the next step the resulting 
false color (RG-image) Fig. 6e is converted to an indexed image. Each pixel in such an image 
contains a single index. The index refers to an RGB-value in a color lookup table (the 
number of entries can be chosen by the user). In the present example of a sensor image 
consisting of two bands (R and G; Fig. 6e) the color lookup table contains various 
combinations of R and G values (the B-values are zero when the sensor or sensor pair 
provides only two bands). For each index representing a given R,G combination (a given 
false color) the corresponding natural color equivalent is obtained by locating the pixels in 
the target image with this index and finding the corresponding pixels in the (natural color) 
reference image (Fig. 6a). First, the RGB-values are converted to perceptually de-correlated 
lαβ values (see (Ruderman et al., 1998)). Next, we calculate the average lαβ-vector over this 
ensemble of pixels. This assures that the computed average color reflects the perceptual 
average color. Averaging automatically takes the distribution of the pixels into account: 
colors that appear more frequently are attributed a greater weight. Let us for instance 
assume that we would like to derive the natural color associated with index 1. In that case 
we locate all pixels in the (indexed) false color multi-band target image with index 1. We 
then take all corresponding pixels in the reference daytime color image, convert them to lαβ, 
and calculate the average lαβ-value. Next, we transform the resulting average lαβ-value back 
to RGB. Finally, we assign this RGB-value to index 1 of the new color lookup table. These 
steps are successively carried out for all indices. This process yields a new color lookup table 
containing the natural colors associated with the various multi-band combinations in the 
false color (RG) color lookup table. Replacing the RG-color lookup table (left side of Fig. 6d) 
by the color lookup table with natural colors (right side of Fig. 6d) yields an image with a 
natural color appearance, in which the colors are optimized for this particular sample set 
(Fig. 6d). Note that the red parts in the scene in Fig. 6a do not turn out red again in the 
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rendered night-time image Fig. 6f. This is due to the fact that other materials which occupy a 
larger area of the scene (and which therefore dominate the color mapping) give the same 
sensor output in the two bands. Also, the red flags are not apparent in the visible band (Fig. 
6b). This has only a minor effect on the overall appearance of the scene as long as the parts 
that change between the different band recordings occupy only a relatively small area.   
 

   
(a)                                                     (b)                                              (c) 

    
(d)                                                     (e)                                              (f) 

Fig. 6. (a) Natural daylight color reference image. Visible (b) and near-infrared (c) images of 
the same scene. (d) The color mapping derived from corresponding pixel pairs in a and b-c.  
(e) Combined RG false color representation of (b) and (c), obtained by assigning (b) to the 
green and (c) to the red channel of an RGB color image (the blue channel is set to zero). (f) 
Result of the application of the mapping scheme in (d) to the two band false color image in 
(e). 
Fig. 7 illustrates the difference between the statistical and the sample based color transforms. 
In this example we determined a color mapping lookup table from a pair of images 
consisting of (Fig. 7a) the original version of a full color daylight photograph and (Fig. 7b) 
the same image from which the blue channel has been removed (B=0).  Note that the 
sample-based color remapping (Fig. 7c), using the sample based color lookup table (inset) 
determined from the image pair Fig. 7a and Fig. 7b, nicely restores most of the blue hues in 
the scene, while the statistical color remapping procedure (Fig. 7d) is not capable to restore 
the missing information. This is due to the fact that the sample-based method allows for 
nonlinear transformations while the statistical method is a linear (affine) transformation (in 
CIELAB-color space). 
Fig. 8a and b show respectively visual and near-infrared images of the same scene. Fig. 8c 
shows the red-green false color representation of Fig. 8a and b. Fig. 8d shows the daytime 
reference image corresponding to the multi-band sensor image. Straightforward application 
of the sample-base color transform results in Fig. 8e. Note that the colors of this figure 
closely match the daytime colors as shown in Fig. 8d (e.g. the sky is blue). However, the  
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(a)                                                      (b) 

     
(c)                                                      (d) 

