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Abstract

In this paper we present a super-resolution scheme specifically designed for
faces. First, a face detector is used to find faces in a video frame, after which
an optical flow algorithm is applied to track feature points on the faces. Given
the set of flow vectors corresponding to a single face, we propose to use the
epipolar geometry for rejecting outlying flow vectors. Thiswill improve the
registration of the face over multiple frames, and thus leadto an improved
super-resolution image. An iterative backprojection method is used for ac-
quiring the super-resolution images.

1 Introduction

Nowadays many public areas are secured by surveillance cameras. The quality of the
recorded material is sometimes low, making reliable recognition of individuals difficult.
The use of super-resolution (SR) techniques may be promising for improving the quality
of such video material.

A few approaches to SR on faces have been reported in literature. In [4] a SR frame
is computed using information from past and future low-resolution (LR) frames. It calcu-
lates optical flow between interpolated versions of these frames and the initial SR frame.
The updated SR frame is the average of the current SR frame andwarped versions of
neighboring interpolated LR frames. The algorithm considers only 5 neighboring frames,
in which not much movement of the face is to be expected. In [7]the motion between
frames is also estimated using optical flow. A probabilisticscheme is employed which
determines for each input frame whether the pixels are visible in the SR frame or not.
Only the visible pixels are used to update the SR frame. A somewhat different type of ap-
proach is the use of prior face knowledge to build SR images. It works, however, with the
requirement that the observed face has the same pose as the model, e.g. a frontal view [3].
An extension to multiple poses is possible, but the results are not yet convincing [11].

Thus far, SR has mainly been applied for rigid planar objectsor scenes, due to the
fact that alignment is relatively easy in this case. When the object or scene is not planar,
i.e. for a full 3D object, the transformation will not be a simple one-to-one mapping
of pixel positions. For instance, parts of the object may be occluded after it is rotated.
Not every object point will therefore be visible in all the frames which show the object.



In general, the relation between different views of a rigid 3D object is governed by the
epipolar geometry [9]. Faces, however, are non-rigid 3D objects since they may change
expression. Though, in practice, facial expressions will not change constantly, so that the
epipolar geometry can be assumed to hold approximately.

In this paper, we demonstrate a SR method for faces based on optical flow, which
makes use of the epipolar geometry. Once the epipolar geometry is known, outliers among
the flow vectors can be removed. With the resulting improved motion estimates, the SR
face images will be improved as well.

In Section 2 the SR scheme for faces is introduced. Experimental results for the SR
scheme are given in Section 3. Finally, in Section 4, we conclude the paper.

2 A super-resolution scheme for faces

The approach we follow for SR on faces is in line of [4, 7], where optical flow is used to
determine the motion. However, optical flow is only computedfor feature points inside
the face regions of the frame, which are found by the use of a face detector. This makes
it possible to compute for each face the epipolar geometry, which describes the change
in face pose w.r.t. the camera. The reason for the restriction to faces, is that the applied
optical flow algorithm uses a hierarchical search method which becomes too complex for
the processing of all image pixels. For every face a number offeature points is selected
which will be tracked by the optical flow algorithm. The flow vectors are then used to
compute the epipolar geometry describing the change in facepose w.r.t. the camera.
Outliers among the flow vectors are then removed by retainingonly those vectors which
support the epipolar geometry. The computed optical flow is not dense, and therefore
the per-pixel flow vectors are found by averaging sets of neighboring feature flow vectors.
The applied SR algorithm is based on backprojection of the difference between the current
frame and the simulated LR frame. An overview of the scheme isshown in Fig. 1.

Figure 1: A schematic overview of the SR method for faces.

Next, we describe the separate elements in the SR scheme in more detail. For every
element it is indicated whether it works on the whole frame (i.e. no subdivision per face)
or on a per face basis.



