
Reinforcement Learning under
Space and Time Constraints

Harm van Seijen

The cover pictures a robot, representing a reinforcement learning agent, bounded by a
rectangle, representing the computational time and memory space constraints.
Concept: Harm van Seijen
Drawings (front and back): Robert-Jan van Seijen

Copyright c⃝ 2011 by H.H. van Seijen

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without written permission from the author.

ISBN 978-90-5986-394-1

Reinforcement Learning under
Space and Time Constraints

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op donderdag 8 december 2011, te 10:00 uur

door

Harm Hendrik van Seijen

geboren te Leeuwarden

Promotiecommissie

Promotor: Prof. dr. ir. F. C. A. Groen
Co-promotoren: Dr. S. Whiteson

Dr. ir. L. J. H. M. Kester

Overige leden: Prof. dr. P. Adriaans
Prof. dr. R. Babuska
Prof. dr. P. M. A. Sloot
Prof. dr. R. S. Sutton
Dr. M. A. Wiering

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This research has been performed at the Distributed Sensor Systems group of TNO and
the Intelligent Autonomous Systems group of the University of Amsterdam and is part of
the enabling technology program Adaptive Multi Sensor Networks (AMSN), supported by
TNO, and the Interactive Collaborative Information Systems (ICIS) project, supported by
the Dutch Ministry of Economic Affairs, grant nr: BSIK03024.

La Clairvoyance - by René Magritte

“Man had always assumed that he was more intelligent than dolphins
because he had achieved so much — the wheel, New York, wars, and so on —

whilst all the dolphins had ever done was muck about in the water having
a good time. But conversely, the dolphins had always believed that they
were far more intelligent than man — for precisely the same reasons.”

Excerpt from ‘The Hitchhiker’s Guide to the Galaxy’ - by Douglas Adams

Contents

1 Introduction 1
1.1 Reinforcement Learning . 1

1.1.1 The Reinforcement Learning Problem 2
1.1.2 Solution Strategies . 2

1.2 Focus of this Thesis . 4
1.2.1 Topics . 4
1.2.2 Research Questions . 7

1.3 Outline . 7

2 Background 9
2.1 The Reinforcement Learning Problem . 9

2.1.1 The (Contextual) Multi-Armed Bandit Problem 9
2.1.2 Markov Decision Processes . 10
2.1.3 Value Functions and the Bellman Equations 12

2.2 Solution Strategies . 14
2.2.1 Dynamic Programming . 14
2.2.2 Model-Based and Model-Free Learning 14
2.2.3 Temporal-Difference Learning . 15
2.2.4 Eligibility Traces . 17

3 Maximizing Performance under Severe Space and Time Constraints 19
3.1 Expected Sarsa . 19

3.1.1 Convergence . 21
3.1.2 Variance Analysis . 22
3.1.3 Hypotheses . 24
3.1.4 Empirical Results . 25

3.2 Just-In-Time Q-learning . 32
3.3 Just-In-Time (Expected) Sarsa . 37
3.4 Conclusion . 39

4 Trading Space and Time for Performance 41
4.1 Best-Match Last-Visit Model . 42

4.1.1 Best-Match LVM Equations . 43
4.1.2 Best-Match LVM Evaluation . 46
4.1.3 Best-Match LVM Control . 50
4.1.4 Best-Match LVM Prioritized Sweeping 52

4.2 Best-Match n-Transition Model . 56
4.2.1 Generalized Best-Match Equations 56
4.2.2 Best-Match Learning based on the n-transition Model 58
4.2.3 Experimental Results . 59

ii Contents

4.3 Best-Match Function Approximation . 62
4.3.1 Tabular Sequence Based Best-Match Learning 62
4.3.2 Best-Match Gradient Descent Learning 64

4.4 Discussion . 67
4.5 Future Work . 68
4.6 Conclusion . 69

5 Reducing the Problem Size by Representation Selection 71
5.1 Representations . 72

5.1.1 Factored MDPs . 72
5.1.2 Feature Types . 73
5.1.3 Valid Representations . 75
5.1.4 Context-Specific Representations 75

5.2 Representation Selection for Contextual Bandit Problems 76
5.2.1 Contextual Bandit Problems . 76
5.2.2 Representation Selection . 77
5.2.3 Model-Free Updating . 81
5.2.4 Experimental Results . 84

5.3 Representation Selection for MDPs . 88
5.3.1 Derived Tasks . 88
5.3.2 Model-Free Updating . 89
5.3.3 Experimental Results . 91

5.4 Representation Selection for MDPs with Context-Specific Structure 94
5.4.1 Candidate Context Representations 95
5.4.2 Derived Tasks . 95
5.4.3 Model-Free Updating . 98
5.4.4 Experimental Results . 98

5.5 Discussion and Future Work . 101
5.6 Related Work . 103
5.7 Conclusion . 103

6 Reducing the Problem Size by Policy Space Reduction 105
6.1 Policy Restrictions . 105

6.1.1 Restrictions in the Policy Space 106
6.1.2 The Policy Restriction Set . 108
6.1.3 Illustrative Example . 110
6.1.4 Advantages of Policy Restrictions 112

6.2 Related Work . 115
6.3 Methods . 116

6.3.1 Q-learning with Policy Restrictions (PR) 116
6.3.2 Q-learning with Policy Restrictions and Aggregation (A-PR) 116
6.3.3 Q-learning with Projected Policy Restrictions (P-PR) 118
6.3.4 Multi-Step Variants (PR+, A-PR+, P-PR+) 120

6.4 Empirical Results . 121

Contents iii

6.5 Discussion and Future Work . 124
6.6 Conclusion . 125

7 Conclusions and Future Work 127
7.1 Evaluation of Research Questions . 127
7.2 Future Work . 130

A Relationship between Best-Match LVM and TD(λ) 133
A.1 Background on TD(λ) . 133
A.2 Forward View Best-Match LVM Values 134

B Off-Policy Monte Carlo Update 137

C Proofs 139
C.1 Theorem 2 . 139
C.2 Lemma 3 . 139
C.3 Theorem 5 . 141
C.4 Theorem 6 . 143

C.4.1 Preliminaries . 143
C.4.2 Convergence of U ′

j to U∗ . 146
C.4.3 Convergence of Uj to U ′

j . 148
C.4.4 Proof of Theorem 6 . 150

C.5 Lemma 7 . 150
C.6 Theorem 7 . 151

Publications by the Author 153

Bibliography 155

Summary 161

Samenvatting 163

Acknowledgements 167

CHAPTER 1

Introduction

Artificial Intelligence (AI) is the research field that is concerned with understanding and
building intelligent systems. Compared to classic fields like physics or mathematics it is
a very young field. While ancient philosophers already laid some of the groundwork in
their attempts to describe the process of human thinking, it was not until the early 40s of
the previous century, with the invention of the digital computer, that the field really took
off. The name ‘artificial intelligence’ was coined in 1956, at a conference on the campus
of Dartmouth College. Despite its relative young age, AI is a very broad field, with a large
variety of subfields. Examples are reasoning, knowledge representation, natural language
processing, computer vision, planning and machine learning.

The topic of this thesis falls within the subfield of machine learning. Informally, a com-
puter program is said to learn from experience if its performance over some set of tasks
improves with experience, according to some performance measure. Machine learning can
be divided into several subfields, such as supervised learning, unsupervised learning and
reinforcement learning. The goal of supervised learning (Vapnik, 1995; Bishop, 2006) is
to learn an input-output relation, given a set of training examples, consisting of input data
with an output label attached to them. A supervised learning algorithm needs to general-
ize from these examples in order to correctly predict the label of data not present in the
training set. An example is the classification of handwritten text (Schomaker, 1993). The
goal of unsupervised learning (Hartigan, 1975; Barlow, 1989) is to find certain patterns in
unlabeled data, for example to achieve dimensionality reduction or clustering. The purpose
of this can be to efficiently communicate the inputs, predict future inputs or build a rep-
resentation for decision making. The goal of reinforcement learning (RL) (Bertsekas and
Tsitsiklis, 1996; Kaelbling et al., 1996; Sutton and Barto, 1998), the topic of this thesis, is
to learn control behavior for a sequential decision task with unknown dynamics. As with
supervised learning, there is a feedback signal used to improve the behavior. However, in
contrast to supervised learning, an example of correct behavior is never given. Instead,
single decisions result in a positive or negative reward signal and by a trial and error pro-
cess behavior is learned that maximizes the total received reward. Many problems can be
modeled as an RL problem. Successful applications of RL include building a backgammon
playing agent (Tesauro, 1994), robotics (Lin, 1993) and elevator control (Crites and Barto,
1998).

1.1 Reinforcement Learning

In this section, we provide a brief overview of some important elements of the reinforce-
ment learning problem and its solution strategies. The purpose is mainly to provide the

2 Chapter 1. Introduction

necessary background for understanding the different topics of this thesis, summarized in
Section 1.2.1. In Chapter 2, we provide a more detailed overview of reinforcement learn-
ing.

1.1.1 The Reinforcement Learning Problem

An RL problem (Kaelbling et al., 1996; Sutton and Barto, 1998) is a task that can be
described in terms of an agent interacting with its environment. At discrete timesteps,
the agent selects an action and observes the resulting new environment state as well as a
reward. In the general case, the resulting reward and next state are uncertain, that is, they
are drawn from a probability distribution. Typically, the goal of an RL agent is to improve
the expected return, which is the (discounted) sum of rewards over the different timesteps.

A key aspect of an RL problem is the immediate versus delayed reward consideration.
To obtain a high return, not just the immediate reward of an action has to considered, but
also the next state, since this determines what future rewards can be obtained.

Another key aspect is that the effect of each action, i.e., the associated probability
distribution over rewards and next states, is initially unknown. Therefore, the agent needs
to interact with the environment in order to learn which actions are best. This leads to a
practical dilemma often referred to as the exploration-exploitation dilemma: the agent can
either exploit its current knowledge by taking the action that predicts the highest expected
return, or explore by taking a different action in order to improve the accuracy of the
prediction for that action, and so improve its future action selections for the current state.

An RL problem is said to obey the Markov property if the probability distribution for
the reward and next state of an action only depends on the current state and not on the
history. If this is the case, the RL problem can be modeled as a Markov decision Pro-
cess (MDP) (Puterman, 1994). An MDP formally defines an RL problem by the tuple
⟨S,A,P,R, γ⟩, where S is the set of all states, A is the set of all actions, P gives the
transition probability from state s ∈ S to state s′ for each action a ∈ A, R is the reward
function, giving the expected reward when action a is taken in state s and γ is the dis-
count factor, which specifies how future rewards should be weighted with respect to the
immediate reward.

For an MDP, the policy of an agent, which defines its behavior, can be expressed as a
mapping from each state it may encounter to a probability distribution over the available
actions. Each MDP contains at least one optimal policy, which is a policy whose expected
return is maximal. We refer to the set of all possible policies that can be defined for an
MDP as the policy space associated with that MDP.

1.1.2 Solution Strategies

In this thesis we focus on value-function based RL methods, which use value functions
(Bellman, 1956) to improve their policies. The action-value, or Q-value function Qπ(s, a)

of a policy π gives the expected return when the agent takes action a ∈ A in state s ∈ S and
follows policy π thereafter. Many value-function methods try to approximate the optimal
Q-value function, which is the Q-value function corresponding to an optimal policy, by

1.1. Reinforcement Learning 3

iteratively improving an estimate of this function. Once the optimal Q-value function has
been determined, an optimal policy can be constructed by taking actions that are greedy
with respect to this function.

Value-function methods can be divided into model-free and model-based methods.
Model-based methods (Sutton, 1990; Moore and Atkeson, 1993; Brafman and Tennen-
holtz, 2002; Kearns and Singh, 2002; Strehl and Littman, 2005; Diuk et al., 2009) use the
experience samples obtained from interaction with the environment to update an estimate
of the environment model, i.e., the functions P and R. Using this model, off-line tech-
niques, such as dynamic programming (Bellman, 1957), are then used to determine an
estimate of the optimal Q-value function. On the other hand, model-free methods (Sutton,
1988; Watkins, 1989; Rummery and Niranjan, 1994; Sutton, 1996; Strehl et al., 2006) use
the experience samples to directly update a Q-value function. The space requirements of
model-based methods are typically a lot higher than that of model-free methods, since they
require storage of the model. However, the advantage is that experience can be re-used,
which improves the sample complexity, i.e., the number of environment samples required
to obtain a good policy.

Besides the model-free/model-based categorization, value-function methods can either
be on-policy or off-policy. For on-policy methods the behavior policy, i.e, the policy that
generates the experience samples, is equal to the estimation policy, i.e., the policy whose
Q-value function is being estimated and improved. For off-policy methods, on the other
hand, the behavior policy is different from the estimation policy. Both method types have
their advantages and disadvantages (see Chapter 2 for details).

A classic off-policy, model-free method is Q-learning (Watkins, 1989), which is based
on the common model-free update rule

Qt+1(st, at)← (1− α)Qt(st, at) + αυt , (1.1)

where st is the state visited at timestep t, at is the action taken at that timestep, α is the
learning rate and υt is the update target. For Q-learning, this update target is

υt = rt+1 + γmax
a′

Qt(st+1, a
′) ,

where rt+1 is the reward received after taking action at in st, and st+1 is the next state
observed.

A classic on-policy method is Sarsa (Rummery and Niranjan, 1994; Sutton, 1996).
Sarsa is also based on Equation 1.1, however the update target for Sarsa is

υt = rt+1 +Qt(st+1, at+1) ,

where at+1 is the action taken at timestep t+ 1.
For methods like Q-learning and Sarsa, new experience only affects the Q-value of

the state-action pair that generated this experience. This can cause slow learning, espe-
cially in sparse reward tasks. Eligibility traces (Sutton, 1988; Watkins, 1989) is a popular
technique that can be combined with Q-learning and Sarsa to propagate new information
faster through an MDP, improving performance. It achieves this by not only updating the

4 Chapter 1. Introduction

Q-value of the state-action pair that generated the experience sample, but also recently vis-
ited state-action pairs, in proportion to a trace parameter. This trace parameter is decayed
according to the trace decay parameter λ, causing the effect to be larger for recently visited
state-action pairs.

1.2 Focus of this Thesis

An RL agent needs to interact with the environment in order to gain knowledge about
it and improve its policy. A typical performance measure is the average return an agent
accumulates during learning. Using this measure, agents that learn fast, i.e., that require
only a small number of environment interactions to obtain a good policy, will have a high
performance.

Besides the rate of policy improvement with respect to the number of environment
interactions, there are two additional performance parameters that play an important role
when evaluating a method. These are the computational cost for processing a newly ob-
tained environment sample and the space requirements of a method, i.e., the physical mem-
ory (RAM) needed to store data.

The computational cost is important, since the most interesting RL problems often
require a high frequency of action selection, limiting the computation that can be done in
between actions. Think for example of the task of dynamic robot walking or balancing an
inverted pendulum in real-time. Clearly, in these domains a fast reaction cycle is essential.
To effectively operate in these domains, an RL agent should process each new sample as
efficiently and effectively as possible. The time constraint in the title of this thesis reflects
this idea; it refers to the computational time available in between observing a sample and
selecting the next action, i.e., the time available to process a sample.

Besides this time constraint, the agent faces a space constraint, i.e., a constraint on
the size of the physical memory (RAM) that is available to the agent to store data. When
memory is abundant, the agent can store a full model estimate of the environment, enabling
full re-use of data, which in general improves performance . However, the (memory) space
complexity this requires is quadratic in the size of the state space. Therefore, for large
tasks, storing the full model is often infeasible and choices have to be made about which
data to store.

In the thesis, we use the term ‘performance’ exclusively to indicate the return per
episode (or average reward per environment interaction), while the computational power
and memory space we treat as resources. The general focus of this thesis is on optimal
exploitation of these resources, that is, on methods that get the best performance under
certain space and time constraints. We perform research on several topics related to this.
The next section discusses these topics.

1.2.1 Topics

Below, we discuss the six different topics related to RL under space and time constraints
that are addressed in this thesis.

1.2. Focus of this Thesis 5

Analysis of Expected Sarsa
The optimal learning rate α of a method based on Equation 1.1 is the learning rate that
yields the highest performance. This optimal value is a trade-off between two processes.
On the one hand, a high learning rate means the effect of updates is larger, resulting in faster
policy improvements. On the other hand, a low learning rate means that update targets are
better averaged, hence more accurate value estimates can be obtained.

In contrast to Q-learning, the on-policy method Sarsa performs updates using an update
target based on the action that is selected for execution at the next state. This causes
additional variance in the update target, since the selection policy is in general stochastic.
By using a variation of the Sarsa update rule that uses the expectation over all actions
instead of the selected action, a lower variance in the update targets can be achieved. This
allows for higher learning rates and thus faster learning.

Though the variation of Sarsa using this update rule, which we call Expected Sarsa,
appears to have better theoretical properties and is mentioned several times in the literature
(Rummery, 1995; Sutton and Barto, 1998), it is not widely used in practise and no sys-
tematic study of it can be found. For this reason, we perform an extensive theoretical and
empirical analysis of Expected Sarsa to assess its merits.

Just-In-Time Learning
Methods like Q-learning and (expected) Sarsa use a sample immediately after it is observed
to update the Q-value of the corresponding state-action pair. However, storing the sample
and postponing the corresponding update can potentially improve performance, due to a
more accurate update target, as the value estimates of other states or state-action pairs
involved in the update may have improved in the meantime. Postponing the update for too
long can have a negative overall effect though, since the action selection process of other
updates based on this Q-value might use an outdated value. If an update is postponed till
just before it is needed, the negative effects are avoided, while the positive effects due to
more accurate update targets are still present. We call this type of learning just-in-time
learning and perform an empirical and theoretical analysis of it.

Eligibility Traces Improvements
For Sarsa the variance due to policy stochasticity can be fully removed by using the expec-
tation over actions in the update target. There is no straightforward extension of this princi-
ple to eligibility traces. In other words, when Sarsa is combined with eligibility traces, the
extra variance due to policy stochasticity results in a lower optimal learning rate, reducing
the performance advantage due to faster information propagation. On the other hand, the
combination of eligibility traces with Q-learning is also not ideal. For the off-policy im-
plementation (Watkins, 1989) the traces have to be reset, whenever a non-greedy action is
taken, limiting the propagation of information; for the implementation that does not reset
the traces (Peng and Williams, 1996), the same variance issues occur as with the Sarsa
implementation of eligibility traces. We investigate whether variants of Sarsa and/or Q-
learning can be constructed that exploit the same principle behind eligibility traces, but do
so at a lower variance and without resetting traces. These variants can potentially result in
higher performance, since they enable the use of higher learning rates.

6 Chapter 1. Introduction

Integrating Model-Free and Model-Based Learning
When performing value-function based RL, two major classes of methods are model-free
and model-based learning. The difference in space requirements between these two classes
can be huge. While typical model-free methods have a space complexity that is linear in
the size of the state space, model-based methods are bounded by a space complexity that
is quadratic in the state space size. This huge difference forms a disadvantage, since in a
practical situation an RL agent gets assigned a certain amount of resources - in terms of
computation time and memory space - and ideally should fully exploit these resources to
get the maximum performance. When the agent has to resort to model-free methods when
there is not enough space available for storing the full model, it does not optimally exploit
its space resources and misses out on an opportunity for a better performance.

A practical approach that is sometimes used to address the gap in space requirements
between model-free and model-based methods is to use sparse, approximate models that
require only a fraction of the space used by full model-based methods. However, this is
not ideal, since the performance of such methods is bounded by the quality of the model
approximation (Kearns and Singh, 1999). Furthermore, since the models may remain in-
correct regardless of how much sample experience is gathered, such methods are not guar-
anteed to find optimal policies even in the limit. We investigate whether it is possible to
combine model-free with model-based learning in such a way that value-function methods
can be constructed that provably converge to the optimal Q-values, and that have a space
complexity anywhere in between that of model-free and model-based methods.

Representation Selection
In a factored MDP (Boutilier et al., 1995), wherein each state is described by a set of
state feature values, prior knowledge about independence between such features can be ex-
pressed using dynamic Bayesian networks (DBNs) (Dean and Kanazawa, 1989). In learn-
ing problems, DBNs enable near-optimal performance using only samples and computation
polynomial in the number of parameters of the DBN, which may be exponentially smaller
than the number of states (Kearns and Koller, 1999).

Unfortunately, in many real-world problems, the DBN structure is not known in ad-
vance and must also be learned. Doing so is also possible in a sample-efficient way, given
prior knowledge of the maximum degree of the DBN (Li et al., 2008; Diuk et al., 2009;
Kroon and Whiteson, 2009). However, the space and time requirements for such methods
is linear in the number of states, making them impractical for large problems.

In this thesis, we propose an alternative approach for exploiting structure in MDPs.
Rather than learning the structure and parameter values of a DBN, our approach learns
which representation among a set of candidate representations yields the highest expected
return. Each candidate representation consists of a subset of the available state features. In
general, the number of candidate representations can be prohibitively large. However, in
many real-world settings, prior knowledge about the task can be used to deduce a small set
of candidate representations.

Exploiting Policy Restrictions
A natural form of prior knowledge is knowledge in the form of policy restrictions, i.e., re-

1.3. Outline 7

strictions on the policy set that should be considered when searching for an optimal policy.
In case of policy-search RL, that is, RL methods that search for the optimal policy directly
in the policy space (Moriarty et al., 1999; Stanley and Miikkulainen, 2002), the advantage
of a smaller policy set is obvious. However, policy-search method excel in different task
domains than value-function methods (Whiteson et al., 2010; Kalyanakrishnan and Stone,
2011). Therefore, for task domains where value-function methods are superior, we would
like to use value-function methods but still be able to exploit prior knowledge about policy
restrictions. We investigate how prior knowledge about policy restrictions can be efficiently
represented and exploited in value-function based RL.

1.2.2 Research Questions

For each of the six topics discussed in the previous section, we formulate a central research
question, listed below, which guides the research on the corresponding topic. At the end of
this thesis we come back to these questions.

• Analysis of Expected Sarsa: Under which settings does Expected Sarsa outperform
regular Sarsa?

• Just-In-Time Learning: Does just-in-time Q-learning have a guaranteed perfor-
mance improvement over regular Q-learning?

• Eligibility Traces Improvements: Is it possible to construct a strategy with similar
space and time requirements to those of eligibility traces that consistently outper-
forms it?

• Integrating Model-Free and Model-Based Learning: Is it possible to construct
methods with a space complexity between O(|S||A|) and O(|S|2|A|) that provably
converge to the optimal Q-values?

• Representation Selection: Under which conditions can convergence to the optimal
Q-values be guaranteed, when representation selection is applied?

• Exploiting Policy Restrictions: How can a reduced policy space be exploited in
value-function based RL?

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 is a background section, in
which relevant theory about reinforcement learning is explained. In Chapter 3, Expected
Sarsa is evaluated and just-in-time learning is introduced. Chapter 4 discusses best-match
learning, a new type of learning that trades off the sample efficiency of model-based meth-
ods with the space efficiency of model-free methods. In Chapter 5, problem size reduction
by representation selection is discussed, while Chapter 6 discusses how policy restrictions
can reduce the problem size. Finally, in Chapter 7, the research questions formulated in
Section 1.2.2 are addressed and the three most promising avenues of future work are dis-
cussed.

CHAPTER 2

Background

In this chapter we provide the relevant background for this thesis. Section 2.1 discusses the
reinforcement learning problem, while Section 2.2 discusses solution strategies.

2.1 The Reinforcement Learning Problem

A reinforcement learning (RL) problem (Kaelbling et al., 1996; Sutton and Barto, 1998)
is a task that can be described in terms of an agent interacting with an (initially) unkown
environment. While in the general case this interaction can be of a continuous nature, most
problems can be effectively described using a discrete time scale, in which case interaction
occurs at timesteps t = 0, 1, 2, At timestep t, the agent executes action at in environ-
ment state st, and observes, at the next timestep, the resulting reward rt+1 and next state
st+1. The reward and next state are generally uncertain, that is, they are drawn from a
probability distribution. Typically, the goal of an RL agent is to improve the expected re-
turn, which is the sum of rewards over the different timesteps. Usually, this is a weighted
sum, in which rewards further away in the future are given a lower weight than immediate
rewards.

The simplest example of a reinforcement learning problem is the multi-armed bandit
problem, which we discuss next.

2.1.1 The (Contextual) Multi-Armed Bandit Problem

A multi-armed bandit problem (Lai and Robbins, 1985; Auer et al., 2002) is a task in which
repeatedly a choice has to be made between the same set of actions. The action produces
a reward drawn from an unknown probability distribution corresponding to that action,
and the goal is to maximize the total reward over a series of action selections. The term
‘multi-armed bandit’ is derived from the analogy to a slot machine (traditionally called a
‘one-armed bandit’) with multiple arms instead of one.

The fact that the distribution over rewards for each action is initially unknown leads to a
dilemma that is typical to reinforcement learning and is often referred to as the exploration-
exploitation dilemma. To illustrate this dilemma, consider the task of optimizing the total
reward over a sequence of 100 action selections. If the average reward for each action
would be known in advance, the best strategy would simply be to always take the action
with the highest average reward. However, since this is not the case, the agent has to
choose each time to either exploit its current knowledge and select the action that is optimal
according to its current average reward estimates, or to explore and select a different action
in order to improve the estimate for that action and hence future action selections.

10 Chapter 2. Background

A contextual multi-armed bandit problem is an extension of the multi-armed bandit
problem for which the reward distribution of the bandit arms is correlated with observed
context information. This context information is generated by a fixed probability distribu-
tion and changes after each arm pull. This problem maps to an RL problem by interpreting
the arms as actions and the context information as states. The task basically boils down to
learning the average reward of each arm conditioned on the context information. The opti-
mal policy is simply a policy that selects at each moment the arm with the highest expected
reward given the current context information.

A real-life example of a contextual multi-armed bandit problem is the task of placing
ads on web pages (Langford and Zhang, 2007; Langford et al., 2008). Since companies
that serve ads are typically paid per click, the goal is to select the ads that maximize the
chance of being clicked. This task can be modeled as a contextual bandit problem wherein
available ads are actions, web pages are states, and rewards are payments for clicked ads.

For both the multi-armed bandit and the contextual multi-armed bandit problem the
agent does not have to worry about the next state when selecting an action. To maximize
its total (expected) reward, the agent simply has to take the action with the highest expected
reward at each timestep. This changes when the probability distribution for the next state
also depends on the action that is taken. If this is the case, an agent optimizing the sum
of rewards cannot simply take the action with the highest immediate reward. Instead, it
should also consider the next state when selecting an action, since this determines what
future rewards the agent might receive. In the next section, we introduce a mathematical
framework for describing an important class of such sequential decision problems.

2.1.2 Markov Decision Processes

If the agent’s actions not only affect the immediate reward, but also the next state, the
RL problem becomes a sequential decision problem. This is a much more complicated
problem than a bandit problem, since the agent now has to take into account the next state
as well, when determining the best action. A real-life example of such a problem is the
task of minimizing the time people have to wait for an elevator (Crites and Barto, 1998).

In this thesis, we focus on sequential decision problems for which the Markov property
holds. This property states that the probability distribution for the reward and next state of
an action at, only depends on the current state st, and not on the history. More formally
stated:

P (st+1 = s′, rt+1 = r|st, at) =
P (st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1,, r1, s0, a0) . (2.1)

This is a very useful property, since it allows the RL problem to be modeled as a Markov
Decision Process (MDPs) (Puterman, 1994), a particularly effective and compact represen-
tation. An RL problem that does not have the Markov property can often be transformed
in one that does by using a different state definition.

An MDP can be described by a tuple of the form ⟨S,A,P,R, γ⟩ consisting of

• S , the set of all states.

2.1. The Reinforcement Learning Problem 11

• A, the set of all actions.

• Ps′
sa : S×A×S → [0, 1], the transition probability from state s ∈ S to state s′ when

action a ∈ A is taken.

• Rsa : S ×A → IR, the reward function giving the expected reward r when action a

is taken in state s.

• γ ∈ [0, 1], the discount factor, controlling the weight of future rewards versus that of
the immediate reward.

In this thesis we mainly focus on RL problems for which S and A are discrete and finite.
For an RL problem, the environment dynamics and reward function, i.e., Ps′

sa andRsa, are
initially unknown.

The agent selects its actions at discrete timesteps t = 0, 1, 2, ... according to a policy
π. A stochastic policy π : S ×A → [0, 1] defines for every action the selection probability
conditioned on the state. A deterministic policy is a special case of a stochastic policy,
where for each state there is one action with selection probability 1, while the other actions
have probability 0. For a deterministic policy we use the function definition π : S → A,
which maps every state to a single action.

The goal of RL is to improve the agent’s policy in order to increase the return R re-
ceived by the agent, which is the discounted cumulative reward

Rt = rt+1 + γ rt+2 + γ2 rt+3 + ... =

∞∑
k=1

γk−1 rt+k , (2.2)

where rt+1 is the reward received after taking action at in state st at timestep t.
In this thesis, we only consider stationary MDP problems with infinite horizon. This

means that the MDP the agent interacts with does not change during learning and that the
agent’s interaction is not terminated after some fixed number of timesteps (which would
make the optimal policy time-dependent). We do consider MDPs with terminal states,
which divide the agent’s environment interaction into episodes. When a terminal state is
reached, the current episode ends and a new one is started by resetting the environment to
the initial state. If the agent starts at state st and reaches the terminal state at timestep T,
then the total return for st is defined as:

Rt =

T−t∑
k=1

γk−1 rt+k (2.3)

This finite sum can be related to the infinite sum of Equation 2.2 by interpreting terminal
states as states with only a single action with zero reward that points to itself.

A (contextual) multi-armed bandit problem can be viewed as a special case of an
episodic MDP problem, for which each episode ends after only a single action. For a
regular multi-armed bandit problem the initial state is always the same, while for a con-
textual multi-armed bandit problem, the initial state is drawn from a (fixed) probability
distribution over different states. Note that the Markov property always holds in case of a
(contextual) multi-armed bandit problem, since there is no history to consider.

12 Chapter 2. Background

An example of an episodic MDP task that is used several times in this thesis is the
Dyna maze task (Sutton, 1990), a navigation task in which the agent has to move as fast as
possible from a start location to the goal location (see Figure 2.1). The agent can choose at
each timestep between four actions: up, down, left and right. Each action deterministically
moves the agent one square in the corresponding direction, unless the agent hits a wall or
the edge of the maze, in which case it stays at the same position. The reward received after
each action is 0, except when the goal location is reached, which results in a reward of +1
(and terminates the episode). This discount factor γ is 0.95.

S

G

Figure 2.1: The Dyna maze task, in which the agent must travel from S to G. The grey
areas represent walls. The reward is +1 when the goal state is reached and 0 otherwise.

This task clearly demonstrates the purpose of the discount factor in the return. Without
discounting future rewards (i.e., without setting γ < 1), there is no incentive for the agent
to search for the shortest path, since a random policy (i.e., a policy that selects a random
action at each timestep) will eventually also result in a reward of +1. On the other hand,
with γ < 1, an agent aiming for maximum expected return will try to reach the goal
location as fast as possible.

There can be different reward functions that lead to the same optimal policy. In case
of the Dyna maze task, a reward of -1 for each action (including the action that results in
the agent reaching the goal location) results in the same optimal policy. With this reward
function the agent also tries to reach the goal location as fast as possible, since reaching the
goal location terminates the episode and hence stops the accumulation of negative rewards.
With this reward function even a discount factor of 1 is possible.

A stochastic variation of the Dyna maze task can be made, by specifying that, in re-
sponse to an action, the agent moves with a probability of 10% in an arbitrary direction,
instead of the direction corresponding with the action.

2.1.3 Value Functions and the Bellman Equations

The reinforcement learning methods discussed in this thesis are so-called value-function
methods, which derive their policy from a value function. Each policy π has a state-value
function V π : S → IR associated with it that gives the expected return from state s, when
policy π is followed:

V π(s) = Eπ{Rt|st = s} (2.4)

2.1. The Reinforcement Learning Problem 13

where EX{} denotes the expected value of a variable conditioned on X . Similarly, there is
an action-value function Qπ : S ×A → IR associated with it that gives the expected return
when action a is taken in state s and policy π is followed thereafter.

Qπ(s, a) = Eπ{Rt|st = s, at = a} (2.5)

The action-value function is related to the state-value function through the relation:

V π(s) =
∑
a

π(s, a)Qπ(s, a) (2.6)

A fundamental relation that is exploited by many reinforcement learning methods is
the Bellman equation, which relates the value of a state to the value of its successor states:

V π(s) =
∑
a

π(s, a)

[
Rsa + γ

∑
s′

Pa
ss′V

π(s′)

]
(2.7)

We now discuss the concept of optimality. A policy π is better than or equal to another
policy π′ if for every state the expected return under π is higher or equal than the expected
return under π′. In other words, if V π(s) ≥ V π′

(s) for all s ∈ S . The optimal policy π∗

is a policy that is better or equal than all other possible policies. A property of an MDP
is that there always exists such a policy, i.e., there is always a policy that provides the
maximum expected return for every state. The value function associated with this policy
is the optimal value function V ∗. Similarly, the optimal action-value function Q∗ is the
action-value function associated with π∗. The Bellman equation relating the optimal value
of a state to the optimal value of its successor state is called the Bellman optimality equation
for V ∗:

V ∗(s) = max
a

[
Rsa + γ

∑
s′

Pa
ss′V

∗(s′)

]
(2.8)

On the other hand, the Bellman optimality equation for Q∗ is:

Q∗(s, a) = Rsa + γ
∑
s′

Pa
ss′ max

a′
Q∗(s′, a′) (2.9)

While there is only a single optimal value function and optimal action-value function for
each MDP, there can be multiple optimal policies. The reason is that a state can have
multiple actions resulting in the same expected return. If that expected return is the optimal
expected return, then an optimal policy can use either of these actions (or some stochastic
selection between them). When the optimal action-value function is known, an optimal
policy can easily be constructed by always taking the greedy action with respect to Q∗.

The main focus of this thesis is on problems with discrete, finite state spaces. In this
case, value functions can be stored in a table, with one entry per state or state-action pair. In
the general case, the state space can be continuous, in which case tabular values cannot be
used for obvious reasons. In this case, the value function can be approximated with some
parameterized function, and only the function parameters have to learned and stored. An
advantage of this approach is that experience is generalized. A disadvantage is that finding
a good parameterized function for approximation of the value function can be very hard.

14 Chapter 2. Background

2.2 Solution Strategies

In this section, we discuss the basic solution strategies for solving an RL problem modeled
as an MDP. All discussed methods are value-function methods, meaning they use value
functions to improve the policy. We start with describing dynamic programming, which is
a planning strategy, i.e., the full MDP description ⟨S,A,P,R, γ⟩ is known by the agent.
In this case, no interaction with the environment is required. Instead, the optimal policy can
be directly computed from the MDP description. The relevance of dynamic programming
to reinforcement learning, which assumes the environment model is (initially) unknown, is
that it forms the core of many model-based learning methods. These methods update an
estimate of the model at each timestep and use dynamic programming to compute a policy
based on this model estimate.

2.2.1 Dynamic Programming

Dynamic programming refers to a class of methods that compute the optimal policy of
an MDP, given its full description ⟨S,A,P,R, γ⟩. In other words, the agent has perfect
knowledge of the environment dynamics.

A popular dynamic programming method is value iteration (see Algorithm 1). This
method maintains an estimate Vk of the optimal value function V ∗ and iteratively improves
this estimate by performing updates based on the Bellman optimality equation for V (Equa-
tion 2.8):

Vk+1(s)← max
a

[
Rsa + γ

∑
s′

Pa
ss′Vk(s

′)

]
, for all s .

It can easily be proven that in the limit the following holds:

lim
k→∞

Vk = V ∗ .

Algorithm 1 Value iteration
1: initialize V (s) arbitrarily for all s
2: repeat
3: ∆← 0

4: for all s ∈ S do
5: Vold ← V (s)

6: V (s)← maxa
[
Rsa + γ

∑
s′ Pa

ss′V (s′)
]

7: ∆← max(∆, |Vold − V (s)|)
8: until ∆ < some small threshold value

2.2.2 Model-Based and Model-Free Learning

In a learning setting, the agent does not know the environment model, i.e., P and R, and
needs to interact with the environment in order to learn about the effect of its actions and
improve its policy. We assume in this thesis trajectory-based interactions, where the agent

2.2. Solution Strategies 15

starts at some initial state and then moves through the environment according to the next
states its actions result in.

Two tasks can be distinguished in a learning setting. The first task is referred to as
evaluation, and involves assessing how good a specific policy π is by determining its value
function V π. The second task is referred to as control, and involves (often simultaneously)
evaluating and improving some estimation policy. The behavior policy is the policy that
controls the agent, i.e., the policy that generates the samples. A method that uses the es-
timation policy to control the agent is called an on-policy method. In contrast, a method
for which the behavior policy is different than the estimation policy is called an off-policy
method. In the latter case, the behavior policy is often derived from the action-value func-
tion of the estimation policy. In Section 2.2.3, we discuss the advantages and disadvantages
of on-policy and off-policy methods using two concrete methods.

Every control method needs to have some strategy to deal with the exploration-
exploitation dilemma. In this thesis, we mainly resort to ε-greedy behavior policies to
ensure sufficient exploration. These are policies that take with a probability of ε a random
action, while the greedy action, i.e., the action with the maximum estimated action value, is
taken with a probability of 1− ε. Note that random selection of an action can also result in
the greedy action, hence the total selection probability of the greedy action is 1− ε+ ε

|A| .
1

Value-function methods can be divided into model-free and model-based methods.
Model-based methods (Sutton, 1990; Moore and Atkeson, 1993; Brafman and Tennenholtz,
2002; Kearns and Singh, 2002; Strehl and Littman, 2005; Diuk et al., 2009) use the experi-
ence samples obtained from interaction with the environment to update an estimate of the
environment model. Using this model, off-line techniques, such as dynamic programming
(Bellman, 1957), are then used to determine an estimate of the optimal Q-value function
(or state value function). On the other hand, model-free methods (Sutton, 1988; Watkins,
1989; Rummery and Niranjan, 1994; Sutton, 1996; Strehl et al., 2006) use the experience
samples to directly update a Q-value function. The space requirements of model-based
methods are typically a lot higher than those of model-free methods, since they require
storage of the model. However, the advantage is that experience can be re-used, which im-
proves the sample complexity, i.e., the number of environment samples required to obtain
a good policy.

2.2.3 Temporal-Difference Learning

A popular model-free approach is temporal-difference (TD) learning (Sutton, 1988), which
bootstraps value estimates from other values. Two classic TD methods are Q-learning
(Watkins, 1989) and Sarsa (Rummery and Niranjan, 1994; Sutton, 1996). Both methods
use a sample immediately after it is observed to update the Q-value of the state-action pair
that generated the sample, using the common TD update rule:

Qt+1(st, at)← (1− α)Qt(st, at) + αυt (2.10)

1This assumes there is only one action with a maximum value. If there are multiple actions with a maximum
value, the 1− ε probability for greedy action selection is divided among these actions.

