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Abstract

In this paper we present a super-resolution scheme spdgifiesigned for
faces. First, a face detector is used to find faces in a videody after which
an optical flow algorithm is applied to track feature pointgioe faces. Given
the set of flow vectors corresponding to a single face, wegeepo use the
epipolar geometry for rejecting outlying flow vectors. Thisl improve the
registration of the face over multiple frames, and thus leadn improved
super-resolution image. An iterative backprojection rodtis used for ac-
quiring the super-resolution images.

1 Introduction

Nowadays many public areas are secured by surveillanceream&he quality of the
recorded material is sometimes low, making reliable reitagnof individuals difficult.
The use of super-resolution (SR) techniques may be progisinmproving the quality
of such video material.

A few approaches to SR on faces have been reported in literaiu[4] a SR frame
is computed using information from past and future low-hetson (LR) frames. It calcu-
lates optical flow between interpolated versions of themmés and the initial SR frame.
The updated SR frame is the average of the current SR framevarmkd versions of
neighboring interpolated LR frames. The algorithm consialy 5 neighboring frames,
in which not much movement of the face is to be expected. InH&]motion between
frames is also estimated using optical flow. A probabilistbeme is employed which
determines for each input frame whether the pixels are leisibthe SR frame or not.
Only the visible pixels are used to update the SR frame. A sdraedifferent type of ap-
proach is the use of prior face knowledge to build SR imagesgoiks, however, with the
requirement that the observed face has the same pose asdbé mg. a frontal view [3].
An extension to multiple poses is possible, but the resuéisiat yet convincing [11].

Thus far, SR has mainly been applied for rigid planar objectscenes, due to the
fact that alignment is relatively easy in this case. When thjeat or scene is not planar,
i.e. for a full 3D object, the transformation will not be a gil@ one-to-one mapping
of pixel positions. For instance, parts of the object may bdwled after it is rotated.
Not every object point will therefore be visible in all thefmes which show the object.



In general, the relation between different views of a rigial &iject is governed by the
epipolar geometry [9]. Faces, however, are non-rigid 3[cisjsince they may change
expression. Though, in practice, facial expressions witlahange constantly, so that the
epipolar geometry can be assumed to hold approximately.

In this paper, we demonstrate a SR method for faces basedtmaldjow, which
makes use of the epipolar geometry. Once the epipolar gepaé&nhown, outliers among
the flow vectors can be removed. With the resulting improvedion estimates, the SR
face images will be improved as well.

In Section 2 the SR scheme for faces is introduced. Expetahegsults for the SR
scheme are given in Section 3. Finally, in Section 4, we eatethe paper.

2 A super-resolution scheme for faces

The approach we follow for SR on faces is in line of [4, 7], wdeptical flow is used to

determine the motion. However, optical flow is only compuigdfeature points inside

the face regions of the frame, which are found by the use of@detector. This makes
it possible to compute for each face the epipolar geometnjclwdescribes the change
in face pose w.r.t. the camera. The reason for the resmittidaces, is that the applied
optical flow algorithm uses a hierarchical search methoatkwhecomes too complex for
the processing of all image pixels. For every face a numbéeatifire points is selected
which will be tracked by the optical flow algorithm. The flowcters are then used to
compute the epipolar geometry describing the change in fase w.r.t. the camera.
Outliers among the flow vectors are then removed by retaioirlg those vectors which

support the epipolar geometry. The computed optical flowoisdense, and therefore
the per-pixel flow vectors are found by averaging sets oftitedging feature flow vectors.

The applied SR algorithm is based on backprojection of tfierénce between the current
frame and the simulated LR frame. An overview of the schens@dsvn in Fig. 1.
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Figure 1: A schematic overview of the SR method for faces.

Next, we describe the separate elements in the SR schemeréndetil. For every
element it is indicated whether it works on the whole frame. (ho subdivision per face)
or on a per face basis.