2.1 Face detection - per frame

The face detector is taken from the OpenCV library [2], and isbased on [12]. It is a
fast detector which comes equipped with a set of trained classifiers. We have selected
the default frontal face detector for our purpose, since recognition is best possible from
frontal face views, and let it detect faces of size 20x20 pixels or larger. The classifier
uses a collection of Haar features, which describe the differences in pixel sums between
connecting regions. The features are examined in a cascadedclassifier, which passes
candidate face regions in a sequential fashion. When a regionis not a face, it will be
immediately rejected so that valuable processing time is saved. The output of the detector
is a set of rectangles enclosing the detected faces, see Fig.2(a). Note that although the
images are displayed here in color, all processing is done ongray value images.

(a) (b)

Figure 2: A detected face in a video frame (a), and initialized feature points inside the
rectangle (b).

2.2 Point initialization - per face

To estimate the motion of the face, a set of feature points (80in total) is initialized inside
the rectangle of the face detector. This is done because the hierarchical flow algorithm is
too complex to apply for a dense pixel grid. The point set is connected to a single face
and is processed separately in theoutlier rejection stage. The points are equally spread
inside a circle contained in the rectangle, which gives the highest probability of having
all points on the face since the rectangle will typically cover parts of the background (see
Fig. 2(b)). The circle radius is chosen such that it completely fits inside the rectangle.

Another option would be to find certain interest points in theimage, like corners, and
use these to initialize the points. These points may be more stable, but their positions
in the face may not be equally spread. Since the displacementof pixels will depend on
neighboring feature points (seeWarp section), it is important to have sufficient features
in each pixel’s neighborhood.

2.3 Optical flow - per frame

The feature points of all faces are being tracked across the frames using a variant of
the Lucas-Kanade optical flow algorithm from the OpenCV library [2]. This algorithm
computes the flow using a pyramidal representation of the images [5]. It is set to run at



maximum 20 iterations or stop when the update is smaller than0.03 pixel. In case the
flow for a particular feature point can not be found, the pointwill be removed. Starting
at the coarsest pyramid level and descending to the originalsize, the flow is computed at
each level by using the flow of the previous level as initialization. The pyramid levels are
created iteratively by low-pass filtering and factor 2 subsampling of the original image.
Points falling outside the image borders will be marked as lost. When the displacement
of the point is smaller than a threshold (0.2 pixel) in both x and y-direction, we assume
that the point is locked on the static background and remove it. This is motivated by the
fact that faces are expected to be continuously moving in thescene, that is, at least over
one or more pixels per frame. In case there are no points left after the flow computation,
the face will not be processed any further (except when it is detected again).

2.4 Outlier rejection - per face

As stated earlier, the displacements of correctly tracked points should obey the epipolar
geometry [9], given that the facial expression does not change significantly. The mathe-
matical representation of the epipolar geometry, the fundamental matrixF , is given by

x′⊤Fx = 0 (1)

wherex = (x,y,1)↔ x′ = (x′,y′,1) is a corresponding point pair across two frames, given
in homogeneous coordinates.

The fundamental matrix can be computed from 7 correspondingpoint pairs. Since
there are outliers among the correspondences, we use the robust RANSAC algorithm [6].
By taking random samples of 7 pairs and evaluating the support for the corresponding
fundamental matrices, the fundamental matrix with most support among the feature pairs
is found. Point pairs which do not support this fundamental matrix are labeled as outliers.
They can be removed from the point set since their displacements do not conform to the
movement of the face. In Fig. 3, examples of such outlying features are given. When there
are too few features left for fundamental matrix estimation(say< 25), they are removed
and the face is not processed anymore.

(a) (b)

Figure 3: Two examples of outliers among the feature points.The cyan lines indicate
the features’ positions in the previous frame. The red dots are outliers and the green dots
inliers w.r.t. the computed fundamental matrix. The outliers will be removed from the
point set.