Fig. 7. (a) Full color RGB image.  (b) Image from (a) after removal of the blue band (B=0).  (c) 
Result of sample-based color remapping, using the color lookup table (inset) determined 
from the image pair (a,b). (d) Result of the statistical color remapping procedure. 
image looks noisy and certain objects appear in the wrong color (e.g. the bench and parts of 
the roof). This is due to the fact that the luminance in the colorized image does not increase 
continuously with increasing sensor output (the luminance value in Fig. 8c). This gives an 
undesirable “solarizing” effect. We therefore derived from this color map (inset in Fig. 8e) 
another color map (inset in Fig. 8f) in which the luminance increases linearly with the 
distance to the top-left corner. Fig. 8f shows the result of this new color mapping. The colors 
in Fig. 8f closely match the daytime colors. The sky is dark instead of light-blue. This 
corresponds to the intuition that the sky should look dark at night, and does not affect the 
situational awareness.  Also important is the fact that the color transformation shown in Fig. 
8f is smooth, in contrast to the one shown in Fig. 8e.  Intuitively a small variation in sensor 
output should lead to a small color change, i.e. a smooth color transformation is expected to 
lead to better matching colors when applied to other multi-band sensor images. Also, with 
smooth color transformations noise leads to less clutter. Furthermore, the color fused result 
provides a better impression of the depth in the scene (compare e.g. Fig. 8b and 8f). 
Fig. 9a-c shows the result of applying the same lookup-table transform to multi-band sensor 
images of different scenes, together with the corresponding daytime full color images (Fig. 
9d-f). Although the colors do not always fully match the daytime colors, they are still 
characteristic for the different materials displayed in the scene. Thus, the colorized fused 
image facilitates interpretation of the scene (situational awareness).  
Dedicated color mapping schemes can be derived that are optimally tuned for different 
environments. When deploying the color transfer method at night an appropriate color  
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Fig. 8. Visual (a) and near-infrared (b) images of the same scene. (c) Combined red-green 
false color representation of (a) and (b). (d) Daytime reference color image. (e) Result of 
straightforward application of the sample-based transform method. (f) Result after 
smoothing and linearising the color lookup table. 
 

 
 

Fig. 9. (a-c) Results of applying the coloring scheme from Fig. 8f to different multi-band 
sensor images. (d-f) Daylight color images corresponding to (a-c). 

mapping scheme should then be selected to colorize the night-time images. The color 
transformation consists of (1) creating a false-color image (e.g. an RG-image, see Fig. 6e), (2) 
converting this image into an index image using the RG-color table, and (3) replacing the 
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color lookup table with its daytime equivalent (RGB-color table, see Fig. 6d, right). The 
whole transformation is defined by the two color lookup tables (the RG-color table and the 
RGB color table). The software implementation can be very fast. 
Different environments require different color mapping schemes to obtain a correct color 
representation. The sample images used to derive the color mapping scheme should reflect 
the statistics of the environment in which the mapping will be deployed. 
In practice the ratio between the sensor outputs is characteristic for different materials. This 
becomes apparent when one inspects the color map images (e.g. Fig. 6d, right side) 
corresponding to the optimal color mapping of different reference and test images. In those 
images the hue varies little along straight lines through the top-left corner (lines for which 
the ratio between the two sensor outputs has a constant value). This feature can be used 
when deriving a color mapping from a limited number of samples. Also, the color mapping 
(e.g. Fig. 6d, right side) can be expected to be smooth, i.e. from point to point the color 
variations will be smooth. When a smooth color mapping scheme is used more subtle 
differences between sensor outputs will become visible. 
Because the sample-based color mapping is highly specific it can effectively be used to 
highlight interesting image details which may otherwise go unnoticed. Camouflaged targets 
(e.g. persons or vehicles in military colors) are usually indistinguishable from their local 
background in naturally colored images. As a result, they will also have low color contrast 
when a natural color mapping is applied to multi-band nighttime imagery. An example of 
this effect is shown in Fig. 10, which presents an intensified image (Fig. 10a) and a thermal 
infrared (8-12 µm) image (Fig. 10b) of a person wearing a military battle dress with a 
camouflage pattern in a rural background.  Fig. 10c shows the two-band false color image 
that is constructed by mapping the images from Fig. 10 (a) and (b) to respectively the R and 
G channels of an RGB color image (the B channel was set to zero). Fig. 10d shows the full 
color daytime reference image (a standard digital color photograph). Using the sample-
based method we derived the color transformation that results in an optimal match between 
the colors in the reference image (Fig. 10d) and the multi-band sensor values (Fig. 10c). The 
color transformation for all sensor combinations is represented by the insets of Fig. 10c and 
Fig. 10e, while Fig. 10e shows the result of the color mapping. Note that the colors in the 
colorized multi-band image (Fig. 10e) closely match the colors in the reference image (Fig. 
10d). However, since the person wears clothing in camouflage colors, he is also camouflaged 
in the colorized nighttime image. Although the person is clearly visible in the thermal image 
(Fig. 10b) he can hardly be detected in the colorized nighttime image. To make the person 
more salient in the colorized night-time image a color transformation can be used that 
depicts hot items (which usually are potential targets like vehicles or living beings) in red. 
For this purpose we created an alternative color mapping by manipulating the inset of Fig. 
10e. The resulting lookup table is depicted in the inset of Fig. 10f. Fig. 10f shows the result of 
the application of this color transformation to the false color two-band nighttime image in 
Fig. 10c. Hot items now appear in red while the (relatively cold) background is still depicted 
in its natural colors. In this image representation, the naturally colored background provides 
the context and potential targets are highlighted by their color contrast. This color mapping 
may be useful for applications like surveillance and navigation, since these tasks require a 
correct perception of the background (terrain) for situational awareness in combination with 
optimal detection of targets and obstacles. 
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Fig. 10. Result of the application of a natural color mapping to a two-band nighttime image. 
(a)  Intensified visual image and (b) thermal (8-12 µm) image of a rural scene with a person 
standing in the foreground. (c) Two-band false color image obtained by mapping (a) and (b) 
to respectively the G and R channels of an RGB color image (the B channel was set to zero). 
(d) A daylight color picture of the same scene. (e)  Result of the application of the color 
mapping defined by inset to (c). (f) Result of the application of the color mapping defined by 
the inset to (c). 