2.1 Face detection - per frame

The face detector is taken from the OpenCV library [2], anBldsed on [12]. Itis a
fast detector which comes equipped with a set of trainedsifiass. We have selected
the default frontal face detector for our purpose, sincegaiion is best possible from
frontal face views, and let it detect faces of size 20x20 Ipixe larger. The classifier
uses a collection of Haar features, which describe therdifiges in pixel sums between
connecting regions. The features are examined in a casadaesifier, which passes
candidate face regions in a sequential fashion. When a réginot a face, it will be
immediately rejected so that valuable processing timevisdsal he output of the detector
is a set of rectangles enclosing the detected faces, se@(kijg.Note that although the
images are displayed here in color, all processing is dorgranvalue images.
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Figure 2: A detected face in a video frame (a), and initigifeature points inside the
rectangle (b).

2.2 Pointinitialization - per face

To estimate the motion of the face, a set of feature point$n(&al) is initialized inside
the rectangle of the face detector. This is done becausadharthical flow algorithm is
too complex to apply for a dense pixel grid. The point set isn&zted to a single face
and is processed separately in thlier rejection stage. The points are equally spread
inside a circle contained in the rectangle, which gives tighédst probability of having
all points on the face since the rectangle will typically eoparts of the background (see
Fig. 2(b)). The circle radius is chosen such that it compjdits inside the rectangle.

Another option would be to find certain interest points inithage, like corners, and
use these to initialize the points. These points may be mal#es but their positions
in the face may not be equally spread. Since the displaceafgixels will depend on
neighboring feature points (s&éarp section), it is important to have sufficient features
in each pixel's neighborhood.

2.3 Optical flow - per frame

The feature points of all faces are being tracked acrossrdraeels using a variant of
the Lucas-Kanade optical flow algorithm from the OpenCVdilr[2]. This algorithm
computes the flow using a pyramidal representation of the@sd5]. It is set to run at



maximum 20 iterations or stop when the update is smaller €h@a pixel. In case the
flow for a particular feature point can not be found, the paiilt be removed. Starting
at the coarsest pyramid level and descending to the origina) the flow is computed at
each level by using the flow of the previous level as initetiian. The pyramid levels are
created iteratively by low-pass filtering and factor 2 suiysling of the original image.
Points falling outside the image borders will be marked as l@Vhen the displacement
of the point is smaller than a threshold (0.2 pixel) in bothnd g-direction, we assume
that the point is locked on the static background and remtovEhis is motivated by the
fact that faces are expected to be continuously moving irsteae, that is, at least over
one or more pixels per frame. In case there are no pointsfteftthe flow computation,
the face will not be processed any further (except when ietected again).

2.4 Outlier rejection - per face

As stated earlier, the displacements of correctly tracladtp should obey the epipolar
geometry [9], given that the facial expression does not gaaignificantly. The mathe-
matical representation of the epipolar geometry, the foretdal matrix, is given by

XTFx=0 (1)

wherex = (x,y,1) «» X' = (X,¥, 1) is a corresponding point pair across two frames, given
in homogeneous coordinates.

The fundamental matrix can be computed from 7 corresponglaiigt pairs. Since
there are outliers among the correspondences, we use it RANSAC algorithm [6].
By taking random samples of 7 pairs and evaluating the stpothe corresponding
fundamental matrices, the fundamental matrix with mospsupamong the feature pairs
is found. Point pairs which do not support this fundamentatirin are labeled as outliers.
They can be removed from the point set since their displangsrdo not conform to the
movement of the face. In Fig. 3, examples of such outlyintuies are given. When there
are too few features left for fundamental matrix estimateay < 25), they are removed
and the face is not processed anymore.
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Figure 3: Two examples of outliers among the feature poifitse cyan lines indicate
the features’ positions in the previous frame. The red daoatliers and the green dots
inliers w.r.t. the computed fundamental matrix. The ousli@ill be removed from the
point set.