The number of iterationsJ needed to find an all-inlier sample can be determined from
the required probability of success, i.e. the probability that at least one all-inlier sample
is found inJ iterations [6]. Letε denote the outlier ratio in the data. Ifp is the required
probability of success, e.g. 0.99, then we have the relation

p = 1− (1− (1− ε)7)J (2)

In case the value ofε is known, the number of iterations to be executed would be
known beforehand. Usually, however, the outlier ratio is unknown and we must use an
alternative way for determining the number of iterations. An efficient manner is to begin
RANSAC with a conservative estimate ofε, for example 0.99, and adjust it during follow-
ing iterations [9]. When a certain hypothesized model has thelargest number of support
points seen so far, we know that there are at least that many inliers in the data. This im-
poses a lower bound on 1− ε for the data set, and we can adjust the remaining number
of iterationsJ according to (2). The RANSAC algorithm using this strategy is given in
Fig. 4. HereS j is used to indicate the set of support points in iterationj, which are the
points within a small distanceT from the model. The largest support set found during the
algorithm is denoted bySmax. The ratio |Smax|

n with n the number of correspondences, is
therefore a lower-bound for the inlier ratio 1− ε.

The re-estimation step at the end of the algorithm is performed to improve the accu-
racy of the final model. SinceSmax will contain only points on a model, an ordinary least
squares estimate will be sufficient.

• j = 1, J = ∞, Smax = /0

• while j < J do

• Randomly select a sample of 7 points from the data and
compute the corresponding fundamental matrix.

• Determine the set of support pointsS j for the fundamental
matrix by verifying which points are within threshold dis-
tanceT .

• if |S j|> |Smax| then

• J = log(1− p) · log−1
(

1−
(

|S j |
n

)7
)

• Smax = S j

• end if
• j = j +1

• end while

• Re-estimate the fundamental matrix based on the largest support
setSmax.

Figure 4: The RANSAC algorithm for fundamental matrix estimation.



2.5 Warp - per frame

The previous SR frame will be warped into the coordinate frame of the current frame.
This ensures that the SR frame always follows the current LR frame. For the warp only
positions around feature positions are considered, i.e. detected faces containing feature
points are being warped while the rest of the image is left unaffected. This is justified
since the primary interest is the increased resolution of faces. The displacements for the
pixel positions are obtained by simply averaging the displacements for the neighboring
feature points. Let us denote the total set of feature correspondences between framen−1
andn by xn−1↔ xn wherex = (x,y). We then create a reversed dense flow mapf (x) and
accompanying feature countern(x) by the accumulation process

f (x) = 0 ∀ x

for each xn−1↔ xn do

f ([xn])← f ([xn])+(xn−1−xn)

n([xn])← n([xn])+1

end for (3)

where[x] denotes the rounded coordinate values. Subsequently, botharrays are convolved
with kernelk

f (x)← k ∗ f (x) n(x)← k ∗n(x) (4)

wherek is chosen as a square-shaped 21x21 kernel with unity elements, though other
choices fork are also possible. The arrayn(x) will eventually contain the number of
feature points which fall within the support region ofk centered atx. The final flow map
is created by

f (x)←
f (x)

n(x)
∀ x (5)

After f (x) for the LR frame is constructed in this way, it is interpolated with SR factor
z and its values multiplied byz to yield the flow map in SR dimensions. The warped
SR frame is then obtained by bicubic interpolation of SR frame n− 1 at the positions
indicated byf (x). An additional step that is taken during the warp, is that at positions
where f (x) = 0 the SR pixels are directly copied from the bilinear interpolated LR frame.
Since the warping from previous frames can introduce persistent artefacts in the images,
a reset of the background is periodically required. It is unlikely that a face is affected in
this way, since faces are assumed to be constantly moving.

2.6 SR algorithm - per frame

The SR method we use is from [10], which computes the difference between the observed
LR frameILR and the simulated LR frame from the (warped) SR frameISR. The difference
is then backprojected onto the SR frame. In particular, the SR frame is obtained by
iterative application of

ISR← ISR +λg∗ ((ILR− (g∗ ISR) ↓ z) ↑ z) (6)

whereg, z andλ are the camera’s point spread function (in SR dimensions), the SR factor
and a weighting factor, respectively. The downward arrow represents subsampling of the



image, and the upward arrow upsampling with the insertion ofzeros. The value ofg has
been chosen heuristically, and we have takenλ = 0.2. We update the SR frame according
to (6) over 10 iterations. At the start of the video sequence,the initial SR frame is the
bilinear interpolated LR frame 1. At framen it is the warped SR framen−1.