16 Chapter 2. Background

where α is the learning rate (or step size) and υt is the update target. An alternative formu-
lation of this update rule is

Qt+1(st, at)← Qt(st, at) + α δt , (2.11)

where δt = υt −Qt(st, at) is called the TD error. For Q-learning, the update target is

vt = rt+1 + γ max
a

Qt(st+1, a) , (2.12)

while for Sarsa it is
vt = rt+1 + γ Qt(st+1, at+1) . (2.13)

The pseudocode for Q-learning and Sarsa is shown in Algorithm 2 and Algorithm 3, re-
spectively. Note that Sarsa uses at+1, the action selected and executed at timestep t+1, in
its update target.2 This creates a small disadvantage compared to Q-learning for problems
with returning actions, i.e., actions for which st+1 = st, since Sarsa’s action selection for
timestep t+1 does not take into account the update of Q(st, at) that occurs at this timestep.

Algorithm 2 Q-Learning
1: initialize Q(s, a) arbitrarily for all s,a
2: loop {over episodes}
3: initialize s
4: repeat {for each step in the episode}
5: select action a, based on Q(s, ·)
6: take action a, observe r and s′

7: Q(s, a)← (1− α) ·Q(s, a) + α [r + γ maxa′ Q(s′, a′)]

8: s← s′

9: until s is terminal

Algorithm 3 Sarsa
1: initialize Q(s, a) arbitrarily for all s,a
2: loop {over episodes}
3: initialize s
4: select action a, based on Q(s, ·)
5: repeat {for each step in the episode}
6: take action a, observe r and s′

7: select action a′, based on Q(s′, ·)
8: Q(s, a)← (1− α) ·Q(s, a) + α [r + γ Q(s′, a′)]

9: s← s′

10: until s is terminal

Besides the small disadvantage for returning actions, the main difference between
Q-learning and Sarsa is that Q-learning is an off-policy method and Sarsa an on-policy

2The name Sarsa is in fact derived from the five components employed in its update rule: the current state
and action st and at, the immediate reward rt+1, and the next state and action st+1 and at+1.

2.2. Solution Strategies 17

method. Therefore, Q-learning can employ a stochastic behavior policy (for example a
policy that is ε-greedy with respect to the Q-values), ensuring sufficient exploration, while
its estimation policy is greedy. This enables that the Q-values of Q-learning converge to
the optimal Q-values (under some mild conditions). A disadvantage of Q-learning is that it
aims to improve the estimation policy, while the performance criterium for an RL agent is
typically related to the return, generated by the behavior policy. This can lead for certain
domains to a disadvantage compared to on-policy methods, such as Sarsa (see for example
the Cliff walking task in Section 3.1.4.1). A disadvantage of Sarsa is that its Q-values do
not directly converge to the optimal Q-values. Therefore, when the goal is to find an op-
timal policy, additional measures have to be taken, like annealing ε for ε-greedy policies,
which can make it more difficult to guarantee sufficient exploration.

2.2.4 Eligibility Traces

For methods like Q-learning and Sarsa, new experience only affects the Q-value of the
state-action pair that generated this experience. This can cause slow learning, especially
in sparse reward tasks. Eligibility traces (Sutton, 1988; Watkins, 1989) is a popular tech-
nique that can be combined with Q-learning and Sarsa to propagate new information faster
through an MDP, improving performance.

The idea behind eligibility traces is that state-action pairs visited in the past are re-
sponsible for the agent being at the current state. Therefore, they are also partly eligible
for undergoing learning changes. The more recent a state-action pair is visited, the more
eligible it is, that is, the larger its Q-value correction should be.

This idea is implemented by maintaining a variable for each state-action pair, its eligi-
bility trace e(s, a) ≥ 0. This variable is increased when a state-action pair (s, a) is visited
(i.e., action a is taken in state s), and decayed by γλ at the other timesteps, where λ ∈ [0, 1]

is called the trace-decay parameter.
There are two common types of traces, accumulating traces and replacing traces, each

using a different way to update the eligibility trace of the current state-action pair. For
accumulating traces, all traces are decayed by γλ, but the current state-action pair gets an
additional value increment of 1:

et(s, a) =

{
γλ et−1(s, a) + 1 if (s, a) = (st, at)

γλ et−1(s, a) otherwise .

While accumulating traces in general work well, for certain domains with many revisits of
states they can cause problems, since the value of an eligibility trace can grow unbounded.
For these domains, replacing traces is a better choice, which reset the value of the current
state-action pair to 1:

et(s, a) =

{
1 if (s, a) = (st, at)

γλ et−1(s, a) otherwise .

In Algorithm 4 we shows the pseudocode for Sarsa(λ), the combination of eligibility
traces with Sarsa. Note, that Sarsa(λ) reduces to regular Sarsa (Algorithm 3), when λ is set
to 0.

18 Chapter 2. Background

Algorithm 4 Sarsa(λ)
1: initialize Q(s, a) arbitrarily for all s,a
2: loop {over episodes}
3: initialize e(s, a) = 0 for all s,a
4: initialize s
5: select action a, based on Q(s, ·)
6: repeat {for each step in the episode}
7: take action a, observe r and s′

8: select action a′, based on Q(s′, ·)
9: δ ← r + γ Q(s′, a′)−Q(s, a)

10: e(s, a)← e(s, a) + 1 (accumulating traces)
11: or e(s, a)← 1 (replacing traces)
12: for all s,a do
13: Q(s, a)← Q(s, a) + αδ e(s, a)

14: e(s, a)← γλ e(s, a)

15: s← s′; a← a′

16: until s is terminal

For Q(λ), the combination of eligibility traces with Q-learning, two implementations
are proposed. The implementation of Watkins (1989) results in a fully off-policy method.
The disadvantage of this implementation is that all traces are reset to 0, when a non-greedy
action is selected, limiting the propagation of new information. Peng and Williams (1996)
propose a different implementation, which does not rely on resetting traces. However,
the implementation is more complicated and the resulting method is neither off-policy nor
on-policy, but rather some kind of mixture between the two.

For evaluation methods based on eligibility traces good convergence results exist for
the tabular case (Jaakkola et al., 1994) as well as the function approximation case (Maei and
Sutton, 2010). However, for control methods, including Sarsa(λ) and Q(λ), such results do
not exist.

CHAPTER 3

Maximizing Performance under
Severe Space and Time Constraints

When it comes to space and time efficiency, it is hard to imagine value-function based
learning methods that are more efficient than the classical methods Q-learning and Sarsa.
Both these methods update a Q-value right after a new experience sample from the cor-
responding state-action pair is observed. Hence, they perform a single update at every
timestep.

In this chapter, we focus on strategies that can improve the performance of Q-learning
and Sarsa without deteriorating their low space requirements and computational efficiency.
In Section 3.1, we discuss a variation on Sarsa that performs updates with lower variance.
Though this variation, which we call Expected Sarsa, appears to have better theoretical
properties and is mentioned several times in the literature (Rummery, 1995; Sutton and
Barto, 1998), it is not widely used in practise and no systematic study of it can be found.
For this reason, we perform an extensive theoretical and empirical analysis of Expected
Sarsa to assess its merits.

In Section 3.2 and 3.3, we present just-in-time learning, which postpones the update of
a value until it is needed. By postponing the update, the update can become more accurate,
since the values on which the update target is based may have improved in the meantime.
In Section 3.2 we evaluate a just-in-time version of Q-learning; in Section 3.3 we evaluate
just-in-time versions of Sarsa and Expected Sarsa.

3.1 Expected Sarsa

Since Sarsa’s convergence guarantee requires that every state is visited infinitely often, the
behavior policy is typically stochastic so as to ensure sufficient exploration. Due to the on-
policy nature of Sarsa, the estimation policy is stochastic as well in this case. As a result,
there can be substantial variance in Sarsa updates, since at+1, used in the update target (see
Equation 2.13), is not selected deterministically.

Of course, variance can occur in updates for any TD method because the environment
can introduce stochasticity through P and R. Since the environment model is unknown,
there is little the agent can do about this stochasticity, except employ a suitably low α.
However, the additional variance introduced by Sarsa stems from the policy stochasticity,
which is known to the agent.

Expected Sarsa is a variation of Sarsa that exploits knowledge about the policy stochas-
ticity to prevent this stochasticity from further increasing variance in the updates. It does

20 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

so by basing the update not on Q(st+1, at+1), but on its expected value E{Q(st+1, at+1)}.
The resulting update target is:

υt = rt+1 + γ
∑
a

π(st+1, a)Q(st+1, a) (3.1)

Using this update target reduces the variance in the update, as we show formally in
Section 3.1.2. Lower variance means that in practice α can often be increased in order to
speed learning, as we demonstrate empirically in Section 3.1.4. In fact, when the environ-
ment is deterministic, Expected Sarsa can employ α = 1, while Sarsa still requires α < 1

to cope with policy stochasticity.
Algorithm 5 shows the complete Expected Sarsa algorithm. Because the update rule

of Expected Sarsa, unlike Sarsa, does not make use of the action taken in st+1, action
selection can occur after the update. Doing so creates an additional advantageous in prob-
lems containing states with returning actions. When st+1 = st, performing an update of
Q(st, at), also updates Q(st+1, at), yielding a better estimate before action selection for
state st+1 occurs.

Algorithm 5 Expected Sarsa
1: Initialize Q(s, a) arbitrarily for all s,a
2: loop {over episodes}
3: Initialize s
4: repeat {for each step in the episode}
5: choose a from s using policy π derived from Q
6: take action a, observe r and s′

7: Vs′ =
∑

a π(s
′, a) ·Q(s′, a)

8: Q(s, a)← (1− α)Q(s, a) + α [r + γ Vs′]

9: s← s′

10: until s is terminal

Instead of a low-variance version of Sarsa, Expected Sarsa can also be viewed as
an on-policy version of Q-learning. Note the similarity between the expectation value
E{Q(st+1, at+1)} used by Expected Sarsa and Equation 2.6, relating V π(s) to Qπ(s, a).
Since Q(s, a) is an estimate of Qπ(s, a), its expectation value can be seen as the estimate
V (s) for V π(s) using the relation:

V (s) =
∑
a

π(s, a)Q(s, a) (3.2)

If the policy π is greedy, π(s, a) = 0 for all a except for the action for which Q has its
maximal value. Therefore, in the case of a greedy policy, (3.2) simplifies to

V (s) = max
a

Q(s, a) (3.3)

Thus, Q-learning’s update target (Equation 2.12) is just a special case of Expected Sarsa’s
update target (Equation 3.1), for which the estimation policy is greedy. Nonetheless, the
Expected Sarsa algorithm is different from the Q-learning algorithm because the former is
on-policy and the latter is off-policy.

3.1. Expected Sarsa 21

3.1.1 Convergence

In this section, we prove that Expected Sarsa converges to the optimal policy under some
straightforward conditions given below. We make use of the following Lemma, which was
also used to prove convergence of Sarsa (Singh et al., 2000):

Lemma 1. Consider a stochastic process (ζt,∆t, Ft), where ζt,∆t, Ft : X → IR satisfy
the equations

∆t+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt) ,

where xt ∈ X and t = 0, 1, 2, Let Pt be a sequence of increasing σ-fields such that
ζ0 and ∆0 are P0-measurable and ζt,∆t and Ft−1 are Pt-measurable, t ≥ 1. Assume that
the following hold:

1. the set X is finite,

2. ζt(xt) ∈ [0, 1] ,
∑

t ζt(xt) =∞ ,
∑

t(ζt(xt))
2 <∞ w.p.1 and ∀x ̸= xt : ζt(x) = 0,

3. ||E{Ft|Pt}|| ≤ κ||∆t||+ ct, where κ ∈ [0, 1) and ct converges to zero w.p.1,

4. Var{Ft(xt)|Pt} ≤ K(1 + κ||∆t||)2, where K is some constant,

where || · || denotes a maximum norm. Then ∆t converges to zero with probability one.

The idea is to apply Lemma 1 with X = S × A, Pt = {Q0, s0, a0, r0, α0, s1, a1, . . .,
st, at}, xt = (st, at), ζt(xt) = αt(st, at) and ∆t(xt) = Qt(st, at) − Q∗(st, at). If we
can then prove that ∆t converges to zero with probability one, we have convergence of the
Q values to the optimal values. The maximum norm specified in the lemma can then be
understood as satisfying the following equation:

||∆t|| = max
s

max
a
|Qt(s, a)−Q∗(s, a)| (3.4)

Theorem 1. Expected Sarsa converges to the optimal value function whenever the follow-
ing assumptions hold:

1. S and A are finite,

2. αt(st, at) ∈ [0, 1] ,
∑

t αt(st, at) = ∞ ,
∑

t(αt(st, at))
2 < ∞ w.p.1 and ∀(s, a) ̸=

(st, at) : αt(s, a) = 0,

3. The policy is greedy in the limit with infinite exploration,

4. The reward function is bounded.

Proof. To prove this theorem, we simply check that all the conditions of Lemma 1 are
fulfilled. The first, second and fourth conditions of this lemma correspond to the first,
second and fourth assumptions of the theorem. Below, we will show the third condition of
the lemma holds.

22 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

We can derive the value of Ft as follows:

Ft =
1

αt

(
∆t+1 − (1− αt)∆t

)
,

= rt + γ
∑
a

πt(st+1, a)Qt(st+1, a)−Q∗(st, at) ,

where all the values are taken over the state action pair (st, at), except when specified
differently.

If we can show that ||E{Ft}|| ≤ κ||∆t|| + ct, where κ ∈ [0, 1) and ct converges to
zero, all the conditions of the lemma can be fulfilled and we have convergence of ∆t to
zero and therefore convergence of Qt to Q∗. We derive this as follows:

||E{Ft}||
= ||E{rt + γ

∑
a

πt(st+1, a)Qt(st+1, a)−Q∗(st, at)}||

≤ ||E{rt + γmax
a

Qt(st+1, a)−Q∗(st, at)}||+

γ||E{
∑
a

πt(st+1, a)Qt(st+1, a)−max
a

Qt(st+1, a)}||

≤ γmax
s

∣∣∣max
a

Qt(s, a)−max
a

Q∗(s, a)
∣∣∣+

γmax
s

∣∣∣∑
a

πt(s, a)Qt(s, a)−max
a

Qt(s, a)
∣∣∣

≤ γ||∆t||+

γmax
s

∣∣∣∑
a

πt(s, a)Qt(s, a)−max
a

Qt(s, a)
∣∣∣ ,

where the second inequality results from the definition of Q∗ and the fact that the maximal
difference in value over all states is always at least as large as a difference between values
corresponding to a state st+1. The third inequality follows directly from (3.4). The other
(in)equalities are based on algebraic rewriting or definitions.

We identify ct = γmaxs |
∑

a πt(s, a)Qt(s, a) −maxaQt(s, a)| and κ = γ. Clearly,
ct converges to zero for policies that are greedy in the limit. Therefore, if γ < 1, all of
the conditions of Lemma 1 follow from the assumptions in the present theorem and we can
apply the lemma to prove convergence of Qt to Q∗.

3.1.2 Variance Analysis

Section 3.1.1 shows that Expected-Sarsa converges to the optimal policy under the same
conditions as Sarsa. In this section, we further analyze the behavior of the two methods
to show theoretically under what conditions Expected-Sarsa will in some sense perform
better. Specifically, we show that both algorithms have the same bias and that the variance
of Expected-Sarsa is lower. Finally, we describe which factors affect this difference in
variance. In this section, we use vt = rt + γ

∑
a πt(st+1, a)Qt(st+1, a) and v̂t = rt +

γQt(st+1, at+1) to denote the target of Expected-Sarsa and Sarsa, respectively.

3.1. Expected Sarsa 23

The bias of the updates of both algorithms under a certain policy π is given by the
following equation:

Bias(s, a) = Qπ(s, a)− E{Xt} (3.5)

where Xt is either vt or v̂t. Both algorithms have the same bias, since E{vt} = E{v̂t}.
The variance is then given by:

V ar(s, a) = E{(Xt)
2} − (E{Xt})2 (3.6)

We first calculate this variance for Sarsa:

V ar(s, a) =
∑
s′

T s′
sa

(
γ2

∑
a′

πs′a′(Qt(s
′, a′))2 + (Rs′

sa)
2

+ 2γRs′
sa

∑
a′

πs′a′Qt(s
′, a′)

)
− (E{v̂t})2 .

Similarly, for Expected-Sarsa we get:

V ar(s, a) =
∑
s′

T s′
sa

(
γ2(

∑
a′

πs′a′Qt(s
′, a′))2 + (Rs′

sa)
2

+ 2γRs′
sa

∑
a′

πs′a′Qt(s
′, a′)

)
− (E{v̂t})2 .

Since E{vt} = E{v̂t}, the difference between the two variances simplifies to the follow-
ing:

γ2
∑
s′

T s′
sa

(∑
a′

πs′a′(Qt(s
′, a′))2 − (

∑
a′

πs′a′Qt(s
′, a′))2

)
.

The inner term is of the form: ∑
i

wix
2
i − (

∑
i

wixi)
2 , (3.7)

where the w and x correspond to the π and Q values. When wi ≥ 0 for all i and
∑

iwi = 1,
we can give an unbiased estimate of the variance of the weighed values wixi as follows:∑

iwi(xi − x̄)2

1−
∑

iw
2
i

, (3.8)

where x̄ is the weighted mean
∑

iwixi. Taking the numerator of this fraction and rewriting
this gives us: ∑

i

wi(xi − x̄)2 =
∑
i

wix
2
i − 2

∑
i

wixix̄+
∑
i

wix̄
2

=
∑
i

wix
2
i − 2x̄2 + x̄2

=
∑
i

wix
2
i − x̄2 ,

24 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

which is exactly the same quantity as given in (3.7). This shows that this quantity is closely
related to the weighted variance of the wixi. Therefore, the more the xi deviate from
the weighted mean

∑
iwixi, the larger this quantity will be. In our context this occurs

in settings where there is a large difference between the Q values of different actions and
there is much exploration. In case of a greedy policy or when all Q values have the same
value, this quantity is 0.

3.1.3 Hypotheses

In this section, we formulate specific hypotheses about when Expected Sarsa will outper-
form Q-learning and Sarsa. These hypotheses are based on the central differences between
Expected Sarsa and these two alternatives: 1) unlike Q-learning, Expected Sarsa is on-
policy and 2) Expected Sarsa has lower variance than Sarsa.

For simplicity, we restrict our attention to the case where exploration is performed using
ε-soft behavior policies, i.e., the agent takes a random action with probability ε and uses
the estimation policy otherwise. Using such exploration, off-policy methods can some-
times perform quite differently than on-policy methods. For example, in the cliff-walking
task (detailed in Section 3.1.4), some actions can have disastrous consequences in certain
states, e.g., when near a cliff. Off-policy methods try to estimate the optimal way to behave
without exploration and then merely employ an ε-soft version of the resulting policy. Con-
sequently, they may never learn to avoid such catastrophic actions. By contrast, on-policy
methods try to estimate the optimal way to behave given the exploration that is occurring.
Therefore, they can learn policies that are qualitatively different from the optimal policy
without exploration but that avoid catastrophic actions in the presence of exploration, e.g.,
by staying further away from the cliff. Based on this difference we can define two different
types of problems:

1. Problems where the optimal ε-soft policy is better than the ε-soft policy based on
Q∗(s, a).

2. Problems where the optimal ε-soft policy is equal to the ε-soft policy based on
Q∗(s, a).

Because Expected Sarsa is on-policy and Q-learning is off-policy, we state the following
hypothesis:

Hypothesis 1. Expected Sarsa will outperform Q-learning for problems of Type 1.

Section 3.1.2 demonstrated that the variance in the update target for Sarsa is larger than
for Expected Sarsa, especially when the policy stochasticity is large and when there is a
large spread in Q values of the actions of a state. Based on these facts, we can formulate
a second hypothesis, one about the performance difference between Expected Sarsa and
Sarsa.

Hypothesis 2. Expected Sarsa will outperform Sarsa on problems of both Type 1 and Type
2. The size of the performance difference depends primarily on two factors:

3.1. Expected Sarsa 25

1. When environment stochasticity is high, performance difference will be small.

2. When policy stochasticity is high, performance difference will be large.

3.1.4 Empirical Results

In this section we present a series of experiments to compare the online performance of
Expected Sarsa to that of Sarsa and Q-learning in order to test the hypotheses described
in the previous section. We start with the cliff walking problem. This is an example of
a problem where an exploration policy based on the optimal action values Q∗(s, a) is not
equal to the optimal policy with exploration added. Sutton and Barto (1998) showed that
Sarsa outperforms Q-learning on this problem. We show that Expected Sarsa outperforms
Q-learning as well as Sarsa, confirming Hypothesis 1 and providing some evidence for
Hypothesis 2.

We then present results on two versions of the windy grid world problem, one with a
deterministic environment and one with a stochastic environment. We do so in order to
evaluate the influence of environment stochasticity on the performance difference between
Expected Sarsa and Sarsa and confirm the first part of Hypothesis 2. We then present results
for different amounts of policy stochasticity to confirm the second part of Hypothesis 2. For
completeness, we also show the performance of Q-learning on this problem. Finally, we
present results in other domains verifying the advantages of Expected Sarsa in a broader
setting. All results presented below are averaged over numerous independent trials such
that the standard error becomes negligible.

3.1.4.1 Cliff Walking

We begin by testing Hypothesis 1 using the cliff walking task, an undiscounted, episodic
navigation task in which the agent has to find its way from start to goal in a deterministic
grid world. Along the edge of the grid world is a cliff (see Figure 3.1). The agent can take
any of four movement actions: up, down, left and right, each of which moves the agent one
square in the corresponding direction. Each step results in a reward of -1, except when the
agent steps into the cliff area, which results in a reward of -100 and an immediate return to
the start state. The episode ends upon reaching the goal state.

S G

Figure 3.1: The cliff walking task. The agent has to move from the start [S] to the goal [G],
while avoiding stepping into the cliff (grey area).

We evaluated the performance over the first n episodes as a function of the learning
rate α using an ε-greedy policy with ε = 0.1. Figure 3.2 shows the result for n = 100 and
n = 100, 000. We averaged the results over 50,000 runs and 10 runs, respectively.

26 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

Expected Sarsa outperforms Q-learning and Sarsa for all learning rate values, confirm-
ing Hypothesis 1 and providing some evidence for Hypothesis 2. The optimal α value of
Expected Sarsa for n = 100 is 1, while for Sarsa it is lower, as expected for a deterministic
problem. That the optimal value of Q-learning is also lower than 1 is surprising, since
Q-learning also has no stochasticity in its updates in a deterministic environment. Our ex-
planation is that Q-learning first learns policies that are sub-optimal in the greedy sense,
i.e. walking towards the goal with a detour further from the cliff. Q-learning iteratively
optimizes these early policies, resulting in a path more closely along the cliff. However,
although this path is better in the off-line sense, in terms of on-line performance it is worse.
A large value of α ensures the goal is reached quickly, but a value somewhat lower than
1 ensures that the agent does not try to walk right on the edge of the cliff immediately,
resulting in a slightly better on-line performance.

For n = 100, 000, the average return is equal for all α values in case of Expected Sarsa
and Q-learning. This indicates that the algorithms have converged long before the end of
the run for all α values, since we do not see any effect of the initial learning phase. For
Sarsa the performance comes close to the performance of Expected Sarsa only for α = 0.1,
while for large α, the performance for n = 100, 000 even drops below the performance for
n = 100. The reason is that for large values of α the Q values of Sarsa diverge. Although
the policy is still improved over the initial random policy during the early stages of learning,
divergence causes the policy to get worse in the long run.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−160

−140

−120

−100

−80

−60

−40

−20

0

alpha

av
er

ag
e

re
tu

rn

n = 100, Sarsa
n = 100, Q−learning
n = 100, Expected Sarsa
n = 1E5, Sarsa
n = 1E5, Q−learning
n = 1E5, Expected Sarsa

Figure 3.2: Average return on the cliff walking task over the first n episodes for n = 100

and n = 100, 000 using an ε-greedy policy with ε = 0.1. The big dots indicate the maximal
values.

3.1.4.2 Windy Grid World

We turn to the windy grid world task to further test Hypothesis 2. The windy grid world
task is another navigation task, where the agent has to find its way from start to goal. The
grid has a height of 7 and a width of 10 squares. There is a wind blowing in the ’up’

3.1. Expected Sarsa 27

direction in the middle part of the grid, with a strength of 1 or 2 depending on the column.
Figure 3.3 shows the grid world with a number below each column indicating the wind
strength. Again, the agent can choose between four movement actions: up, down, left
and right, each resulting in a reward of -1. The result of an action is a movement of 1
square in the corresponding direction plus an additional movement in the ’up’ direction,
corresponding with the wind strength. For example, when the agent is in the square right
of the goal and takes a ’left’ action, it ends up in the square just above the goal.

S G

0 0 0 1 1 1 2 2 1 0

Figure 3.3: The windy grid world task. The agent has to move from start [S] to goal [G].
The numbers under the grid indicate the wind strength in the column above.

Deterministic Environment

We first consider a deterministic environment. As in the cliff walking task, we use an ε-
greedy policy with ε = 0.1. Figure 3.4 shows the performance as a function of the learning
rate α over the first n episodes for n = 100 and n = 100, 000. For n = 100 the results are
averaged over 10, 000 independent runs, for n = 100, 000 over 10 independent runs.

For the deterministic windy grid world task the performance of Q-learning and Ex-
pected Sarsa is essentially equal. The fact that for n = 100, 000 the average return is equal
indicates that the behavior policies of Expected Sarsa and Q-learning are equal in the limit
for this task, i.e., the optimal policy among the ε-greedy policies (Expected Sarsa) is equal
to the policy that is ε-greedy with respect to Q∗(s, a) (Q-learning). The optimal α is 1
for Expected Sarsa as well as Q-learning. Sarsa again has a lower optimal α. As in the
cliff walking task we observed divergence of Q values for high α values in the case of
Sarsa. The performance difference for n = 100 between Expected Sarsa and Sarsa at their
optimal values is (−45.0)− (−58.3) = 13.3 in favor of Expected Sarsa.

Environment Stochasticity

We also consider a stochastic variation of the windy grid world problem and compare
results to the performance difference in the deterministic case in order to evaluate the first
part of Hypothesis 2. We added stochasticity to the environment by moving the agent with
a probability of 20% in a random direction instead of the direction corresponding to the
action. The performance as function of the learning rate is presented in Figure 3.5 for
n = 100 and n = 100, 000. Again, we averaged the results over 10,000 runs and 10 runs
respectively.

As expected, the optimal α for Expected Sarsa and Q-learning in case of n = 100 drops

28 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

alpha

av
er

ag
e

re
tu

rn

n = 100, Sarsa
n = 100, Q−learning
n = 100, Expected Sarsa
n = 1E5, Sarsa
n = 1E5, Q−learning
n = 1E5, Expected Sarsa

Figure 3.4: Average return on the windy grid world task over the first n episodes for n =

100 and n = 100, 000 and an ε-greedy policy with ε = 0.1 in a deterministic environment.
The big dots indicate maximal values.

considerably in comparison to the deterministic case, to a value of 0.6. The optimal α value
of Sarsa also decreases, to 0.55. From the n = 100, 000 case, we can see that the policy no
longer converges for Expected Sarsa and Q-learning for all α values. Although not stable
for high α values, the average policy is better for Expected Sarsa than for Q-learning, which
is likely due to the on-policy nature of Expected Sarsa. On the other hand, For n = 100,
Q-learning slightly outperforms Expected Sarsa because it benefits more from optimistic
initialization, i.e., initially overestimating the Q values to increase exploration during early
learning. Since Q-learning uses the maximal Q value of the next state in its update, it takes
longer for the Q values to decrease.

The performance difference for n = 100 between Expected Sarsa and Sarsa at their
optimal values is (−93.7) − (−98.3) = 4.6 in favor of Expected Sarsa. The performance
difference is less than half that of the deterministic case, confirming the first part of Hy-
pothesis 2.

Policy Stochasticity

To confirm the second part of Hypothesis 2, we repeat the stochastic windy grid world
experiment but with higher policy stochasticity, using an ε of 0.3 instead of 0.1. Figure 3.6
shows the results.

For n = 100 the optimal α for Sarsa drops from 0.55 to 0.45 and the optimal α for
Q-learning decreases slightly, though for Expected Sarsa it stays the same. Furthermore,
the performance difference between Q-learning and Expected Sarsa increases. The per-
formance difference between Sarsa and Expected Sarsa also increases for n = 100 and is
now (−121.0) − (−136.4) = 15.4, confirming the second part of Hypothesis 2. Other
experiments, not shown in this thesis, confirmed that also the opposite is true: when policy

3.1. Expected Sarsa 29

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

alpha

av
er

ag
e

re
tu

rn

n = 100, Sarsa
n = 100, Q−learning
n = 100, Expected Sarsa
n = 1E5, Sarsa
n = 1E5, Q−learning
n = 1E5, Expected Sarsa

Figure 3.5: Average return on the windy grid world task over the first n episodes for n =

100 and n = 100, 000 using a ε-greedy policy with ε = 0.1 in a stochastic environment.
The big dots indicate maximal values.

stochasticity is low, i.e. using an ε-greedy policy with ε = 0.01 there is practically no
performance difference between Sarsa and Expected Sarsa.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

alpha

av
er

ag
e

re
tu

rn

n = 100, Sarsa
n = 100, Q−learning
n = 100, Expected Sarsa
n = 1E5, Sarsa
n = 1E5, Q−learning
n = 1E5, Expected Sarsa

Figure 3.6: Average return on the windy grid world task over the first n episodes for n =

100 and n = 100, 000 using a ε-greedy policy with ε = 0.3 in a stochastic environment.
The big dots indicate maximal values.

To demonstrate that the advantage of Expected Sarsa holds more generally, we also
tested in two other domains.

30 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

3.1.4.3 Maze

We compared Expected Sarsa to Sarsa and Q-learning on the maze problem shown in
Figure 3.7. The goal of the agent is to find a path from start to goal, while avoiding hitting
the walls. The reward for arriving at the goal is 100. When the agent bumps into a wall or
border of the environment it stays at the same position, but receives a reward of -2. For all
other steps a reward of -0.1 is received. The environment is stochastic and moves the agent
with a probability of 10% in a random direction instead of the direction corresponding to
the action. The discount factor γ is set to 0.997. A trial is finished after the agent reaches
the goal or 10,000 actions have been performed. An ε-greedy behavior policy is used with
ε = 0.05 and we initialized the Q values to 0.

We optimized α for each method such that the average reward over the first 2 ∗ 106
timesteps is maximized. The optimal values were 0.24, 0.28 and 0.27 for Sarsa, Q-learning
and Expected Sarsa respectively. We then plotted the reward as function of the number of
timesteps for these optimal α values to get a more detailed look at performance. Figure 3.8
shows the results, which are averaged over 100 trials.

S
G

Figure 3.7: The maze problem. The starting position is indicated by [S] and the goal
position is indicated by [G].

Although Expected Sarsa and Q-learning perform equally, Sarsa’s performance is lower
and not monotonically increasing. It shows a drop in performance after 0.2∗106 timesteps,
before it slowly increases again. This drop occurs in all one hundred runs.

Although this is a clear demonstration of the possibility that Sarsa can be unstable in
certain cases, we have not observed this phenomenon in previous research, and it is re-
markable because the value function is represented in a table, without the complications
of function approximation. We explain this temporary performance drop of Sarsa as fol-
lows: since in our implementation we initialized all Q values to 0, while their real value
is higher, all values start to increase in the beginning. However, the values of the best
actions increase faster because they have a shorter propagation path to the final reward of
100. Therefore, initially Sarsa learns well. However, because of the high discount factor
of 0.997, all action-values in a state start to get very close to each other. This makes it
possible that after a bad exploration step, some values are updated in a way that makes the
policy worse. After a while Sarsa finds a policy that is not optimal, but that is robust against
such value updates. The same drop in performance also happens when using a learning rate

3.1. Expected Sarsa 31

0 0.5 1 1.5 2

x 10
6

−0.5

0

0.5

1

1.5

2

episodes

re
tu

rn

Sarsa
Q−learning
Expected Sarsa

Figure 3.8: The on-line performance of the different methods on the maze problem. The
results are averaged over 100 runs.

of 0.04 for Sarsa, although initial learning performance was slower and the drop occurred
later. The update targets of Expected Sarsa and Q-learning are not effected by the action
selected in the next state and are therefore more robust towards performance drops.

3.1.4.4 Cart Pole

As a final comparison, we test the on-line performance of Expected Sarsa, Sarsa and Q-
learning on a cart-pole task. The goal was to balance a 1 m long pole, weighing 0.1 kg,
on a cart that weighs 1.0 kg. The possible actions were all integer amounts between −10
and 10 Newton, where positive and negative forces correspond to pushing the cart right
and left, respectively. An action was performed every 0.02 s. If the cart was pushed further
than 2.4 m from the center of the track or if the pole drops further than 12 degrees to either
side, the algorithm would receive a −1 reward and the cart would be reset to the center
with the pole at a random angle between −3 and 3 degrees. A neural network with 15
sigmoidal hidden units was used to approximate the Q values. The input vector consisted
of the position and velocity of the cart and the angle and angular velocity of the pole, all
normalized to [-1,1]. The value of ε was 0.05 and γ was 0.95. Figure 3.9 shows the average
reward during learning at optimized α values of 0.12, 0.16 and 0.16 for Sarsa, Q-learning
and Expected Sarsa respectively.

We see again that Expected Sarsa and Q-learning perform similar, while Sarsa is less
stable and shows lower performance. This demonstrates that the results extend to the case
of function approximation.

32 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

200 400 600 800 1000 1200 1400 1600 1800 2000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

episodes

re
tu

rn

Sarsa
Q−learning
Expected Sarsa

Figure 3.9: The learning performance of the different methods on the cart pole. The results
are averaged over 200 simulations.

3.2 Just-In-Time Q-learning

In this section we present just-in-time (JIT) Q-learning. Like other lazy learning meth-
ods, e.g., (Atkeson et al., 1997), JIT Q-learning postpones updates until they are needed.
Wiering and Schmidhuber (1998) showed that by postponing updates a computationally ef-
ficient version of Q(λ) can be constructed that does not rely on placing a bound on the trace
length. We prove that by postponing Q-learning updates until a state is revisited, the update
targets involved receive in general more updates, while the total number of updates of the
current state stays the same. Empirically, we demonstrate that this leads to a performance
gain under a range of settings at similar computational cost.

When a Q-learning update is postponed, the values on which the update target is based
are from a more recent timestep. This is advantageous, since Q-learning updates cause
the expected error in the values to decrease over time (Watkins and Dayan, 1992) and
therefore more recent values will be on average more accurate. However, postponing the
update of a value for too long can negatively affect performance, since a value that has not
been updated might be used for action selection or for bootstrapping other values. We start
by showing that updates can be postponed until their corresponding states are revisited,
without negatively affecting performance.

Consider the state-action sequence in Figure 3.10. State sA is visited at timestep 0 and
revisited at timestep 4. With the regular Q-learning update, the Q-value of state-action pair
(sA, a0) gets updated at timestep 1:

Q1(sA, a0) = (1− α)Q0(sA, a0) + α [r1 + γmax
a

Q0(sB, a)]

while at timesteps 2 − 4 no update of (sA, a0) occurs, and therefore Q4(sA, a0) =

Q1(sA, a0). The update of the Q-value of (sA, a0) at timestep 1 can be considered pre-
mature, since the earliest use of its value is in the update target for (sD, a3), which uses

3.2. Just-In-Time Q-learning 33

Figure 3.10: A state transition sequence in which the initial state sA is revisited at timestep
4. The small black dots in between states represent actions.

Q3(sA, a0). Therefore, the update of the Q-value of (sA, a0) can be postponed until at least
timestep 3 without negatively affecting the update target for (sD, a3). When the update of
(sD, a3) is also postponed, the earliest use of the Q-value of (sA, a0) occurs at timestep
4, where it is used for action selection. Thus, if we postpone the update of all state-action
pairs, the update of the Q-value of (sA, a0) can be postponed until the timestep of its revisit,
without causing dependent state values or the action selection procedure to use a value of
(sA, a0) that has not been updated. We call this type of update a just-in-time update, since
the update is postponed until just before the updated value is needed.

To denote the Q-values resulting from just-in-time updates we use Q̃ throughout this
section. With just-in-time updates, no updates of (sA, a0) occur at timesteps 1-3, so
Q̃3(sA, a0) = Q̃0(sA, a0). Instead, an update occurs when sA is revisited:

Q̃4(sA, a0) = (1− α)Q̃3(sA, a0) + α [r1 + γmax
a

Q̃3(sB, a)]

The regular and just-in-time update for (sA, a0) can be written in a more similar form by
expressing the value at timestep 4 in terms of the value at timestep 0:

Q4(sA, a0) = (1− α)Q0(sA, a0) + α[r1 + γmax
a

Q0(sB, a)] (3.9)

Q̃4(sA, a0) = (1− α)Q̃0(sA, a0) + α[r1 + γmax
a

Q̃3(sB, a)] (3.10)

This formulation highlights the difference between the two update types. At timestep 4,
under both update schemes, the Q-value of (sA, a0) has received one update based on the
same experience sample. However, a just-in-time update uses the most recent value of the
Q-values of sB , while a regular update uses the value at the timestep of the initial visit of
sA. By defining t∗ as the timestep of the previous visit of state st, we can write the two
update types more generally as:

Qt(st, at∗) = (1− α)Qt∗(st, at∗) + α[rt∗+1 + γmax
a

Qt∗(st∗+1, a)] (3.11)

Q̃t(st, at∗) = (1− α)Q̃t∗(st, at∗) + α[rt∗+1 + γmax
a

Q̃t−1(st∗+1, a)] (3.12)

Note that we express the update target using only values from the past, making an imple-
mentation easier to interpret. Note also that while st = st∗ per definition (because st is
revisited), st∗+1 does not have to be equal to st+1, since the state transition from st can be
stochastic. Also, at∗ is in general not equal to at.

When comparing the two update targets in more detail, two cases can be distinguished.
See Figure 3.11 for an example of each case. In the first case, state sB is not revisited

34 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

before the revisit of state sA. In this case, neither update type makes use of an updated
Q-value for sB in the update target for sA. The regular update does not since it uses the
values of sB at timestep t∗, and the just-in-time update does not since sB is not revisited
and therefore no update has occurred yet at timestep t− 1. In the second case, state sB has
been revisited before the revisit of sA. The regular update still uses the value of sB from
timestep t∗ and therefore does not use an updated value. The just-in-time update on the
other hand does use an updated value, since this update occurred at the revisit of sB . Note
that for a returning action (t∗ = t − 1), both update types have exactly the same form and
this can therefore be treated as an example of case 1. From these two cases, we can deduce
the following theorem, which is proven in Appendix C.1.

Theorem 2. Given the same experience sequence, each Q-value from the current state has
received the same number of updates using JIT updates (Equation 3.12) as using regular
updates (Equation 3.11). However, each Q-value in the update target of a JIT update has
received an equal or greater number of updates as in the update target of the corresponding
regular update.

Figure 3.11: Two cases in which state sA is revisited. In the first case, neither a regular
update nor a just-in-time update make use of an updated value for sB in the update target
of sA, while in the second case a just-in-time update does.