The number of iterationd needed to find an all-inlier sample can be determined from
the required probability of success, i.e. the probabilitgttat least one all-inlier sample
is found inJ iterations [6]. Lete denote the outlier ratio in the data. ffis the required
probability of success, e.g. 0.99, then we have the relation

p=1-(1-(1—¢)")’ )

In case the value of is known, the number of iterations to be executed would be
known beforehand. Usually, however, the outlier ratio iinown and we must use an
alternative way for determining the number of iterations. éficient manner is to begin
RANSAC with a conservative estimate gffor example 0.99, and adjust it during follow-
ing iterations [9]. When a certain hypothesized model hasatgest number of support
points seen so far, we know that there are at least that méiaysiim the data. This im-
poses a lower bound on-1¢ for the data set, and we can adjust the remaining number
of iterationsJ according to (2). The RANSAC algorithm using this strateggiven in
Fig. 4. HereS; is used to indicate the set of support points in iterafipwhich are the
points within a small distancg from the model. The largest support set found during the
algorithm is denoted b$y.x. The ratio% with n the number of correspondences, is
therefore a lower-bound for the inlier ratio-le.

The re-estimation step at the end of the algorithm is perfarto improve the accu-
racy of the final model. Sinc8&nax will contain only points on a model, an ordinary least
squares estimate will be sufficient.

* ] = 17 J= o, SmaX =0
* while j <Jdo
* Randomly select a sample of 7 points from the data and

compute the corresponding fundamental matrix.

* Determine the set of support poirs for the fundamenta
matrix by verifying which points are within threshold dis
tanceT.

* if |Sj| > |Smax| then

N
e J=log(1—p)-log™t (1— (‘in") )
* Sax= S
* endif
=i+l

* end while

* Re-estimate the fundamental matrix based on the largepbstup

setSmax-

Figure 4: The RANSAC algorithm for fundamental matrix esttian.



2.5 Warp - per frame

The previous SR frame will be warped into the coordinate &ahthe current frame.
This ensures that the SR frame always follows the currentraRé. For the warp only
positions around feature positions are considered, i.tectid faces containing feature
points are being warped while the rest of the image is lefffanted. This is justified
since the primary interest is the increased resolution@éda The displacements for the
pixel positions are obtained by simply averaging the disgitaents for the neighboring
feature points. Let us denote the total set of feature cooregences between frame- 1
andn by xn_1 <> Xp Wherex = (x,y). We then create a reversed dense flow rhigg and
accompanying feature counte(x) by the accumulation process

f(x)=0 Vx
for each x,_1 < Xy do
f([%n]) < F([Xn]) + (Xn-1—Xn)
N([Xn]) < n([xn]) +1
end for (3)

where[x| denotes the rounded coordinate values. Subsequentlyabayfs are convolved
with kernelk
f(x) —kx f(x) n(x) < kxn(x) 4)

wherek is chosen as a square-shaped 21x21 kernel with unity eleminaiigh other
choices fork are also possible. The arrayx) will eventually contain the number of
feature points which fall within the support regionlotentered ax. The final flow map
is created by
f(x)

f(X) « (%) v X (5)
After f(x) for the LR frame is constructed in this way, it is interpothteith SR factor
z and its values multiplied by to yield the flow map in SR dimensions. The warped
SR frame is then obtained by bicubic interpolation of SR feam- 1 at the positions
indicated byf(x). An additional step that is taken during the warp, is thatasions
wheref(x) = 0 the SR pixels are directly copied from the bilinear intéaped LR frame.
Since the warping from previous frames can introduce persigrtefacts in the images,
a reset of the background is periodically required. It iskahy that a face is affected in
this way, since faces are assumed to be constantly moving.

2.6 SR algorithm - per frame

The SR method we use is from [10], which computes the diflezdoetween the observed
LR framel_r and the simulated LR frame from the (warped) SR fragae The difference
is then backprojected onto the SR frame. In particular, tReff@me is obtained by
iterative application of

g — lsr+Ag*((ILr— (9*Ixr) 1 2) 1 2) (6)

whereg, zandA are the camera’s point spread function (in SR dimensiong)$R factor
and a weighting factor, respectively. The downward arrgwesents subsampling of the



image, and the upward arrow upsampling with the insertioreobs. The value aj has
been chosen heuristically, and we have taken0.2. We update the SR frame according
to (6) over 10 iterations. At the start of the video sequettoe,initial SR frame is the
bilinear interpolated LR frame 1. At franreit is the warped SR frame— 1.