3 Experimental results

The SR scheme has first been applied to a video sequence from the NRC-IIT Facial Video
Database [8], which contains compressed video sequences ofsize 160x120 pixels at 20
fps recorded by a webcam. The point spread functiong was chosen as a Gaussian with
size 7x7 and standard deviation 1.5. Only a single face and accompanying point set was
allowed to be tracked in the sequence, since otherwise the point density would be much
higher due to multiple detections. The threshold for including a point pair in the support
set of a fundamental matrix was 0.5 pixel. In Fig. 5 the original, bilinearly interpolated
and SR frames are shown withz = 2 for different frames in a sequence. An improvement
of the SR images w.r.t. the original and interpolated imagescan be observed.

The effect of outlier rejection is shown in Fig. 6, where the SR result of a frame is
also shown with omission of the steps in Section 2.4. Outlying feature points then remain
in the point set and continue to produce misalignments, until they can not be tracked
anymore or the total point set becomes too small.

In order to perform a quantitative measurement of the performance, we have down-
sampled the sequence from Fig. 5 to 80x60 pixels and subsequently run the algorithm with
z = 2. In this way the mean squared error (MSE) of the results withthe original frames can
be computed. The MSE values are only calculated for the center image square of 20x20
pixels, which is most of the time enclosed by the face. The results for the first 150 frames
are shown in Fig. 7. Indicated are the MSE values for the bilinearly interpolated frames
w.r.t. the original frames, and for the proposed SR method w.r.t. the original frames.
There are four periods when the face is covered with sufficient feature points to allow
SR; here the MSE is smaller than for the interpolated frames.Due to face movement the
feature points are lost over time, and only re-initialized when the face is detected again.
The peaks where the MSE for the SR result exceeds that for the interpolated frames, are
due to too large detection rectangles so that feature pointsare initialized outside of the
face.

Although the effect of SR in the sequences of Fig. 5 is noticeable, it is not necessary
for recognition of individuals; the original frame is largeenough to perform recognition.
A scene where recognition of individuals is considerably more difficult is shown in Fig. 8.
This scene is taken from [1] which contains recordings made in a public area. The data is
recorded at 25 fps with frame size 384 x 288 pixels, and is madeavailable in JPEG format.
In Fig. 8, the largest face is cropped from the frame, and shown separately together with
the interpolated and SR faces. Since the face is 17x21 pixelsin size, it is about the smallest
face that can be found with the detector. We have used forg a Gaussian with standard
deviation 1.2 in this example. It is true that reliable recognition from the SR image is still
difficult, but the SR image does give more pronounced face features than the original or
interpolated frames.



(a) original frames

(b) interpolated frames

(c) SR frames

Figure 5: The original, interpolated and super resolved faces for different frames of a
webcam sequence.

4 Discussion

A SR scheme has been described for improving face images. Thescheme relies on a
face detector, so that optical flow vectors can be computed per face in the scene. It was
proposed to use the epipolar geometry for rejecting outliers among the flow vectors. With
the removal of such motion errors, the resulting SR image wasimproved.

In case persons move their head very fast or change their expression, the motion esti-
mates may still be erroneous and the SR result deteriorates.Another issue is rotation of
the head which may occlude some face parts or the whole frontal face area.

Currently, the SR scheme does not add feature points to already detected faces, so
that the point set will eventually loose all its points whilethe face may still be visible.
However, the addition of new points is not trivial, especially when the point set covers
only a part of the face.



(a) No outlier rejection (b) Outlier rejection

Figure 6: A SR frame without (a) and with (b) outlier rejection.
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Figure 7: Mean squared errors for the center square of the interpolated and SR frames.

In addition to using the epipolar geometry merely for outlier rejection, it may also
be used for inlier correction. The inlying points can be repositioned to fit the calculated
geometry even better. Furthermore, a dense flow field may be obtained by exhaustive
searching along the epipolar lines.
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