Algorithm 6 shows pseudocode for the implementation of just-in-time (JIT) Q-learning.
The agent stores the reward and transition state received upon the last visit of a state, i.e.,
the last-visit sample, in R′(s) and S′(s) respectively, while the action taken at the last visit
of a state is stored in A(s). If S′(s) = ∅, state s has not been visited yet and no update
can be performed. Note that the last-visit sample is not reset at the end of an episode, but
maintained across episodes.

Because JIT Q-learning uses more recent values in its update targets than regular Q-
learning, we expect a performance improvement over regular Q-learning. We test this
hypothesis by comparing the performance of JIT Q-learning with regular Q-learning on the
Dyna maze task (Sutton, 1990). In this navigation task, depicted in Figure 3.12, the agent
has to find its way from start to goal. The agent can choose between four movement actions:
up, down, left and right. All actions result in 0 reward, except for when the goal is reached,
which results in a reward of +1. The discount factor γ is set to 0.95. We use a deterministic
as well as a stochastic environment to test the generality of the hypothesis. In the stochastic
version, we employ a probabilistic transition function: with a 20% probability, the agent
moves in an arbitrary direction instead of the direction corresponding to the action.

3.2. Just-In-Time Q-learning 35

Algorithm 6 JIT Q-Learning
1: initialize Q(s, a) arbitrarily for all s,a
2: initialize S′(s) = ∅ for all s
3: loop {over episodes}
4: initialize s
5: repeat {for each step in the episode}
6: if S′(s) ̸= ∅ then
7: Q(s, ā)← (1−αsā) ·Q(s, ā) +αsā [R′(s) + γ maxa′ Q(S′(s), a′)] // ā =

A(s)

8: select action a, based on Q(s, ·)
9: take action a, observe r and s′

10: S′(s)← s′; R′(s)← r; A(s)← a

11: s← s′

12: until s is terminal

To compare performance, we measure the average return each method accrues from
the start state during the first 100 episodes in the deterministic case, averaged over 5000
independent runs per method. For the stochastic version, we measure the return during
the first 200 episodes. Each method uses ε-greedy action selection with ε = 0.1. In the
deterministic case, we use a constant learning rate of 1, while in the stochastic case we use
an initial learning rate α0 of 1 that is decayed in the following manner1

αsa =
α0

d · [n(s, a)− 1] + 1
(3.13)

where n(s, a) is the total number of times action a has been selected in state s. Note that
for d = 0, αsa = α0, while for d = 1, αsa = α0

n(s,a) . We optimize the learning rate
decay d between 0 and 1 by taking the decay rate with the maximum average return over
the measured number of episodes. We use two different initialization schemes for the Q-
values to determine whether the performance difference depends on initialization. We use
optimistic initialization, by initializing the Q-values to 20, and pessimistic initialization, by
setting the Q-values to 0.

Table 3.1: The performance of JIT Q-learning and regular Q-learning on the Dyna maze
task and the optimal learning rate decay d.

deterministic - 100 eps. stochastic - 200 eps.
d average standard d average standard

return error return error
Q-learning,Q0 = 0 0 0.3506 0.0004 1.0 0.3039 0.0003

JIT Q-learning,Q0 = 0 0 0.3628 0.0004 1.0 0.3083 0.0003
Q-learning,Q0 = 20 0 0.3438 0.0002 0.005 0.2562 0.0002

JIT Q-learning,Q0 = 20 0 0.3714 0.0002 0.010 0.2674 0.0002

1This decay is similar to the more common form c1
c2+n(s,a)

, but with the free parameters re-arranged.

36 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

S

G

Figure 3.12: The Dyna maze task, in which the agent must travel from S to G. The reward
is +1 when the goal state is reached and 0 otherwise.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

episodes

re
tu

rn

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

episodes

re
tu

rn

JIT Q−learning, Q
0
 = 20

Q−learning, Q
0
 = 20

JIT Q−learning, Q
0
 = 0

Q−learning, Q
0
 = 0

JIT Q−learning, Q
0
 = 20

Q−learning, Q
0
 = 20

JIT Q−learning, Q
0
 = 0

Q−learning, Q
0
 = 0

Figure 3.13: Comparison of the performance of JIT Q-learning and regular Q-learning on
the deterministic (left) and stochastic (right) Dyna maze task for two different initialization
schemes.

Figure 3.13 plots the return as a function of the number of episodes, while Table 3.1
shows the average return and optimal learning rate. The computation time for both methods
was similar. JIT Q-learning outperforms regular Q-learning in the deterministic as well as
the stochastic environment and for both types of initialization.2

The results confirm our intuition that, since JIT Q-learning uses values from a later
time which are in general more accurate, a performance advantage is obtained with respect
to regular Q-learning for a broad range of settings. Although this performance advantage
is not for all settings substantial, JIT Q-learning performs consistently better at no extra
computational cost, making it overall a better choice. In the next section we apply the
just-in-time principle to Sarsa and Expected Sarsa.

2The performance benefit in the deterministic case can be explained by exploration, which causes the order
in which states are visited to change despite the deterministic state transitions.

3.3. Just-In-Time (Expected) Sarsa 37

3.3 Just-In-Time (Expected) Sarsa

Just-in-time learning is not limited to Q-learning, but can be applied to other methods as
well. In this section, we evaluate a JIT variant of Sarsa and of Expected Sarsa by comparing
their performance with their regular counterparts on the cliff walking task (see Figure 3.1).

Algorithm 7 shows the pseudo-code for JIT Sarsa as well as JIT Expected Sarsa. Note
that JIT Sarsa performs twice per timestep an action selection, once to select an action for
the update target and once to select an action for control. Although an alternative version
of JIT Sarsa can be made that only select an action once per timestep, the advantage of
the version shown in Algorithm 7 is that the pseudo-code is less complicated. In addition,
this version has a performance edge when dealing with MDPs with returning actions, i.e.,
actions that produce a next state that is equal to the current state. The reason is that when
the update target is based on the actual action executed at the next timestep, this action has
to be selected one timestep before it is needed. Therefore, the Q-values used to select this
action, miss out on the last update, which can hurt performance if the next state is equal as
the current state. The version of JIT Sarsa shown in Algorithm 7 avoids this.

Algorithm 7 JIT (Expected) Sarsa
1: initialize Q(s, a) arbitrarily for all s,a
2: initialize S′(s) = ∅ for all s
3: loop {over episodes}
4: initialize s
5: repeat {for each step in the episode}
6: if S′(s) ̸= ∅ then
7: if Sarsa then
8: select action a′, based on Q(S′(s), ·)
9: υ = R′(s) + γ Q(S′(s), a′)

10: if Expected Sarsa then
11: V ′ =

∑′
a π(S

′(s), a′) ·Q(S′(s), a′)

12: υ = R′(s) + γ V ′

13: Q(s, ā)← (1− αsā) ·Q(s, ā) + αsā υ // ā = A(s)

14: select action a, based on Q(s, ·)
15: take action a, observe r and s′

16: S′(s)← s′; R′(s)← r; A(s)← a

17: s← s′

18: until s is terminal

We compare the average return over the first 50 episodes for Sarsa, Expected Sarsa and
Q-learning and their just-in-time counterparts on the cliff walking task from Figure 3.1.
We average the results over 10.000 independent runs. Each method uses ε-greedy action
selection with ε = 0.05. The learning rates have an initial value of 1 and are decayed
according to Equation 3.13. We optimize the decay parameter d in the range from 0 to 1
with steps of 0.01. The initial Q-values are set to 0, so optimistic initialization is used.

Figure 3.14 plots the return as a function of the number of episodes, while Table 3.2

38 Chapter 3. Maximizing Performance under Severe Space and Time Constraints

0 10 20 30 40 50
−90

−80

−70

−60

−50

−40

−30

−20

−10

episodes

re
tu

rn

Sarsa
Q−learning
ExpSarsa

Figure 3.14: Comparison of the performance of JIT Q-learning, JIT Sarsa and JIT Expected
Sarsa on the cliff walking task.

shows the average return and optimal learning rate decay. The just-in-time versions outper-
form their regular counterparts for all three methods. In case of Q-learning and Expected
Sarsa the performance difference is about 5%, while for Sarsa the difference is abut 10%.
The larger performance gap for Sarsa can be explained by the improved strategy for re-
turning actions employed by JIT Sarsa. Surprisingly, the performance of (regular) Sarsa is
worse than that of Q-learning, despite the fact that Sarsa converges in the limit to a higher
value (see Section 3.1.4.1). The reason is that, when considering the 50 first episodes, in
the early stages of learning Q-learning still has a performance advantage over Sarsa, which
outweighs the performance advantage of Sarsa for the later episodes (see Figure 3.14).

Table 3.2: The performance of Q-learning, Sarsa and Expected Sarsa and their just-in-time
counterparts on the cliff walking task shown in Figure 3.1.

regular just-in-time
d average standard d average standard

return error return error
Q-learning 0.01 -74.20 0.06 0.01 -70.89 0.06

Sarsa 0.01 -76.97 0.06 0.01 -69.88 0.07
Exp. Sarsa 0 -62.07 0.03 0 -58.84 0.03

Overall, these results demonstrate that the benefit of just-in-time learning is not limited
to Q-learning, but applies to other methods as well.

3.4. Conclusion 39

3.4 Conclusion

In this chapter, we examined Expected Sarsa, a variation on the Sarsa algorithm intended
to decrease the variance in the update rule. In addition, we presented just-in-time learning,
a learning strategy that postpones updates until the moment the updated values are needed.

We proved that Expected Sarsa converges under the same conditions as Sarsa. We also
proved that the variance in the update rule of Expected Sarsa is smaller than the variance
for Sarsa and that the difference in variance is largest when there is a high amount of
exploration and a large spread in Q-values of the actions of a specific state. We showed
that in practise this translates in a performance advantage of Expected Sarsa compared to
Sarsa and that the difference in performance is relatively high when the policy stochasticity
is high (for example in case of an ε-greedy policy with ε > 0.1) and the environment
stochasticity is low.

Just-in-time Q-learning is a variation on Q-learning that postpones Q-value updates un-
til the moment these values are needed. We proved that by postponing Q-learning updates
until a state is revisited, the update targets involved receive in general more updates, while
the total number of updates for the actions of the current state stays the same. We demon-
strated empirically that this leads to a performance improvement under a range of settings
at similar computational cost. In addition, we empirically demonstrated that just-in-time
learning causes also a performance improvement when combined with Sarsa or Expected
Sarsa.

CHAPTER 4

Trading Space and Time for
Performance

When performing value-function based RL, two major classes of methods are model-free
and model-based learning. The difference in space requirements between these two classes
can be huge. While typical model-free methods have a space complexity that is linear in
the size of the state space, model-based methods are bounded by a space complexity that
is quadratic in the state space size. This huge difference forms a disadvantage, since in a
practical situation an RL agent gets assigned a certain amount of resources - in terms of
computation time and memory space - and ideally should fully exploit these resources to
get the maximum performance. When the agent has to resort to model-free methods when
there is not enough space available for storing the full model, it does not optimally exploit
its space resources and misses out on an opportunity for a better performance.

To avoid this limitation, methods can learn smaller, approximate models that require
only a fraction of the space used by full model-based methods. Kearns and Singh (1999)
show that, when using such sparse models, it is still possible to learn probably approx-
imately correct policies. However, the performance of such methods is bounded by the
quality of the model approximation. Furthermore, since the models may remain incorrect
regardless of how much sample experience is gathered, such methods are not guaranteed
to find optimal policies even in the limit.

In this chapter, we present and evaluate best-match learning, a new approach for trading
off the strengths of model-based and model-free methods. Best-match learning works by
approximating the solution to a set of best-match equations, which combine a sparse model
with a model-free Q-value function constructed from samples not used by the model. We
prove that, unlike regular sparse model-based methods, best-match learning is guaranteed
to converge to the optimal policy in the tabular case. This guarantee holds even when using
a last-visit model (LVM), which stores only the last observed reward and transition state
for each state-action pair.

In addition, we present an extensive empirical analysis, comparing the performance of
best-match learning to several algorithms with similar space requirements. These results
demonstrate that best-match learning can outperform regular sparse model-based methods,
as well as several model-free methods that strive to improve the sample efficiency of tradi-
tional TD methods. These include eligibility traces (Sutton, 1988; Watkins, 1989), which
update recently visited states in proportion to a trace parameter; experience replay (Lin,
1992), which stores experience sequences and uses them for repeated TD updates; and de-
layed Q-learning (Strehl et al., 2006), which uses optimistic Q-value estimates to follow
an approximately correct policy except for O(|S||A| log(|S||A|)) timesteps.

42 Chapter 4. Trading Space and Time for Performance

The remainder of this chapter is organized as follows. Section 4.1 extends the idea of
just-in-time learning, introduced in Section 3.2, to best-match learning with an LVM, in
which updates are continually revised such that the update targets constructed from them
are more accurate. We show that best-match LVM evaluation is related to eligibility traces,
by proving that under certain conditions they compute the same values. However, we also
show that in arbitrary MDPs best-match LVM evaluation, unlike eligibility traces, performs
updates that are unbiased with respect to initial state values. We demonstrate empirically
that, as a result, it can substantially outperform TD(λ) despite using similar space and
computation.

Section 4.1 also addresses the control case. We propose an efficient best-match LVM
algorithm that uses prioritized sweeping (Moore and Atkeson, 1993), a well-known tech-
nique for prioritizing model-based updates, to trade off extra computation for improved
performance. We prove that, despite the use of a sparse model, this approach converges
to the optimal Q-values under the same conditions as Q-learning. In addition, we demon-
strate empirically that it can substantially outperform competitors with similar space re-
quirements.

Section 4.2 proposes a best-match learning algorithm that uses an n-transition model
(NTM), which maintains an estimate of the transition probability for n transition states per
state action pair. By tuning n, the space requirements can be controlled. We prove that
the algorithm converges to the optimal Q-values for any value of n. We demonstrate em-
pirically the resulting performance improvement over regular sparse model-based methods
with equal space requirements, whose performance is bounded by the quality of the model
approximation.

Section 4.3 proposes best-match function approximation, which demonstrates that best-
match learning is useful beyond the tabular case. In particular, we combine best-match
learning with gradient-descent function approximation and show empirically that it can
outperform Sarsa(λ) and experience replay with linear function approximation while using
similar computation.

Section 4.4 discusses the theoretical and empirical results, Section 4.5 outlines future
work, and Section 4.6 concludes.

4.1 Best-Match Last-Visit Model

In this section, we demonstrate that updates can be postponed much further than is done
by JIT Q-learning (see Section 3.2), without negatively affecting other updates, when best-
match updates are performed. Best-match updates are updates that can correct previous
updates when more recent information becomes available. This insight leads to the deriva-
tion of the best-match last-visit model equations, which combine a last-visit model (LVM),
consisting of the last experienced reward and transition state for each state-action pair, with
model-free Q-values, constructed from model-free updates of all observed samples, except
the ones stored in the LVM. We present an evaluation as well as a control algorithm based
on solving these equations and empirically demonstrate that these methods can outperform
competitors with similar space requirements.

4.1. Best-Match Last-Visit Model 43

4.1.1 Best-Match LVM Equations

In the example presented in Section 3.2, the update of Q(sA, a0) is postponed until state sA
is revisited. In this section, we demonstrate that the update can be postponed even further
in the case that a different action is selected upon revisit. Since we will consider multiple
updates per timestep in this section, we denote the Q-value function using two iteration
indices: t and i. Each time an update occurs, i is increased, while each time an action is
taken, t is increased and i is reset to 0. Therefore, if I denotes the total number of updates
that occurs at time t, by definition Qt,I = Qt+1,0. Action selection at time t is based on
Qt,I . Using this convention, the regular Q-learning update can be written as

Qt+1,1(st, at) = (1− α)Qt+1,0(st, at) + α[rt+1 +max
a′

Qt+1,0(st+1, a
′)] .

Now consider the example shown in Figure 4.1, which extends Figure 3.10 to include
a second revisit of s0 at timestep t = 7. Suppose that a different action is selected on
the first revisit, that is, a4 ̸= a0. Using just-in-time updates, the Q-value of state-action
pair (sA, a0) gets updated at time t = 4. Using the two indices convention we can rewrite
Equation 3.10 as1

Q4,1(sA, a0) = (1− α)Q1,0(sA, a0) + α[r1 + γmax
a

Q4,0(sB, a)] . (4.1)

Figure 4.1: A state transition sequence in which best-match updates can enable further
postponing. Timesteps are shown below each state.

To perform this update, the experience set (r1, sB) resulting from taking action a0 in
sA is temporarily stored. With JIT Q-learning, this experience is stored per state. If the
state is revisited and a new action is taken, the previous experience is overwritten and lost.
However, if the experience is stored per state-action pair, then the previous experience is
not overwritten until the same action is selected again. If the same action is not selected
upon revisit, the experience can be used again to redo the update at a later time, using more
recent values for the next state. In the example from Figure 4.1, the update of (sA, a0) can
be redone at timestep 7:

Q7,1(sA, a0) = (1− α)Q1,0(sA, a0) + α[r1 + γmax
a

Q7,0(sB, a)] . (4.2)

Since state sB is revisited at timestep 6, (sB, a1) has received an extra update and therefore
Q7,0(sB, a1) is likely to be more accurate than Q4,0(sB, a1).

1We use Q now instead of Q̃, since the only purpose of the tilde was to distinguish it from the Q-values of
regular Q-learning.

44 Chapter 4. Trading Space and Time for Performance

Equation 4.2 is not equivalent to a (postponed) Q-learning update, in contrast to Equa-
tion 4.1, since Q1,0(sA, a0) is not equal to Q7,0(sA, a0) due to the update at timestep 4.
Equation 4.2 corrects the update from timestep 4, by redoing it using the most recent
Q-values for the update target. We call this update a best-match update (this name will
be explained later in the section), while we call Q1,0(sA, a0) the model-free Q-value of
(sA, a0).

Before formally defining a best-match update, we define the last-visit experience and
the model-free Q-values.

Definition 1. The last-visit experience of state-action pair (s, a) denotes the last-visit re-
ward, R′

t(s, a), that is, the reward received upon the last visit of (s, a), and the last-visit
transition state, S′

t(s, a), that is, the state transitioned to upon the last visit of (s, a). For a
state-action pair that has not yet been visited, we define R′

t(s, a) = ∅ and S′
t(s, a) = ∅.

The LVM consists of the last-visit experience from all state-action pairs.

Definition 2. The model-free Q-value of a state-action pair (s, a), Qmf
t (s, a), is a Q-value

that has received updates from all observed samples except those stored in the LVM, that
is, R′

t(s, a) and S′
t(s, a). For a state-action pair that has not yet been visited, we define

Qmf
t (s, a) = Q0,0(s, a).

While Q can be updated multiple times per timestep, Qmf is updated only once per
timestep. Therefore, it uses a single time index t. We define a best-match update as:

Definition 3. A best-match update combines the model-free Q-value of a state-action pair
with its last-visit experience from the same timestep according to

Qt,i+1(s, a) = (1− α)Qmf
t (s, a) + α[R′

t(s, a) + γmax
a′

Qt,i(S
′
t(s, a), a

′)] .

Using best-match updates to extend the postponing period of a sample update requires
additional computation, as the agent typically performs multiple best-match updates per
timestep. In the example, at timestep 7 the agent redoes the update of Q(sA, a0), but also
performs an update of Q(sA, a4).

The model-free Q-value function is updated only once per timestep. Specifically, at
timestep t+ 1 Qmf is updated according to

Qmf
t+1(st, at) = Qt+1,0(st, at) . (4.3)

Assuming (st, at) has received a best-match update at timestep t, Equation 4.3 is equivalent
to the update

Qmf
t+1(st, at) = (1− α)Qmf

t (st, at) + α[R′
t(st, at) + γmax

a′
Qt,i(S

′
t(st, at), a

′)] ,

where the value of i depends on the order of best-match updates at timestep t. After Qmf

has been updated, the last-visit experience for (st, at) is overwritten with the new experi-
ence

R′
t+1(st, at) = rt+1 ,

S′
t+1(st, at) = st+1 .

4.1. Best-Match Last-Visit Model 45

In the approach described above, best-match updates are used to postpone the update
from a sample without negatively affecting other updates or the action selection process.
However, best-match updates can be exploited far beyond simply avoiding these negative
effects. As an example, consider the state-action sequence in Figure 4.2. sB is not revisited
before the revisit of sA. With the update strategy described above, best-match updates
occur only when a state is revisited. Consequently, the experience from (sB, a1) is not
used in the update target of (sA, a0). However, it is not necessary to wait for a revisit of sB
to perform a best-match update. Instead, it can be performed at the moment it is needed:
when sA is revisited. Thus, if at timestep 3 the agent performs a best-match update of
Q(sB, a1), before updating Q(sA, s0), the latter update will exploit more recent Q-values
for sB , just as if sB had been revisited.

Figure 4.2: A state transition sequence in which sB is not revisited. Timesteps are shown
below each state.

Taking this idea further, the agent can first update the Q-values of sC before updating
the Q-values of sB . In other words, the agent uses the Q-values of sA to perform a best-
match update of sC , then performs a best-match update of sB and finally updates sA.
However, once the Q-values of sA have changed, it is possible to further improve the Q-
values of sC by performing a new best-match update. The new Q-values of sC can then be
used to redo the update of sB , which in turn can be used to re-update sA. This process can
repeat until the Q-values reach a fixed point, which is the solution to a system of |S||A|
best-match LVM equations. We call this solution the best-match Q-value function, QB ,
which forms the best match between the LVM and the model-free Q-values.

Definition 4. The best-match LVM equations at timestep t are defined as

QB
t (s, a) =

(1− αsa

t)Qmf
t (s, a)+

αsa
t [R′

t(s, a) + γ maxcQ
B
t (S

′
t(s, a), c)] if S′

t(s, a) ̸= ∅
Qmf

t (s, a) if S′
t(s, a) = ∅ .

There are different ways to look at these equations. One way is to see them as the limit
case of redoing updates using (in general) increasingly more accurate update targets. An-
other way is to see them as Bellman optimality equations based on an induced model. For
state-action pair (s, a) this induced model can be described as a transition with probability
α to state S′(s, a) with a reward of R′(s, a) and a transition with probability 1 − α to a
terminal state sT (with a value of 0) and a reward of Qmf (s, a) (see Figure 4.3).2

2We assume S′
t(s, a) ̸= ∅ for (s, a) in this case.

46 Chapter 4. Trading Space and Time for Performance

S´
R´

s
a

sT

sa
sa

Qsa
mf

p = α

p = 1- α

Figure 4.3: Illustration of the induced model for state-action pair (s, a) corresponding with
the best-match LVM equations. The small black dot represents the stochastic action a

leading with probability α to state S′(s, a) and with probability 1-α to state sT .

The advantage of solving the Bellman optimality equations for this induced model,
compared to solving it using only the LVM, is that the bias towards the samples in the LVM
can be controlled using the learning rates. With annealing learning rates, the transition
probability to S′

t(s, a) is decreased over time in favor of transition to the terminal state. On
the other hand, when using only the LVM, the solution of the Bellman equations depends
only on the samples of the LVM and does not take into account any previous samples.
Clearly, in a stochastic environment, this will lead to a sub-optimal policy. Also when the
solution is not computed exactly, but approximated by only performing a finite number of
updates at each timestep (which is the case for any practical algorithm), using the induced
model leads to a better performance, because of the strong bias towards the most recent
samples that occurs when using only the LVM.

Section 4.1.3 discusses how to solve the best-match equations. However, we first dis-
cuss the policy evaluation case, for which analogous equations can be defined.

Definition 5. The best-match LVM equations for state values at time t are

V B
t (s) =

{
(1− αs

t)V
mf
t (s) + αs

t [R
′
t(s) + γ V B

t (S′
t(s))] if S′

t(s) ̸= ∅
V mf
t (s) if S′

t(s) = ∅ .

The model-free state values are updated according to V mf
t+1 (st) = Vt+1,0(st).While in

general the value function V can be seen as a special case of the action-value function Q

(with all states only having a single action), V has a linear set of best-match equations, in
contrast to Q, a property we exploit in best-match LVM evaluation.

4.1.2 Best-Match LVM Evaluation

In the evaluation case, the best-match LVM equations form a linear set that can be solved
exactly. This section proposes an algorithm that does so in a computationally efficient way,
using updates that are unbiased with respect to the initial state values.

The algorithm is based on two observations. First, not all |S| best-match equations
necessarily depend on each other. The subset of equations needed to compute the best-
match value for st can be found by iterating through the sequence of last-visit transition

4.1. Best-Match Last-Visit Model 47

states, starting with S′(st). The corresponding N best-match equations form the linear
set of equations to solve. For readability, we write st as s[0] and use the notation s[n] =

S′(s[n−1]) and r[n] = R′(s[n−1]) for the subsequent transition state and reward. In addition,
we use α[n] for αs[n] . The equations can now be written as

V B(s[n]) = (1−α[n])V mf (s[n])+α[n]
[
r[n+1] + γV B(s[n+1])

]
, for all n ∈ [0, N−1] .

Second, the last state of this sequence, s[N], is always either a terminal state or the
current state. Furthermore, none of the intermediate states can appear twice, making the
N equations independent. This can be proven by contradiction. First, assume that the
sequence has a dead-end, that is, ends with a state for which S′ = ∅. This is impossible
because it would cause the agent to get stuck in this state, preventing it from reaching the
current state. Since last-visit information is maintained across episodes, s[N] is a terminal
state if the path followed after the previous visit of st led to a terminal state. Next, assume
the sequence contains the same intermediate state twice. After the second visit of this
intermediate state, the subsequent sequence would be the same as after the first visit, since
there is only a single last-visit next state defined per state. This would create an infinite
sequence of next states, also preventing the agent from reaching the current state.

The set of equations can be solved by backwards substituting the equations, that is,
substituting the equation for V B(s[n+1]) in the one for V B(s[n]) and so on until a single
equation for V B(s[0]) remains of the form

V B(s[0]) = cA + cB V B(s[N]) ,

with cA and cB defined as

cA =

N−1∑
i=0

(
(1− α[i])V mf (s[i]) + α[i]r[i+1]

) i−1∏
k=0

γα[k] , (4.4)

cB =

N−1∏
i=0

γα[i] . (4.5)

If s[N] is a terminal state, its value is 0 and V B(st) = cA. On the other hand, if s[N] = st
then V B(st) = cA/(1− cB).

Algorithm 8 shows pseudocode of the on-line policy evaluation algorithm, which com-
putes the best-match value of the current state at each timestep. Lines 7–11 compute the
values of cA and cB in a forward, incremental way by going from one next state to the other.
Note that it is not necessary to store V mf and R′ separately, since they are always used in
the same combination, (1−α)V mf (s)+αR′(s), which is stored in a single variable, V mf

r ,
saving space and computation. Line 17 combines the assignments V mf (st) = V (st),
R′(st) = rt+1 and the computation of V mf

r in a single update. Note that the algorithm
makes use of the just-in-time learning principle, that is, updating states at the moment of
their revisit. In JIT Q-learning, it is used to improve the performance without increasing
the computation cost, while in the best-match evaluation algorithm it is used to efficiently
compute the best-match values.

48 Chapter 4. Trading Space and Time for Performance

Algorithm 8 Best-Match LVM Evaluation
1: initialize V (s) arbitrarily for all s
2: initialize S′(s) = ∅ for all s
3: loop {over episodes}
4: initialize s
5: repeat {for each step in the episode}
6: if S′(s) ̸= ∅ then
7: cA ← V mf

r (s); cB ← γ αs; s′ ← S′(s)

8: while s′ ̸= s ∧ s′ is not terminal do
9: cA ← cA + cB · V mf

r (s′)

10: cB ← cB · γ αs′

11: s′ ← S′(s′)

12: if s′ = s then
13: V (s)← cA/(1− cB)

14: else
15: V (s)← cA
16: take action π(s), observe r and s′

17: V mf
r (s)← (1− αs)V (s) + αs · r

18: S′(s)← s′; s← s′

19: until s is terminal

Algorithm 8 is an on-line algorithm that computes at each timestep the best-match
value of the current state. We define the off-line version as one that computes at the end of
each episode the best-match values of the states that were visited during that episode. This
off-line algorithm is related to off-line TD(λ), as demonstrated by the following theorem.
We prove this theorem in Appendix A.

Theorem 3. For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation
computes the same values as off-line TD(λ) with λt = αt(st).

For acyclic tasks, that is, episodic tasks with no revisits of states within an episode,
TD(λ) with λt = αt(st) can perform TD updates that are unbiased with respect to the
initial values (Sutton and Singh, 1994). Because of Theorem 3, this also holds for best-
match LVM evaluation. However, in contrast to TD(λ), best-match LVM evaluation can
perform unbiased updates for any MDP, as we demonstrate with the following theorem,
also proven in Appendix A.

Theorem 4. The state values computed by the on-line best-match LVM evaluation algo-
rithm (Algorithm 8) are unbiased with respect to the initial state values, when the initial
learning rates α0(s) are set to 1 for all s.

Because best-match LVM evaluation can perform unbiased updates for any MDP, it can
often substantially outperform TD(λ) while requiring similar space and computation. We
demonstrate this empirically using the two tasks shown in Figure 4.4. Besides comparing
against TD(λ), we also compare against experience replay (Lin, 1992), which stores the n

last experience samples and uses them for repeated TD updates.

4.1. Best-Match Last-Visit Model 49

Task A features a small circular network consisting of four identical states, each having
a deterministic transition to a neighbor. The reward received after each transition is +1.
Task B is a stochastic variation on the first task, with stochastic transitions and a reward
drawn from a normal distribution with mean 1 and standard deviation 0.5. The discount
factor is 0.95, resulting in a state value of 20 on both tasks for all states. We compare the
RMS error of the current state value Vt(st) for all three methods. For experience replay,
we performed a TD update for each of the last 4 samples at every timestep, resulting in a
computation time similar to best-match LVM and TD(λ). In addition, we implemented a
version where all observed samples are stored and updated at each timestep. The learning
rate is initialized to 1 and decayed according to

αs =
α0

d · [n(s)− 1] + 1
.

where n(s) is the total number of times state s has been visited. We optimize d as well as
λ between 0 and 1. Results are averaged over 5000 runs.

Figure 4.4: Two tasks for policy evaluation. Task A has deterministic state transitions and
a deterministic reward of +1, while task B has stochastic transitions and a reward drawn
from a normal distribution with mean +1 and standard deviation 0.5.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

22

timesteps

R
M

S
 e

rr
or

 V
t(s

t)

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

22

timesteps

R
M

S
 e

rr
or

 V
t(s

t)

TD(λ)
exp. replay, N = 4
exp. replay, N = all
best−match LVM

TD(λ)
exp. replay, N = 4
exp. replay, N = all
best−match LVM

Figure 4.5: Comparison of the performance of best-match LVM, TD(λ) and experience
replay on tasks A (left) and task B (right) of Figure 4.4.

50 Chapter 4. Trading Space and Time for Performance

Figure 4.5 shows the experimental results in these tasks. In task A, at timestep 4 the
start state is revisited and the RMS error for best-match LVM drops to 0. The reason is
that in the deterministic case the last-visit model is equal to the full model once every state
has been visited. Furthermore, with learning rates of 1, the best-match LVM equations re-
duce to the Bellman optimality equations. Therefore best-match LVM effectively performs
model-based learning. TD(λ), on the other hand, has to incrementally improve upon the
initial values of 0. The spiky behavior of TD(λ) is caused by the combination of a λ of 1,
with zero learning rate decay (which were the optimal settings in this case). Experience
replay has a performance in between best-match LVM and TD(λ). In task B, the RMS
error drops more smoothly. Best-match LVM again substantially outperforms TD(λ) and
experience replay, even when all samples are stored and updated. The total computation
time for the 5000 runs was marginally higher for experience replay with N=4, which has
to maintain a queue of recent samples, than for best-match LVM and TD(λ): on task A,
around 90 ms compared to 80 ms for both best-match LVM and TD(λ). Experience replay
with all samples updated had a computation time of 280 ms. On task B, all methods were
about 10 ms slower.

4.1.3 Best-Match LVM Control

The best-match LVM equations for the control case form a nonlinear set. Therefore, it is in
general not possible to compute the exact best-match Q-values at each timestep. However,
they can be approximated to arbitrary accuracy via update sweeps through the state-action
space, in a manner similar to value iteration, as we prove in the following lemma.

Lemma 2. For the best-match Q-values the following equation holds for all (s,a):

QB
t (s, a) = lim

i→∞
Qt,i(s, a) ,

where Qt,i is initialized arbitrarily for i = 0 and is defined for i > 0 as

Qt,i(s, a) =

(1− α)Qmf

t (s, a)+

α [R′
t(s, a) + γ maxa′ Qt,i−i(S

′
t(s, a), a

′)] if S′
t(s, a) ̸= ∅

Qmf
t (s, a) if S′

t(s, a) = ∅ .

Proof. For state-action pairs (s, a) with S′
t(s, a) = ∅ the proof follows directly from the

definition of QB
t and Qt,i. For (s, a) with S′

t(s, a) ̸= ∅, the absolute difference between
Qt,i(s, a) and QB

t (s, a) can be written as

|Qt,i(s, a)−QB
t (s, a)| = αγ |max

c
Qt,i−i(S

′
t(s, a), c)−max

c
QB

t (S
′
t(s, a), c)|

≤ αγ max
c
|Qt,i−i(S

′
t(s, a), c)−QB

t (S
′
t(s, a), c)|

≤ αγ ||Qt,i−i −QB
t || .

From this it follows that

||Qt,i −QB
t || ≤ αγ ||Qt,i−i −QB

t || .

For αγ < 1, it follows that for i→∞, Qt,i → QB
t .

4.1. Best-Match Last-Visit Model 51

Lemma 2 shows that QB
t can be approximated to arbitrary accuracy with a finite num-

ber of best-match updates.
Algorithm 9 shows the pseudocode for a general class of algorithms that approximate

the best-match Q-values by performing best-match updates.3 Lines 9–12 perform a series
of best-match updates. Note that while only a single Qmf value is updated per timestep,
many Q-values can be updated at the same timestep. By varying the way state-action pairs
are selected for updating (line 10) and changing the stopping criterion (line 12), a whole
range of algorithms can be constructed that trade off computation cost per timestep for bet-
ter approximations of the best-match Q-values. Note that JIT Q-learning and even regular
Q-learning are members of this general class of algorithms. If the state-action pair selection
criterion is the state-action pair visited at the previous timestep and the stopping criterion
allows only a single update, the algorithm reduces to the regular Q-learning algorithm.
Thus, Q-learning is a form of best-match control with a simplistic approximation of the
best-match Q-values. However, we reserve the term ‘best-match learning’ for algorithms
that use the same sample multiple times to redo updates.

Algorithm 9 General Best-Match LVM Control
1: initialize Q(s, a) arbitrarily for all s,a
2: initialize S′(s, a) = ∅ for all s,a
3: loop {over episodes}
4: initialize s

5: repeat {for each step in the episode}
6: select action a, based on Q(s, ·)
7: take action a, observe r and s′

8: Qmf (s, a)← Q(s, a);S′(s, a)← s′;R′(s, a)← r

9: repeat
10: select some (s̄, ā) pair with S′(s̄, ā) ̸= ∅ {each pair is selected at least once

before its revisit}
11: Q(s̄, ā)← (1− αs̄ā)Qmf (s̄, ā) + αs̄ā [R′(s̄, ā) + γ maxcQ(S′(s̄, ā), c)]

12: until some stopping criterion has been met
13: s← s′

14: until s is terminal

The following theorem states that, for any member of the best-match LVM control
class, the Q-values converge to the optimal Q-values.

Theorem 5. The Q-values of a member of the best-match LVM control class, shown in
Algorithm 9, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. αt(s, a) ∈ [0, 1] ,
∑

t αt(s, a) =∞ ,
∑

t(αt(s, a))
2 <∞ w.p.1

and αt(s, a) = 0 unless (s, a) = (st, at).

3Similar to the variable V mf
r of Algorithm 8, a variable Qmf

r can be defined that combines the variables
Qmf and R′, saving space and computation. For readability we do not show this for Algorithm 9.

52 Chapter 4. Trading Space and Time for Performance

3. V ar{R(s, a, s′)} <∞.

4. γ < 1.

We prove this theorem in Appendix C.3.

4.1.4 Best-Match LVM Prioritized Sweeping

A wide range of methods can be constructed within the general class of best-match LVM
control algorithms that trade off increased computation time for better approximation of the
best-match Q-values in different ways. This section proposes one method that performs this
trade-off with a strategy based on prioritized sweeping (PS) (Moore and Atkeson, 1993).

PS makes the planning step of model-based RL more efficient by focusing on the up-
dates expected to have the largest effect on the Q-value function. The algorithm maintains
a priority queue of state-action pairs in consideration for updating. When a state-action
pair (s, a) is updated, all predecessors (i.e., those state-action pairs whose estimated tran-
sition probabilities to s are greater than 0) are added to the queue according to a heuristic
estimating the impact of the update. At each timestep, the top N state-action pairs from
this queue are updated, with N depending on the available computation time. Because PS
maintains a full model, it requires O(|S|2|A|) space.

This same idea can be applied to the best-match equations for efficient approximation
of the best-match values. A priority queue of state-action pairs is maintained whose cor-
responding best-match updates have the largest expected effect on the best-match Q-value
estimates. When a state-action pair has received an update, all state-action pairs whose
last-visit transition state equals the state from the updated state-action pair are placed into
the priority queue with a priority equal to the absolute change an update would cause in its
Q-value. Since this approach uses only an LVM, it requires only O(|S||A|) space.

Algorithm 10 shows the pseudocode of this algorithm, which we call best-match LVM
prioritized sweeping (BM-LVM). By always putting the state-action pair from the previous
timestep on top of the priority queue (line 10), the requirement that each visited state-
action pair receives at least one best-match update is fulfilled, guaranteeing convergence in
the limit.

On the surface, this algorithm resembles deterministic prioritized sweeping (DPS) (Sut-
ton and Barto, 1998), a simpler variation that learns only a deterministic model, uses a
slightly different priority heuristic, and performs Q-learning updates to its Q-values. While
clearly designed for deterministic tasks, it can also be applied to stochastic tasks, in which
case updates are based on an LVM.

However, there is a crucial difference between DPS and BM-LVM. By performing
updates with respect to Qmf instead of Q, BM-LVM corrects previous updates instead of
performing multiple updates based on the same sample. This ensures proper averaging
of experience and enables convergence to the optimal Q-values using only an LVM, even
in stochastic environments. This is not guaranteed for DPS since if some samples are
used more often than others a bias towards these samples is created, which can prevent
convergence to the optimal Q-values.