3. Implementation  
In the next sections we describe three prototype portable dual band real-time hardware 
implementations of nighttime image acquisition systems that deploy the lookup-table color 
transform method. The first system creates a color nightvision image by fusing the visual 
and near-infrared bands of two identical image intensifiers. The second system presents a 
color fused image of the signals of an image intensifier and a longwave infrared thermal 
camera.  The third system produces a three-band nighttime image by combining the visual 
and near-infrared bands of two identical image intensifiers with a longwave infrared image.  

3.1 The Gecko system: combination of visual and near-infrared 
The Gecko sensor module provides co-axially registered visual and NIR images. This system 
is named after nocturnal geckos that still have color vision at very dim light levels (Roth & 
Kelber, 2006). The Gecko system includes 2 image intensifiers, 2 compact EO cameras, a heat 
reflecting (hot) mirror, and a near-infrared reflecting mirror (Fig. 11). The image intensifiers 
are two GEN III type Mini N/SEAS monocular night vision goggles (NVGs) from 
International Technologies Lasers Ltd (ITL). They provide a 1x magnification, and have a 
circular field-of-view (FOV) with a diameter of 40 deg, corresponding to about 2000 pixels.  
They are sensitive in the visual and near infrared part of the spectrum.  Both image 
intensifiers are placed side by side. A distinctive characteristic of the construction of our 
acquisition unit is the hardware registration of both NVG images. A co-aligned view is 
achieved through the use of a hot mirror in combination with a NIR reflecting mirror (Fig. 



Real-Time Full Color Multiband Night Vision 

 

123 

11a). The hot mirror is an Edmund Optics (www.edmundoptics.com) NT43-958 3.3 mm 
thick mirror, intended for an angle of incidence of 45°, with a multi-layer dielectric coating 
that reflects infrared radiation (heat), while allowing visible light to pass through. The NIR 
radiation is reflected by a Melles Griot 01 MFG 011 mirror (www.mellesgriot.com) that is 
covered with a protected aluminum coating, which has an average reflectance greater than 
87%  over the spectral range from 400 to 800 nm (fig. 3b). As shown in Fig. 11a, the hot 
mirror acts as a dichroic beam splitter, transmitting the visual part of the incoming radiation 
to the upper NVG, while reflecting the NIR part via the NIR reflecting mirror into the lower 
NVG.  The image from each NVG is registered by a PixeLINK PL-A741 MV FireWire 1.3 
megapixel monochrome camera with a 2/3" CMOS detector with a resolution of 1280 x 1024 
pixels (www.pixelink.com). Both cameras are equipped with a 16 mm Pentax C1614A C-
mount lens, yielding a horizontal FOV of 30º72'T. They operate either at 33 fps at an image 
size of 1k x 1k, or 105 fps at 640 x 480 pixels. After processing the two-band Gecko signals on 
a notebook computer the resulting colorized imagery is displayed on the screen of the 
notebook computer, or, alternatively, on miniature head-mounted displays  
 

    
(a)                                                               (b) 

    
(c)                                                              (d) 

Fig. 11. The dual band Gecko system. (a) Schematic representation.  (b) 3D view of the 
system design. (c) Front view of the system and its casing. (d) Side view. 