3 Experimental results

The SR scheme has first been applied to a video sequence feddiRG-IIT Facial Video
Database [8], which contains compressed video sequen@seoi60x120 pixels at 20
fps recorded by a webcam. The point spread funcgevas chosen as a Gaussian with
size 7x7 and standard deviation 1.5. Only a single face aconaganying point set was
allowed to be tracked in the sequence, since otherwise tim¢ gensity would be much
higher due to multiple detections. The threshold for inolgda point pair in the support
set of a fundamental matrix was 0.5 pixel. In Fig. 5 the omgjitilinearly interpolated
and SR frames are shown with= 2 for different frames in a sequence. An improvement
of the SR images w.r.t. the original and interpolated imagasbe observed.

The effect of outlier rejection is shown in Fig. 6, where thHe @sult of a frame is
also shown with omission of the steps in Section 2.4. Ouglj@ature points then remain
in the point set and continue to produce misalignments) thly can not be tracked
anymore or the total point set becomes too small.

In order to perform a quantitative measurement of the perémce, we have down-
sampled the sequence from Fig. 5 to 80x60 pixels and substyuen the algorithm with
z= 2. In this way the mean squared error (MSE) of the resultsthéloriginal frames can
be computed. The MSE values are only calculated for the centge square of 20x20
pixels, which is most of the time enclosed by the face. Theltefor the first 150 frames
are shown in Fig. 7. Indicated are the MSE values for the dslity interpolated frames
w.r.t. the original frames, and for the proposed SR methad.wthe original frames.
There are four periods when the face is covered with suffidiesture points to allow
SR; here the MSE is smaller than for the interpolated frarDe® to face movement the
feature points are lost over time, and only re-initializeldew the face is detected again.
The peaks where the MSE for the SR result exceeds that fontbblated frames, are
due to too large detection rectangles so that feature pametinitialized outside of the
face.

Although the effect of SR in the sequences of Fig. 5 is nobit®at is not necessary
for recognition of individuals; the original frame is largaough to perform recognition.
A scene where recognition of individuals is considerablyentifficult is shown in Fig. 8.
This scene is taken from [1] which contains recordings madepublic area. The data is
recorded at 25 fps with frame size 384 x 288 pixels, and is ragd#able in JPEG format.
In Fig. 8, the largest face is cropped from the frame, and shemparately together with
the interpolated and SR faces. Since the face is 17x21 pixeise, it is about the smallest
face that can be found with the detector. We have used BiGaussian with standard
deviation 1.2 in this example. It is true that reliable regitign from the SR image is still
difficult, but the SR image does give more pronounced factifea than the original or
interpolated frames.
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(a) original frames

(c) SR frames

Figure 5: The original, interpolated and super resolve@ddor different frames of a
webcam sequence.

4 Discussion

A SR scheme has been described for improving face images.sdteme relies on a
face detector, so that optical flow vectors can be computedbpe in the scene. It was
proposed to use the epipolar geometry for rejecting osthenong the flow vectors. With
the removal of such motion errors, the resulting SR imageimasoved.

In case persons move their head very fast or change theiegsipn, the motion esti-
mates may still be erroneous and the SR result deteriorAtesther issue is rotation of
the head which may occlude some face parts or the whole friacgarea.

Currently, the SR scheme does not add feature points todgirdetected faces, so
that the point set will eventually loose all its points whiles face may still be visible.
However, the addition of new points is not trivial, espdgialhen the point set covers
only a part of the face.



(a) No outlier rejection (b) Outlier rejection

Figure 6: A SR frame without (a) and with (b) outlier rejectio
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Figure 7: Mean squared errors for the center square of thepiolated and SR frames.

In addition to using the epipolar geometry merely for outligjection, it may also
be used for inlier correction. The inlying points can be mafioned to fit the calculated
geometry even better. Furthermore, a dense flow field may teneld by exhaustive
searching along the epipolar lines.
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(a) original frame (b) close-up of face

(c) interpolated image (d) SR image
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