4.1. Best-Match Last-Visit Model 53

Algorithm 10 Best-Match LVM Prioritized Sweeping (BM-LVM)
1: initialize Q(s, a) arbitrarily for all s,a
2: initialize S′(s, a) = ∅ for all s,a
3: initialize PQueue as an empty queue
4: loop {over episodes}
5: initialize s
6: repeat {for each step in the episode}
7: select action a, based on Q(s, ·)
8: Take action a, observe r and s′

9: S′(s, a)← s′;R′(s, a)← r;Qmf (s, a)← Q(s, a)

10: promote (s, a) to top of priority queue
11: n← 0

12: while (n < N)∧ (PQueue is not empty) do
13: s1, a1 ← first(PQueue)

14: Q(s1, a1) ← (1 − αs1a1)Qmf (s1, a1) + αs1a1 [R′(s1, a1) +

γ maxc Q(S′(s1, a1), c)]

15: Vs1 ← maxa′ Q(s1, a
′)

16: for all (s̄, ā) with S′(s̄, ā) = s1 do
17: p← |(1− αs̄ā)Qmf (s̄, ā) + αs̄ā [R′(s̄, ā) + γ Vs1]−Q(s̄, ā)|
18: if p > θ then
19: insert (s̄, ā) into PQueue with priority p

20: n← n+ 1

21: s← s′

22: until s is terminal

We compare the performance of PS, DPS, and BM-LVM on the deterministic and
stochastic variation of the Dyna maze task shown in Figure 3.12. In addition, we also
compare to Q(λ) as described by (Watkins, 1989). This is an off-policy control version
of eligibility traces. We also tried Sarsa(λ), the on-policy version, since it can sometimes
outperform Q(λ) considerably, but saw no significant difference for these experiments and
present only the Q(λ) results. Note that when a greedy behavior policy is used, as in the de-
terministic experiment, Q(λ) computes exactly the same values as Sarsa(λ). As in Section
4.1.2, we also compare to experience replay.

Finally, we compare to delayed Q-learning (Strehl et al., 2006), a model-free method
that, like some model-based methods (Brafman and Tennenholtz, 2002; Kearns and Singh,
2002; Strehl and Littman, 2005), is proven to be probably approximately correct (PAC),
that is, its sample complexity is polynomial with high probability. Delayed Q-learning
initializes its Q-values optimistically and ensures that value estimates are not reduced until
the corresponding state-action pairs have been sufficiently explored. Because it does not
maintain a model, it has the same O(|S||A|) space requirements as best-match prioritized
sweeping. However, to our knowledge, its empirical performance has never been evaluated
before.

For each method, the free parameters are optimized within a certain range. In the

54 Chapter 4. Trading Space and Time for Performance

deterministic case, for Q(λ) we optimized the λ value in the range from 0 to 1, and the
learning rate decay d (using Equation 3.13) in the range from 0 to 1, while α0 was set to
1. We also optimized the (unbounded) trace type (replacing versus accumulating). For
delayed Q-learning we optimized m in the range from 1 to 5 with steps of 1 and e1 in the
range 0 to 0.020 with steps of 0.001. For DPS and BM-LVM, we did not optimize any
parameters in the deterministic case, but simply used a constant α of 1. In the stochastic
case, we also optimized the learning rate decay d for DPS and BM-LVM.

For all methods, we used optimistic initialization with Q0 = 20 in order to get a fair
comparison with delayed Q-learning, for which initialization to Rmax/(1 − γ) is part of
the algorithm.4

In the deterministic case we used a greedy behavior policy, while we used an ε-greedy
policy with ε = 0.1 in the stochastic variant. For all prioritized-sweeping algorithms we
performed a maximum of 20 updates per timestep (i.e., N = 20). For experience replay
we used the last 20 samples, which also results in 20 updates per timestep. Results are
averaged over 1000 independent runs.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

episodes

re
tu

rn

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

episodes

re
tu

rn

Q(λ)
exp. replay
delayed Q
BM−LVM
DPS
PS

Q(λ)
exp. replay
delayed Q
BM−LVM
DPS
PS

Figure 4.6: Comparison of the performance of BM-LVM and several competitors on the
deterministic (left) and stochastic (right) Dyna maze task.

Figure 4.6 shows the return as a function of the number of episodes, while Tables 4.1
and 4.2 show the average return over the measured episodes and the optimal parameter
values. In the deterministic experiment, we see that the performance of PS, DPS, and BM-
LVM is exactly equal, as expected when α = 1, since the last-visit experience is equal
to the model of the environment. Q(λ) performs considerably worse than the prioritized
sweeping methods and does not converge to the optimal policy. In contrast, the com-
bination of a greedy behavior policy with optimistic initialization enables the prioritized
sweeping methods to converge to the optimal policy in a deterministic environment. Ex-
perience replay performs similarly to Q(λ), though it does converge to the optimal policy.

4For this task r = Rmax only when the exit is reached and 0 otherwise. Thus, the Q-values can never be
higher than 1 and Q0 = 20 is overly optimistic. However, since realizing that an initialization of 1 is possible
would require extra prior knowledge, we initialize to 20.

4.1. Best-Match Last-Visit Model 55

deterministic - 50 eps.
optimal parameters average standard time per step

return error (·10−6s)

Q(λ) λ: 0.8, d: 0 0.3606 0.0007 0.68
exp. replay d: 0 0.3602 0.0004 0.37
delayed Q m: 1, e1 = 0 0.1878 0.0004 0.11
BM-LVM d: 0 0.4769 0.0002 0.88

DPS d: 0 0.4774 0.0002 0.85
PS - 0.4772 0.0002 0.95

Table 4.1: Average return and optimal parameters (d = α decay rate) of best-match priori-
tized sweeping and several competitors on the deterministic Dyna maze task.

stochastic - 100 eps.
optimal parameters average standard time per step

return error (·10−6s)

Q(λ) λ: 0.9, d: 0.03 0.2417 0.0007 0.59
exp. replay d: 0.18 0.2272 0.0006 0.43
delayed Q m: 2, e1:0.015 0.0668 0.0004 0.12
BM-LVM d: 0.02 0.2911 0.0006 3.2

DPS d: 0.30 0.2683 0.0008 3.7
PS - 0.3603 0.0004 4.7

Table 4.2: Average return and optimal parameters (d = α decay rate) of best-match priori-
tized sweeping and several competitors on the stochastic Dyna maze task.

Delayed Q-learning also converges to the optimal policy, as predicted by the theory, but
does so much more slowly.

In the stochastic experiment, PS has a clear performance advantage. However, the goal
of BM-LVM is not to match or even come close to the performance of PS. It cannot match
this performance in general, since PS takes advantage of its higher space complexity. In-
stead, the goal of BM-LVM is to optimally perform at a space complexity of O(|S||A|).
The results confirm that BM-LVM is considerably better than the other methods with this
space complexity, like Q(λ) and DPS. DPS initially performs well, but cannot keep up with
BM-LVM after about 10 episodes, even though BM-LVM has similar space and computa-
tion costs per timestep. Experience replay performs slightly worse than Q(λ). We tested
whether doubling the size of the stored experience sequence improves the performance of
experience replay, but this led to no significant performance increase. Delayed Q-learning
also performs poorly in the stochastic case, despite its PAC bounds.

The computation time of BM-LVM, DPS and PS is in the deterministic experiment
considerably lower than in the stochastic case. The reason for this is that while in both
cases the maximum number of updates per timestep is 20, in the deterministic case the
priority queue often has fewer than 20 samples, so fewer updates occur. The computation
time of Q(λ) is slightly better than that of BM-LVM, while experience replay is about twice

56 Chapter 4. Trading Space and Time for Performance

as fast as BM-LVM.
In the stochastic experiment, the computation time of Q(λ) is much better than that of

any of the prioritized sweeping algorithms, which could suggest that Q(λ) is a better choice
than BM-LVM when computation power is scarce. To test this hypothesis, we performed
additional experiments with smaller values of N . The computation time for BM-LVM
for N = 4 (0.61 · 10−6 s) was similar to that of Q(λ). The average return of BM-LVM
dropped to 0.2598 in this case, which is still considerably better than the average return
of Q(λ). This demonstrates that BM-LVM is a better choice than Q(λ) even under severe
computational constraints.

Together, these results clearly demonstrate the strength of best-match learning, since
BM-LVM outperforms several competitors with similar space complexity. However, the
results also show that the performance gap with full model-based learning can be consider-
able. Therefore, if more space is available, a better approximate model would be preferred.
We address this need in the next section by applying best-match learning to an n-transition
model, which estimates the transition function for n next states per state-action pair, allow-
ing increased space requirements to be traded for improved performance.

4.2 Best-Match n-Transition Model

The best-match LVM equations described above combine model-free Q-values with the
last-visit model. When state-action pairs have only a small number of possible next states,
the last-visit model can effectively approximate the full model. In other cases, however,
the last-visit model captures only a fraction of the full model and the effect of the best-
match updates will be small. In this section, we combine best-match learning with the
n-transition model, which estimates the transition probability for n possible next states
of each state-action pair. By tuning n, increased space requirements can be traded for
improved performance.

4.2.1 Generalized Best-Match Equations

Best-match LVM learning takes the idea of using more accurate update targets to the ex-
treme by continuously revising update targets with best-match updates. For a specific sam-
ple, the update target is revised until the moment of revisit of the corresponding state-action
pair, since at that moment the sample is overwritten with the newly collected sample. How-
ever, if space allows, the new sample can be stored along with the old sample instead of
overwriting it, allowing the update target from the new as well as the old sample to be
further improved. We explain with an example how this changes the best-match equations.

Consider the state-action sequence from Figure 4.7 and assume the best-match Q-
values are computed at each timestep. At the revisit of sA, action a0 is retaken. Therefore,
when using the LVM, at timestep 5 the old experience sample is overwritten with the new
experience. Before this occurs, the old experience is used in a final update of Qmf . Let υxy
indicate the update target from the sample collected at timestep x based on the best-match

4.2. Best-Match n-Transition Model 57

6

Figure 4.7: A state transition sequence in which best-match updates can enable further
postponing. Timesteps are shown below each state.

Q-value of timestep y: υxy = rx + γmaxaQ
B
y (sx, a). Using this convention the update of

Qmf at timestep 5 becomes

Qmf
5 (sA, a0) = (1− α)Qmf

0 (sA, a0) + αυ14 .

At timestep 7, the best-match LVM equation for (sA, a0) can be written as

QB
7 (sA, a0) = (1− α)Qmf

7 (sA, a0) + αυ57

= (1− α)Qmf
5 (sA, a0) + αυ57

= (1− α)2Qmf
0 (sA, a0) + α (1− α)υ14 + αυ57 .

Thus, the best-match Q-value of (sA, a0) at timestep 7 is equal to a weighted average of
Qmf

0 , υ14 and υ57 . On the other hand, if both the old and the new sample are stored, Q-values
from timestep 7 could also be used for the update target of the old sample, yielding

QB
7 (sA, a0) = (1− α)2Qmf

0 (sA, a0) + α (1− α)υ17 + αυ57 . (4.6)

For the state-sequence from Figure 4.7 this means that the experience resulting from
(sB, a6) is also taken into account in the update target for (sA, a0).

The above example shows how the best-match LVM equations can be naturally ex-
tended to two samples per state-action pair. Following the same pattern, we can define
best-match equations given an arbitrary set of samples. Consider the set of samples X

of size NX , where a sample x ∈ X has the form {s, a, r, s′ }. These samples can be
grouped according to their state-action pairs. We define Xsa as the subset of X containing
all samples belonging to state-action pair (s, a) and Nx

sa as the size of Xsa. Without loss
of generality, we index the samples from Xsa as xsak for 1 ≤ k ≤ Nx

sa. In addition, we
define Wsa as a set consisting of Nx

sa + 1 weights wsa
k ∈ IR such that 0 ≤ wsa

k ≤ 1 for
0 ≤ k ≤ Nx

sa and
∑Nx

sa
k=0w

sa
k = 1. We define W as the union of the weight sets from all

state-action pairs.

Definition 6. The generalized best-match equations with respect to Qmf
t , X and W are

QB
t (s, a) = wsa

0 Qmf
t (s, a)+wsa

1 υsa1 +wsa
2 υsa2 + ...+wsa

Nx
sa
υNx

sa
, for all s, a , (4.7)

where υsak = r + γ maxcQ
B
t (s

′, c) |r, s′ ∈ xsak .

Note that Equation 4.7 reduces to QB
t (s, a) = Qmf

t (s, a) for state-action pairs with no
samples in X .

58 Chapter 4. Trading Space and Time for Performance

Within this context, Qmf is defined as a model-free Q-value constructed from all ob-
served samples except those in X . Consequently, when a sample is removed from X , it is
used for a model-free update of Qmf .

Using Definition 6, a range of algorithms can be constructed based on different sets of
samples X and weights W . When the samples are combined by incremental Q-learning
updates, like in Equation 4.6, the weights have the values

wsa
0 =

Nx
sa∏

i=1

(1− αsa
i) , (4.8)

wsa
k = αsa

k

Nx
sa∏

i=k+1

(1− αsa
i) , for 1 ≤ k ≤ Nx

sa . (4.9)

With this weight distribution, the update targets from older samples have lower weights
than more recent samples. In Q-learning, more recent samples in general have more ac-
curate update targets so giving them higher weight makes sense. However, in best-match
learning the update targets from all stored samples have the same time index so there is no
reason to use different weights for them. A better weight distribution gives all samples the
same weights:

wsa
k = (1− wsa

0)/Nx
sa , for 1 ≤ k ≤ Nx

sa ,

for some value of wsa
0 .

The last-visit model, storing one sample for each state-action pair, is one possible sam-
ple set. A straightforward extension is to store n samples per state-action pair. In the fol-
lowing section, however, we propose a different sample set, called the n-transition model,
which can be stored more compactly.

4.2.2 Best-Match Learning based on the n-transition Model

While BM-LVM outperforms model-free methods with the same space complexity, it does
not perform as well as PS, which stores a full model. This is symptomatic of an important
limitation of BM-LVM: it offers only a single trade-off between space and performance.
When there is not enough space available to store the full model, but more than enough to
store the LVM, a more sophisticated method is needed to make maximal use of the available
space. Using the generalized best-match equations, we can construct such a method.

An obvious approach is to store n samples per state-action pair. However, obtaining
an accurate model often requires a large n, even when the number of next states per state-
action pair is small. A more space-efficient solution is to group together samples that have
the same next state. If we store the size of such a group in Nx

sas′ and give each sample a
weight of 1/Nsa, where Nsa is the total number of times state-action pair (s, a) is visited,
then we can rewrite the contribution from all samples of Xsa to the best-match equations
as

Nx
sa∑

k=1

wkυk =
1

Nsa

[∑
X

rsa + γ
∑
s′

Nx
sas′ max

a′
QB(s′, a′)

]
,

4.2. Best-Match n-Transition Model 59

where
∑

X rsa is the sum of the rewards from all samples in the sample set belonging
to (s, a). Using wsa

0 = 1 − Nx
sa/Nsa, P̂s′

sa = Nx
sas′/N

x
sa and R̂sa =

∑
X rsa/N

x
sa, the

generalized best-match equations can now be rewritten as

QB(s, a) = wsa
0 Qmf (s, a)+(1−wsa

0)

[
R̂sa + γ

∑
s′

P̂s′
samax

a′
QB(s′, a′)

]
, for all s, a .

In these equations, P̂ and R̂ constitute a sparse, approximate model, whose size can be
controlled by limiting the number of next states per state-action pair for which P̂ is esti-
mated. wsa

0 is the fraction of all samples belonging to (s, a) not used by the sparse model.
We define an n-transition model (NTM) to be one that estimates the transition probability
P̂ for n next states per state action pair. Once a sample enters the model, that is, is used
to update P̂ , it stays in the model. Each sample not used to update the model is used for
a model-free update of Qmf . Different strategies can be used to determine which sam-
ples enter the model. A simple approach is to use the first n unique next states that are
encountered for a specific state-action pair.

Algorithm 11 shows general pseudocode for best-match NTM learning. The algorithm
presents two trade-offs. First, the space complexity can be traded off with performance
by selecting n. Second, the computation time per simulation step can be traded off with
performance by controlling the number of best-match updates performed per timestep.

Based on this general control algorithm, various specific algorithms can be constructed
using different stopping criteria and strategies for selecting state-action pairs to receive
best-match updates. The following theorem states that, for any member of this class, the
Q-values converge to the optimal Q-values. We prove this theorem in Appendix C.4.

Theorem 6. The Q-values of a member of the best-match NTM control class, shown in
Algorithm 11, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. αt(s, a) ∈ [0, 1] ,
∑

t αt(s, a) =∞ ,
∑

t(αt(s, a))
2 <∞ w.p.1

and αt(s, a) = 0 unless (s, a) = (st, at) and st+1 /∈ NTM(st, at).

3. V ar{R(s, a, s′)} <∞.

4. γ < 1.

4.2.3 Experimental Results

As in BM-LVM, prioritized sweeping can be used to trade off computation time and per-
formance in Algorithm 11, yielding a method we call BM-NTM. We compare its perfor-
mance to BM-LVM, Q-learning, and a sparse model-based method that combines priori-
tized sweeping with an NTM without best-match updates, which we call PS-NTM. While
BM-NTM uses the samples that are not part of the NTM to update Qmf , PS-NTM ignores
these samples. The priority of a state-action pair (s, a) for BM-NTM is defined as

p = (1− wsa
0)P̂s1

sa · |∆V (s1)| ,

60 Chapter 4. Trading Space and Time for Performance

Algorithm 11 General Best-Match NTM Control
1: initialize Q(s, a) = Qmf (s, a) arbitrarily for all s,a
2: initialize Nsa, N

x
sa, R

sum
sa to 0 for all s,a

3: initialize Nx
sas′ to 0 for all s,a and s′ ∈ NTM(s, a)

4: initialize wsa
0 to 1 for all s,a

5: loop {over episodes}
6: initialize s

7: repeat {for each step in the episode}
8: select action a, based on Q(s, ·)
9: take action a, observe r and s′

10: if s′ ∈ NTM(s, a) then
11: Nx

sa = Nx
sa + 1; Nx

sas′ = Nx
sas′ + 1; Rsum

sa = Rsum
sa + r

12: P̂s′
sa = Nx

sas′/N
x
sa; R̂sa = Rsum

sa /Nx
sa

13: else
14: Qmf (s, a)← (1− αsa)Qmf (s, a) + αsa [r + γmaxcQ(s′, c)]

15: Nsa = Nsa + 1

16: wsa
0 = 1−Nx

sa/Nsa

17: repeat
18: select some (s̄, ā) pair with Ns̄ā > 0 {each pair is selected at least once

before its revisit}
19: Q(s̄, ā)← ws̄ā

0 Qmf (s̄, ā) + (1− ws̄ā
0)

[
R̂s̄ā + γ

∑
s′ P̂s′

s̄āmaxcQ(s′, c)
]

20: until some stopping criterion has been met
21: s← s′

22: until s is terminal

where ∆V (s1) is the difference in the state value of s1 before and after the best-match
update of one of the Q-values of s1. For PS-NTM, the priority is defined similarly:

p = P̂s1
sa · |∆V (s1)| .

The NTM we use for BM-NTM and PS-NTM is defined by the first n unique next
states that are encountered for a specific state-action pair. Although more sophisticated
models could be used (e.g., by estimating the n most likely transition states), this model
is sufficient for our experimental setting since most transition states have similar transition
probabilities.

We consider the large maze task shown at the left in Figure 4.8. For this maze, the
reward received by the agent is −0.1 at each timestep, while reaching the goal state re-
sults in a reward of +100. The discount factor is 0.99. The agent can take four actions,
‘north’,‘south’,‘east’ and ‘west’. The action outcomes are made very stochastic, in order
to compare different model sizes. The right side of Figure 4.8 shows the relative action
outcome for a ‘north’ action. In free space, there are 15 possible next states, each with
equal transition probability. On the other hand, walls prevent not only the transition to the
square the wall is located on, but also any squares behind the wall. Therefore, close to
a wall the number of possible next states is less than 15. When transition to a square is

4.2. Best-Match n-Transition Model 61

blocked by a wall, the transition probability of that square is added to the transition proba-
bility of the square in front of the wall. In order to make reaching the goal feasible despite
the stochastic actions, we use a goal area consisting of four goal states.

1 1

1 11

1

111

1 1 1

3 3

1 11

1 11

1

1 0 0

2 22

111

1 1 1

4 2

1 11

1

121

1 2 1

1 1 1

1 1 1 1

0

0

2 1

0

0

0 0 0

0

0

0

0

0 0 0

Figure 4.8: Left, the large maze task, in which the agent must travel from S to one of the
G’s. Right, transition probabilities (· 115) of a ‘north’ action for different positions of the
agent (indicated by the circle) with respect to the walls (black squares). When the transition
to a square is blocked by a wall, its transition probability is added to that of the square in
front of the wall.

To compare performance, we measure the average return for each method over the first
500 episodes. For all methods, we use an ε-greedy policy with ε = 0.05 and initialize
Q-values to 0. BM-NTM, PS-NTM and BM-LVM perform a maximum of 5 updates per
timestep. For all learning rate based methods, we use an initial learning rate of 1 and decay
the learning rate according to Equation 3.13, while optimizing the decay rate d. Results are
averaged over 200 independent runs. An episode is stopped prematurely if the goal is not
reached within 500 steps.

Table 4.3 presents the results, including the average return, optimal parameters, and
computation time per simulation step. The model sizes used are N = 1, 3, 5, and 15. For
N = 15, all samples enter the model. Therefore, BM-NTM has no decay rate in this case.
The model weight indicates the fraction of samples that entered the model. BM-NTM has
in general a slightly higher weight than PS-NTM, indicating the agent spends less time in
open spaces and more time close to a wall.

For model sizes N = 1 and N = 3, the average return of BM-NTM is much better
than that of PS-NTM, despite the fact that for N = 3 more than a third of the samples
are stored in the model. For N = 1, the average return of PS-NTM is even worse than
that of Q-learning. Figure 4.9 shows the return as a function of the number of episodes
for BM-NTM and PS-NTM with N = 1 and N = 3. Unlike BM-NTM, the asymptotic
performance for PS-NTM is clearly bounded by the size of the model. Thus, PS-NTM can
match the performance of BM-NTM only when the space reduction over the full model is
quite small (i.e., less than a factor of 2).

Interestingly, when N = 1, BM-LVM outperforms BM-NTM despite having the same

62 Chapter 4. Trading Space and Time for Performance

model model optimal average standard time per step
size weight parameters return error (·10−6 s)

PS-NTM 1 0.12 - -16.9 0.4 0.21
3 0.36 - 9.8 0.3 1.5
5 0.57 - 22.6 0.2 2.1

15 1.00 - 28.9 0.2 3.1
BM-NTM 1 0.14 d = 0.04 15.4 0.3 0.85

3 0.40 d = 0.09 19.6 0.2 1.7
5 0.60 d = 0.06 22.3 0.2 2.2

15 1.00 - 29.3 0.2 3.1
BM-LVM - - d = 0.09 17.4 0.3 1.5

Q-learning - - d = 0.03 2.4 0.2 0.09

Table 4.3: Average return over the first 500 episodes, optimal parameters (d: α decay rate)
and computation time per simulation step on the Large Maze task.

space complexity. Thus, when space is scarce, BM-LVM is a good option. In contrast, BM-
NTM can exploit larger models to further improve performance. The computation time per
simulation step for BM-NTM is comparable to that of PS-NTM, with the exception of
N = 1, for which it is four times larger. The reason is that the priority queue of PS-NTM
is often close to empty in this case and thus the 5 updates per timestep are often not reached.

Overall, these results clearly demonstrate the strength of best-match NTM learning.
When a significant space reduction over storing the full model is required, BM-NTM per-
forms dramatically better than PS-NTM at similar computational cost.

4.3 Best-Match Function Approximation

The BM-NTM method described in the previous section has a space complexity of
O(n|S||A|) compared to O(|S|2|A|) for full model-based methods. However, in prob-
lems with large state spaces, this space complexity may be prohibitive even when n = 1.
In addition, BM-NTM cannot be applied in problems with continuous state spaces. To
address these limitations, this section demonstrates that the principles behind best-match
learning can also be applied to function approximation. We show that the resulting algo-
rithm, which combines the N most recent samples with the model-free Q-value function,
outperforms both linear Sarsa(λ) and linear experience replay on the mountain car task. We
start by describing best-match learning based on the N most recent samples for the tabular
case, and then we show how this can be extended to the function approximation case.

4.3.1 Tabular Sequence Based Best-Match Learning

The generalized best-match equations are defined for an arbitrary set of samples (see Def-
inition 6), which can be stored in a model or as an explicit set. To combine best-match
principles with function approximation, we employ an explicit set consisting of the last N
observed samples, an approach we call sequence based best-match learning. In this section

4.3. Best-Match Function Approximation 63

0 100 200 300 400 500
−40

−30

−20

−10

0

10

20

30

40

episodes

re
tu

rn

PS−NTM, N = 1
BM−NTM, N = 1
PS−NTM, N = 3
BM−NTM, N = 3

Figure 4.9: Performance of BM-NTM and PS-NTM on the large maze task.

we describe sequence based best-match learning for the tabular case and its advantage over
experience replay, which also exploits a set of recent samples. In the next section, we ex-
tend the tabular version of sequence based best-match learning to function approximation.

Assume that a queue of the last N samples is maintained. When the queue is full and
a new sample is added to the back of the queue, the sample at the front of the queue is
removed and used to perform a model-free update of Qmf (s, a). The queue may con-
tain multiple samples that belong to the same state-action pair. If there are Nx

sa samples
belonging to state-action pair (s, a), then the best-match update based on these samples is

Qt,i+1(s, a) = wsa
0 Qmf

t (s, a) + wsa
1 υsa1 + wsa

2 υsa2 + ...+ wsa
Nx

sa
υNx

sa
, (4.10)

where υsak = r + γ maxcQt,i(s
′, c) |r, s′ ∈ xsak . When the weights are defined according

to Equations 4.8 and 4.9, this update can be implemented incrementally by performing Nx
sa

Q-learning updates:

Q<k>(s, a) = (1− α)Q<k−1>(s, a) + α [rk + γmax
a′

Qt,i(s
′
k, a

′)] , for 1 ≤ k ≤ Nx
sa ,

with Q<0>(s, a) = Qmf
t (s, a) and Qt,i+1(s, a) = Q<Nx

sa>(s, a).
By stepping through the queue from front to back and using each sample to perform

an incremental Q-learning update, all state-action pairs with samples in the queue receive
one full best-match update, according to Equation 4.10. By storing the intermediate Q<k>

values at the same location as the final Q-value, Q<Nx
sa> automatically becomes Qt,i+1

after all incremental updates have been performed. This implementation requires that the
Q-values from the state-action pairs with samples in the queue are set equal to Q<0>, that
is, to Qmf

t , before the update sweep begins. Before resetting these Q-values, the update
targets of the samples must be recomputed.

64 Chapter 4. Trading Space and Time for Performance

Despite a superficial resemblance, sequence based best-match learning is fundamen-
tally different from experience replay. Best-match learning uses the stored samples to
correct previous updates based on those samples, whereas experience replay performs ad-
ditional updates with the same sample. To illustrate the effect of this difference, suppose
that sample (s, a, r, s′) is observed at timestep t = 1 and used for an update n timesteps in
a row. For simplicity, assume there are no other samples belonging to (s, a) in the sample
queue and that the learning rate α is constant. We indicate the update target of the sample
with ῡi, where i corresponds to the timestep at which the update is performed. Therefore,
ῡi+1 is likely to be more accurate than ῡi since it uses more recent Q-values for s′. Since ex-
perience replay performs additional updates we can express Qn(s, a), the Q-value of (s, a)
at timestep n, in terms of Q0(s, a) and the update targets from the different timesteps as
follows:

Qn(s, a) = w0Q0(s, a) + w1ῡ1 + w2ῡ2 + ...+ wnῡn ,

with w0 =
∏n

i=1 (1 − α) and wk = α
∏n

i=k+1 (1 − α) for k > 0. If α ≪ 1, the weights
can be accurately described with first-order approximations in α, yielding w0 ≈ 1 − nα

and wk ≈ α for k > 0. Using these approximations, we can write for Qn(s, a):

Qn(s, a) ≈ (1− β)Q0(s, a) + β

∑n
i=1 ῡi
n

, (4.11)

with β = nα. On the other hand, best-match learning uses the sample for best-match
updates, that is, Qn(s, a) = (1 − α)Qmf

n (s, a) + α ῡn. However, since Qmf
i (s, a) gets

updated only when a sample is removed from the queue, Qmf
n (s, a) = Q0(s, a) in this

case. Therefore, the following holds for best-match learning:

Qn(s, a) = (1− α)Q0(s, a) + α ῡn . (4.12)

The difference between Equation 4.11 and Equation 4.12 illustrates the fundamental ad-
vantage of sequence based best-match learning, for which Qn can be seen as an update
with sample (s, a, r, s′) using the most recent update target. In contrast, experience replay
effectively performs an update using an update target that is an average of the update targets
from the different timesteps. Therefore, the older, less accurate update targets still have an
effect on Qn.

4.3.2 Best-Match Gradient Descent Learning

Since tabular sequence based best-match learning can be implemented by incremental Q-
learning updates, it can be easily extended to function approximation by combining it with
the general gradient descent update for Q-values (Sutton and Barto, 1998)

θt+1 = θt + α [υt −Qt(st, at)]∇θtQt(st, at) , (4.13)

where θt is a weight vector corresponding to the basis functions of the approximation.
Algorithm 12 shows pseudocode for general gradient descent best-match function ap-

proximation. Note that a learning rate and the most recent update target are stored per
sample. The updates of θ and θmf are based on Equation 4.13.

4.3. Best-Match Function Approximation 65

Algorithm 12 General Gradient-Descent Best-Match
1: set N , γ
2: initialize θ,α and set θmf = θ

3: initialize SampleQueue to empty
4: loop {over episodes}
5: initialize s
6: while s ̸= terminal state do
7: select action a, based on θ

8: take action a, observe s′,r
9: if size SampleQueue = N then

10: pop sample x from front of the SampleQueue

11: update θmf using x

12: decay α; υ = ∅
13: push new sample {s, a, r, s′, α, υ} to back of SampleQueue

14: for all samples x update υx ← rx + γ · Vs′x using θ

15: for all samples x do
16: for all features from x: θ ← θmf

17: for all samples x (from front to back of SampleQueue) do
18: update θ using υx
19: s← s′

We evaluate a linear version of the best-match gradient descent algorithm by comparing
its performance with linear Sarsa(λ) as well as a linear version of experience replay on the
mountain car task (Boyan and Moore, 1995; Sutton, 1996; Sutton and Barto, 1998) using
the settings as described by Sutton and Barto (1998). This involves tile coding with ten 9x9
tilings, a discount factor of 1, an exploration parameter ε = 0, and Q-values optimistically
initialized to 0. Additionally, to bound the run-time of an experiment, an episode is stopped
prematurely if the goal is not reached within 1000 steps. Linear Sarsa(λ) is known for its
good performance on this task (Sutton and Barto, 1998) and is therefore a good benchmark
test. For Sarsa(λ), we use the settings that showed the best performance over the first 20
episodes: α = 0.14 and λ = 0.9 with replacing traces. We tested whether decaying the
learning rate improves the performance for a number of different α values around 0.14 but
did not find a significant improvement. To make Sarsa(λ) more computationally efficient,
traces are cut-off for state-action pairs that were visited longer than 20 timesteps ago. For
best-match and experience replay, a queue of the 20 most recent samples is used and a
single update sweep through this sample set is performed at every timestep. We optimize
the initial learning rate α0 and the learning rate decay d (see Equation 3.13). Results are
averaged over 5000 independent runs.

Table 4.4 shows the average return over the first 20 episodes, the optimal parameters,
and the computation time per simulation step for the 5000 runs. Figure 4.10 shows the
return as a function of the number of episodes. For trace length/N = 20, the performance
of linear best-match is about 27% better than that of linear Sarsa(λ).5 On the other hand,

5The linear Sarsa(λ) performance is in accordance with the performance found by several other researchers

66 Chapter 4. Trading Space and Time for Performance

Sarsa(λ) is about twice as fast.

optimal parameters average standard time per step
return error (·10−6s)

best-match, N=20 α0 = 0.10, d = 0.09 -170.1 0.4 3.0
exp. replay, N=20 α0 = 0.10, d = 0.16 -195.1 0.4 2.5
Sarsa(λ), trace=20 λ = 0.9, α0 = 0.14, d = 0.0 -231.9 0.4 1.5
best-match, N=15 α0 = 0.10, d = 0.03 -176.3 0.4 2.5
best-match, N= 5 α0 = 0.10, d = 0.03 -215.1 0.4 1.5

Sarsa(λ), trace=∞ λ = 0.9, α0 = 0.14, d = 0.0 -228.2 0.4 6.7

Table 4.4: Average performance over the first 20 episodes and the computation time per
simulation step on the Mountain Car task (‘trace’ indicates trace length)

2 4 6 8 10 12 14 16 18 20
−800

−700

−600

−500

−400

−300

−200

−100

0

episodes

re
tu

rn

linear best−match, N = 20
linear exp. replay, N = 20
linear Sarsa(λ), trace length = 20

Figure 4.10: Performance of linear best-match, experience replay and linear Sarsa(λ) on
the Mountain Car task using the 20 most recent samples.

Surprisingly, while experience replay performed comparably to Sarsa(λ) in the tabular
case, in the mountain car task it performs 16% better than linear Sarsa(λ). However, as
expected, it performs worse than linear best-match. Thus, a substantial portion of the
performance improvement linear best-match offers over Sarsa(λ) is due to the use of best-
match principles, not simply the reuse of data.

Besides a comparison with equal number of samples/updates, it is interesting to make
a comparison with equal computation time. To achieve this, we can either increase the

(http://webdocs.cs.ualberta.ca/~sutton/book/errata.html).

http://webdocs.cs.ualberta.ca/~sutton/book/errata.html

4.4. Discussion 67

sample set size used by experience replay and Sarsa(λ), or decrease the sample set size
used by linear best-match, in such a way that the computation times approximately match.
We chose to decrease the sample set size of linear best-match. Using N = 15 and N = 5

resulted in a computation time matching that of experience replay and Sarsa(λ), respec-
tively. Table 4.4 shows that the performance of linear best-match is also better with equal
amount of computation time. In addition, we performed an experiment with Sarsa(λ) with-
out bound on the trace length. This resulted in an average return of −228.2, demonstrating
that the performance of Sarsa(λ) cannot be improved significantly by increasing the trace
length.

Overall, these results show that best-match learning can be successfully applied to func-
tion approximation. Furthermore, they demonstrate that using samples to correct previous
updates can lead to better performance that using them to perform additional updates.

4.4 Discussion

The methods presented in this chapter approximate solutions to different instantiations of
the generalized best-match equations (Definition 6). These best-match equations provide a
theoretical foundation for combining model-free learning (through updates of Qmf) with
model-based learning (through updates of Q). The resulting methods offer two trade-offs.
First, the selection of a sparse, approximate model provides a trade-off between space and
performance. Second, the number of best-match updates performed per timestep provides
a trade-off between computation cost per timestep and performance. The performance
gain offered by best-match learning can be explained from the perspective of the update
targets. By performing best-match updates, the update targets from the samples stored
in the model are continually recomputed and the Q-values are updated to incorporate any
resulting changes.

In the case of best-match LVM, this produces an evaluation method that leads to the
same values as TD(λ) with λt = αt(st) for acyclic tasks, as proven in Theorem 3. This
equivalence arises from the fact that both best-match LVM learning and eligibility traces
outperform 1-step methods by correcting previous updates with newly obtained samples.
However, our theoretical and empirical results suggest that the best-match LVM equations
provide a much stronger basis for exploiting this principle.

Theorem 4 proves that best-match LVM evaluation can perform updates that are unbi-
ased with respect to the initial values for an arbitrary MDP, while for TD(λ) this can only be
achieved for acyclic tasks. In the control case, Theorem 5 proves convergence in the limit
to the optimal Q-values for a general class of best-match LVM control algorithms. Similar
converge guarantees do not exist for eligibility traces. In addition, best-match LVM learn-
ing avoids the need to choose between different trace types (accumulating or replacing) and
does not require an extra λ parameter. Furthermore, in deterministic problems, best-match
LVM learning, reduces to model-based learning, as one would expect for an algorithm that
makes optimal use of the O(|S||A|) space complexity.

Our empirical results show that best-match LVM evaluation substantially outperforms
TD(λ) and experience replay (Figure 4.5), despite having similar computational costs. For

68 Chapter 4. Trading Space and Time for Performance

the control case, we show that BM-LVM, which uses prioritized sweeping to trade-off
computation cost with performance, substantially outperforms not only Q(λ), but also other
methods with a space complexity of O(|S||A|) (Figure 4.6). These results illustrate how
best-match LVM learning efficiently exploits its stored samples.

Alternatively, best-match learning can be combined with an n-transition model, yield-
ing space complexity betweenO(|S||A|) andO(|S|2|A|). Without using best-match learn-
ing, the performance of an NTM is bounded by the quality of the model approximation. In
contrast, Theorem 6 proves that BM-NTM converges in the limit to the optimal Q-values.
Empirically, we demonstrate that, for any significant space reduction compared to the full
model, BM-NTM performs much better than using only the NTM (Figure 4.9).

Finally, our results demonstrate that the ideas behind best-match learning can be suc-
cessfully extended to function approximation by combining sequence based best-match
learning with gradient descent updates (Algorithm 12). In particular, a linear implementa-
tion outperforms Sarsa(λ) and experience replay on a benchmark task (Figure 4.10).

4.5 Future Work

Several avenues of future research are suggested by the work presented in this chapter. For
example, in Section 4.1.2 we proved that the best-match LVM evaluation algorithm can
eliminate bias with respect to the initial values. It may be possible to extend this result to
the control case. One approach would be to define a state value as the maximum of the
Q-values over previously taken actions instead of the maximum over all available actions.
However, a potential problem is that the control algorithms compute an approximation
of the best-match Q-values, instead of the exact values. It is an open question whether
efficient approximations exist that are also unbiased. A second potential problem is that
many exploration schemes, such as optimistic initialization, depend on the Q-values and
might not work as well when updates are unbiased.

The convergence results for the tabular best-match methods are similar to those of Q-
learning: convergence in the limit to the optimal policy. It may be possible, however, to
construct best-match methods that are probably approximately correct (PAC). Since Strehl
et al. (2006) showed that a full model is not required for a method to be PAC, we are
optimistic that such methods exist.

Finally, it may be possible to develop novel combinations of best-match function ap-
proximation with other sample-based approaches such as fitted Q-iteration (Ernst et al.,
2005) or LSPI (Lagoudakis and Parr, 2003). By combining the strengths of each approach,
such methods could yield even better on-line performance. Fitted Q-iteration, for exam-
ple, is an off-line algorithm that computes a policy based on a large set of samples, by
performing iterative update sweeps through the sample set. For a good approximation, the
number of samples should be much larger than the number of parameters of the approxi-
mation. By using a combination between a model-free Q-value function and a sample set, a
smaller sample set might be possible, reducing the requirements with respect to space and
computation, and potentially producing an efficient on-line version of fitted Q-iteration.

4.6. Conclusion 69

4.6 Conclusion

This chapter introduced best-match learning, a reinforcement learning approach that com-
bines model-free and model-based learning by using some samples to update a sparse
model and the rest to update a model-free Q-value. The final Q-values are computed from
best-match updates that combine the model-free Q-values with the sparse model. By con-
trolling which samples enter the model, the size of the model, and hence the space require-
ments, can be controlled. In the tabular case, the combination with the model-free Q-values
ensures convergence to the optimal Q-values for a variety of model approximations.