The incoming video stream can also be stored on the hard disk of the notebook computer.  
The system as a whole is portable and can therefore be used to assess the benefits of color 
fusion in realistic surveillance and navigation scenarios. 
Fig. 12d shows the Gecko image of a park scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 12c by that of Fig. 12d).  
This multiband nightvision image closely resembles the corresponding daytime photograph 
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(Fig. 12e).  Note that it is much easier to distinguish different materials and objects in Fig. 
12d, compared to each of the individual bands (a,b) or an RG false color fused image (c). 
 

   
(a)                                                     (b)                                              (c) 

  
                         (d)                                                     (e)  

Fig. 12. (a) Visual (wavelengths below 700 nm) and (b) NIR (wavelengths above 700 nm) 
images of a park scene. (c) False color combination with the Visual image (a) in the Red and 
the NIR image (b) in the Green channel of an RGB color image. (d) The result of our color 
remapping technique. (e) A daytime color photograph of the same scene.  The square insets 
in images (c) and (d) represent their corresponding color tables. 
Fig. 13d shows the Gecko image of a road scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 13c by that of Fig. 13d). 
This multiband nightvision image closely resembles the corresponding daytime photograph 
(Fig. 13f). For comparison we also show the standard intensified (NVG) image in Fig. 13e. 
Note that it is much easier to distinguish the borders of the road in Fig. 13d, compared to a 
standard NVG image Fig. 13e. 

3.2 The Viper system: combination of visual and longwave infrared 
The Viper sensor module provides co-axially registered visual and longwave infrared 
(LWIR) or thermal images. This system is named after a species of snake that fuses in its 
optic tectum the visual images from its eyes with thermal images from infrared sensitive 
organs that function like pinhole cameras (Newman & Hartline, 1982). The Viper sensor 
module includes a compact infrared microbolometer, a digital image intensifier, and 2 hot 
mirrors (Fig. 14). The FLIR Systems ThermoVision A10 infrared microbolometer has a 160 x 
128 pixel focal plane array, and a spectral sensitivity range of 7.5 – 13µm, which is the range 
of most interest for outdoor applications. It is equipped with an 11mm (f/1.6) lens providing 
a 40° x 30° wide angle view. The ThermoVision A10 delivers wide dynamic range (14-bit) 
analog video output at 30 Hz (for RS-170) or at 25 Hz (for CCIR). It has a NETD of <85 mK. 
The Intevac NightVista E1100 digital image intensifier has a 1/2" sensor with a spectral 
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(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 13. (a) Visual (wavelengths below 700 nm) and (b) NIR (wavelengths above 700 nm) 
images of a road scene. (c) False color combination with the Visual image (a) in the Red and 
the NIR image (b) in the Green channel of an RGB color image. (d) The result of our color 
remapping technique. (e) Standard NVG image (= a+b). (f) A daytime color photograph of 
the same scene.  The square insets in images (c) and (d) represent their corresponding color 
tables. 
response range 400-900 nm, and delivers RS-170 VGA resolution (640x480) video signal 
output at 30 fps. It is equipped with an 8.5 mm C-mount Pentax C815B lens, yielding a view 
of 42.09º horizontally.  The intensified and thermal images are co-aligned through the use of 
a pair of hot mirrors (Fig. 14a). The first mirror is an Edmund Optics 
(www.edmundoptics.com) NT43-958 3.3 mm thick mirror, intended for an angle of 
incidence of 45°, with a multi-layer dielectric coating that reflects infrared radiation (heat), 
while allowing visible light to pass through.  The second mirror is a gold coated borosilicate 
crown optical glass plate (type BK7, CRYSTECH Inc, www.crystech.com), with a reflection 
coefficient larger than 99.8%.  
The analog video signals of the A10 infrared microbolometer and the Intevac digital image 
intensifier are both converted into 8 bits digital signals by means of a DFG/1394-1e 
DFG/1394-1e Video-to-FireWire converter (www.theimagingsource.com) that was inserted 
in a Dell Inspiron 9300 notebook computer. As a result of the co-axial image registration 
parallax problems are eliminated and only minimal spatial alignment and image stretching 
(to correct for the slight difference in FOV size of both cameras) is needed before 
image/video exploitation.  The resulting registered images are combined into an RGB 
format for further processing (the B channel is set to zero). The previously described color 
mapping is implemented as a color lookup table transform. 
After processing the two-band Viper signals on a notebook computer the resulting colorized 
imagery is displayed on the screen of the notebook computer, or, alternatively, on miniature 
head-mounted displays The incoming video stream can also be stored on the hard disk of 
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(a)                                                               (b) 