Our empirical results demonstrate that in the tabular case, when there is not enough
space available to store the full model, methods that exploit the best-match equations per-
form substantially better than methods based on only model-free learning or sparse model-
based methods. This suggests that best-match learning should be the strategy of choice
when limited space is available.

In addition, we demonstrated that best-match learning can be successfully extended to
the function approximation domain, where the sparse model is replaced by an explicit set
of samples. An interesting result in this domain is that best-match learning, which uses
the sample set to correct previous updates, outperforms experience replay, which uses the
same sample set but performs additional updates.

Overall, we believe that best-match learning provides an important missing link be-
tween model-free and model-based learning and that the methods introduced in this chap-
ter constitute a new benchmark for reinforcement learning algorithms that are efficient with
respect to both space and computation.

CHAPTER 5

Reducing the Problem Size by
Representation Selection

Learning in MDPs is challenging because of the curse of dimensionality: the size of the
state space grows exponentially with respect to the number of problem parameters. Con-
sequently, finding a good policy can require prohibitive amounts of memory, computation
time, and/or sample experience (i.e., interactions with the environment). Fortunately, many
real-world problems have internal structure that can be exploited to dramatically speed
learning.

In a factored MDP (Boutilier et al., 1995), wherein each state is described by a set of
state feature values, independence between such features can be expressed using dynamic
Bayesian networks (DBNs) (Dean and Kanazawa, 1989). In planning problems, i.e., when
the MDP is known in advance, DBNs enable efficient solution methods that do not re-
quire explicit enumeration of the state space (Boutilier et al., 1995). Similarly, in learning
problems, DBNs enable near-optimal performance using only samples and computation
polynomial in the number of parameters of the DBN, which may be exponentially smaller
than the number of states (Kearns and Koller, 1999). However, achieving this performance
requires as input a complete description of the DBN’s structure (but not its parameter val-
ues).

Unfortunately, in many real-world problems, the DBN structure is not known in ad-
vance and must also be learned. Doing so is also possible in a sample-efficient way, given
prior knowledge of the maximum degree of the DBN (Li et al., 2008; Diuk et al., 2009;
Kroon and Whiteson, 2009). However, the memory and computation requirements for such
methods is linear in the number of states, making them impractical for large problems.

In this chapter, we propose an alternative approach for exploiting structure in MDPs.
Rather than learning the structure and parameter values of a DBN, our approach learns
which representation among a set of candidate representations yields the highest expected
return. Each candidate representation consists of a subset of the available state features. In
general, the number of candidate representations can be prohibitively large. However, in
many real-world settings, prior knowledge about the task can be used to deduce a small set
of candidate representations.

For example, consider a predator-prey scenario in which the prey must make optimal
use of its sensors to quickly detect and evade predators. It can, e.g., choose to scan the
sky for flying predators, or it can focus on nearby trees to determine if predators are hid-
ing behind them. These different strategies involve relying on different sensors (or sensor
settings) and thus different candidate representations. Given human expertise or previous
experience on similar tasks, it may be easy to deduce what candidate representations are

72 Chapter 5. Reducing the Problem Size by Representation Selection

worth trying, whereas specifying the structure or even the maximum degree of the corre-
sponding DBN would be infeasible.

In this chapter, we demonstrate that an MDP in which the agent can choose between a
set of candidate representation can be transformed into a derived task containing a single
representation and internal switch actions that select which candidate representation to use
for external action selection. In particular, we prove that under certain conditions this
derived task forms an MDP whose solution yields both the optimal representation for the
original MDP and the optimal policy under that representation.

We show that, because the derived task obeys the Markov property, it can be solved with
standard RL methods. The computation time and memory required for doing so depends
on the size of the derived MDP’s state space, which can be exponentially smaller than
that of the original MDP. However, we also demonstrate how the unique structure of the
derived task can be exploited to further speed learning. In particular, the agent can construct
parallel experience sequences that allow it to simultaneously learn about multiple candidate
representations.

The remainder of this chapter is organized as follows. In Section 5.1 we define different
types of features and representations. In Sections 5.2, 5.3, and 5.4 we propose and evaluate
representation-selection methods for contextual bandit problems, MDPs, and MDPs with
context-specific candidate representations, respectively. Section 5.5 discusses the empirical
results, Section 5.6 reviews related work, and Section 5.7 concludes.

5.1 Representations

Using the full feature set to describe the environment can lead to prohibitively large state
spaces. To circumvent this, the agent can choose to ignore certain features, e.g., those that
it knows are irrelevant. By ignoring features, the agent effectively interacts with a different
task that has a smaller state space. Depending on the features that are ignored, this task
may also obey the Markov property, i.e., form an MDP by itself, in which case standard
RL methods can be used to solve it.

We refer to the set of state features used by the agent as its representation. When a
representation results in a task that obeys the Markov property, we call the representation
valid. In this section we discuss how valid representations can be constructed by removing
certain feature types from the full feature set. But we start with the definition of a factored
MDP.

5.1.1 Factored MDPs

In a factored MDP (Boutilier et al., 1995), each state is described using a set of state
variables or features: X = {X1, ..., XN} where each Xi takes on values in some domain
Dom(Xi). A state x defines a value xi ∈ Dom(Xi) for each variable Xi. Unless specified
otherwise, we use upper case letters (e.g., X) to denote random variables, and lower case
(e.g., x) to denote their values. We use boldface to denote vectors of variables (e.g., X) or
their values (e.g., x). The domain of a vector of variables, Dom(X), is the set of all value

5.1. Representations 73

assignments of x that have a probablity > 0. For the domain size of X = {X1, ..., XN}
the following holds:

|Dom(X)| ≤
N∏
i=1

|Dom(Xi)|

The domain size of a vector of variables can be smaller than the product of its variable
sizes when variables are correlated. For example, for two identical features X1 and X2

the domain size relation is |Dom({X1, X2})| = |Dom(X1)| = |Dom(X2)|. For an
instantiation y ∈ Dom(Y) and a subset of these variables Z ⊂ Y we use y[Z] to denote
the value of the variables Z in the instantiation y.

5.1.2 Feature Types

In this section, we define several feature types, where a feature is an element of the total
feature set X = {X1, ...XN}, belonging to some MDP. We use the DBN shown in Figure
5.1 as a running example to illustrate feature types.

Definition 7. A feature Xi ∈ X is irrelevant with respect to Y if the following holds for
all xt+1, rt+1,xt and at:

P (y−
t+1, rt+1|y−

t , at) = P (y−
t+1, rt+1|y+

t , at) (5.1)

with

y+
t = xt[Y ∪Xi]

y−
t = xt[Y \Xi]

Informally, an irrelevant feature is a feature whose value affects neither the next value
of any feature from Y (except potentially its own value), nor the reward received. In Figure
5.1, X1 is irrelevant with respect to {X1, X3, X4} because it affects neither those features
nor reward. Similarly, X3 is irrelevant with respect to X because it affects only itself. The
complement class is the class of relevant features:

Definition 8. A feature Xi ∈ X is relevant with respect to Y if it is not irrelevant with
respect to Y.

In Figure 5.1, X1 and X2 are relevant with respect to X because they affect features
other than themselves. Furthermore, X4 is relevant with respect to each Y ⊆ X because it
affects reward.

We can divide the irrelevant feature class into three subclasses: constant, empty and
redundant features.

Definition 9. A constant feature Xi ∈ X is a feature with |Dom(Xi)| = 1.

A constant feature is a feature that never changes value. It is therefore irrelevant w.r.t.
all subsets Y ⊆ X. Note that features that stay constant during an episode, but change
values between episodes are not constant. We exclude such features from the definition
because they can still be relevant.

An irrelevant feature can also be empty:

74 Chapter 5. Reducing the Problem Size by Representation Selection

X1

X2

X3

X4

R

X1

X2

X3

X4

R

t t+1

Figure 5.1: A DBN of the transition dynamics of an MDP with features X =

{X1, X2, X3, X4}, illustrating various feature types. Circles correspond to state features,
squares to reward, and arrows to probabilistic dependencies. The left column and right
columns correspond to timesteps t and t+ 1 respectively.

Definition 10. An empty feature Xi ∈ X is a non-constant feature that is irrelevant with
respect to all subsets Y ⊆ X.

In Figure 5.1, X3 is an example of either a constant or an empty feature (depending on
whether the value stays constant or not). Finally, an irrelevant feature can be redundant:

Definition 11. A feature Xi ∈ X is redundant with respect to Y if it irrelevant with respect
to Y and non-empty.

A redundant feature Xi either affects the feature value of a feature not part of Y or
affects a feature from Y, but Xi is fully correlated with some other feature(s) from Y,
hence removing feature Xi from Y does not affect the predictions of the next state. In this
last case, by removing some feature set Z from Y, feature Xi could become a relevant
feature with respect to Y \ Z.

Apart from the relevant/irrelevant classification, we define another classification: de-
pendent and independent features.

Definition 12. A feature Xi ∈ X is independent if for all xt+1, xt, rt+1 and at the follow-
ing holds:

P (xit+1) = P (xit+1|rt+1,xt, at) (5.2)

with

xit+1 = xt+1[Xi]

5.1. Representations 75

Thus, the value of an independent feature does not depend on the previous state features
or the reward just received. Note that an independent feature can affect the next value of
other features or the next reward. In Figure 5.1, X1 and X4 are independent because no
variables affect them.

As we prove in the next subsection, an independent feature is unique in the sense that it
can contain relevant information, but omitting it still give a Markov representation. There-
fore, normal reinforcement learning methods still converge when using such a represen-
tation, though the resulting policy is not optimal in X. However, since we are primarily
interested in the best online performance instead of the optimal policy, omitting indepen-
dent features can play an important role in finding an efficient representation.

For completeness, we also define the counterpart of an independent feature:

Definition 13. A feature Xi ∈ X is dependent if it is not independent.

In Figure 5.1, X2 and X3 are dependent because their values at timestep t+ 1 depend
on the value of variables at timestep t.

5.1.3 Valid Representations

While the full feature set yields a Markov task, using a subset of features will not always
produce a Markov task. We call a representation valid if it does yield a Markov task, in
which case standard methods can be used to solve it.

Definition 14. Consider the MDP M = ⟨X, A, T,R⟩. A subset of features Y ⊆ X is
a valid representation if the Markov property applies to it, i.e., if the following condition
holds for all xt+1, rt+1 and all possible histories xt, at, rt, ..., r1,x0, a0:

P (yt+1, rt+1|yt, at) = P (yt+1, rt+1|yt, at, rt,yt−1, at−1, ..., r1,y0, a0) (5.3)

with yt = xt[Y].

The following theorem shows how a valid representation Y can be constructed from
the full feature set X. We prove this theorem in Appendix A.

Theorem 7. Consider the MDP M = ⟨X, A, T,R⟩. A subset of features Y ⊆ X is a valid
representation if for all Xi ∈ X the following holds:

if Xi /∈ Y then Xi is irrelevant w.r.t. Y or Xi is an independent feature. (5.4)

5.1.4 Context-Specific Representations

Sometimes the structure of a problem dictates that a feature is irrelevant depending on the
value of other features. To exploit this type of structure, an agent can employ a context-
specific representation (Boutilier et al., 1995; Zhang and Poole, 1999; Guestrin et al., 2003)
in which different features are used to describe different states.

76 Chapter 5. Reducing the Problem Size by Representation Selection

We define a context-specific representation as a mapping Hcs that maps each state
x ∈ Dom(X) to the subset of features (i.e., to an element of the powerset of X) used to
represent that state:

Hcs : Dom(X)→ P(X)

The notion of validity can also be extended to context-specific representations, as
shown in the following definition.

Definition 15. The context-specific representation Hcs is a valid representation for MDP
M = ⟨X, A, T,R⟩ if the following condition holds for all xt+1, rt+1 and all possible
histories xt, at, rt, ..., r1,x0, a0:

P (yt+1, rt+1|yt, at) = P (yt+1, rt+1|yt, at, rt,yt−1, ..., r1,y0, a0) (5.5)

where yt = xt[Yt] and Yt = Hcs(xt).

5.2 Representation Selection for Contextual Bandit Problems

In this section, we introduce and evaluate representation-selection algorithms for a contex-
tual bandit problem (Wang et al., 2005; Pandey et al., 2007), a special case of an MDP
that consists of only single-action episodes. Contextual bandit problems are a useful way
to model many real-world tasks, e.g., selecting ads to place alongside web pages (Lang-
ford and Zhang, 2007; Langford et al., 2008). In Section 5.3, we extend our representation
selection approach to general MDPs.

5.2.1 Contextual Bandit Problems

In a multi-armed bandit problem (Lai and Robbins, 1985; Auer et al., 2002), an agent faces
a slot machine with multiple arms. Each arm has a distribution governing the stochastic
reward received for pulling that arm. The goal of the agent is to maximize its reward over
iterative pulls. This setting can be viewed as a special case of an MDP wherein the arms
correspond to actions and |X| = 1, i.e., there is only one state. Since the agent does not
initially know the distribution over rewards for each arm, it faces a reinforcement learning
problem in which the primary challenge is balancing exploration and exploitation.

The contextual bandit problem is an extension of the multi-armed bandit problem in
which the reward distribution of the arms is correlated with context information observed
by the agent. This setting can also be viewed as a special case of an MDP. As before, the
arms correspond to actions. In addition, the context corresponds to the state, i.e., |X| > 1.
However, unlike in a general MDP, each action results in a terminal state, hence all episodes
have length 1. Each new episode has a new context drawn according to some probability
distribution. Thus, contextual bandit problems form a middle ground between multi-armed
bandit problems and general MDPs. Like multi-armed bandit problems, the agent’s actions
affect only its immediate reward. However, like general MDPs, there are many possible
states and the reward an action produces depends on that state.

5.2. Representation Selection for Contextual Bandit Problems 77

5.2.2 Representation Selection

To see the potential benefits of representation selection, consider the ad-placement problem
mentioned above. Since companies that serve ads are typically paid per click, the goal is
to select the ads that maximize the chance of being clicked. This task can be modeled as
a contextual bandit problem wherein available ads are actions, web pages are states, and
rewards are payments for clicked ads.

Typically, the web page is described using a set of features. These can include the
frequency of each term in the web page, a categorization of the page (e.g., news, enter-
tainment, shopping), the number of incoming or outgoing links, the length of the URL, etc.
Since the size of the state space depends critically on the number of features used, selecting
a good representation is essential. The chosen subset of features must be rich enough to
allow the system to determine what ad to place and yet be small enough to make learning
feasible.

Suppose that ten features are available, each of which can take on five values. This
yields 510 ≈ 107 states. One option would be for an agent to try to learn an accurate
action-value function for each state-action pair. However, doing so for such a large state
space would be immensely challenging. Instead, the system designer could try to select the
most useful features. For example, if three features are chosen, the size of the state space is
only 125. However, due to the unpredictability of user behavior, selecting the right features
would require enormous domain expertise.

In this section, we propose a method for automatically determining which representa-
tion to select for a contextual bandit problem. Our approach works by trying out the various
candidate representations in the task, learning with them, and measuring the average reward
accrued. To do so, we construct a derived task containing internal switch actions that corre-
spond to selecting a candidate representation. Given some minimal prior knowledge about
what representations to consider, this approach can efficiently find the best representation
by solving the derived task. For example, given only the information that three features suf-
fice to describe a web page, we can construct a derived task for the ad-placement contextual
bandit problem that contains two orders of magnitude fewer states.1

In the following subsections, we formally describe the derived task, prove that it obeys
the Markov property, provide a concrete example, and describe a model-free algorithm for
learning in the derived task.

5.2.2.1 Derived Tasks

Consider the contextual bandit problem described by the factored state space Xgr, action
set Agr and reward function Rgr and assume that the agent interacting with it can choose
between K different representations: X1, ...,XK , where each Xk ⊂ Xgr. We call these
the candidate representations.

Intuitively, our approach to such a task is to try out different representations over time
and measure how well they perform. As the agent becomes more confident about which

1There are
(
20
3

)
= 1140 candidate representations with three features and 125 states per candidate repre-

sentation and 1140 ∗ 125 ≈ 1.4× 105.

78 Chapter 5. Reducing the Problem Size by Representation Selection

representation is the best, it can use this representation more often, thus boosting its ex-
pected reward.

The main insight behind our method is that an agent trying out representations in a
task faces an exploration/exploitation dilemma just like that of an agent choosing ordinary
actions in such a task. As a result, the choice of which representation to use can be modeled
as an action internal to the agent. We call these switch actions, to distinguish them from
the ordinary actions in Agr, i.e., the ground actions.

In the resulting derived task, the agent must select two actions in each timestep. First,
it must choose a switch action, which selects a particular candidate representation. Then it
must choose a ground action, based on the current Q-values of the selected candidate rep-
resentation. The action set of the derived task, Adr, consists of the action set of the original
contextual bandit problem augmented with the switch action set Asw = {asw1 , ...aswK }.
There is one switch action for each candidate representation.

Adr = Asw ∪Agr (5.6)

The feature set of the derived task contains, in addition to the features from the con-
textual bandit problem, one extra feature Xrep = {xrep0 , ..., xrepK } that specifies which
candidate representation is selected. This feature has K + 1 values, one for each candi-
date representation plus one extra value, xrep0 , that indicates no candidate representation is
currently selected.

Xdr = Xrep ∪Xgr (5.7)

The initial value of feature Xrep is xrep0 , the value that corresponds with no selected candi-
date representation. The action set Adr is state dependent according to:

Adr(x) =

{
Asw if x[Xrep] = xrep0

Agr otherwise
(5.8)

From this equation and the initial value of Xrep it follows that the agent’s first action is
always a switch action.

The reward received after taking a switch action is zero, since it is an internal action
that does not generate a reward from the environment. Therefore, the reward function of
the derived task is, for all x ∈ Dom(Xdr):

Rdr(x, a) =

{
0 if a ∈ Asw

Rgr(x[Xgr], a) if a ∈ Agr

(5.9)

The transition function of the derived task, Tdr(x, a,x
′) = Pdr(x

′|x, a), is defined
as follows. We split the transition function up as Pdr(x

′|x, a) = Pdr(x
′[Xrep]|x, a) ·

Pdr(x
′[Xgr]|x, a). We start by defining the transition function for the switch actions set

Asw. The switch action aswk sets the value of feature Xrep to xrepk which corresponds to the
selection of candidate representation Xk:

Pdr(x
′[Xrep]|x, aswn) =

{
1 if x′[Xrep] = xrepk

0 otherwise
(5.10)

5.2. Representation Selection for Contextual Bandit Problems 79

Note that there is no action asw0 that sets Xrep to xrep0 . Therefore, the second action the
agent takes is always a ground action. The values of the other features are left unchanged
by the switch actions:

Pdr(x
′[Xgr]|x, aswn) =

{
1 if x′[Xgr] = x[Xgr]

0 otherwise
(5.11)

The ground actions always result in a terminal state:

Pdr(x
′|x, agr) =

{
1 if x′ is a terminal state

0 otherwise
(5.12)

These following definition gives the complete definition of the derived task.

Definition 16. The derived task of a contextual bandit with representation selection is
formed by the four-tuple ⟨Xdr, Adr, Tdr,Rdr⟩ defined by Equations 5.6 through 5.12 and
the context-specific representation Hcr defined as follows:

Hcr(x) =

{
{Xrep} if x[Xrep] = xrep0

Xrep ∪Xk if x[Xrep] = xrepk | 1 ≤ k ≤ K
(5.13)

The optimal policy of the derived task yields the best switch action, i.e., the best rep-
resentation, and the best ground actions, i.e., the optimal policy for each representation.
The following theorem proves that the derived task is in fact Markov, allowing the use of
standard RL methods for solving it.

Theorem 8. The derived task of a contextual bandit problem with representation selection
(Definition 16) obeys the Markov property.

Proof. The Markov property states that the transition probability and expected reward for a
state-action pair should be independent of all possible histories. An episode of the derived
task consists of two actions: a switch action followed by a ground action. The switch action
always obeys the Markov property since there is no history yet. Since the history of the
ground action is always the same for a given state x, this action always obeys the Markov
property.

5.2.2.2 Example

Consider a simple contextual bandit problem with two actions, a0 and a1, and four states,
described by the binary independent features X1 and X2. The probability of each feature
being true is 0.5. Action a0 always produces a reward of 0, while the average reward of
action a1 depends on the state, as shown in Table 5.1. From this table, the optimal policy
can be easily deduced: action a1 should be taken in states {X1 = true,X2 = true}
and {X1 = true,X2 = false} and action a0 should be taken in the other states. The
expected reward of this policy is

∑
x1,x2

P0(x1, x2) ·maxaR(a, x1, x2) = 1.5. Although

80 Chapter 5. Reducing the Problem Size by Representation Selection

Table 5.1: Rewards and initial state probability P0 using representation {X1, X2}
X1 X2 P0(x1, x2) R(a0, x1, x2) R(a1, x1, x2)

true true 0.25 0 +4.0
true false 0.25 0 +2.0
false true 0.25 0 -2.0
false false 0.25 0 -4.0

the state space of this task is small enough that learning using both features is feasible, for
illustrative purposes we assume that the agent must choose between using feature X1 or
feature X2 as a representation.

The action set of the derived task is augmented with the switch actions aX1 and aX2 ,
which correspond to selecting candidate representations X1 and X2, respectively. The state
space is derived with feature Xrep = {‘∅’, ‘X1’, ‘X2’}, whose values refer to the candi-
date representation that is selected (‘∅’ means no candidate representation is selected).2

Thus:

Adr = {aX1 , aX2 , a0, a1} (5.14)

Xdr = {Xrep, X1, X2} (5.15)

The derived task makes use of the context-specific representation defined by

Hcr(x) =

{Xrep} if x[Xrep] =‘∅’
{Xrep, X1} if x[Xrep] =‘X1’

{Xrep, X2} if x[Xrep] =‘X2’

(5.16)

for all x ∈ Dom(Xdr). The transition dynamics of this dervied task are summarized in
Figure 5.2.

The transition probabilities of the switch actions aX1 and aX2 can be directly deduced
from Table 5.1 and are shown in in Tables 5.2 and 5.3, respectively. From these tables it
follows that the expected reward is 1.5 for the optimal policy of representation X1, and 0.5
for that of representation X2. Thus, after the optimal policy for both representation has
been learned, the agent should use representation X1.

Table 5.2: Rewards and transition probabilities for representation X1.
X1 P (x|{∅}, aX1) R(a0, x1) R(a1, x1)

true 0.5 0 +3.0
false 0.5 0 -3.0

2We use accolades to distinguish the value ‘X1’ from the feature X1.

5.2. Representation Selection for Contextual Bandit Problems 81

aX

a
X

a0

a0

a1

a1

a0

a0

a1

a1

{'O'}

{'X ' , true}1

{'X ' , false}1

1

2
{'X ' , true}2

{'X ' , false}2

Figure 5.2: Derived MDP for the contextual bandit problem with a choice between two
representations, each consisting of a single, binary feature. Circles indicate states and their
colors indicate the corresponding representation. Below each state the feature values are
shown. Squares indicates terminal states and the black dots indicate actions. Actions with
stochastic transitions have multiple arrows.

Table 5.3: Rewards and transition probabilities for representation X2.
X2 P (x2|{∅}, aX2) R(a0, x2) R(a1, x2)

true 0.5 0 +1.0
false 0.5 0 -1.0

5.2.3 Model-Free Updating

In this section, we present an update scheme for the derived task of a contextual bandit
problem with representation selection. Since the state space of the derived task can be
exponentially smaller than that of the original MDP, using the derived task can greatly
reduce the computational, memory, and sample requirements of learning. Furthermore,
since the derived task obeys the Markov property, it is itself an MDP. Consequently, in
principle, standard TD methods can be used to solve it.3

However, in this section we also show how the special properties of the derived MDP
can be exploited to speed learning even further. In particular, since the agent can observe all
features, even those that are not part of the currently selected representation, it can construct
a parallel experience sequence for each representation that is not selected. This parallel

3Model-based methods could also be applied to the derived MDP. For simplicity, we focus on model-free
updates in this chapter.

82 Chapter 5. Reducing the Problem Size by Representation Selection

sequence can be used, under certain conditions, for more efficient off-policy updating.

5.2.3.1 Updating Switch Actions

An episode of the derived task consists of a switch action followed by a ground action.
Since a ground action always results in a terminal state, its value in a given state, i.e., the
Q-value, is simply the expected immediate reward, which can be trivially estimated by
averaging the corresponding observed sample rewards. However, estimating the Q-values
of switch actions is less straightforward.

Before describing how to do so, we first illustrate why learning such Q-values is neces-
sary. After all, since switch actions are internal, the agent already knows what the next state
will be before it takes a switch action. Thus, it may seem that learning Q-values for switch
actions is unnecessary since they could simply be inferred from the next state. To see why
such a strategy fails, consider the example presented in Section 5.2.2.2. If the current state
is {X1 = false,X2 = true}, representation X1 predicts action a0 is best (see Table 5.2),
yielding an average reward of 0. On the other hand, representation X2 predicts action a1
is best (see Table 5.3), yielding an average reward of +1. If representations selection was
done merely on the basis of the state values of each representation, then representation
X2 would be chosen, since it predicts a higher reward. However, a0 is actually the best
action (see Table 5.1). The problem is that this strategy implicitly uses both features to
select the switch action while the representation consists only of a single feature, yielding
a non-Markov task.

Thus, learning separate Q-values for the switch actions is essential. However, the best
way to do so is not obvious. Using a simple Q-learning update is not ideal because it boot-
straps the value of the switch action with values of the corresponding candidate represen-
tation. If this candidate representation is large and has optimistically initialized Q-values,
then the Q-value of the switch action will have a positive bias for a long time, even if the
representation itself is poor. To get an estimate of how good a candidate representation is
more quickly, a Monte Carlo update can be used, which updates a Q-value with the com-
plete observed return and is therefore not biased by values of the candidate representation.

The regular Monte Carlo update is an on-policy update: the policy the agent follows
(the behavior policy) is the same as the policy whose Q-values are being estimated (the
estimation policy). Alternatively, an off-policy update can be performed, in which case
the behavior and estimation policies are different. For example, Sutton and Barto (1998)
present an off-policy MC update that evaluates the greedy policy, while following an ε-
greedy behavior policy (i.e, one that selects the greedy action with 1− ε probability, while
selecting a random action otherwise).

The main disadvantage of off-policy Monte Carlo updates is that learning is inefficient
for long episodes because a state-action pair can be updated only when all subsequent ac-
tions are greedy, which occurs only rarely given an ε-greedy behavior policy. Fortunately,
the derived task of a contextual bandit problem has episodes that are only 2 actions long,
reducing the off-policy MC update to a particular simple form. In Appendix B, we show
that for the derived task of a contextual bandit problem, the off-policy MC update reduces
to one based on the immediate reward of the ground action under the condition that the

5.2. Representation Selection for Contextual Bandit Problems 83

ground action is optimal (to ensure the update is unbiased):

Q(xt=0, asw) = (1− α)Q(xt=0, asw) + α r if agr is optimal (5.17)

where xt=0 is the start state and r is the reward after the ground action.

5.2.3.2 Off-Policy Updating Ground Actions

The concept of off-policy updating can be used for more than merely evaluating the greedy
policy while using an ε-greedy behavior policy. In fact, we can also use off-policy updating
to simultaneously update the state-action pairs of candidate representations that are not
currently selected, which can speed learning considerably.

Since the agent observes all the available features, it can construct a parallel experience
sequence for each candidate representation that was not selected. For example, consider
the derived task from Section 5.2.2.2 when the current ground state is {X1 = true,X2 =

false} and the agent takes switch action aX1 . The experience sequence of the derived
MDP observed by the agent is:

{∅} → aX1 → {‘X1’, true} → a→ r (5.18)

Even though the agent did not take action aX2 , it can deduce what state would result, since
this state is simply constructed from feature X2, which it can also observe. The agent can
therefore construct a parallel experience sequence corresponding to representation X2:

{∅} → aX2 → {‘X2’, false} → a→ r (5.19)

This parallel sequence can be used to update the ground action a for representation X2 as
well as the switch action aX2 .

However, the updates performed using such a sequence may be biased, since ground
actions for representation X2 are updated but action selection is based on representation
X1. This bias is a consequence of the fact that state {‘X2’, true} is actually an ag-
gregation of two states from the ground feature set: {X1 = false,X2 = true} and
{X1 = true,X2 = true}. The expected reward for action a1 in state {‘X2’, true} is a
weighted average of the expected rewards of these two underlying states. Since represen-
tation X1 aggregates the states from the full feature set in a different way, these grounds
states correspond to two different states in representation X1. Therefore, if the selection
probability of a1 is different for those states, the rewards are not properly weighted to
correctly estimate the expected reward.

To avoid this problem, the agent can perform such off policy updates only under con-
ditions in which no bias will result. The following theorem establishes those conditions.
Note that the theorem is stated in terms of an MDP, of which a contextual bandit problem
is a special case.

Theorem 9. Consider the ground MDP with feature set X and valid candidate represen-
tations Y ⊆ X and Z ⊆ X. Assume the agent selects representation Y to determine
its ground action. An unbiased, single-step update of representation Z can be performed,
based an the parallel experience sequence, if one of the following two conditions hold:

84 Chapter 5. Reducing the Problem Size by Representation Selection

1. Y ⊆ Z

2. If the action was an exploratory action under an exploration scheme that does not
depend upon the specific state, e.g., an ε-greedy exploration scheme.

Proof. Bias is introduced if a state in Z is represented by multiple states in Y, while the
action outcomes of these multiple states are incorrectly weighted. Under the first condition,
a single state of Z always corresponds to a single state of Y, and therefore no incorrect
weighting can occur. For the second condition, recall that since Z is a valid representation,
features that are in Y but not in Z are either independent features or features that are
irrelevant w.r.t. Z. Features that are irrelevant w.r.t. Z result in states with equal one-step
models, therefore the action outcomes can never be incorrectly weighted. States based
on different values of an independent feature occur with a probability that scales with the
feature value probability, since the agent has no control over the value of independent
features. Therefore, if the exploration scheme does not depend upon the state, a particular
action will also be selected with a probability that scales with the feature value probability,
hence correctly weighting the action outcomes.

Thus, when one of the conditions of Theorem 9 holds, the reward can be used to update
the ground action of the unselected representation as if it were the selected representation.

5.2.3.3 Off-Policy Updating Switch Actions

To be able to perform an unbiased Monte Carlo update based on the parallel experience
sequence, all transitions involved must be unbiased. In the previous section, we showed
that an update of the ground action is unbiased if one of the conditions of Theorem 9 holds.
However, the switch action update is always unbiased because the state to which it belongs
is the same for all switch actions. Therefore, when one of the conditions of Theorem 9
holds, an unbiased Monte Carlo update can also be performed for the corresponding switch
action. In other words, both the switch and ground actions of a candidate representation can
be updated without selecting that representation. As a result, in contextual bandit problems,
representations can be fully evaluated in an off-policy manner. An immediate consequence
is that the agent can use greedy action selection for the switch actions, since exploring the
switch actions is unnecessary.

Table 5.4 summarizes our action selection and update strategy for the derived task of the
contextual bandit problem. In the next section, we illustrate the performance improvements
that this update scheme makes possible.

5.2.4 Experimental Results

In the section, we present two experiments involving representation selection for a contex-
tual bandit problem. For both experiments we use the action selection and update strategy
described in Table 5.4.

In the first experiment, we consider two versions of a contextual bandit problem, one
with three features and the other with four. In both cases, the agent has the prior knowledge

5.2. Representation Selection for Contextual Bandit Problems 85

Table 5.4: Action selection and update strategy for the derived task of a contextual bandit
problem with representation selection. The “if subset/on explore" condition refers to the
two conditions of Theorem 9.

action selection update, current rep update, other reps

ground action ε-greedy average if subset/on explore: average
switch action greedy MC update if subset/on explore: MC update

that only one of the available features is relevant, while the others are empty. However, the
agent does not know in advance which feature is relevant. Each feature has eight feature
values, which are initialized randomly after each arm pull. The problem has two arms with
opposite expected reward: depending on the context, one has an expected reward of +1,
while the other has -1. The reward is drawn from a normal distribution with a standard
deviation of 2. For half of the feature values of the relevant feature, the first arm has the +1
expected reward. Therefore, when this feature is ignored, the expected reward is zero.

The switching method uses one candidate representation for each feature, a learning
rate of 0.01 for the switch action, and an ε of 0.2 for the ε-greedy selection of the ground
action. To kick-start the switch method, we use an ε of 1.0 for the first 50 episodes. Since
all candidate representations are updated during this exploration phase, this has a positive
effect on the total reward. We compare the performance of the switching method against
two alternatives that represent upper and lower bounds on performance. The lower bound
is achieved by a naïve method that ignores the prior knowledge about the candidate repre-
sentations and simply learns on the original task using the full representation. The upper
bound is achieved by informing the agent in advance which candidate representation is
correct and letting it learn using only this representation from the start.

Figure 5.3 shows the results, averaged over 10,000 independent runs and smoothed.
The performance of the switch method illustrates how effectively it can exploit prior knowl-
edge about the set of candidate representations. While the size of the full representation
grows exponentially with the number of features (512 states for a set of 3 features and
4096 for a set of 4 features), the total number of states for the switching methods grows
only linearly (24 states for a set of 3 features and 32 states for a set of 4 features). The
simultaneous updating of the representations increases performance even further, making
it nearly indistinguishable from the agent that knows in advance which candidate represen-
tation is correct.

The second experiment is a variation on the first experiment. There are three features
in total (X1, X2 and X3), each with eight feature values, which are selected randomly
after each arm pull. This time, however, there is not a single relevant feature; instead,
all three features contain some relevant information. From Table 5.5, which shows the
corresponding rewards and probabilities, it follows that the expected reward of the optimal
policy for this representation is +1. The size of the state-space of this representation is
83 = 512.

Table 5.6 is deduced from Table 5.5 and shows the rewards conditioned on only feature
X1. While all features are necessary to achieve an expected reward of +1, using only feature

86 Chapter 5. Reducing the Problem Size by Representation Selection

0 500 1000 1500 2000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

episodes

re
w

ar
d

perfect info
all, 3 feat.
all, 4 feat.
switch, 3 feat.
switch, 4 feat.

Figure 5.3: The performance of the switch method on contextual bandit problems with
either three or four features, compared to a naïve method that uses all the available features
(‘full’) and one that knows in advance which candidate representation is correct (‘perfect
info’).

Table 5.5: Rewards and initial state probability P0 using representation {X1, X2, X3}. The
true/false labels are derived from the real feature values: for X1 and X2, 4 of the 8 values
correspond to a ‘true’ label, while the other values correspond to a ‘false’ label. For X3, 6
of the 8 features correspond to a ‘true’ label, while the other values correspond to a ‘false’
label.

X1 X2 X3 P0(x1, x2, x3) R(a0, x1, x2, x3) R(a1, x1, x2, x3)

true true true 0.1875 +1 -1
true true false 0.0625 -1 +1
true false true 0.1875 +1 -1
true false false 0.0625 +1 -1
false true true 0.1875 -1 +1
false true false 0.0625 +1 -1
false false true 0.1875 -1 +1
false false false 0.0625 -1 +1

X1, results in an expected reward that is only slightly less (0.75), while the state-space size
is considerably smaller (8 states). We compare the performance of 1) learning with a
representation containing only feature X1 (REP-SMALL), 2) learning with a representation
containing all three relevant features (REP-LARGE), and 3) using the switch method given
both representations as candidates (SWITCH). We use a learning rate of 0.001 for the switch

5.2. Representation Selection for Contextual Bandit Problems 87

action and an ε of 0.2 for the ε-greedy selection of the ground action for all methods. The
switch method uses an ε of 1.0 for the first 100 episodes.

Table 5.6: Rewards and initial state probability P0 when conditioned on only X1

X1 P0(x1) R(a0, x1) R(a1, x1)

true 0.5 0.75 -0.75
false 0.5 -0.75 0.75

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

episodes

re
w

ar
d

REP−SMALL
REP−LARGE
SWITCH

Figure 5.4: Average reward for a contextual bandit when switching between a large and a
small representation.

Figure 5.4 shows the average reward for the first 20,000 episodes, averaged over 10,000
independent runs and smoothed. For approximately the first 5000 episodes, REP-SMALL

outperforms REP-LARGE since it learns more quickly. However, since its representation
does not contain all relevant information, it plateaus below REP-LARGE, which ultimately
performs much better. After the initial exploration phase, the switch method quickly
catches up with REP-SMALL, after which the performance shows a small dip before climb-
ing above that of REP-LARGE.

We explain this dip as follows: while the small representation is quickly recognized as
the better one initially, the agent uses off-policy updating to keep improving the Q-values
of both the large representation and the switch actions. In some runs, once the Q-value of
the selection action for the large representation approaches that of the small representation,
the estimates will prematurely indicate that the large one is better, causing a small dip in
the performance.

After the dip, the Q-values of of the large representation improve further, exceeding

88 Chapter 5. Reducing the Problem Size by Representation Selection

those of the small representation and causing the second climb in performance. Inter-
estingly, the switch method outperforms REP-LARGE at each point during learning. The
reason is that the exact point where REP-LARGE outperforms REP-SMALL is slightly dif-
ferent for each run. Since the switch method uses an up-to-date estimate of the expected
reward for each representation, it simply makes longer use of the small representation for
those runs where the Q-values of the large representation improve more slowly than aver-
age. Therefore, once the Q-values of the small representation have been properly learned,
the performance of REP-SMALL forms a lower bound for the remaining episodes. This
lower bound is not present for REP-LARGE, whose performance is bounded only by zero,
leading to lower average performance.

The results of this experiment underscore an important advantage of the switching
method. Because it evaluates candidate representations on-line, it can automatically iden-
tify, not only the best representation to use in the long run, but also the best one to use
during learning. For example, the small representation, although ultimately inferior to the
large one, is preferable early in learning when insufficient data is available for the large
representation to be effective. The switch method gets the best of both worlds, mimicking
the performance of REP-SMALL early in learning and that of REP-LARGE later on.

5.3 Representation Selection for MDPs

In the previous section, we showed that a contextual bandit problem with representation
selection can be modeled as a derived task with a single, context-specific representation.
The solution of this derived task not only yields the best candidate representation for the
contextual bandit problem, but also the optimal policy of that representation. In this sec-
tion, we discuss representation selection for an MDP. As in a contextual bandit problem,
representation selection for an MDP can be modeled as a derived task. In this case, after
taking a switch action to select a representation, the agent takes not one but a series of
ground actions until a terminal state is reached. The ground actions are chosen based on
the Q-values of the selected representation.

The definition of the derived task of an MDP with representation selection is similar
to that of a contextual bandit problem. However, we show that the conditions under which
this derived task obeys the Markov property, i.e., is a derived MDP, are more restrictive.
In particular, we prove that when all candidate representations are valid with respect to
the ground MDP, the derived task obeys the Markov property, in which case standard RL
methods can be used to solve it.

5.3.1 Derived Tasks

Consider the ground MDP Mgr = ⟨Xgr, Agr, Tgr,Rgr⟩ with K candidate representations:
X1, ...,XK , where each Xk ⊂ Xgr. In the derived task for this MDP, the agent first takes
a switch action, selecting a representation, and then a series of ground actions, based on the
Q-values of the selected representation, until a terminal state is reached. The construction
of the derived task for this MDP is similar to that of the contextual bandit problem (see
Section 5.2.2.1). In fact, Equations 5.6 through 5.11, defining the different components of

5.3. Representation Selection for MDPs 89

the derived task, are still valid for the MDP case. The only difference is that now a ground
action can result not only in a terminal state, but also in a different state belonging to the
same candidate representation. Therefore, the transition function of the ground actions,
Pdr(x

′|x, agr), is defined, not by Equation 5.12, but as follows:

Pdr(x
′[Xrep]|x, agr) =

{
1 if x′[Xrep] = x[Xrep]

0 otherwise
(5.20)

In other words, since the candidate representation stays the same, the ground action has no
effect on the value of Xrep. Furthermore:

Pdr(x
′[Xgr]|x, agr) = Pgr(x

′[Xgr]|x[Xgr], a
gr) (5.21)

That is, the effect of the ground action on the other features is the same as in the ground
MDP.

The context-specific representation for the derived task of an MDP is equal to that of
the contextual bandit problem, as can shown by the following definition:

Definition 17. The derived task of an MDP with representation selection is formed by the
four-tuple ⟨Xdr, Adr, Tdr,Rdr⟩ defined by Equations 5.6 through 5.11, Equations 5.20 and
5.21 and the context-specific representation Hcr defined as following:

Hcr(x) =

{
{Xrep} if x[Xrep] = xrep0

Xrep ∪Xk if x[Xrep] = xrepn | 1 ≤ k ≤ K

In contrast to the derived task of a contextual bandit problem, the derived task of an
MDP is not always Markov. The following theorem specifies a sufficient condition for
guaranteeing that the derived task obeys the Markov property, making it possible to apply
standard RL methods to solve it.

Theorem 10. The derived task of an MDP M with representation selection (Definition 17)
obeys the Markov property if all candidate representations are valid w.r.t. M .

Proof. An episode of the derived task of an MDP with representation selection starts with
a switch action, selecting a candidate representation, and then a series of ground actions
until a terminal state is reached. The switch action always obeys the Markov property since
there is no history yet. The history of the first ground action is always the same for a given
state x. Therefore, the first ground action also always obeys the Markov property. For
the ground actions after that, the Markov property follows from the fact that the selected
candidate representation is valid.

5.3.2 Model-Free Updating

In this section, we discuss two different update strategies. As before, for simplicity, we
restrict ourselves to model-free learning. The first strategy adapts the update scheme used

90 Chapter 5. Reducing the Problem Size by Representation Selection

for contextual bandit problems to the full MDP setting. For this strategy, the ground ac-
tions are updated with Q-learning updates. As with contextual bandit problems, a parallel
experience sequence is created for each candidate representation. In the MDP setting, this
parallel sequence is used to perform off-policy Q-learning updates. These updates are ap-
plied to the ground actions of all unselected candidate representations for which at least
one of the conditions of Theorem 9 holds, guaranteeing that the updates are unbiased.

As before, a Monte Carlo update is used for the switch action. However, the off-policy
MC update described in Section 5.2.3.1 is inefficient for the full MDP case, since it can
only be performed when all actions following the switch action are greedy. Therefore, we
use an on-policy MC update instead. Updating the switch actions of other representations
with an MC update requires that all actions are unbiased, which is not the case in general.
Therefore, such updates are not performed. A consequence is that each switch action needs
to be explored in order to obtain accurate Q-value predication for that action. We call the
resulting update scheme, summarized in Table 5.7, the Monte Carlo update scheme since a
Monte Carlo update is used for the switch action.

Table 5.7: Monte Carlo update scheme. The “if subset/on explore" condition refers to the
two conditions of Theorem 9.

action selection update, current rep update, other reps

ground action εgr-greedy Q-learning if subset/on explore: Q-learning
switch action εsw-greedy MC-update -

The second strategy uses a Q-learning update for the ground actions as well as the
switch actions. The update of a switch action is performed for all candidate representations
before selecting the switch action, since the agent can already observe the result of a switch
action before taking it. Performing the update before selecting the action is preferable,
since the selection is then based on more accurate Q-values. Since the ground actions as
well as the switch action of a candidate representation can be updated without selecting
it, exploring the switch actions is unnecessary and thus the agent can always choose the
greedy switch action.

We call the resulting update scheme, summarized in Table 5.8, the Q-learning update
scheme since a Q-learning update is used for the switch action.

Table 5.8: Q-learning update scheme. The “if subset/on explore" condition refers to the
two conditions of Theorem 9.

action selection update, current rep update, other reps

ground action ε-greedy Q-learning if subset/on explore: Q-learning
switch action greedy early Q-learning early Q-learning

Each scheme has its advantages and disadvantages. On the one hand, the MC update
scheme has switch actions that are not biased by the values of the candidate representa-

5.3. Representation Selection for MDPs 91

tions; therefore, it is expected to more quickly learn an accurate estimate of a representa-
tion’s value. On the other hand, it does not update the switch actions off-policy; therefore,
more exploration is required. The Q-learning update scheme can perform off-policy up-
dates of the ground actions as well as the switch actions, allowing greedy selection of the
switch action. However, the values of the switch actions are bootstrapped from the repre-
sentations. Thus, each candidate representation needs to be sufficiently explored before its
switch action has an accurate value. In the next section, we compare both update schemes
experimentally.

5.3.3 Experimental Results

In this section, we present experimental results evaluating both the Monte Carlo and Q-
learning update schemes described above. These experiments are conducted on an MDP
we call the Mars rover task. Suppose a rover on a Mars mission must frequently navigate
between its home base and a research site. The area it must cross can be described by a
15 × 15 square grid, with the home base and research site in opposite corners. The rover
observes its current position and has four movement actions: north, south, east and west,
which, on a regular surface, cause a movement of one square in the corresponding direction.
However, on the sandy soil of Mars, the rover’s action outcomes are heavily distorted. The
effect of the distortion can be modeled as an additional (clockwise) rotation of either 0,
90, 180 or 270 degrees applied before the directional movement. A north action can for
example lead to an east movement if the distortion is 90 degrees.

The distortion is affected by the local sand structure of the rover’s current location,
which consists of a number of ditches of different sizes. These ditches are described by
a set of structural features that the agent observes along with its position (see Figure 5.5).
Each structural feature corresponds to a different ditch size, while its value indicates the
number of ditches of that size on the local square. The structure is not static, but changes
each time the rover enters a square, according to some probability distribution, due to the
interaction between the rover and the sand.

By learning the relationship between the structural properties and the distortion for
a certain square, the rover can compensate for the distortion. However, learning with all
structural features can be prohibitively slow. Fortunately, experiments on Earth showed that
only ditches of one size cause the distortion, i.e., only one structural feature is relevant.
Which feature this is depends on the grain size of the sand, which cannot be observed.
Therefore the rover must learn which of the available structural features is the relevant one.

In our experimental setup, we assume the local sand structure can be described by 5
features, each having 4 different feature values. The features are independent and all feature
values have equal probability. Each of the 4 values of the relevant feature corresponds to a
different distortion values (0, 90, 180 or 270 degrees). In addition to the distortion caused
by the local sand structure, there is a 10% chance on an additional distortion, modeled as
another rotation of 0, 90, 180 or 270 degrees (each value has equal probability).

Under these settings, the unconditional transition probabilities (i.e., ignoring the rel-
evant structural feature) are the same for all actions. Consequently, without considering
the structural feature, the agent cannot learn an effective policy, since all actions have the

92 Chapter 5. Reducing the Problem Size by Representation Selection

S

G

Figure 5.5: Mars rover task: the agent must move from S to G using four directional
actions. The local sand structure, consisting of ditches of different sizes, causes a distortion
of the regular action outcome. If the agent learns the relationship between the local sand
structure and the distortion, it can compensate for it and thus reach the goal location more
quickly.

same effect and the agent moves randomly through the grid. When the agent does con-
sider the relevant feature, it can learn to compensate for the distortion caused by the sand
structure, causing near-deterministic action outcomes (the additional distortion cannot be
compensated for).

Our experiments compare the performance of five different algorithms. The first two
are the Monte Carlo and Q-learning representation selection algorithms described in Sec-
tion 5.3.2. The third algorithm uses perfect information, i.e., only the position feature and
the relevant structural feature. As in the experiments presented in Section 5.2.4, this algo-
rithm provides an upper bound on performance. The fourth and fifth algorithms provide
lower bounds on performance by ignoring the prior knowledge that only one of the struc-
tural features is necessary. The fourth algorithm algorithm uses all the available features:
both the position feature and all 5 structural features. The fifth algorithm does not use any
structural features, relying only on position.

For each algorithm, we measure the average return over the first 1000 episodes. All
algorithms use ε-greedy ground action selection with ε = 0.1 and a learning rate with an
initial value α0 of 1.0 that is decayed according to:4

α(x, a) = α0 d
n(x,a) (5.22)

where n(x, a) is the number of times action a was previously selected in state x. We
optimize the decay rate d for each method. For the switch methods, the extra parameters are
also optimized. The range for which parameters are optimized is determined by performing

4This type of decay does not meet the requirements for convergence in the limit of many TD algorithms
(Jaakkola et al., 1994; Singh et al., 2000). However it gives good results in practice and is very easy to
implement.

5.3. Representation Selection for MDPs 93

some initial experiments to find roughly the settings with the best performance. For the
Q-learning update scheme we use full exploration for the first sε episodes (the value of
sε is optimized). We do not do this for the Monte Carlo update scheme since the initial
experiments showed that this extra parameter causes negligible performance improvement.
All results are averaged over 200 independent runs and smoothed.

Table 5.9 shows the average performance of the different methods over the first 1000
episodes together with the optimal parameters, while Figure 5.6 plots the average return
over time for these optimal parameters. As predicted, when the structural features are
ignored, no learning occurs since all actions have the same expected outcome. The agent
moves randomly through the environment, generating large negative reward. In contrast,
learning does occur when all structural features are used. However, because of the size of
the resulting state space, learning is slow and the performance improvement is marginal.

Both of the switching methods perform much better, generating up to 9 times less
negative reward than when using the full feature set. Comparing the two switching methods
with each other reveals that the Q-learning update scheme outperforms the Monte Carlo
update scheme, generating 1.3 times less negative reward. Apparently, the advantage of the
Q-learning update scheme (more off-policy updates resulting in less exploration) outweighs
its disadvantage (bootstrapping from the representations values).

0 200 400 600 800 1000
−1400

−1200

−1000

−800

−600

−400

−200

0

episodes

re
w

ar
d

perfect info
all struct. features
no struct. feaures
switch, MC scheme
switch, Q−L scheme

Figure 5.6: Performance as a function of number of episodes on the Mars rover task.

These results show that tasks with a limited number of candidate representations can be
efficiently solved using our approach of a derived MDP with a context-specific represen-
tation. In the next section, we analyze what happens when the candidate representations
themselves are context-specific.

94 Chapter 5. Reducing the Problem Size by Representation Selection

Table 5.9: Average performance over the first 1000 episodes and optimal parameters on the
Mars rover task.

optimal parameters average standard
return error

perfect info d = 1% -87.75 0.05
all struct. features d = 1% -1226 1
no struct. features (no learning occurs) -1308 2

switch, MC scheme εsw = 0.04, dsw = 1%, dex = 2% -180 7
switch, Q-L scheme sε = 40, dsw = 7%, dex = 2% -138 1

5.4 Representation Selection for MDPs with Context-Specific
Structure

In the previous two sections, we considered tasks for which the best representation had
globally the same features. However, many real-world problems have a context-specific
structure. Consider for example an extension of the Mars rover task from Section 5.3.3,
where the rover encounters different types of sand along its journey. The relevant feature
can be different for each of these types, resulting in a context-specific representation. To
find the best representation for this task, the candidate representations must also be context-
specific.

The solution strategy developed in Section 5.3 can in principle also be applied when
the candidate representations are context-specific. A problem however is that the number
of candidate representations can increase exponentially when context-specific structure is
introduced. Consider the extended Mars rover task described above with 6 types of sand
and choice between 5 different features. If the rover can distinguish between the different
sand types, then there are 65 = 7776 possible assignments of relevant features to sand types
possible, resulting in 7776 candidate representations. When the agent cannot distinguish
between the different sand types, things get even worse since the agent must learn the
relevant feature for each position value. With 225 positions (the number of positions from
the original Mars rover task), there are 2255 ≈ 6 ·1011 candidate representations. Thus, the
strategy from Section 5.3, which results in a derived task whose state space size is linear in
the number of candidate representations, is no longer feasible.

In this section, we introduce a strategy for context-specific candidate representations
that results in a derived task with an exponentially smaller state space. With this strategy,
the 6 · 1011 context-specific candidate representations from the extended Mars rover task
can be evaluated without explicit enumeration of each context-specific candidate repre-
sentation. In short, our strategy allows the agent to switch between representations in the
middle of an episode, instead of just selecting one at the start of an episode. By doing so, a
small number of regular representations (5 in the case of the extended Mars rover task) can
be used to represent and evaluate a large number of context-specific representations.

5.4. Representation Selection for MDPs with Context-Specific Structure 95

5.4.1 Candidate Context Representations

Before explaining how the derived task is constructed, we start with the problem descrip-
tion. Specifically, we explain how available prior knowledge about the structure of a prob-
lem is expressed.

In Section 5.1.4, we defined a context-specific representation by the mapping Hcs :

Dom(X) → P(X), which maps each state x to a subset of features. Although problems
with context-specific structure use different features for different states, in practice, many
states share the same set of features. To represent prior knowledge about states sharing the
same features, we use a refined formulation based on contexts. Contexts are aggregations
of states that share the same state features. The feature C is the set of all contexts. We call
the state features that are used within a context the context representation. The mapping
Hcs can now be decomposed as Hcs(x) = H2(H1(x)) where H1 : Dom(X)→ C maps a
state x to a context c ∈ C and H2 : C → P(X) maps a context c to a context representation
Xc.

H1 (and consequently H2) is not uniquely defined: there are many possible aggrega-
tions of states into contexts. As long as the relevant features within each aggregation are
the same, H1 is a legitimate mapping. Therefore, an H1 mapping can be defined even
without prior knowledge (by mapping each state to a separate context). Thus, we assume
H1 is known to the agent, while H2 needs to be learned.

Note that with the H1/H2 decomposition, two types of prior knowledge related to the
context-specific structure can be represented. Knowledge about states sharing the same
features can be represented by H1, by mapping states with the same relevant features to the
same context. On the other hand, prior knowledge about relevant features is represented
by sets of candidate context representations for H2, giving the agent the choice, for each
context, between a set of different context representations.

5.4.2 Derived Tasks

Consider the ground MDP Mgr = ⟨Xgr, Agr, Tgr,Rgr⟩which has a context-specific struc-
ture. The set of context-specific candidate representations is implicitly defined by H1,
which maps each state x to a value of the context feature C = {c1, ...cJ} and the set of Kj

candidate context representations: {Xcj
1 , ...X

cj
Kj
} for each context cj ∈ C.

Our strategy is to keep the representation the same as long as the agent stays in the
same context but let the agent choose a context representation whenever it enters a new
context. The agent chooses a context representation by taking the corresponding switch
action. Like in Section 5.3.1, the Xrep feature is added to the feature set of the derived task
to specify what candidate representation is currently selected:

Xdr = Xrep ∪Xgr (5.23)

The feature values of Xrep are:

Xrep = {xrep0 , xc11 , ...xc1K1
, ..., xcJ1 , ...xcJKJ

} (5.24)

where the value x
cj
k corresponds to the kth candidate context representation of the jth

context, Xcj
k , while xrep0 is the value that indicates no representation is currently selected.

96 Chapter 5. Reducing the Problem Size by Representation Selection

Switch actions can be taken only when Xrep = xrep0 . In the derived task of Section
5.3.1, xrep0 is the initial value of Xrep. After the first timestep, xrep0 was never selected
again. This is no longer the case. Instead, since the agent must select a context representa-
tion each time it changes context, ground actions that cause a change of the context set the
value of Xrep equal to xrep0 . In other words, if H1(x

′) ̸= H1(x), the transition function for
Xrep is:

Pdr(x
′[Xrep]|x, agr) =

{
1 if x′[Xrep] = xrep

0

0 otherwise
(5.25)

On the other hand, when the context stays the same, so does the value of Xrep. So, if
H1(x

′) = H1(x):

Pdr(x
′[Xrep]|x, agr) =

{
1 if x′[Xrep] = x[Xrep]

0 otherwise
(5.26)

The effect of the ground action on the value of the other features is the same as under the
ground MDP:

Pdr(x
′[Xgr]|x, agr) = Pgr(x

′[Xgr]|x[Xgr], a
gr) (5.27)

Whenever Xrep = xrep0 the agent must choose a representation by selecting a switch
action. The switch actions the agent can choose from depend on the context. There is
a switch action set Acj

sw = {acj1 , ..., a
cj
Kj
} associated with each context cj ∈ C, whose

member actions correspond to the different candidate context representations of cj . The
effect of the switch action a

cj
k is that the value of Xrep is set to x

cj
k , which corresponds to

candidate context representation X
cj
k :

Pdr(x
′[Xrep]|x, a

cj
k) =

{
1 if x′[Xrep] = x

cj
k

0 otherwise
(5.28)

The values of the other features are left unchanged by the switch actions:

Pdr(x
′[Xgr]|x, aswk) =

{
1 if x′[Xgr] = x[Xgr]

0 otherwise
(5.29)

The total action set of the derived task is:

Adr = Agr ∪Ac1
sw ∪ ... ∪AcJ

sw (5.30)

while the actions available in a particular state x ∈ Xdr are:

Adr(x) =

{
A

cj
sw if x[Xrep] = xrep0

Agr otherwise
(5.31)

where cj = H1(x).
The reward received after taking a switch action is zero, since it is an internal action.

Therefore, the reward function of the derived task is, for all x ∈ Dom(Xdr):

Rdr(x, a) =

{
Rgr(x[Xgr], a) if a ∈ Agr

0 otherwise
(5.32)

5.4. Representation Selection for MDPs with Context-Specific Structure 97

The full definition of the derived task of an MDP with context representation selection
is as follows:

Definition 18. The derived task of an MDP with context representation selection is formed
by the four-tuple ⟨Xdr, Adr, Tdr,Rdr⟩ defined by Equations 5.23 through 5.32 and the
context-specific representation Hcr defined as follows:

Hcr(x) =

{
Xrep ∪Xsw if x[Xrep] = xrep0

Xrep ∪X
cj
k if x[Xrep] = x

cj
k | 1 ≤ j ≤ J

(5.33)

where Xsw ⊆ Xgr.

Note that the definition of the context-specific representation is similar to that of Sec-
tion 5.3.1, except for the addition of the feature set Xsw when Xrep = xrep0 . We call Xsw

the switch representation. These extra features are necessary to ensure that convergence of
the standard RL algorithms can be obtained.

This derived task is Markov only under strict conditions. However, we can relax these
conditions by requiring a slightly weaker form of the Markov property, which we call the
Markov property with respect to relevant features. This property holds if the values of the
relevant features and the reward depend only on the current state and action.

Definition 19. A task is Markov with respect to relevant features if the following equation
holds for all xt+1, rt+1 and all possible values of xt, at, rt, ..., r1,x0, a0.

P (xt+1[Y], rt+1|xt, at) = P (xt+1[Y], rt+1|xt, at, rt,xt−1, at−1, ..., r1,x0, a0) (5.34)

where Y = X \Xirr and Xirr is a subset of features that are irrelevant w.r.t. Y.

Since irrelevant features do not affect the values of other features or the reward, states
that differ from each other only in their irrelevant feature values have the same state value.
Therefore, the standard RL algorithms converge when a task is Markov with respect to the
relevant features.

The following theorem specifies a set of conditions that guarantees the derived task
defined by Definition 18 obeys the Markov property with respect to relevant features:

Theorem 11. The derived task of an MDP M with context representation selection (Defi-
nition 18) is Markov with respect to relevant features if the following two conditions hold:

1. Xsw is valid w.r.t. M , and

2. Xsw ⊆ X
cj
k for all values of k and j.

Proof. Let Zt be the representation at timestep t and Zt+1 be the representation at timestep
t + 1. Since Xsw ⊆ Zt+1 and since Xsw is a valid representation (i.e., all the features
not in Xsw are either independent or irrelevant w.r.t Xsw) Zt+1 can be decomposed as
Zt+1 = Xsw ∪ Xind ∪ Xirr, where Xind is the set of independent features of Zt+1 and
Xirr is the set of features that are irrelevant w.r.t. Xsw that are part of Zt+1.

98 Chapter 5. Reducing the Problem Size by Representation Selection

Let Y = Xsw ∪ Xind. To prove the theorem we need to prove that Equation 5.34
holds, i.e. we need to prove that the feature values of Y only depend on the feature values
of Zt and not on the history. The features Xind are independent, so these features do not
depend upon the history by definition. On the other hand, the feature values from Xsw do
not depend upon the history, since the set Xsw forms a valid representation.

5.4.3 Model-Free Updating

The derived task described in the previous subsection can be solved using update schemes
similar to those for the derived task of an MDP with regular candidate representations (see
Section 5.3.2). The only difference arises from the fact that now a state with switch actions
can be revisited multiple times before a terminal state is reached. Therefore, using a Monte
Carlo update for the switch actions is less suitable, since it is an off-line update that misses
out on the opportunity to update the Q-values during the episode. Instead, we use an n-step
update, which accumulates the reward received after taking the switch action until the agent
re-enters a state with switch actions, i.e., until the context changes. This n-step update still
has the advantage of not bootstrapping from a representation’s Q-values. However, it is
also an on-line update, i.e., it is performed during an episode. We will refer to this update
scheme as the n-step update scheme. Besides this update scheme, the Q-learning update
scheme from Section 5.3.2 can be applied. This update scheme can be applied without
making any modifications.

We summarize the update schemes for updating the Q-values of the derived task of an
MDP with context representation selection in Table 5.10 and Table 5.11.

Table 5.10: n-step update scheme.
action selection update, current rep update, other reps

ground action εex-greedy Q-learning if subset/on explore: Q-learning
switch action εsw-greedy n-step update -

Table 5.11: Q-learning update scheme.
action selection update, current rep update, other reps

ground action ε-greedy Q-learning if subset/on explore: Q-learning
switch action greedy early Q-learning early Q-learning

In the next subsection, we compare these update schemes experimentally on an exten-
sion of the Mars rover task.

5.4.4 Experimental Results

In this subsection, we consider an extension of the Mars rover task of Section 5.3.3. In
this extension, the area the rover has to cross to get from the start state to the goal state is

5.4. Representation Selection for MDPs with Context-Specific Structure 99

divided into 4 types of sand (see Figure 5.7). Positions with the same sand type have the
same relevant structural feature, but the relevant feature can differ for each sand type.

G

S

Figure 5.7: The extended Mars rover task: the rover must move from S to G while crossing
different types of sand, each of which can have a different relevant structural feature.

We consider two scenarios: in the first, the agent observes the different sand types (e.g.,
by observing the sand color) while in the second scenario it does not. When the agent ob-
serves the sand types, it select a new representation only when it crosses the border between
sand types. Otherwise, the agent selects a new representation after each ground action. We
compare the two switching strategies from Section 5.4.3 on both these scenarios.

All switch methods use five different candidate context representations, each consisting
of two features: the position feature and one of the five structural features, while Xsw

consists only of the position feature. We compare these switch methods with having perfect
information, using all structural features, and using no structural features at all. This results
in the following list of methods:

• Perfect Info - Single, context-specific, representation consisting of only the position
feature and the locally relevant structural feature.

• All structural features - Single representation taking into account the position feature
and all structural features.

• No structural features - Single representation taking into account only the position
feature.

• Switch, n-step scheme, border - Representation selection with n-step update scheme
and switching only when the border between sand types is crossed.

• Switch, n-step scheme, always - Representation selection with n-step update scheme
and switching after each ground action.

• Switch, Q-L scheme, border - Representation selection with Q-learning update
scheme and switching only when the border between sand types is crossed.

100 Chapter 5. Reducing the Problem Size by Representation Selection

• Switch, Q-L scheme, always - Representation selection with Q-learning update
scheme and switching after each ground action.

We measure the average return over the first 1000 episodes for these seven methods.
All methods use ε-greedy action selection for the external action with ε = 0.1 and decaying
learning rates (according to Equation 5.22) with initial values of 1 and an optimized decay
rate, dex. For the switch algorithms, the extra parameters are also optimized. All results
are averaged over 200 independent runs and smoothed. At the start of each run, a random
assignment of relevant features to sand types is made.

Table 5.12 shows the average performance of the different methods over the first 1000
episodes together with the optimal parameters, while Figure 5.8 plots the return as a func-
tion of the number of episodes for these optimal parameters. Note that the perfect info
method, the method that uses all structural features, and the method using no structural
features all have the same performance when compared to the regular Mars rover task (see
Figure 5.6). The reason is different for each method. For the perfect info method, it does
not matter which structural feature is relevant, since it uses the right one by definition. For
the method using all structural features, it does not matter since the relevant is always ob-
served and the total number of candidate representations is still five. For the method using
no structural features, the performance is the same since it never uses the relevant feature.

All switch methods show a large performance improvement compared to the full rep-
resentation. Surprisingly, the n-step method with switching after each ground action per-
forms remarkably well. It yields an average reward of -123.6, while the other switch meth-
ods yield rewards between -240 to -280.5 This result is remarkable because this method
does not require the agent to distinguish the different sand types. The methods that do
require this extra knowledge (the switch methods that only let the agent select a new rep-
resentation when the border between sand types is crossed) perform worse.

Apparently, the combination of the n-step update scheme with a low value of n (in our
case, n = 2) is quite powerful. This can be explained as follows. The n-step update scheme
has the same advantage as the MC update scheme from Section 5.3.2: the update targets
for the switch actions are not biased by the Q-values of the candidate representations. A
disadvantage of an MC update or an n-step update with high values of n is that the variance
of the update target is very high, since many different state-action sequences can cause the
update. When n is small, the variance of the update target is smaller, yielding more accurate
updates. Thus, the property of not bootstrapping from the representations Q-value seems
powerful, an effect that was obscured in our previous experiments by the high variance of
the MC update targets.

5Around episode 300, the n-step method even yields a higher return than the perfect info graph. However,
note that the overall performance is worse at each point in time, since the return during the first 200 episodes
is much lower.

5.5. Discussion and Future Work 101

0 200 400 600 800 1000
−1400

−1200

−1000

−800

−600

−400

−200

0

episodes

re
w

ar
d

perfect info
all struct. features
no struct. feaures
switch, n−step scheme − border positions
switch, n−step scheme − all positions
switch, Q−L scheme − border positions
switch, Q−L scheme − all positions

Figure 5.8: Performance as a function of number of episodes on the extended Mars rover
task.

5.5 Discussion and Future Work

Taken together, the empirical results presented in Sections 5.2, 5.3, and 5.4 provide sub-
stantial evidence of the value of prior knowledge about the set of candidate representations
in reinforcement learning. Furthermore, they consistently validate the benefit of using de-
rived tasks to exploit such prior knowledge. In contextual bandit problems, MDPs, and
MDPs with context-specific structure, the methods we propose perform much better than
alternatives that do not exploit such prior knowledge. In addition, they often perform nearly
as well as methods that are given the optimal representation in advance.

For MDPs with context-specific structure, our methods can also exploit a second form

Table 5.12: Average performance over the first 1000 episodes and optimal parameters on
the extended Mars rover task.

optimal parameters average standard
return error

perfect info dex = 1.0% -87.83 0.06
switch, n-step scheme, border εsw = 0.5, dsw = 0.4%, dex = 0.8% -278.9 0.6
switch, n-step scheme, always εsw = 0.2, dsw = 0.4%, dex = 0.8% -123.6 0.2

switch, Q-L scheme, border sε = 40, dsw = 0.6%, dex = 0.4% -242.3 0.2
switch, Q-L scheme, always sε = 20, dsw = 0.6%, dex = 0.2% -270.0 0.2

all struct. features dex = 1.0% -1227 1
no struct. features (no learning occurs) -1309 2

102 Chapter 5. Reducing the Problem Size by Representation Selection

of prior knowledge. In addition to knowledge about the set of candidate representations,
they also rely on knowledge about which states have the same relevant features. This
knowledge is represented by aggregating such states into a context, i.e., by the definition
of H1. Surprisingly, the extended Mars rover experiment presented in Section 5.4.4 shows
that, when the different contexts have the same set of candidate context representations, this
additional prior knowledge does not further improve performance. On the contrary, Figure
5.8 shows that the best performance is obtained by switching at all positions, i.e., ignoring
the context. However, such knowledge clearly would improve performance in cases where
the set of candidate representations is different in each context. For example, suppose each
sand type in the extended Mars rover task had a different set of 5 candidate representations.
In this case, an agent that is ignorant of the sand type would have to explore 5 × 4 = 20

candidate representations at each position, instead of 5.

Since the best performance in the extended Mars rover task occurs when switching at all
positions, these results also demonstrate that it can be beneficial to switch representations
even when the context does not change. While these experiments evaluate only MDPs
with context-specific structure, the conclusion can be applied to all MDPs, since those
without context-specific structure are just a special case. Consequently, we hypothesize that
further performance improvements could be obtained by using the derived task presented
in Section 5.4.2 in combination with the n-step update scheme (Table 5.10) on the regular
Mars rover task from Section 5.3.3. In fact, performance on this task should be the same
as on the extended Mars rover task, since the two tasks are actually identical from an
algorithmic point of view. In both cases, the agent must learn which feature out of a set of
5 features is relevant for each position. We intend to investigate such variations in future
work.

For simplicity, all of the methods considered in this chapter take a model-free approach.
Perhaps the most promising direction for future work is to extend these ideas to model-
based methods. In particular, models of the derived tasks presented in Sections 5.2, 5.3,
and 5.4 could be learned from the agent’s interactions with its environment. Dynamic
programming methods could then be used to compute value functions and policies that are
optimal with respect to the learned models. We hypothesize that with such model-based
methods, knowledge about which states have the same relevant features would still not lead
to performance improvements when the candidate context representations are the same for
each context, as the size of the derived task would remain independent of H1. We also
hypothesize that switching at all positions would still lead to performance improvements,
since the extra switch states would allow for better exploration.

In addition to making it possible to test these hypotheses, developing model-based
methods based on derived tasks would open the door to meaningful empirical comparisons
with approaches that learn DBN structure and weights. Such methods can be used to learn a
DBN representation of the model given prior knowledge about the maximum degree of the
DBN (Li et al., 2008; Diuk et al., 2009; Kroon and Whiteson, 2009). Thus, the advent of
model-based switching methods would enable controlled experiments assessing the relative
advantages and disadvantages of exploiting these different forms of prior knowledge.

5.6. Related Work 103

5.6 Related Work

In addition to the DBN structure learning methods mentioned above, a large body of work
on finding and exploiting state abstractions is related to the work presented in this chapter.
In a planning context, state abstraction techniques can be roughly divided between exact
and approximate methods. Exact methods aggregate states for which the transition and
reward functions are equal (Givan et al., 2003; Boutilier et al., 2000; Ravindran and Barto,
2003). In contrast, approximate methods aggregate states for which the transition and
reward functions are similar according to some metric (Dean et al., 1997; Ferns et al.,
2004). These methods differ from ours in that they focus on planning and thereby assume
complete knowledge of the transition dynamics, whereas we focus on learning, in which
such knowledge is absent.

More closely related are other state abstraction methods that are also designed for the
learning setting. For example, Chapman and Kaelbling (1991) propose a method for on-
line state abstraction of states with the same reward and Q-value for each action. Similarly,
McCallum (1995) describes a method that can learn to aggregate states that have the same
optimal action and similar Q-values for these actions. Jong and Stone (2005) propose a
method that can learn to aggregate states with the same optimal action. A common feature
of these methods is the reliance on statistical methods to identify the irrelevant features.
Since such approaches typically require large amounts of data, their practical application
is largely limited to transfer learning (Taylor and Stone, 2009), where abstractions learned
in one task can be used to speed learning in other, related tasks. In contrast, our methods
aim to determine which representation to use on-line, within a single task. Thus, we do
not rely on statistical tests but instead exploit prior knowledge about the set of candidate
representations to construct a derived task that can be efficiently solved.

Finally, the use of derived tasks makes our approach similar to temporal abstractions
such as options (Sutton et al., 1999), in which each option uses a different state aggregation
(e.g., as in (Jong and Stone, 2005)). However, our methods are different in that the value of
the terminal states of the options are not zero, but instead have a value derived from that of
states at the top of the hierarchy. This avoids limiting our approach to recursively optimal
solutions (Dietterich, 2000), i.e., those that are optimal on each subtask, but not necessarily
globally optimal.

5.7 Conclusion

This chapter presented a new strategy for on-line representation selection for factored
MDPs. The proposed approach addresses a special case of the structure learning problem
in which prior knowledge can be used to restrict the set of candidate representations that
must be considered. The problem of representation selection was formalized by defining
a derived task that extends the action set with internal switch actions that select the repre-
sentation to be used for external action selection. We proved this derived task is Markov
or Markov with respect to relevant features under various conditions related to the type
of specific features. This result enables the use of resource-efficient model-free learning

104 Chapter 5. Reducing the Problem Size by Representation Selection

methods. In addition, we demonstrated that learning speed can be further improved by
constructing parallel experience sequences corresponding to candidate representations that
were not selected. These parallel sequences can be used for off-policy updating of the
Q-values of these representations.

We demonstrated the validity of the approach via experiments on a contextual bandit
task, an MDP task with regular candidate representations, and an MDP task with context-
specific candidate representations. In all three domains, a large performance improvement
was achieved by automatically discovering the best candidate representations. Further-
more, we demonstrated that our approach can automatically switch between a set of rele-
vant features and a subset of these features and, in so doing, can perform even better than
either of these individual feature sets, since doing so combines the learning speed of the
small representation with the high asymptotic performance of the large representation.

CHAPTER 6

Reducing the Problem Size by Policy
Space Reduction

In a realistic RL task the learning agent often has some knowledge about the task, as well
as knowledge about the interpretation of some of the state features it observes. Consider
for example a robot navigating through an unknown building in search for a (ground-level)
power outlet to recharge its batteries. This robot knows it has to reach a specific location
and will most likely have access to a number of sensors that tell it something about its
(local) surroundings, like an infra-red sensor for detecting close range obstacles, and a
camera sensor that, combined with certain image processing software, can recognize power
outlets.

In this chapter, we present a strategy to exploit such knowledge by using policy restric-
tions. Policy restrictions remove policies from the policy space, the set of all policies that
can be defined for a particular MDP, while keeping (at least) one optimal policy.

The main contribution of this chapter consists of the policy restriction set, a compact
and effective way to model and exploit a wide variety of policy restrictions with value-
function based reinforcement learning methods. While options (Sutton et al., 1999; Precup,
2000; Stolle and Precup, 2002) could also be used to model certain policy restrictions, the
range of restrictions that can be effectively described using the policy restrictions set is
much larger, allowing exploitation of new forms of prior knowledge.

Combining an MDP with prior knowledge encoded by a policy restriction set results in
a derived MDP whose policy space is equal to the subset of the policy space defined by the
policy restrictions. We demonstrate in this chapter that using this derived MDP can result
in large performance improvements.

The remainder of this chapter is organized as follows. In Section 6.1, we describe how
policy restrictions can be effectively modeled with the policy restriction set. In Section
6.2, we discuss the relation with options and shaping. In Section 6.3, we present three
learning methods that use the policy restriction set as prior knowledge. In Section 6.4, we
compare these 3 methods on a deterministic variant of the large maze task from Section
4.2.3. In Section 6.5 we discuss the results as well as future work. Section 6.6 contains the
conclusion of this chapter.

6.1 Policy Restrictions

In this section we discuss how prior knowledge about policy restrictions can result in an
improved performance, and demonstrate how subsets of the policy space can be effectively
described with the policy restriction set.

106 Chapter 6. Reducing the Problem Size by Policy Space Reduction

6.1.1 Restrictions in the Policy Space

In many RL tasks, the goal of an agent is to find an optimal (or near-optimal) policy. An
optimal policy is ‘optimal’ with respect to the set of all policies that can be defined for
the MDP. For a general RL task a policy can take into account the complete history from
the moment it was initiated up to the current state for the selection of an action. However,
in case of an MDP, an agent seeking optimality can restrict its attention to the subset of
Markov policies, which only take into account the current state when choosing an action,1

since there is at least one optimal policy within this set. In fact, the agent can refine its
search space even further by only focusing on deterministic Markov policies, which map
each state to a single action, since there exists also at least one optimal policy within the
set of deterministic Markov policies. In this section, we analyze the relation between an
MDP and the corresponding set of deterministic Markov policies that can be defined for it.
In this chapter, we refer to this set simply as the policy space, although strictly speaking
the policy space is the set of all possible policies that can be defined for an MDP.

The state-action space of an MDP refers to the set of all state-action pairs. For an
MDP with a finite state-action space, the policy space is also finite, although it is in general
exponentially larger. Consider an MDP M = ⟨X,A,P,R, γ⟩ with a finite state-action
space, where A is a function mapping each state x ∈ Dom(X) to a subset of the total
action set Aall, so2

A : X→ P(Aall) (6.1)

The size of the state-action space of M is:

size state-action space =
∑

x∈Dom(X)

|A(x)| (6.2)

On the other hand, the size of the policy space of M is:

size policy space =
∏

x∈Dom(X)

|A(x)| (6.3)

The prior knowledge we wish to encode in this chapter is knowledge that reduces the
set of policies to consider even further, by specifying a subset of the policy space that is
guaranteed to have at least one optimal policy. This is done by defining policy restrictions,
which specify policies that are excluded from the policy space.

To illustrate the effect of policy restrictions, consider the small deterministic network
shown in Figure 6.1(a). It consists of only 6 states, 2 of them being terminal states. In
states x0 and x3 the agent can choose between two different actions; in states x1 and x2
only a single action is available. State x0 is the initial state. The state-action space size if 6;
the corresponding policy space, shown in Figure 6.1(b), has a size of 4. In a deterministic
environment a policy can be visualized as a single trajectory through the state-action space

1These are the policies we consider so far in this thesis. For simplicity, we never mentioned more general
policies and never used the term ‘Markov policies’ before. Note, however, that the behavior policy is in general
a policy that depends on the complete history, since it is typically based on Q-values that are updated during
learning.

2P(Aall) refers to the powerset of Aall.

6.1. Policy Restrictions 107

starting at the initial state. In general, only a fraction of the states are visited by a single
policy trajectory. The policy for states that are not visited are irrelevant and therefore not
shown.

x3

1 2

3 4
x2

x1

x0

a0

a1 a3

a2
a4

a5

(a) (b)

Figure 6.1: MDP network (a) and the corresponding policy space (b). In a deterministic
environment a policy can be visualized as a single trajectory through the state space starting
from the initial state.