                
(c)                                                           (d) 

Fig. 14. The dual band Viper system. (a) Schematic representation.  (b) 3D view of the 
system design. (c) Front view of the system and its casing. (d) Side view. 
the notebook computer. The system as a whole is portable and can therefore be used to 
assess the benefits of color fusion in realistic surveillance and navigation scenarios. 
Fig. 15d and e show the Viper image of a park scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 15c by that of Fig. 15d 
and Fig. 15e). The results are shown for 2 different mappings. Note that objects in the scene, 
particularly the person, are much easier to distinguish in these color remapped images 
compared to each of the individual bands (Fig. 15a,b) or an RG false color fused image (Fig. 
15c). 
Fig. 16d shows the Viper image of a battle scene after the application of our new color 
remapping technique (in this case swapping the color table of c by that of d). Note that both 
the soldier and the smoke screen are clearly visible and represented in their correct (true) 
colors in the recolored Viper image (d), whereas only one of these can be seen in the 
individual bands (a,b). 

3.3 The TRICLOBS system: combination of visual, near-infrared and longwave 
infrared 
The TRICLOBS (TRI-band Color Low-light OBServation) system combines a three-band 
nightvision sensor suite, consisting of two digital image intensifiers and a thermal (LWIR) 
camera, in combination with a 3D digital position information system. The night vision 
sensor suite is sensitive in the visual (400-700 nm), the near-infrared (700-1000 nm) and the 
longwave infrared (8-14 µm) bands of the electromagnetic spectrum.  The optical axes of all 
cameras are aligned. 
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(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 15. (a) Visual intensified and (b) LWIR (8-12 µm) images of a park scene. (c) False color 
combination with the Visual image (a) in the Red and the LWIR image (b) in the Green 
channel of an RGB color image. (d-e) The result of our color remapping technique for two 
different lookup tables. (f) A daytime color photograph of the same scene.  The square insets 
in images (c,d,e) represent their corresponding color tables. 

Fig. 17 shows a schematic representation of the layout of the sensor suite and the beam 
splitters that are deployed to direct the appropriate band of the incoming radiation to each 
of the 3 individual sensors. The incoming radiation is first split into a longwave (thermal) 
and a visual+NIR part by a heat reflecting (hot) mirror (a custom made Melles Griot dichroic 
beam splitter consisting of Schott N-BK7 Borosilicate Crown glass with an Indium Tin Oxide 
coating, with a reflection R > 85%). The longwave part of the spectrum is reflected into the 
lens of the thermal camera, while the visual+NIR light is transmitted to a combination of 
two digital image intensifiers that are mounted under an angle of 90 degrees. Next, a near-
infrared reflecting mirror (45 deg angle of incidence, Borofloat glass, type Edmund Optics 
B43-958, 101x127x3.3 mm, see: www.edmundoptics.com) is used to separate the incoming 
light, by transmitting the visual (400–700nm) and reflecting the NIR part (700–900nm), such 
that one image intensifier registers the visual part and the other one only detects the NIR 
part of the incoming radiation. The sensor geometry is such that the optical axes of all 
cameras are aligned. 
The two image intensifiers are high resolution (1280x960) Photonis PP3000U Intensified 
Camera Units (ICUs: www.photonis.com). The ICU is a low light level, intensified CMOS 
camera. It has a 2/3" CMOS sensor with a spectral response range of 400-900 nm, and 
delivers both a PAL or NTSC composite video signal output (ITU-R BT.656-4, 640x480  
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(a)                                                     (b)                                              (c) 

  
                         (d)                                                     (e)                                               

Fig. 16. (a) Visual intensified and (b) LWIR (8-12 µm) images of a battle scene. (c) False color 
combination with the Visual image (a) in the Red and the LWIR image (b) in the Green 
channel of an RGB color image. (d) The result of our color remapping technique. (e) A 
daytime color photograph of the same scene.  The square insets in images (c,d) represent 
their corresponding color tables.  
 

 
Fig. 17. Layout of the sensors and filters of the TRICLOBS sensor suite. 
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pixels), and an SDI – LVDS 270 Mbits/s signal. Both ICU’s are equipped with Pentax 
C2514M CCTV lenses, with a minimal focal length of 25mm and a lens aperture of F/1.4, 
resulting in a FOV of 30.7º x 24.8º. The thermal camera is a XenICs Gobi 384 uncooled a-Si 
infrared microbolometer (www.xenics.com). It has a 384 x 288 pixel focal plane array, and a 
spectral sensitivity range of 8–14µm, which is the range of most interest for outdoor 
applications. It is equipped with an Ophir supIR18mm F/1 lens (www.ophiropt.com) 
providing a 29.9° x 22.6° wide angle view. The Gobi 384 has a 16-bit Ethernet and 
CameraLink interface. 
The sensors are mounted a common metal frame, which is placed in an enclosed housing. 
All signal processing is done on a standard laptop. The system is mounted on a mobile all-
terrain platform Fig. 18.  
 

(a) 

(b) 

 

 
(c) 

Fig. 18. The TRICLOBS sensor suite. (a) Top view, (b) inside , and (c) the sensor suite 
mounted on a mobile all-terrain platform. 

4. Evaluation study 
As noted before, natural color mapping schemes are not suitable for all purposes. A typical 
example is the task of finding a camouflaged soldier in a field, using a two-band nightvision 
system sensitive to the visual and thermal part of the electromagnetic spectrum. When the 
false color representation of the nightvision image optimally agrees with the daytime 
appearance of the scene, the soldier will be camouflaged, which is obviously not very 
helpful for the task at hand. In such cases a color mapping scheme should be deployed that 
represents the objects of interest with higher color contrast while still providing a color 
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(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 19. Nighttime scene showing a house with a person in front, a truck and some trees. (a) 
Visual, (b) NIR and (c) LWIR input signals. (d) False color image obtained by mapping the 
three bands to respectively the R, G, and B channels.  (e) Result of color remapping applied 
to (d). (f) Corresponding daytime image.  
 

   
(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 20. Nighttime scene showing some houses, grass and a road. (a) Visual, (b) NIR and (c) 
LWIR input signals. (d) False color image obtained by mapping the three bands to 
respectively the R, G, and B channels.  (e) Result of color remapping applied to (d). (f) 
Corresponding daytime image. 
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setting for the rest of the scene which is intuitively correct. We designed such a color 
scheme, which is targeted at optimizing the detection of (camouflaged) targets that do not 
contain chlorophyll, while still providing reasonably natural colors. 
The dual-band Gecko system was used to register optically aligned visual (wavelengths 
shorter than 700 nm) and near infrared (wavelengths longer than 700 nm) images. For 
comparison we also created a standard intensified image of each scene containing both 
bands, since this is the type of image typically provided by standard night vision goggles. 
The visual band is represented by the Red channel of an RGB-image and the near-infrared 
band by the Green channel, to create a red-green representation of the dual-band sensor 
image (Fig. 21d). Next, for each combination of sensor outputs (represented by a shade of 
red, green, yellow; see inset of Fig. 21d) a color was chosen to display this sensor output. 
This process can be implemented by transforming the red-green image (Fig. 21d) into an 
indexed image in which each pixel value refers to the entry of a color lookup table. When a 
color lookup table is used with different colors, the colors in the indexed image are  
 

     
(a)                                                     (b)                                              (c) 

   
                        (d)                                                     (e) 

Fig. 21. Lookup table based color remapping applied to a dual-band visual (a) and near-
infrared (b) Gecko image.  (c) A regular intensified image representation for comparison 
(e.g. a standard night vision goggle image). (d) A red-green false color representation of the 
dual-band image with the visual band assigned to the Red and near-infrared band assigned 
to the Green channel of an RGB display. The inset in (d) shows all possible dual-band 
outputs as shades of red (large response in band 1, small in band 2), green (small response in 
band 1, large in band 2) and yellow (large responses in both bands). (e) The result of the 
color transformation. The inset shows how the colors in the inset of (d) are transformed.  
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automatically transformed into other colors, in a way that all pixels with the same index will 
result in the same color. The method is described in detail elsewhere (Hogervorst & Toet, 
2008a; Hogervorst & Toet, 2010). We tried several color transformations in our search for a 
color scheme that results in optimal detection of targets while preserving the natural 
appearance of images. The best color transformation we found for our purposes looks 
similar to the red-green representation, with a few modifications. 
The inset of Fig. 21e shows the colors assigned to all dual-band outputs (represented by the 
inset of Fig. 21d) by the chosen color scheme. This color scheme emphasizes the distinction 
between objects containing chlorophyll (the background plants) and objects containing no 
chlorophyll (e.g. our targets; notable from the sharp transition between green and red at the 
diagonal). The Gecko sensor system separates the incoming light in a part with wavelength 
below 700nm and one with wavelengths above 700 nm. Since chlorophyll shows a steep rise 
around 700nm, this dual-band NVG system is especially suited for discriminating materials 
containing chlorophyll from materials containing no chlorophyll. Elements containing 
chlorophyll (e.g. plants) are displayed in green (i.e. in their natural color), while objects 
without chlorophyll are displayed in the perceptually opposite color red. To further increase 
the naturalness, elements with high output in both channels are displayed in white (bottom 
right corner of the inset of Fig. 21e). The result of our color fusion method is shown in Fig. 
21e. 
We evaluated the abovementioned color mapping in a target detection paradigm. We 
registered both nighttime dual-band (visual and near-infrared) Gecko images and daytime 
full color digital photographs of a scene containing grass and trees, with and without targets 
present. Performance for detecting targets was established for imagery of the dual-band 
fusion system, each of the individual NVG-bands (visual and NIR), standard NVG and 
daytime images (taken with a visual camera). The visual angle and display area of the 
daytime images was matched to that of the nighttime images.  
The targets were green (Fig. 22a) and blue (Fig. 22b) foam insulation tubes. The reflectance 
of the tubes was such the green tubes were mostly undetectable in a standard intensified 
image representation and in the near infrared band (see Fig. 21), but detectable (as a bright 
object) in the visible band (see Fig. 21). In contrast, the blue tubes were often undetectable in 
the visual band while being detectable (as a dark object) in the near infrared band and in 
regular intensified image (see Fig. 23).  
 