Assume that the agent knows that either policy 1 or policy 4 is optimal. This knowledge
can be translated into an action set reduction by removing action a5 from the MDP network.
Removing this action can be interpreted as the definition of a derived MDP whose policy
space consists of only policy 1 and policy 4.

However, not all subsets of the policy space can be represented by simply removing
actions. For example, if the agent knows that either policy 1 or 2 is optimal, it cannot
remove any action, since all actions are contained within these two policies. To construct a
derived MDP with a policy space consisting of only policies 1 and 2, the agent has to take
into account the policy it followed before arriving at state x3 when selecting an action in
state x3. This can be achieved by extending the state feature set of the original MDP with
policy features, which can contain information about actions taken before or state feature
values observed before. The action set of the derived MDP can then be defined in terms of
this extended feature set. We name the resulting derived MDP a policy-restricted MDP.

In Figure 6.2, we show a policy-restricted MDP, whose feature set is extended with fea-
ture Y , consisting of values y0, y1 and y2. Feature value y0 corresponds with the statement
that either feature value x0 was observed at the previous timestep, or the current timestep is
the initial timestep (i.e., there is no history yet). The interpretation of y1 is that feature value
x1 was observed the previous timestep, while y2 means feature value x2 was observed the
previous timestep.

The policy space of this derived MDP consists of only policies 1 and 2.3 Note that the
total state-action space size of this derived MDP is equal to that of the original MDP. So,
while the policy space is reduced, the state-action space is still equal in size. The smaller

3Strictly speaking, the policy space of the derived MDP is not equal to the set consisting of policies 1 and
2, since the policies for the derived MDP are defined in terms of an extended feature set. However, there is a
straightforward mapping between them.

108 Chapter 6. Reducing the Problem Size by Policy Space Reduction

policy space of the derived MDP has resulted however in a simpler structure for the derived
MDP. With the right methods, this can be exploited and result in an improved performance.

{x ,y }

a0

a1

a3

a4

a5

a2

3 2

{x ,y }3 1

{x ,y }2 0

{x ,y }1 0

{x ,y }0 0

Figure 6.2: History-extended MDP corresponding to policy 1 and 2 from Figure 6.1(b).

In this section, we specified the policy restrictions by enumerating the policies from
the remaining policy subset. Clearly, this is infeasible for all but the most simple MDPs. In
the next section, we show how policy restriction can be compactly modeled for a general
MDP using the policy restriction set.

6.1.2 The Policy Restriction Set

Formally, policy restrictions define an action set restriction that depends on all state-action
pairs visited before. Let the state-action history ht be the sequence of all state-action pairs
visited from the start of an episode up to the current state xt

ht = ⟨x0, a0,x1, a1, ...,xt−1, at−1,xt⟩ (6.4)

We denote by H the set of all possible state-action histories. In addition, let h−t be the
same state-action history as ht minus the last state xt, and letH− be the set of all possible
state-action histories that leave out the last state. Let A be the (original) state-dependent
action set as defined by Equation 6.1. With these definitions, policy restrictions can be
captured by a function A′, defined as

A′ : H → P(Aall) , (6.5)

with the following property:

A′(h) ⊆ A(x) for all x and h ∈ H ending in x. (6.6)

The expressiveness of this function is extremely large. However, specifying it explicitly
is infeasible in practise, since the setH is infinite in the general case. Therefore, instead of
specifying A′ as function ofH, we specify it as a function of X and Y, an abstract feature
set that only takes into account the relevant history information. We denote this function
by AY , to distinguish it from A′, the action set restriction as function ofH.

Formally, the feature set Y is an aggregation of the set H−. In other words, there
exists a function F : H− → Y that maps each h− to a value y ∈ Dom{Y}. Note that
this mapping, as well as the feature set Y, is not unique; there can be multiple ways to

6.1. Policy Restrictions 109

aggregate H−, resulting in different feature sets Y. In practise, prior knowledge will be
directly translated into a relevant feature set Y (see Section 6.1.3 for an example), instead
of first defining A′ and then constructing a mapping function F .

For completeness, we define the aggregation condition that should hold for the function
F . Informally, two different state-action histories h−1 and h−2 can be aggregated if they do
not result in different action subsets now or in the future. Formally, we can define this
condition as follows. Let ⟨a, b⟩ be a sequence concatenating sequence a and sequence b,
and let h+ be a state-action sequence ⟨xk, ak, ...,xk+n−1, ak+n−1,xk+n⟩, starting in an
arbitrarily state xk and of arbitrarily length (including length 1, i.e., h+ = ⟨xk⟩). Let
h−1 and h−2 be elements of H−. h−1 and h−2 can be aggregated, i.e., F(h−1) = F(h−2) is
allowed, if for all ⟨h−1 , h+⟩ ∈ H the following holds: ⟨h−2 , h+⟩ ∈ H and

A′(⟨h−1 , h
+⟩) = A′(⟨h−2 , h

+⟩) (6.7)

It follows from this condition that if F(h−1) = F(h−2), for all ⟨h−1 ,x, a⟩ ∈ H− the
following holds: ⟨h−2 ,x, a⟩ ∈ H− and

F(⟨h−1 ,x, a⟩) = F(⟨h
−
2 ,x, a⟩) (6.8)

Because of Equation 6.8 a transition function TY : X × Y → Y can be defined that
transforms each current state, xt, current policy value yt and action at into a new policy
value yt+1. With an initial value y0 corresponding to an empty state-action history (i.e.,
F(⟨⟩) = y0), the action set restriction A′(ht) can be computed at each timestep using the
policy restriction set {Y,y0,AY , TY }. To summarize, its four elements are:

• Y : a set of abstract policy features

• y0 ∈ Dom(Y) : the initial value of Y.

• AY : X × Y → AY ⊂ A: a policy-restricted action set. This encodes the actual
policy space subset.

• TY : X ×Y × AY → Y : a transition function, describing the next policy feature
values based on the current state feature values, the current policy feature values and
the action.

The combination of the policy restriction set and the original MDP implicitly defines
a policy restricted MDP, as shown in the previous section. The state space of this MDP is
spanned by the feature sets X and Y, hence it is a factor |Y| larger than the state space
of the original MDP. However, the action space of this MDP, defined by AY , is smaller
than that of the original MDP. Therefore, the effective state-action space (i.e., the set of
all state-action pairs that can be visited by the agent) of the policy restricted MDP can be
smaller than that of the original MDP (in the next section we show an example of this).

The feature set Y can simply encode state features from the previous timestep or the
previous action, but it can also encode more complicated history elements. For example,
it could consist of a set of boolean statements that say something about a specific event
(or events) that happened in the past. Note that while in theory all functions A′ can be

110 Chapter 6. Reducing the Problem Size by Policy Space Reduction

transformed to a policy restriction set, not all A′ will lead to a compact representation. If
|Y| is very large, the increase in state space is also large. Because of this, policy restrictions
will not in all cases result in a performance advantage.

In the next section, an example is given of a task with policy restrictions that lead to a
huge reduction of the (effective) state-action space.

6.1.3 Illustrative Example

In this section we give a concrete example of a task and a policy restriction set that encodes
prior knowledge about it. In Section 6.4 we empirically test the performance of the three
methods presented in Section 6.3 on this example task.

Consider a variation of the large maze task (Section 4.2.3, Figure 4.8) that has only
one goal state (instead of four), which is located at the lower right of the grid. In addition,
assume a deterministic environment. So, the agent has four movement actions, each corre-
sponding with a single step in one of the directions ‘north’, ‘east’, ‘south’ or ‘west’, unless
the action moves the agent into a wall, in which case it remains at the same position.

Assume the agent has general knowledge of the task it faces, that is, it knows it interacts
with a deterministic navigation task and that it should find the shortest path towards the
goal (however, the location of the goal is unknown as well as the maze layout). In addition,
assume the state feature set X consists of the following features:

• 1 position feature (Xpos), indicating the position of the agent in the 2-dimensional
grid.

• 4 wall-distance features (X[dir]_wall_dist) corresponding with the number of squares
between the agent and the wall/border, for each direction. For example, if there is a
wall just next to the agent on its east side, Xeast_wall_dist = 0.

• 4 binary features indicating whether the agent has an unblocked view on the goal,
for each direction (X[dir]_goal_visible).

Using this feature set and the prior knowledge of the task, the following policy restric-
tions can be defined.

• The agent is not allowed to take an action that points directly towards a wall.

• The agent is not allowed to take an action that is perpendicular to its previous action
(e.g., an ‘east’ action cannot follow a ‘north’ action), unless the distance to the wall
in that direction increased with respect to the previous timestep (i.e, a wall-opening
appeared), or if it can see the goal location along this direction (i.e., its view is not
blocked by any wall).

• The agent is not allowed to take an action opposite of the action it just took (e.g., a
’south’ action cannot follow a ’north’ action), unless it faces a wall in that direction.

The subset of the policy space defined by these restrictions contains at least one optimal
policy.

6.1. Policy Restrictions 111

These policy restriction can be encoded using the following policy restriction set
{Y,y0,AY , TY }. Y contains 5 features:

• 1 previous action feature (Yprev_action), indicating the action taken at the previous
timestep.

• 4 previous wall distance features (Yprev_[dir]_wall_dist), indicating the distance to the
wall at the previous timestep for the four compass directions.

We define y0, the feature values of Y at the initial timestep as

y0 = {‘none’,−1,−1,−1,−1} .

The function TY follows directly from the definition of the feature set Y:

yprev_action,t+1 = at

yprev_[dir]_wall_dist,t+1 = x[dir]_wall_dist,t

Finally, the function AY , encoding the actual policy restrictions can be defined using if-
then statements. For example, it can be implemented by splitting AY up in four boolean
functions AY,[dir] : X ×Y → {TRUE,FALSE}, each defining for one compass direc-
tion whether the corresponding action is an element of the action set AY (X,Y). Algorithm
13 shows pseudocode for AY,east. The other compass directions have similar pseudocode.

Algorithm 13 AY,east : X×Y → {TRUE,FALSE}
Input: current values of features X and Y

Output: east-valid (TRUE if ‘east’ action is available, FALSE otherwise)
if Yprev_action = ‘none’ then

east-valid = TRUE
else if Yprev_action = ‘east’ then

if Xeast_wall_dist > 0 then
east-valid = TRUE

else
east-valid = FALSE

else if Yprev_action = ‘west’ then
if Xwest_wall_dist = 0 then

east-valid = TRUE
else

east-valid = FALSE
else

if (Yprev_east_wall_dist > Xeast_wall_dist) ∨Xeast_goal_visible then
east-valid = TRUE

else
east-valid = FALSE

The policy restriction set discussed above is independent of the maze layout and goal
location. Therefore, once it has been defined, it can be reused each time the agent encoun-
ters a similar deterministic maze task with features X[dir]_wall_dist and X[dir]_goal_visible.

112 Chapter 6. Reducing the Problem Size by Policy Space Reduction

Note that the features X[dir]_wall_dist and X[dir]_goal_visible are redundant (as defined by
Definition 11) with respect to the feature Xpos, that is, each location feature value cor-
responds with a single set of values for features X[dir]_wall_dist and X[dir]_goal_visible.
In addition, the features Yprev_[dir]_wall_dist are redundant with respect to the feature set
{Xpos, Yprev_action}. Therefore, these features do not increase the size of the state space
and the Q-values of the policy-restricted MDP corresponding to this policy restriction set
can be stored as function of only the feature set {Xpos, Yprev_action}, ignoring the other
features.

In Section 6.4, we measure the performance of three different methods (presented in
Section 6.3) that exploit the policy restriction set above, as well as regular Q-learning. We
use three versions of this task, corresponding to resolutions 1, 3 and 7. A resolution of
1 refers to a grid of 23 by 26 squares, which is the grid size of the original task (Figure
4.8). A resolution of 3 divides the grid into 23*3 by 26*3 squares, and a resolution of 7
divides the grid into 23*7 by 26*7 squares. Figure 6.3 shows the same area around the start
state for the three different resolutions. The reward received after an action depends on the
resolution. For a resolution of 1, the reward is -1 for each action. For a resolution of 3 it is
-1/3, and for a resolution of 7 it is -1/7, while γ equals 1 in all cases. This way, if the agent
covers the same distance, it receives the same return for all three resolutions.

Figure 6.3: Area around the start state of the large maze task for three different resolutions.
Note that the wall thickness and location is not effected by the resolution.

In the next section, we explain the advantages of the policy restricted MDP in compar-
ison to the original MDP using the task and policy restriction set defined in this section.

6.1.4 Advantages of Policy Restrictions

There are two reasons why using the policy-restricted MDP to find the optimal policy can
be advantageous: a smaller state-action space and single-action states.

To illustrate the huge state-action space reduction that can be achieved, we let a random
agent (i.e., an agent that select randomly among the available actions) interact with the
large maze task at resolution 3 under the specified policy restrictions (for a large number
of episodes), while keeping track of the visited positions (i.e., the observed values for
Xpos). Figure 6.4 shows the result (because of the density of the grid, we do not show
individual squares). The grey lines are the positions visited by the random agent. This
figure very clearly shows that, under the given policy restrictions, only a fraction of the
total maze is visited by the agent. This fraction is resolution dependent: the higher the

6.1. Policy Restrictions 113

resolution, the smaller this fraction is and hence the larger the performance benefit of the
policy restrictions. Note as well that an optimal policy can be constructed, even when the
behavior of the agent is restricted to the grey lines.

Figure 6.4: The positions an agent can reach (grey lines) when following the policy restric-
tions in the large maze task at resolution 3. The white circle in the lower-left corner is the
start position; the white diamond in the lower-right corner is the goal position.

The second reason why using policy restrictions can result in higher performance is
less obvious, but can contribute just as much. To understand why, note that a single state
from the original MDP is in general mapped to multiple states in the policy-restricted MDP.
For example, state x of the original MDP can be mapped to states {x,y1} and {x,y2} of
the policy-restricted MDP. By definition, the action sets of these states are subsets of the
action set of the original state: AY (x,y1) ⊆ A(x) and AY (x,y2) ⊆ A(x). Because of
this action subset, it can occur that the action set of states in the policy restricted MDP
contain only a single action. We name such states single-action states. Single-action states
are special, since they do not require Q-values. Obviously, for action selection this is
not required, but also its use in update targets for other state-action pairs can be avoided
by using multi-step updates whenever single-action states are encountered (see Section
6.3.4 for a detailed explanation). So, while formally single-action states do not reduce
the state-action space, they do reduce the number of Q-values that need to be learned.
This reduction in Q-values results in improved efficiency, or, under given space and time
constraints, improved performance, as we demonstrate in Section 6.4.

For the large maze task, the policy-restricted MDP corresponding to the restrictions
described in the previous section contains a large number of these single-action states. In
fact, all states except those corresponding with locations where the grey lines in Figure
X cross are single-action states. Therefore, a huge reduction in the required Q-values is
obtained. In fact, the number of these cross locations is resolution independent and hence
the number of required Q-values as well. So, while the number of required Q-values of the
original MDP increases quadratically with the resolution, this number remains the same

114 Chapter 6. Reducing the Problem Size by Policy Space Reduction

when using policy restrictions. This results in a huge performance advantage for methods
using the policy restriction set.

This clearly demonstrates the advantage of policy restrictions compared to using no
restrictions at all, but how do policy restrictions compare against plain action restrictions?4

In other words, what is the advantage of using a function A′ : H → P(Aall) for defining
restrictions compared to using a function A′ : X → P(Aall)? Clearly, action restrictions
are a special case of policy restrictions, so some knowledge can be represented by it. But
how much of the performance advantage would be lost if only the prior knowledge that can
be represented by action restrictions would be exploited? By analyzing the relation between
policy restrictions and action restrictions in more detail, three types of prior knowledge can
be distinguished.

First, there is the knowledge that can also be represented with action restrictions. For
this type of knowledge, application of it to the MDP does not lead to different action sets
for the same state. An example is the knowledge that the agent should not take an action
that points directly towards a wall.

Second, there is knowledge that can never be represented by action restrictions, since
application of it to the MDP leads to different action sets for the same state (depending
of the state-action history). An example is the knowledge that the agent should not take
an action opposite of the action it just took. This knowledge does not prohibit an action
under all circumstances, but only for certain state-action histories. Hence, it cannot be
represented by action restrictions. If on the large maze task action restrictions would be
used instead of policy restrictions, all states along the grey lines would be ‘multiple-action
states’ and the large performance benefit due to single-action states would be lost, as well as
the property of maze tasks that the number of required Q-values is resolution independent.

The third type of knowledge consists of knowledge that cannot be represented by action
restrictions, however, application of it to the MDP does not lead to different action sets for
the same state. Therefore, there exists an action set restriction function that is equivalent to
this knowledge in the sense that they share the same policy space. The problem is that the
available prior knowledge cannot be directly translated into this function. As an example,
consider a maze task, where the wall openings have a width of only 1 square and assume
we want to encode the knowledge that the agent should not take actions pointing towards a
wall as well the knowledge that the agent should not take an action that is perpendicular to
its previous action, unless the distance to the wall in that direction increased with respect to
the previous timestep. In this case, states corresponding to locations where wall openings
are visible (along one of the four movement directions) have always the same action set.
However, these locations are not part of the prior knowledge, and therefore the action set
restriction function cannot be specified in advance.

While this third type of prior knowledge cannot be directly translated into action re-
strictions, the action restrictions that are equivalent to this knowledge can be learned from
environment interaction. Although learning these action restrictions is more complicated
than the simple example above suggests. In Section 6.3.3 we present a method that can

4In principle, policy restrictions can also be viewed as action restrictions (conditioned on the state-action
history). However, in this chapter we use the term ‘action restrictions’ exclusively to indicate restrictions on
the state-dependent action set.

6.2. Related Work 115

learn these action restrictions (P-PR, Algorithm 16) and in the Section 6.4 we empirically
compare it against methods that rely on policy restrictions on the large maze task described
in Section 6.1.3.

In the next section, we discuss how the policy-restriction set differs from options and
shaping, two other methods that can control the behavior of the agent.

6.2 Related Work

An alternative way to achieve a reduction of the policy space is by replacing primitive
actions by options (Sutton et al., 1999; Precup, 2000; Stolle and Precup, 2002). However,
the range of restrictions that can be effectively described using the policy restrictions set is
much larger.

The main reason is that an option represents only a single policy, while a policy restric-
tion set represents a subset of the policy space. Although any subset of the policy space can
in theory be represented by a set of options (enumerating every single policy), this clearly
is a very inefficient way to model such a policy subset and infeasible for all but the most
simple MDPs.

Extensions of options, where the policy of the option is not fully specified but has to
be learned given an option dependent action set, effectively also defines a set of options.
However, the option action set only depends on the current state, limiting the set of policies
that can be represented.

With the policy restriction set we have extended the policy subset that can be effectively
modeled, allowing for new types of prior knowledge to be exploited.

There is also a relation between using policy restrictions and reward shaping (Ng et al.,
1999; Wiewiora, 2003; Konidaris and Barto, 2006; Grzes and Kudenko, 2009; Snel and
Whiteson, 2010, 2011), a strategy in which additional rewards are supplied to the agent to
guide its learning process. Both methods have in common that they aim to improve the
convergence speed of a method, while preserving the optimal policy. For shaping, optimal
policies are preserved, when potential-based shaping rewards are used (Ng et al., 1999).

While both approaches have essentially the same goal, they differ in how they try to
reach this goal. With the policy restriction approach certain actions are never taken, reduc-
ing the state-action space. On the hand, with shaping, the additional shaping reward tries
to steer the exploration in the right direction. However, to guarantee optimality, still the
full state-action space has to be explored.

They also exploit different prior knowledge. The policy restriction approach requires
prior knowledge about suboptimal policy behavior. This concerns usually very local behav-
ior, like ‘never take an action opposite of the action at the previous timestep’. In contrast,
shaping usually requires knowledge about global (sub)goals, for example, the agent could
receive an additional reward if the distance towards the goal is decreased in some naviga-
tional task.

In conclusion, shaping and policy restrictions can be considered orthogonal approaches
to improve the converge rate. In fact, they can be combined very easily. Note that shaping
rewards only effect the reward function; the policy space remains the same. Therefore, the

116 Chapter 6. Reducing the Problem Size by Policy Space Reduction

policy restriction subset defined for the original MDP can just as easily be applied to the
derived MDP based on the modified reward function.

6.3 Methods

In this section, we present three methods that exploit the policy restrictions defined by the
policy restriction set. The first two methods, PR and A-PR, obey the policy restrictions
when interacting with the environment. The third method, P-PR, learns action restrictions
using the prior knowledge captured by the policy restriction set.

6.3.1 Q-learning with Policy Restrictions (PR)

The policy restriction set ⟨Y,y0,AY , TY ⟩ implicitly defines a policy-restricted MDP. The
agent can interact with this derived MDP by taking actions in the original MDP, observing
the next state feature values, x′, and combining this with y′, the policy feature values
resulting from the transition function TY , to form the new state (x′,y′) of the policy-
restricted MDP. Algorithm 14 shows pseudo-code for a Q-learning implementation based
on the policy-extended MDP. Note that the learned Q-values correspond with the Q-values
from the policy-restricted MDP.

Algorithm 14 Q-learning with Policy Restrictions (PR)
1: define ⟨Y,y0,AY , TY ⟩
2: initialize Q(x,y, a) arbitrarily for all x,y, a
3: loop {over episodes}
4: initialize x,y

5: while x not terminal do
6: select action a ∈ AY (x,y), based on Q(x,y, ·)
7: take action a, observe x′ and r

8: y′ ← TY (x,y, a)

9: Q(x,y, a)← (1− α)Q(x,y, a) + [r + γmaxa′∈AY (x′,y′)Q(x′,y′, a′)]

10: x← x′, y← y′

This implementation ignores the fact that the next state is partly known, since y′ can
be computed before the action is taken. In the next section, we present a variation of
Algorithm 14 that exploits this.

6.3.2 Q-learning with Policy Restrictions and Aggregation (A-PR)

In general, different mappings F can be defined, resulting in different feature sets Y. But
even with the most compact aggregation of state-action histories, the state-action space of
the policy-restricted MDP can be larger than that of the original MDP. Although the size of
the state-action space is not the only factor that determines the performance, the number of
Q-values that need to be learned can often be reduced in case of a policy-restricted MDP,

6.3. Methods 117

without changing its policy space. In this section, we present a variation of Algorithm 14
that can achieve this.

The variation exploits the fact that for a derived MDP constructed from a policy re-
striction set, in contrast to a regular MDP, the next state is partially known in advance.
Specifically, y′ is known in advance, since it is determined by the current state (x,y), the
action a selected for the current state and the transition function TY , which is part of the
prior knowledge. Knowledge of y′ can be exploited by aggregating state-action pairs, that
is, by using a single Q-value table entry for multiple state-action pairs. Note that this is
different from regular state abstraction, which usually involves aggregation of states that
share (approximately) the same reward and transition functions for all their actions into a
single abstract state. State-action aggregation generalizes state aggregation in that it allows
aggregation even if only a single action of some state shares the same reward and transition
function with a different state-action pair.

To see how state-action aggregation works, consider once more the MDP from Figure
6.1(a) and assume we want a policy-restricted MDP whose policy space consists of policies
1, 2 and 3 from Figure 6.1(b). In Figure 6.5 such a policy-restricted MDP is shown. It
contains 7 state-action pairs, one more than the original MDP. States {x3, y0} and {x3, y1}
cannot be aggregated since the available actions are different for the two states. However,
action a5 leads to exactly the same state, {xT , y0}, and yields the same reward, independent
if its taken from state {x3, y0} or state {x3, y1}. Hence, their optimal Q-value is the same.
Moreover, that this is the case, can be deduced before the actions are taken. The reward is
the same, since it is generated by the original MDP and x is the same for the two states.
For the same reason, x′ is the same, so the next states can only differ in their policy feature
values. However, the agent can check this since it knows TY , yielding y0 for (x3, y0, a5)
as well as (x3, y1, a5). So, the agent knows the reward and transition of a5 is the same for
states {x3, y0} and {x3, y1}. More generally, if action a is available in states {x,y1} and
{x,y2}, they share the same reward and transition function if TY (x,y1, a) = TY (x,y2, a).
These state-action pairs can be aggregated by storing the Q-values of the policy-extended
MDP as function of x, a and y′ = TY (x,y).

{x ,y }

a0

a1

a3

a4

a5

a2

3 1{x ,y }2 1

{x ,y }1 0

{x ,y }0 0

a5

{x ,y }3 0

{x ,y }T 0

{x ,y }T 0

{x ,y }T 0

Figure 6.5: Policy-restricted MDP corresponding to policy 1, 2 and 3 from Figure 6.1(b).

Applying this type of abstraction to the policy-extended MDP shown in Figure 6.5

118 Chapter 6. Reducing the Problem Size by Policy Space Reduction

reduces the state-action space size to 6, the same size as the original state-action space.
Algorithm 15 shows pseudocode for Q-learning based on a policy-restricted MDP with
state-action aggregation.

Algorithm 15 Q-learning with State-Action Aggregated Policy Restrictions (A-PR)
1: define ⟨Y,y0,AY , TY ⟩
2: initialize Q(x,y, a) arbitrarily for all x,y′, a

3: loop {over episodes}
4: initialize x,y

5: while x not terminal do
6: select action a ∈ AY (x,y), based on Q(x, TY (x,y, ·), ·)
7: take action a, observe x′ and r

8: y′ ← TY (x,y, a)

9: Q(x,y′, a)← (1− α)Q(x,y′, a)+

[r + γmaxa′∈AY (x′,y′)Q(x′, TY (x
′,y′, a′), a′)]

10: x← x′, y← y′

6.3.3 Q-learning with Projected Policy Restrictions (P-PR)

Even when a policy-restricted MDP with state-action aggregation is used, its state-action
space size can be larger than that of the original MDP. In this section, we present a method
that maps the policy restriction set to a reduced action set for the original MDP. In general,
the resulting state-action space is smaller than that of the policy-restricted MDP (and of the
original MDP), however, the corresponding policy space is in general larger than the policy
space of the policy-restricted MDP.

As an example, consider the network shown in Figure 6.6(a). To represent the two
policies shown in Figure 6.6(b), the policy-restricted MDP shown in Figure 6.7 is used.
This MDP has a total of 8 state-action pairs, 1 more than the original MDP, since action a4
is present twice: it can be taken from state {x3, y1} as well as from state {x3, y2}. In this
case, state-action pairs (x3, y1, a4) and (x3, y2, a4) cannot be aggregated, since the Q-value
of a4 can be different for the two policies because the action taken after a4 is different and
hence the return can be different as well.

To avoid that the state-space size grows with respect to the original size when applying
policy restrictions, instead of using the policy-restricted MDP, the agent can choose to learn
the projection of the action set AY onto the original state feature set X:

AX(x) =
∪

y∈Y(x)

AY (x,y) (6.9)

where Y(x) is the set of all policy feature values y that x is associated with in the policy-
restricted MDP. For the policy-restricted MDP of Figure 6.7, Y(x0) = Y(x1) = Y(x2) =
{y0}, while Y(x3) = Y(x4) = {y1, y2}. AX is in this case equal to A, the action set of
the original MDP, so no reduction of the state-action space occurs. However, in general,
the state-action space can be reduced considerably. The state-action space of the derived

6.3. Methods 119

x3

x2

x1

x0

a0

a1 a3

a2

x4

a5

a6

a4

(a) (b)

Figure 6.6: MDP network (a) and a subset of its policy space (b).

{x ,y }

a0

a1

a3

a4

a4

a2

3 2

{x ,y }3 1

a5

{x ,y }4 1

a6

{x ,y }4 2{x ,y }2 0

{x ,y }1 0

{x ,y }0 0

Figure 6.7: Policy-restricted MDP corresponding to the two policies from Figure 6.6(b).

MDP based on AX is never larger than the original state-action space. The downside is,
that the policy space of this derived MDP is, in general, larger than defined by the policy
restriction set.

The agent cannot determineAX(x) directly from its policy restriction set, since it does
not know Y(x) in advance. Instead, AX(x) has to be constructed iteratively. Initially
AX(x) = ∅. Each time a new policy feature y is determined for state x, the action set
AX(x) is expanded with AY (x,y).

By determining AX ⊂ A the agent can interact with a derived MDP with a smaller
state-action space than the original MDP. However, since the action set AX is expanded
over time, special care has to be taken to ensure proper exploration. In a deterministic
environment, a very powerful exploration scheme is using optimistic initialization of Q-
values combined with a greedy behavior policy. For this scheme to work, the Q-value of
each state-action pair should be an overestimate of its optimal Q-value at all times. With a
regular deterministic MDP network, using optimistic initial values is enough to ensure this
condition holds. However, in the case of an expanding action set, the value of a state can
increase if extra actions become available in this state. An action that was updated with a
state value based on a smaller action set can be an underestimate with respect to the new
state value. To avoid these underestimates, the Q-value of a state-action pair (x, a) needs
to be re-initialized to an optimistic value if a new y′ is determined for (x, a), since this
could result in an expanded action set of the next state, potentially increasing the Q-value

120 Chapter 6. Reducing the Problem Size by Policy Space Reduction

of (x, a).5

Algorithm 16 shows pseudo-code of an implementation based on projected policy re-
strictions (P-PR). Note that, instead of storing Y(x) for each state, Y ′(x, a) is stored for
each state-action pair, which is the set of all policy feature value sets y′ that have so far
been encountered for (x, a). If a new y′ is observed for (x, a), the Q-value of (x, a) is re-
initialized and Ynew is set to ‘true’, indicating Y ′(x, a) has been expanded and therefore,
the next time this state-action pair is taken, AX of the next state should be updated.

Algorithm 16 Q-learning with Projected Policy Restrictions (P-PR)
1: define ⟨Y,y0,AY , TY ⟩, Qinit, x0
2: initialize A(x)← ∅, for all x; Q(x, a)← Qinit, Y ′(x, a)← ∅ for all x and a

3: Y ′(x0, a)← TY (x0,y0, a), Y ′
new(x0, a)← true for all a ∈ AY (x0,y0)

4: A(x0)← AY (x0,y0)

5: loop {over episodes}
6: x← x0, y← y0

7: while x not terminal do
8: select action a ∈ A(x), based on Q(x, ·)
9: take action a, observe x′ and r

10: if Y ′
new(x, a) = true then

11: for all y′ ∈ Y ′(x, a) do
12: A(x′)← A(x′) ∪ AY (x

′,y′)

13: for all ā ∈ AY (x
′,y′) do

14: y′′ ← TY (x
′,y′, ā)

15: if y′′ /∈ Y ′(x′, ā) then
16: Y ′(x′, ā)← Y ′(x′, ā) ∪ y′′

17: Y ′
new(x

′, ā)← true; Q(x′, ā)← Qinit

18: Y ′
new(x, a)← false

19: Q(x, a)← (1− α)Q(x, a) + [r + γmaxa′∈A(x′)Q(x′, a′)]

20: x← x′, y← y′

6.3.4 Multi-Step Variants (PR+, A-PR+, P-PR+)

The methods PR, A-PR and P-PR all use at their core an update derived from the single-
step Q-learning update. For state-action pair (s0, a0), resulting in reward r1 and next state
s1 , this update has the form

Q(x0, a0)← (1− α)Q(x0, a0) + αυ ,

with
υ = r1 + γmax

a′
Q(x1, a

′) . (6.10)

5Technically, this assures Q(x, a) ≥ Q(x,y, a) for all y ∈ Y(x), which guarantees the policy after
convergence, when applying a greedy behavior policy, is at least as good as the optimal policy of the policy-
restricted MDP. If the policy space of the policy-restricted MDP contains the optimal policy of the original
MDP, this is the policy found after convergence.

6.4. Empirical Results 121

A policy-restricted MDP can contain a lot of single-action states, i.e., states whose
action set consists of only a single action. Clearly, for action selection, such state-action
pairs do not require a Q-value. In fact, by using multi-step updates (i.e., updates based on
the n-step return) whenever such single-action states are encountered, their Q-values are
also not required for bootstrapping other Q-values, and hence can be ignored altogether.
The advantage of this is faster information propagation and increased time efficiency, since
single-action states do not require Q-value updates.

If action a0 is taken in (multi-action) state x0 and followed by single-action states
x1, ..xn−1 before multi-action state xn is reached, the multi-step update target υn for
(x0, a0) that ignores the Q-values of these single-action states is:

υn =

n−1∑
k=0

γkrk+1 + γnmax
a′

Q(xn, a
′) (6.11)

where rk+1 is the reward following state-action pair (xk, ak). Note that for n = 1 (i.e.,
when (x0, a0) is followed by a multi-action state) Equation 6.11 reduces to Equation 6.10.

We indicate the variants of PR, A-PR and P-PR that use multi-step updates whenever
single-action states are encountered by a ‘+’ superscript, i.e., by PR+, A-PR+ and P-PR+,
respectively. When an MDP contains no single-action states, these multi-step variants will
compute exactly the same Q-values as their regular counterparts. When an MDP does have
single-action states, the multi-step variants will have in general a higher performance at
equal or less computational cost.

6.4 Empirical Results

In this section, we compare the methods PR, A-PR and P-PR on the variation of the large
maze and with the policy restriction set discussed in Section 6.1.3. For reference, we also
compare against regular Q-learning.

We start by measuring the average return over the first 50 episodes of PR, A-PR, P-PR
as well as regular Q-learning on the large maze task at resolution 1. Besides the average
return, we measure the number of state-actions pairs whose Q-value got updated (by mea-
suring, at the end of the 50 episodes, the number of Q-values with a value different than
the initial value). Each method uses a greedy behavior policy with optimistically initialized
Q-values of -0.01. The learning rate has a fixed value of 1. Results are averaged over 1000
independent runs.

Table 6.1 shows the average return over the 50 episodes, and the number of updated
Q-values. The standard error on the average return value is not shown, but it is lower than
1 for all four methods. Figure 6.8 shows the return as function of the episode number. As
expected, all three methods based on policy restrictions perform substantially better than
regular Q-learning. A-PR outperforms PR. This can be expected, since they use the same
policy-restricted MDP, but A-PR exploits additional structure resulting in a reduced state-
action space size. A-PR and P-PR have the same number of updated Q-values, but P-PR
has a better performance. It is hard to explain exactly why P-PR has a better performance,
but that they have a different performance is not surprising, since they have a different

122 Chapter 6. Reducing the Problem Size by Policy Space Reduction

behavior policy (A-PR uses a greedy policy with respect to AY , while P-PR uses a greedy
policy with respect to AX). Apparently, in this case, the exploration performed by P-PR is
more effective.

resolution 1
average Q-values

return updated
Q-learning -797.5 2008

PR -350.8 797
A-PR 322.5 675
P-PR -302.8 675

Table 6.1: Average return, standard error, and the number of updated Q-values for regular
Q-learning and the policy restricted methods on the large maze task at resolution 1.

5 10 15 20 25 30 35 40 45 50
−3500

−3000

−2500

−2000

−1500

−1000

−500

0

episodes

re
tu

rn

Q−learning
PR
A−PR
P−PR

Figure 6.8: Performance of Q-learning and the policy restriction methods on the large maze
task at resolution 1 for the first 50 episodes.

Based on these first results, it appears there is no advantage in trying to achieve a
small policy space, since the best performance is obtained by P-PR, which aims to reduce
the state-action space size over the policy space size. However, the policy-restricted MDP
contains a lot of single-action states. Therefore, the performance of PR and A-PR (methods
that learn Q-values for the policy-restricted MDP) improves substantially, when multi-step
versions of these methods are used.

In the next experiment we apply multi-step updates to regular Q-learning as well as
PR, A-PR and P-PR and compare their performance on the large maze task at resolutions

6.4. Empirical Results 123

1, 3 and 7. We average the results again over 1000 independent runs. Table 6.2 shows the
average return over the first 50 episodes as well as the number of state-action pairs that got
their Q-value updated. Figure 6.9 shows the return as function of the episode number at
resolution 3. The ‘+’ subscript that is added to the method names indicates that multi-step
updates are applied . The standard error on the average return value is lower than 1 for
PR+, P-PR+ and A-PR+ at all three resolutions. For regular Q-learning it is lower than 10
at all three resolutions.

resolution 1 resolution 3 resolution 7
average Q-values average Q-values average Q-values

return updated return updated return updated
Q-learning+ -796.7 2008 -2693.2 18104 -6606.8 98584

PR+ -132.8 209 -137.1 214 -138.0 214
A-PR+ -118.1 179 -121.7 184 -122.2 184
P-PR+ -303.2 643 -669.7 2091 -1234.6 4987

Table 6.2: Average return over the first 50 episodes as well as the number of state-action
pairs that got their Q-value updated on the large maze task at resolutions 1, 3 and 7. The
‘+’ subscript indicates that multi-step updates are applied when single-action states are
encountered.

10 20 30 40 50
−12000

−10000

−8000

−6000

−4000

−2000

0

episodes

re
tu

rn

Qlearning

PR+

A−PR+

P−PR+

Figure 6.9: Performance of Q-learning and the policy restricted methods (with multi-step
updates) on the large maze task at resolution 3.

The most striking result from this experiment lies in the number of state-action pairs
that got their Q-values updated. For regular Q-learning this number scales quadratically

124 Chapter 6. Reducing the Problem Size by Policy Space Reduction

(by approximation) with the resolution. For P-PR+ it scales linearly, and for PR+ and A-
PR+ the number of different state-action pairs visited is approximately independent from
the resolution. The huge difference in updated Q-values is reflected in the performance.
At resolution 7, the performance of PR+ and A-PR+ is a factor 10 better than P-PR+ and
close to a factor 60 better than regular Q-learning.

This result can be explained by examination of Figure 6.4. The policy restrictions
bound the agent to certain lines. If the resolution is increased, the number of states on such
a line increases, but the ‘thickness’ of a line remains one square. Therefore, while the total
state-action space depends quadratically on the resolution, the subset of the state-action
space defined by the policy restrictions depends linearly on the resolution. This explains
why the number of updated Q-values scales linearly with the resolution for P-PR+. The
multi-step implementation results in a slightly decreased number (643 instead of 675 at
resolution 1), but this causes no significant performance increase.

In contrast, at resolution 1, for PR+ and A-PR+ a huge difference in updated state-
action pairs occurs (for A-PR+ 179 instead of 675). The reason is that along the trajectory
lines of Figure 6.4 only single-state action pairs occur in the policy-restricted MDP, ex-
cept when a line intersects another line. In other words, using the policy-restricted MDP,
the agent only needs to make a choice between different actions at line intersections. The
number of line intersections is resolution independent, and therefore the number of updated
Q-values, as well as the performance, is independent of the resolution. The small perfor-
mance differences that do occur for PR+ and A-PR+ across the different resolutions are
due to subtle task differences caused by the resolution difference. For example, the distance
the agent needs to travel to go from one wall to the opposite wall increases slightly when a
higher resolution is used (basically, the agents size decreases with higher resolution, so the
agent can move closer with its center point to a wall).

For the large maze task, the reduction in the number of Q-values achieved by A-PR
with respect to PR is only small. Therefore, the performance difference of A-PR and PR is
also only small, although A-PR consistently outperforms PR with 5% - 10%.