    
(a)                                                                      (b) 

Fig. 22. The green target (a) and the blue target (b) situated in a background with grass and 
trees. 
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(a)                                                     (b)                                              (c) 

Fig. 23. Visual (a), near-infrared (b) and the color fused dual-band image (c) for a scene 
including a blue target. The target is visible in the near-infrared band as a dark tube. The 
dual-band image shows the target as a reddish object. 

We recorded whether the subjects detected the targets when present (Hits and Misses) and 
whether they judged there to be a target when no target was present (False Alarms and 
Correct Rejections). We also recorded the response times. Since no False Alarms occurred in 
this experiment (i.e. the False-Alarm rate was zero), observer performance is fully 
characterized by the Hit-rate, i.e. the fraction of targets that was detected (ph = #Hits / 
(#Hits + #Misses)). Observer performance was measured for 5 different image modalities:  
1. Daytime: full color daylight images (taken with a standard digital daytime camera), 
2. II: grayscale intensified images, combining both visual and near-infrared 
3. VIS: grayscale intensified images representing only the visual part of the spectrum, 
4. NIR: grayscale intensified images representing only the near-infrared part of the 

spectrum, 
5. FC: false color images resulting from the natural color remapping method. 
For each image modality we used 56 images without a target, 26 with a green target, and 26 
with a blue target. Seven subjects participated in the experiment. Each subject participated 
in 5 sessions in which the stimuli of each condition were shown separately. Each subject 
started the session with the Daylight condition to get acquainted with the procedure, the 
scene and the targets. The order of the remaining 4 conditions was randomized across 
subjects to compensate for possible training effects. The images were shown on a PC 
monitor with a resolution of 1600x1200 pixels (Fig. 22 gives a realistic representation of the 
display content).  
Each experimental session started by explaining the purpose of the experiment and by 
showing some example stimuli of each condition. Each trial started by presenting an image. 
The subjects were required to decide as quickly as possible whether a target was present or 
not. As soon as this decision was taken the subjects clicked the mouse button. Next, the 
image disappeared and was replaced by a low resolution equivalent of the image, consisting 
of 20x15 uniformly colored squares (to prevent subjects from searching for the target after 
responding). We registered the time between onset of the stimulus and detection (the 
response time). The subject then indicated the target location or clicked on an area outside 
the image labeled “no target found”. When the subject did not respond within 8 seconds the 
trial ended automatically. The indicated target location was used to check whether the 
subject had indeed detected the target or had seen a false target. Responses outside an 
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ellipse with horizontal diameter of 162 and vertical diameter of 386 pixels centered on the 
vertically elongated target were treated as incorrect. 
Fig. 24 shows the fraction of hits (hit-rate) for the various sensor conditions and target 
colors. Shown are the average hit-rates over subjects. Not surprisingly, performance is 
highest in the Daytime condition. As expected (see Fig. 21 and Fig. 23), performance for 
detecting the green targets is high in the visual (VIS) condition and low in the image 
intensified (II) and near-infrared (NIR) sensor conditions. Performance for detecting the blue 
targets is somewhat poorer in the single-band conditions. These targets can be detected in 
the NIR condition (reasonably well) and in the II condition (poorly), while they are hardly 
detected in the VIS condition. Detection performance for both targets is high with the false-
color dual-band sensor. Optimal fusion results in performance that equals maximum 
performance in the individual bands. The hit-rate for the green targets is somewhat lower 
for the dual-band than for the visual condition. But the hit-rate for the blue targets is 
somewhat higher for dual-band than for NIR condition. The average hit-rate of the false 
color dual band sensor (0.75) is not significantly different from the average of the hit-rate for 
green in VIS and the hit-rate for blue in NIR (0.78). This means that this fusion scheme is 
(close to) optimal. The results also show that the performance with the standard intensified 
imagery is clearly much worse than with the false-color dual-band NVG system. 
Fig. 25 shows the response times of the trials containing a target (shown are the geometric 
means over the response times, i.e. the exponent of the average log response times) for all 
conditions for the hits and misses. Note that the hits for the NIR and II modalities 
correspond primarily to the trials containing blue targets; the hits for the Visual modality 
correspond primarily to the trials containing green targets. The response times for the false 
color dual-band condition are comparable, but slightly larger than in the single-band Visual 
 

 
Fig. 24. Average (over all subjects) hit-rate (fraction of hits) for each of the 5 different image 
modalities and the 2 target colors, including the overall hit-rate (“all”). The error bars 
represent standard errors in the mean derived from the variance between subjects. 
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                                                  (a)                                                                            (b) 

Fig. 25. (a) The geometric mean (i.e. averaged in log) response times for the various image 
modalities, separated for hits and misses. (b) Relationship between the hit-rate for each 
image modality and the (geometric) mean response times for hits and misses for the two 
target colors. 

and NIR conditions. This may be due to the fact that in this condition subjects had to attend 
to two types of targets, while in the single band conditions only one of the target colors was 
apparent.  
It turns out that the response times for missed targets are comparable to the response times 
for stimuli in which no target is present. The average response times for missed targets do 
not correlate with the hit-rates (see Fig. 25b). In contrast, the average response times for hits 
is highly correlated with the hit-rate (r = -0.90, p < 0.01, see Fig. 25b). This indicates that 
when targets are more easily detected, the hit-rate goes up and the response time goes 
down. 
Summarizing, the results show that performance of the false color dual-band system is just 
as good as the maximum performance that can be attained using either of its individual 
bands (visual and near-infrared). While the green targets can well be detected with the 
visual band of the system alone, the blue targets are mostly missed when subjects have to 
rely on this band alone. In contrast, the blue targets can well be detected with the near-
infrared band, but the green targets are then largely missed in this modality. With the false 
color dual-band image modality both targets can be detected. The total number of targets 
detected in the dual band image modality is the same as the total number of targets detected 
in the visual and modality plus the number of targets detected in the near-infrared image 
modality. This indicates that the fused color representation of the two bands is (nearly) 
optimal from a perceptual standpoint. 

5. Conclusion 
In this chapter we presented three prototype portable multiband realtime night vision 
systems that deploy lookup table based real-time color remapping to represent nighttime 
imagery with a natural daylight color appearance and to enhance the detection of 
camouflaged targets.  The systems provide respectively registered dynamic visual and near-
infrared (Gecko system), visual and longwave infrared (Viper system), or visual, near-
infrared and thermal images (TRICLOBS system). These co-aligned images can either be 
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stored on on-board harddisks, or they can be processed in real-time by a (notebook) 
computer. The real-time color remapping that gives the multiband signals their intuitive 
color appearance is implemented as a lookup table transform. The results of some 
laboratory experiments and preliminary field trials clearly demonstrate the benefits of these 
systems for surveillance, navigation and target detection tasks. The resulting false color 
nightvision images closely resemble daytime images (thus providing situational awareness), 
while thermal targets are clearly distinguishable (thus enabling target detection).  
The practical value of these systems will be further evaluated in extensive field trials using 
realistic surveillance and navigation scenarios. Also, the systems will be used to collect a 
nighttime imagery in a wide range of environmental conditions and various geographical 
locations. This imagery will be used in laboratory observer studies and will serve as input to 
computational and information theoretic measures (Chen et al., 2008; Chen & Blum, 2009; 
Tsagaris, 2009; Tsagaris & Anastassopoulos, 2006) to assess the operational benefits of the 
new color mapping procedures. Further improvements of the color mapping method that 
will  be implemented next are the optimization of color contrast (Yin et al., 2010) and image 
dehazing based in information from the near-infrared channels (Schaul et al., 2009). 
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