6.5 Discussion and Future Work

The large maze experiments (Table 6.1 and Table 6.2) clearly demonstrate the power of
policy restrictions. The performance improvement of a factor 60 for A-PR+ compared
to regular Q-learning speaks for itself. In addition, it demonstrates the generality of the
knowledge that is exploited: the policy restriction set only needs to be defined once, and
can then be applied to any maze task, independent of its size or wall locations.

A performance advantage of a policy-restricted method over regular Q-learning can
have two causes. First, the state-action space size of the derived MDP the agent interacts
with can be smaller. Second, the derived MDP can contain single-action states, which can
result in a higher efficiency, or, alternatively, under given space and time constraints, a
higher performance. In our experiments, we used multi-step versions of the methods to
exploit these single-action states.

The experiments show a consistent performance advantage of A-PR over PR (see Table

6.6. Conclusion 125

6.1, Table 6.2). This performance advantage can be fully attributed to the smaller state-
action space of A-PR, since apart from that the methods are equal. They use, for example,
exactly the same policy space subset. The experiments demonstrate that the size of the
performance difference depends on the state-action space reduction that is achieved by the
state-action aggregation.

The relative performance of P-PR with respect to A-PR and PR depends on a trade-off
between two opposite effects. On the one hand, the state-action space of P-PR is in general
smaller, causing an advantage over A-PR and PR; on the other hand, the structure of the
derived MDP for P-PR is in general more complex than the structure of the policy-restricted
MDP, causing a disadvantage. In the second large maze experiment (Table 6.2, Figure 6.9),
multi-step updates are employed to exploit single-action states. While these updates do not
decrease the state-action pairs visited by the agent, they do reduce the number of Q-values
that need to be learned, resulting in much more effective learning. In fact, the number of
Q-values that need to be learned for A-PR and PR in this case is (approximately) invariant
with respect to the resolution, causing a huge performance advantage over P-PR and PR.

For the experiments performed, there is no clear case where P-PR substantially outper-
formed A-PR. However, since they are based on different principles, it is very likely that
such tasks exist. For example, if the derived MDP does not contain any single-action states.

This observation also suggests that for certain tasks, methods might be preferred that
trade-off the principles behind A-PR and P-PR in a different way. Currently, A-PR aims to
create a derived MDP with the smallest policy space, whereas the goal of P-PR is to create
the smallest state-action space. Crossovers between these two methods can be created that
aim for a more balanced trade-off of these two goals.

An additional venue for future work is to combine the approaches with best-match
learning. While in principle there is no reason why best-match learning could not be ap-
plied, it is not immediately clear which best-match methods work best. For example, the
prioritized sweeping heuristic might cause problems in the case of state-action aggregation.

Finally, the obvious extension is to stochastic environments. The developed formalism
and methods can be applied without adaptation to a stochastic environment. However,
constructing a useful policy restriction set might be less obvious. In addition, while the
policy restricted MDP will have a simpler structure, it might still be too complex to exploit
this.

6.6 Conclusion

In this chapter, we presented a formalism to efficiently encode very general knowledge
about suboptimal behavior that cannot be represented by a plain action set reduction. This
prior knowledge can be interpreted as the removal of policies from the policy space corre-
sponding to an MDP. We presented three value-function methods that use this prior knowl-
edge in different ways. Methods PR and A-PR use the prior knowledge to interact with a
derived MDP, whose policy space corresponds with the subset of the original policy space
that is implicitly defined by the policy restrictions. Method P-PR uses the policy restrictions
to learn a reduced action set for the original MDP. While its corresponding policy space is

126 Chapter 6. Reducing the Problem Size by Policy Space Reduction

in general larger than that of PR or A-PR, its state-action space is in general smaller.
Empirically, we showed that by defining general policy restrictions for a maze task, the

performance of PR and A-PR on a maze task becomes independent of the resolution of the
maze, whereas for Q-learning the performance scales quadratically with the resolution. For
P-PR the performance depends linearly on the resolution. These results clearly demonstrate
the huge impact that policy restrictions can have on performance.

CHAPTER 7

Conclusions and Future Work

In this thesis we presented an approach to fill the gap between model-free and model-
based learning. Best-match learning unifies these two forms of learning in the sense that
a model-free method (Q-learning) and a model-based method (value interaction based on
a maximum-likelihood model) are both special cases of best-match learning. Using best-
match learning, methods can be constructed that can trade both space and time require-
ments for an improved performance.

We also presented a novel strategy for on-line representation selection for tasks where
the agent can choose among a set of different candidate representations. This strategy trans-
forms the original MDP and the set of candidate representations into a derived MDP with a
single representation whose solution yields both the optimal representation for the original
MDP and the optimal policy under that representation. The time and space requirements
depend on the size of the derived MDP’s state space, which can be exponentially smaller
than that of the original MDP.

Finally, we demonstrated how prior knowledge about a task can often be naturally
described in terms of policy restrictions and presented a straightforward way to exploit
these restrictions. We empirically showed that for a maze task with policy restrictions the
performance only depends on the general layout of the maze and not on the scale of the
maze.

Overall, we believe that the theory and strategies presented in this thesis provide a valu-
able extension to the toolkit of reinforcement learning researchers that strive to optimize
the performance of their systems under space and time constraints.

In the next section, we evaluate the six research questions formulated in Section 1.2.2.
In Section 7.2, we discuss the three most promising avenues of future work.

7.1 Evaluation of Research Questions

Question: Under which settings does Expected Sarsa outperform regular Sarsa?
Answer: Tasks with low environment stochasticity (for example deterministic environ-
ments) combined with a highly stochastic policy (for example ε-greedy with ε ≥ 0.1).
Explanation: Variance in an update target slows learning, since it forces averaging over
multiple update targets to get accurate estimates. The downside of this is that the effect
of a single update is smaller, and hence the number of updates necessary to obtain (near-)
optimal Q-values increases. The variance in a Sarsa update has two sources: environment
stochasticity and policy stochasticity. Expected Sarsa is based on an update target that
uses an expectation over the action selected at the next timestep, and by doing so it fully

128 Chapter 7. Conclusions and Future Work

removes the variance due to the policy stochasticity. This makes less averaging possible,
which improves the speed of learning.

Based on this difference between Sarsa and Expected Sarsa, the performance differ-
ence between these two methods is obviously larger for high policy stochasticity. For
example, when an ε-greedy policy is used, more exploration, i.e, higher values of ε, cause
a higher performance advantage of Expected Sarsa with respect to Sarsa. When environ-
ment stochasticity is high, the relative impact of the variance due to policy stochasticity is
smaller, and hence the performance advantage of Expected Sarsa decreases. The perfor-
mance advantage of Expected Sarsa is maximum when the environment is deterministic
and the policy stochasticity, i.e., the exploration, is high.

Question: Does just-in-time Q-learning have a guaranteed performance improvement over
regular Q-learning?
Answer: No, it is possible to design problems for which Q-learning is better than just-in-
time Q-learning. However, on most problems, just-in-time Q-learning outperforms regular
Q-learning since its update targets receive more updates.
Explanation: The intuitive idea behind just-in-time (JIT) learning is very simple. As long
as a Q-value is not used, it does not have to be updated. Postponing the update until just
before it is needed, can result in more accurate updates (and hence improved performance),
since the Q-values used in the update target may have improved in the meantime.

We proved that, given the same experience sequence, each Q-value from the current
state has received the same number of updates using JIT updates as using regular updates.
However, each Q-value in the update target of a JIT update has received an equal or greater
number of updates as in the update target of the corresponding regular update.

Despite this strong result, guaranteeing that JIT Q-learning outperforms Q-learning
for all MDPs, and for all possible initializations of the Q-values is simply not possible.
It is always possible to design some ‘freak cases’ with specific Q-value initialization for
which update targets with more updates (temporarily) cause a performance disadvantage.
In general, however, just-in-time Q-learning outperforms regular Q-learning. We demon-
strated this empirically by showing that JIT Q-learning consistently outperforms regular
Q-learning under a wide variety of settings.

Question: Is it possible to construct a strategy with similar space and time requirements to
those of eligibility traces that consistently outperforms it?
Answer: Yes, this can be achieved by using best-match learning based on a last-visit model
(LVM).
Explanation: Best-match LVM learning is strongly related to eligibility traces, however,
it improves it in two important ways. The first improvement is related to how revisits of
states (or state-action pairs) are handled. From the theory behind eligibility traces it is a
little unclear what the best way is to deal with revisits of states, resulting in different traces
types and no hard rules on when to use which one. With best-match learning treatment
of revisits follows in a natural way from the theory and is fundamentally different from

7.1. Evaluation of Research Questions 129

eligibility traces. The better way of dealing with revisits of states is the main reason of the
huge performance difference between best-match learning and eligibility traces shown in
Figure 4.5.

The second improvement is related to the fact that eligibility traces can be viewed
(roughly) as a best-match method that approximates the best-match values based on the
followed trajectory. However, this is not the best, nor most efficient way to approximate the
best-match values. For example, with prioritized sweeping (as in BM-LVM, see Algorithm
10) a much better trade-off between computation time and quality of approximation is
obtained.

Because of these two improvements, best-match methods can be constructed (for ex-
ample BM-LVM) that have similar space and time requirements as methods based on eli-
gibility traces, but consistently outperform it.

Question: Is it possible to construct methods with a space complexity between O(|S||A|)
and O(|S|2|A|) that provably converge to the optimal Q-values?
Answer: Yes, this can be achieved by using best-match learning based on the n-transition
model (NTM).
Explanation: By using a partial model that only stores a fraction of the observed samples,
a space complexity betweenO(|S||A|) andO(|S|2|A|) can be obtained. However, because
only a fraction of the samples is stored, updates based on only this partial model cause an
unfair bias in the Q-values towards samples in this model, preventing convergence. Best-
match learning gets rid of this bias by combining the partial model with a partial Q-value
function, constructed from samples not stored in the model. This enables convergence for
a wide variety of different models, including NTMs. An NTM estimates the transition
probability for n possible next states of each state-action pair. By tuning n, the space
complexity can be set anywhere between O(|S||A|) and O(|S|2|A|).

Question: Under which conditions can convergence to the optimal Q-values be guaran-
teed, when representation selection is applied?
Answer: If all candidate representations are valid representations.
Explanation: A candidate representation is a feature set that is a subset of the total feature
set of an MDP. A candidate representation is valid if the features that the candidate repre-
sentation leaves out are either independent features (see Definition 12) or features that are
irrelevant with respect to the candidate representation (see Definition 7).

We showed that the original MDP and the set of candidate representations can be trans-
formed into a derived task with a single representation whose solution yields both the
optimal representation for the original MDP and the optimal policy under that representa-
tion. We proved that if all the candidate representations are valid this derived task obeys
the Markov property, i.e., it forms a derived MDP. If this is the case, standard RL methods
can be used to solve it.

130 Chapter 7. Conclusions and Future Work

Question: How can a reduced policy space be exploited in value-function based RL?
Answer: By describing it using a policy restriction set.
Explanation: A wide variety of policy restrictions can be compactly modeled using a
policy restriction set. Combining this policy restriction set with the original MDP results
in a derived MDP. The optimal policy of this derived MDP is the same as the optimal
policy of the original MDP. However, learning with the derived MDP can be faster, due to
a smaller state-action space and/or the existence of single-action states, states that do not
require Q-values since their action set consists of only a single state, resulting in an overall
improved performance. We demonstrated this empirically for a maze problem.

7.2 Future Work

In this section, we discuss the three most promising avenues of future work (in random
order) that came out of the research described in this thesis.

• Approximating the solution of the best-match equations by
simulation-based search
In Chapter 4 the main strategy for selecting state-action pairs for updating is priori-
tized sweeping. While very effective, the overhead involved in maintaining a prior-
ity queue makes best-match methods based upon prioritized sweeping less suitable
when the time constraints are really tight. On the other hand, in case of function ap-
proximation, prioritized sweeping cannot be used. However, the performance of the
best-match method based upon a list of the most recent samples was only slightly
better than the performance of experience replay based upon these samples. We
think that both these issues can be solved by using an alternative strategy for select-
ing state-action pairs for updating, based upon simulation-based search (Rust, 1997;
Coulom, 2006; Kocsis and Szepesvári, 2006).

Simulation-based search is a planning technique that creates simulated experience
sequences starting from the current state and uses these sequences for updating in
order to get a better estimate of the values of the available actions in the current
state.

Silver (2009) investigated temporal-difference search, a simulation-based search
method that uses temporal difference learning to update a value function based on
the simulated experience sequence. We propose to use best-match updates instead of
temporal-difference updates and let the partial model of best-match learning generate
the simulated experience sequences.

We expect that for tabular Q-values this strategy can rival prioritized sweeping in
terms of efficiency and performance in most settings and can outperform it sub-
stantially under tight time constraints. In addition, after some slight modifications,
we expect that this strategy can also be used for best-match function approxima-
tion. What enables this combination is the unique property of best-match learning
to perform updates that are unbiased with respect to the update selection strategy.

7.2. Future Work 131

We expect that by using simulation-based search new efficient function approxima-
tion methods can be constructed that can substantially outperform existing (efficient)
function approximation methods.

• Best-Match learning combined with the Sarsa update rule
The best-match equations discussed in Chapter 4 are based on the Q-learning update
rule. However, it is also possible to construct a set of best-match equations based on
the Sarsa or Expected Sarsa update rule.

For best-match methods based on the Expected Sarsa update rule we do not expect
a huge performance advantage, although the on-policy nature of methods based on
Expected Sarsa will likely give them a slight performance edge over regular, off-
policy best-match methods on certain domains.

A far more interesting combination is the combination with the Sarsa update rule.
The reason is that while best-match equations based on the Q-learning or Expected
Sarsa update rule are non-linear, the best-match equations based on the Sarsa update
rule form a linear set. From the evaluation case (Section 4.1.2) we know that this
can result in a very efficient computation of the exact solution plus updates that are
unbiased with respect to the initial values. We expect that these properties can be
extended to the control case if best-match equations based on the Sarsa update rule
are used.

However, note that the solution of best-match equations based on the Sarsa rule is
different from the solution of the equations based on the Q-learning rule. We expect
this solution to be worse, due to the extra variance introduced by the Sarsa update
rule (among others). It would be interesting to see how the trade-off between the
advantages and the disadvantages of using best-match learning based on the Sarsa
update rule plays out in practise for a variety of tasks.

• Combining Policy Restrictions with Dynamic Programming
With dynamic programming, the full MDP is known in advance. Also in this case
policy restrictions can be useful. Although, in this setting, the added value of the
policy restriction set is not that it represents prior knowledge not otherwise available
to the agent, since the agent already has full knowledge of the task. Instead, the
added value is that it represents knowledge that might be deeply hidden inside the
MDP and that cannot easily be extracted. In addition, it offers a way to exploit this
knowledge.

The combination of policy restrictions with dynamic programming provides new re-
search opportunities not available in reinforcement learning. The ability to represent
prior knowledge about a task depends strongly on the available state features. In
reinforcement learning, the available feature set cannot be modified and hence forms
a constraint in the ability to represent knowledge. This constraint does not exist
in dynamic programming, since the agent has full knowledge of the MDP and can
therefore construct an arbitrary feature set. This can result in very advanced features
capable of modeling very specific knowledge.

132 Chapter 7. Conclusions and Future Work

In addition, the knowledge encoded by the policy restrictions does not have to be
specified in advance. Instead, a separate reasoning process can be applied to extract
policy restrictions from the full MDP. This can lead to an interesting trade-off be-
tween the amount of time spent on extracting policy restrictions versus the amount
of time spent on solving the resulting derived MDP.

That said, we admit that we are not fully up-to-date with the state of the art in dy-
namic programming, so any research along this path would have to start with an
extensive literature study to check for similar existing approaches for dynamic pro-
gramming.

APPENDIX A

Relationship between Best-Match
LVM and TD(λ)

Sutton and Singh (1994) showed that it is possible to perform TD updates that are unbiased
with respect to the initial values, by using TD(λ) where λ is made time-dependent and
set equal to αt(st). However, TD(λ) can be made unbiased only for acyclic tasks, that is,
episodic tasks with no revisits of states within an episode. In this appendix, we prove that
best-match LVM evaluation and TD(λ) can lead to the same values for acyclic tasks and
that best-match LVM evaluation can perform unbiased updates for all MDPs.

A.1 Background on TD(λ)

The forward view of TD(λ) relates it to the λ-return Watkins (1989); Jaakkola et al. (1994),
defined by

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t ,

where R
(n)
t indicates the n-step return, defined by

R
(n)
t = rt+1 + γ rt+2 + γ2 rt+3 + ...+ γn−1 rt+n + γn Vt(st+n) .

The λ-return algorithm updates state st with Rλ
t . It can only be implemented off-line,

since it makes use of values from timesteps larger than t for the update of state st. While
the off-line version of TD(λ) computes the same state values as the λ-return algorithm
Sutton and Barto (1998), TD(λ) can also be implemented on-line, since it does not rely
on values from the future. On-line TD(λ) can lead to more accurate updates than off-line
TD(λ), although the interpretation as an incremental implementation of the λ-return holds
only by approximation for the on-line case Sutton and Barto (1998).

The backward view of TD(λ) interprets λ as the trace decay parameter of an eligibility
trace. Each sample is used to update, not just the current state, but all states, proportional
to their trace parameter. At each timestep the trace of the current state is increased, while
the other traces are decreased by γλ. Accumulating traces increase the trace parameter of
a visited state by 1, while replacing traces set it equal to 1.

Sutton and Singh (1994) proposed several ways for setting α and λ that eliminate bias
towards initial state values, normally inherent to temporal-difference methods. One of
these is to use TD(λ) where λt = αt(st) and α0(s) = 1 for all s. This produces the same
values as processing a state backwards with TD(0). All the proposed methods eliminate
the bias only for acyclic tasks.

134 Appendix A. Relationship between Best-Match LVM and TD(λ)

The equation for the λ-return with time-dependent λ is Sutton and Barto (1998)

Rλt
t =

∞∑
n=1

R
(n)
t (1− λt+n)

n−1∏
i=1

λt+i

=

T−t−1∑
n=1

R
(n)
t (1− λt+n)

n−1∏
i=1

λt+i +Rt

T−t−1∏
i=1

λt+i , (A.1)

where T is the last timestep of the episode and Rt is the complete return. Note that Rt =
R

(T−t)
t .

A.2 Forward View Best-Match LVM Values

The λ-return is based on the experience sequence encountered by the agent when inter-
acting with the environment. We can define for each visited state a last-visit experience
sequence based on the LVM by going through the transition states defined in the LVM. Us-
ing this sequence we define a last-visit version of the n-step return and of a special version
of the λ-return.

Definition 20. The last-visit experience sequence for state s is

s[0], r[1], s[1], r[2], s[2], ..., r[N], s[N] ,

where s[0] = s, s[n] = S′(s[n−1]) for n > 0 and r[n] = R′(s[n−1]). The sequence ends
when a state is encountered that is terminal, equal to s[0] or that has no transition state.
We call s[N] the last-visit sequence end state.

Using this definition, we define a last-visit version of the n-step return.

Definition 21. The last-visit n-step return of s is the n-step return applied to the last-visit
experience sequence of s:

R̆(n)
s = r[1] + γ r[2] + γ2 r[3] + ...+ γn−1 r[n] + γn V mf (s[n]) . (A.2)

We can now define a special version of the λ-return, which we call the last-visit α-
return: a last-visit version of the time dependent λ-return (Equation A.1) with λt = αt(st).

Definition 22. The last-visit α-return of s is

R̆α
s =

N−1∑
n=1

R̆(n)
s (1− α[n])

n−1∏
i=1

α[i] + R̆(N)
s

N−1∏
i=1

α[i] , (A.3)

where α[k] is shorthand for α(s[k]), s[k] is the kth state from the last-visit experience se-
quence of s and N is the index of the last-visit sequence end state.

The following lemma relates the last-visit α-return of s to the best-match value of s.
The lemma is proven in Appendix C.2.

A.2. Forward View Best-Match LVM Values 135

Lemma 3. If the last-visit sequence end state of s is a terminal state, the following equation
holds for the best-match value of s:

V B(s) = (1− αs)V mf (s) + αsR̆α
s .

This lemma forms the basis for the proof of the following theorem.
Theorem 3 For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation
computes the same values as off-line TD(λ) with λt = αt(st).

Proof. Let Vk be the state value function after the off-line updates at the end of episode
k. For all states that are visited during an episode, V is updated according to Lemma 3,
since the last-visit sequence end state is a terminal state for all these visited states. For the
off-line algorithm, before Vk(s) is computed, the update V mf

k (s) = Vk−1(s) is performed
for all visited states. Therefore, the value updates of the visited states can be written as

Vk(s) = (1− αs)Vk−1(s) + αsR̆α
s .

If the task is acyclic, the last-visit experience sequence of a visited state s is equal to the
experience sequence followed by the agent from this state to the terminal state. Therefore,
R̆α

s = R
λ=αt(st)
t . Finally, since the values computed by off-line TD(λ) are equal to the

values computed by the λ-return algorithm, off-line TD(λ) with λt = αt(st) performs the
same updates as off-line best-match LVM evaluation.

It follows from Theorem 3 that best-match evaluation can also eliminate the bias for
acyclic tasks. The next theorem extends this property to a general MDP.
Theorem 4 The state values computed by the on-line best-match LVM evaluation algo-
rithm (Algorithm 8) are unbiased with respect to the initial state values, when the initial
learning rates α0(s) are set to 1 for all s.

Proof. Algorithm 8 computes at each timestep the best-match value of the current state.
We will prove that if the best-match values of visited states computed at timesteps smaller
than t are unbiased with respect to the initial state values, then so is the best-match value
computed at timestep t. Since for t = 0 there are no visited states, it follows by induction
that the values computed for all timesteps t are unbiased.

The best-match values are computed using V B(s[0]) = cA + cB V B(s[N]) with cA
and cB defined as in (4.4) and (4.5) respectively. In Section 4.1.2 we showed that for the
current state, s[N] is either a terminal state or equal to s[0]. If s[N] is a terminal state,
V B(s[0]) = cA, while if s[0] = s[N], then V B(s[0]) = cA/(1 − cB). In either case, the
computed best-match value depends only on the variables in cA and cB , which consists
of the learning rates, V mf (s[i]), s[i] and r[i] for 0 ≤ i ≤ N . Clearly, only V mf (s[i]) can
be affected by the initial state values. s[i] has been visited at least once, else it would not
appear in the last-visit experience sequence. If s[i] has been visited once, V mf (s[i]) is equal
to the initial value V0(s[i]). However, since we assumed initial learning rates of 1, this value
of V mf (s[i]) is removed from cA. If s[i] has been visited more than once, it is equal to the

136 Appendix A. Relationship between Best-Match LVM and TD(λ)

best-match value of s[i] computed at a timestep smaller than t. From this it follows that if
the best-match values computed at timesteps smaller than t are unbiased with respect to the
initial values, then so is the best-match value computed at timestep t.

APPENDIX B

Off-Policy Monte Carlo Update

In this appendix, we deduce the equation for the off-policy Monte Carlo update of the
switch actions for the derived task of a contextual bandit problem with representation se-
lection. While in general, off-policy Monte Carlo updates are very inefficient, in this spe-
cific case a particular simple and efficient equation is obtained. In this appendix, we use
π(x) to refer to the action given by a deterministic policy, while we use π(x, a) to refer to
the action selection probability of a stochastic policy.

The experience sequence of the derived task of a contextual bandit problem consists of
two actions: first a switch actions, asw, and then a ground action, agr:

xt=0 → asw → xt=1 → agr → r

A Monte Carlo update is an update with the complete return, i.e., the (discounted)
cumulative reward. To understand the difference with regular (on-policy) Monte Carlo
updates consider that we determine the Q-value of a state-action pair (x, a) by simply
taking the average of all returns seen so far:

Q(x, a) =

∑N
i=1Ri(x, a)

N
(B.1)

where Ri(x, a) is the return followed by the i-th visit of state-action pair (x, a) and N is
the total number of returns observed for (x, a). A similar off-policy version can than be
made by taking the weighted average:

Q(x, a) =

∑N
i=1wi(x, a) ·Ri(x, a)∑N

i=1wi(x, a)
(B.2)

where wi(x, a) is the weight assigned to the i-th return for (x, a). The value of wi(x, a) is
computed as follows. Let p(x, a) be the probability of the state action sequence following
(x, a) occurring under the estimation policy π and p′(x, a) be the probability of it occurring
under the behavior policy π′. Than the weight wi(x, a) is equal to the relative probability
of the observed experience-sequence of occurring under π and π′, i.e. by p(x, a)/p′(x, a).
These probabilities can be expressed in their policy probabilities by:

w(xt, at) =
p(xt, at)

p′(xt, at)
=

T−1∏
k=t+1

π(xk, ak)

π′(xk, ak)
(B.3)

For a deterministic evaluation policy π the weight w is non-zero only when all actions
taken under π′ match the action that would have been taken under π. If this is the case, the

138 Appendix B. Off-Policy Monte Carlo Update

above equation simplifies to:

w(xt, at) =

T−1∏
k=t+1

1

π′(xk, ak)
if π(xk) = ak for all k ≥ t+ 1 (B.4)

where π(xk) refers to the action the agent would take at timestep k (with probability 1)
when following this deterministic policy.

Since in our case, the state-action pair that requires the off-policy Monte Carlo update,
(xt=0, asw), is followed by only a single action (agr), the weight expression is reduced
even further to

w =
1

π′(xt=0, asw)
if π(xt=1) = agr (B.5)

Given that we use an ε-greedy behavior policy and the condition that π(xt=1) = agr, the
weight w is a fixed value and can therefore be scaled to 1. Now, the off-policy Monte Carlo
update of the switch action is reduced to the form:

Q(xt=0, asw) = (1− α)Q(xt=0, asw) + α · r if agr is optimal (B.6)

APPENDIX C

Proofs

C.1 Theorem 2

Theorem 2 Given the same experience sequence, each Q-value from the current state has
received the same number of updates using JIT updates (Equation 3.12) as using regular
updates (Equation 3.11). However, each Q-value in the update target of a JIT update has
received an equal or greater number of updates as in the update target of the corresponding
regular update.

Proof. To prove the theorem, we need to prove

U [Q̃t(st, a)] = U [Qt(st, a)] , for all a , (C.1)

U [Q̃t−1(st∗+1, a)] ≥ U [Qt∗(st∗+1, a)] , for all a , (C.2)

where U [Qk] is the total number of updates a Q-value has received at time k. From Equa-
tion 3.11 and 3.12 it follows that for both update types (st, at∗) is updated once between
timestep t∗ and timestep t, while the Q-values of the other actions of st are not updated dur-
ing this period. Since this applies to all visits and U [Q̃0(s, a)] = U [Q0(s, a)] = 0 for all
s and a, the total number of updates for a state-action pair is always equal for just-in-time
updates and regular updates, when the state is the current state, proving (C.1).

To prove (C.2), first assume that at∗ is a returning action, that is, t−1 = t∗. In this case
clearly (C.2) is true. Now, assume at∗ is not a returning action, that is, t − 1 > t∗. From
(C.1) it follows that U [Q̃t∗+1(st∗+1, a)] = U [Qt∗+1(st∗+1, a)]. Since t − 1 ≥ t∗ + 1 and
U [Q̃] increases monotonically over time, it follows that (C.2) is true. When state st∗+1 is
revisited before t, an extra update is performed and there is at least one action a, for which
U [Q̃t−1(st∗+1, a)] > U [Qt∗(st∗+1, a)].

C.2 Lemma 3

For the sake of brevity, we present only the proof of Lemma 3 for constant α. The proof
for state dependent α follows the same pattern.
Lemma 3 If the last-visit sequence end state of s is a terminal state, the following equation
holds for the best-match value of s:

V B(s) = (1− αs)V mf (s) + αsR̆α
s .

140 Appendix C. Proofs

Proof. The best-match values in case of an LVM are defined as the solution of the set of
best-match LVM equations (Definition 5). In Section 4.1.2 we showed that by backward
substitution of best-match equations we can express the best-match value of s[0] in terms
of the best-match value of s[N]. If s[N] is a terminal state, V B(s[N]) = 0 and V B(s[0]) is
equal to cA defined as in (4.4). This yields

V B(s[0]) =
N−1∑
i=0

(
(1− α)V mf (s[i]) + α r[i+1]

) i−1∏
k=0

γα ,

= α
N∑
k=1

(αγ)k−1 r[k] + (1− α)
N−1∑
k=0

(αγ)k V mf (s[k]) . (C.3)

On the other hand, by substituting the definitions of the last-visit α-return (A.3) and the
last-visit n-step return (A.2) into the lemma, the following equation for V B(s[0]) appears:

V B(s[0]) = (1− α)V mf (s[0]) + α

[
(1− α)

N−1∑
k=1

αk−1

(k∑
p=1

γp−1r[p] + γk V mf (s[k])

)

+ αN−1
N∑
p=1

γp−1r[p]

]
. (C.4)

The rest of this proof shows that (C.3) is equal to (C.4).

We start by separating (C.4) into its state value components (V c) and its reward com-
ponents (Rc). We then simplify these components separately:

V c = (1− α)V mf (s[0]) + α (1− α)
N−1∑
k=1

αk−1 γk V mf (s[k])

= (1− α)

(
V mf (s[0]) +

N−1∑
k=1

(αγ)k V mf (s[k])

)

= (1− α)

N−1∑
k=0

(αγ)k V mf (s[k]) ,

C.3. Theorem 5 141

Rc = (1− α)

N−1∑
k=1

k∑
p=1

αk γp−1r[p] + αN
N∑
p=1

γp−1r[p]

= (1− α)

N−1∑
p=1

N−1∑
k=p

αk γp−1r[p] + αN
N−1∑
p=1

γp−1r[p] + αN γN−1 r[N]

=

N−1∑
p=1

[
(1− α)

N−1∑
k=p

αk γp−1r[p] + αN γp−1r[p]

]
+ αN γN−1 r[N]

=

N−1∑
p=1

[(N−1∑
k=p

αk −
N−1∑
k=p

αk+1 + αN

)
γp−1 r[p]

]
+ αN γN−1 r[N]

=
N−1∑
p=1

[(N∑
k=p

αk −
N−1∑
k=p

αk+1

)
γp−1 r[p]

]
+ αN γN−1 r[N]

=
N−1∑
p=1

[(N−1∑
j=p−1

αj+1 −
N−1∑
k=p

αk+1

)
γp−1 r[p]

]
+ αN γN−1 r[N]

=

N−1∑
p=1

[
αp γp−1 r[p]

]
+ αN γN−1 r[N]

= α

N∑
p=1

(αγ)p−1 r[p] .

Adding these simplified components back together yields Equation C.3.

C.3 Theorem 5

Theorem 5 The Q-values of a member of the best-match LVM control class, shown in
Algorithm 9, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. αt(s, a) ∈ [0, 1] ,
∑

t αt(s, a) =∞ ,
∑

t(αt(s, a))
2 <∞ with probability 1 (w.p.1)

and αt(s, a) = 0 unless (s, a) = (st, at).

3. V ar{R(s, a, s′)} <∞.

4. γ < 1.

Proof. We prove that the Q-values of an arbitrary instantiation of Algorithm 9 converge in
the limit w.p.1 to those of the regular Q-learning algorithm. Because the algorithm requires
that each visited state action pair is updated at least once before its revisit, the following
equation holds

Qmf
t+1(st, at) = (1− αt(st, at))Q

mf
t (st, at)+αt(st, at)

(
rt∗+1 +max

a′
Qτ,i(st∗+1, a

′)

)
,

142 Appendix C. Proofs

where t∗ is the timestep of the previous visit of (st, at) and Qτ,i is the Q-value of st∗+1

that is used in the update target of the last best-match update of (st, at), at timestep τ .
Note that t∗ + 1 ≤ τ ≤ t. Assume that Q-learning is applied to the same state-action
sequence produced by the given instantiation of Algorithm 9. We denote the Q-values
from Q-learning by Q̃. Subtracting the update equation for Q-learning at time t∗ +1 using
learning rate αt(st, at) and defining ∆t(s, a) = Qmf

t (s, a)− Q̃t∗(s, a) yields

∆t+1(st, at) = (1− αt(st, at))∆t(st, at) + αt(st, at)Ft(st, at) , (C.5)

where Ft(st, at) = γ
(
maxcQτ,i(st∗+1, c)−maxc Q̃t∗(st∗+1, c)

)
.

We now prove that Qmf
t and Qt∗ converge in the limit to each other using the same

lemma used to prove the convergence of Sarsa Singh et al. (2000):

Lemma 4. Consider a stochastic process (αt,∆t, Ft), t ≥ 0, where αt,∆t, Ft : X → IR

satisfy the equations:

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x) ,

where x ∈ X and t = 0, 1, 2, Let Pt be a sequence of increasing σ-fields such that α0

and ∆0 are P0-measurable and ζt,∆t and Ft−1 are Pt-measurable, t = 1, 2, Assume
that the following conditions hold:

1. The set X is finite.

2. αt(x) ∈ [0, 1] ,
∑

t αt(x) =∞ ,
∑

t(αt(x))
2 <∞ w.p.1 .

3. ∥E{Ft|Pt}∥ ≤ κ∥∆t∥+ ct, where κ ∈ [0, 1) and ct converges to zero w.p.1, and

4. Var{Ft(xt)|Pt} ≤ K(1 + κ∥∆t∥)2, where K is some constant,

where ∥ · ∥ denotes a maximum norm. Then ∆t converges to zero with probability one.

The correspondence of (C.5) to Lemma 4 follows from associating X with the set of
state-action pairs (s, a) and αt(x) with αt(s, a). We now prove that the 4 conditions hold.

The first two conditions follow from the first two conditions of Theorem 5. We define
Pt as the set {Q0, α0, a0, s0, ..., rt−1, αt, at, st}. With this definition, Var{Ft(st, at)|Pt} =
0, satisfying condition 4, and E{Ft(st, at)|Pt} = Ft(st, at). For |Ft(st, at)| the following
holds:

|Ft(st, at)| = γ |max
b

Qτ,i(st∗+1, b)−max
b

Q̃t∗(st∗+1, b)|

≤ γ||Qτ,i(u, b)− Q̃t∗(u, b)||
= γ||∆t(u, b) +Qτ,i(u, b)−Qmf

t (u, b)||
≤ γ||∆t||+ ||Qτ,i(u, b)−Qmf

t (u, b)|| .

We further define Ft(s, a) = 0 if (s, a) ̸= (st, at). Therefore, ||Ft(s, a)|| = |Ft(st, at)| ≤
γ||∆t|| + Ct, where Ct = ||Qτ,i(u, b) − Qmf

t (u, b)||. We now show that Ct converges to
zero w.p.1. For Ct, the following holds:

Ct ≤ ||Qτ,i(u, b)−Qmf
τ∗ (u, b)||+ ||Qmf

τ∗ (u, b)−Qmf
t (u, b)|| ,

C.4. Theorem 6 143

where τ∗ is the timestep of the last visit of (u, b) before timestep τ . Qτ,i(u, b) is the result
of a best-match update of Qmf

τ∗ (u, b) or is equal to it if no best-match update has been
performed yet. In the latter case, the first term is zero; in the former case it is

Qτ,i(u, b) = (1− ατ (u, b))Q
mf
τ∗ (u, b) + ατ (u, b)υ

ub
τ .

Because of condition 2 of Theorem 5, ατ (u, b) converges to 0 w.p.1 and Qτ,i(u, b) con-
verges to Qmf

τ∗ (u, b) w.p.1. Therefore, the first term converges to 0 w.p.1. For the same
reason, the second term converges to zero.

Thus, the third condition of the lemma also holds and Qmf (s, a) converges to Q̃(s, a),
the Q-values from Q-learning. Because of the convergence guarantee of Q-learning,
Qmf (s, a) also converges to Q∗(s, a). Finally, since the Q-values of the given instanti-
ation are a best-match update of Qmf (s, a) and because αt(s, a) converges to zero w.p.1,
this also proves that the Q-values of the instantiation converge to Q∗.

C.4 Theorem 6

Theorem 6 The Q-values of a member of the best-match NTM control class, shown in
Algorithm 11, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. αsa
t ∈ [0, 1] ,

∑
t α

sa
t =∞ ,

∑
t(α

sa
t)2 <∞ with probability 1 (w.p.1),

and αsa
t = 0 unless (s, a) = (st, at) and st+1 /∈ NTM(st, at).

3. V ar{R(s, a, s′)} <∞.

4. γ < 1.

C.4.1 Preliminaries

In this proof, we indicate the NTM byM. Also, we indicate the model-free Q-value, Qmf ,
by Q̆. In addition, we use a single iteration index j for Q as well as Q̆. This global index
is increased each time an update (of either Q̆ or Q) occurs. Thus, j is equal to the total
number of model-free updates plus best-match updates that have occurred since the start of
an episode. Clearly, t→∞ implies j →∞.

By denoting the state-action pair that gets updated by the j-th update as (sj , aj), we
can write the model-free (mf) update as

Q̆j+1(sj , aj) = (1− αsjaj)Q̆j(sj , aj) + αsjaj [rj+1 + γmax
a′

Qj(s
′
j+1, a

′)] , (C.6)

where rj+1 and s′j+1 are the reward and transition state from the sample (st, at, rt+1, st+1)

corresponding to (sj , aj). We use s′j+1 instead of sj+1, since s′j+1, the transition state for
sj , is in general not equal to sj+1, the state that receives an update at iteration step j + 1.
The best-match (bm) update is

Qj+1(sj , aj) = w
sj ,aj
0 Q̆j(sj , aj) + (1− w

sjaj
0)

[
R̂sjaj + γ

∑
s′

P̂s′
sjaj max

a′
Qj(s

′, a′)

]
.

144 Appendix C. Proofs

Note that there is no specific sample corresponding to a best-match update, since the update
is based on the model estimate and can occur multiple times per timestep.

Let PM
sa =

∑
s′∈M Ps′

sa. If PM
sa = 0, wsa

0 will always be 1 and the best-match update
reduces to Qj+1(sj , aj) = Q̆j(sj , aj). We make this explicit by the following equation:

Qj+1(sj , aj) =

{
Q̆j(sj , aj) if PM

sa = 0

Yj(sj , aj) if PM
sa > 0 ,

(C.7)

with

Yj(sj , aj) = w
sj ,aj
0 Q̆j(sj , aj) + (1− w

sjaj
0)

[
R̂sjaj + γ

∑
s′

P̂s′
sjaj max

a′
Qj(s

′, a′)

]
.

Each time a sample is observed by the algorithm, w0 gets updated. In addition, when
the sample is part ofM, R̂ and P̂ get updated. Therefore, the values of these variables can
change between iteration steps. However, for readability, we omit the j subscript for these
variables. From the definition of w0, R̂ and P̂ , and the law of large numbers, it follows
that in the limit the following holds:1

lim
j→∞

wsa
0 = 1−PM

sa , (C.8)

lim
j→∞

R̂sa =
∑
s′∈M

Ps′
saRs′

sa/PM
sa , (C.9)

lim
j→∞

P̂s′
sa = Ps′

sa/PM
sa . (C.10)

In general, the model-free Q-values, Q̆, will not converge to Q∗, since they do not re-
ceive updates from samples corresponding to the next states stored by the NTM. However,
as part of the proof, we show that the model-free Q-values converge to an alternative value,
which we indicate by Q̆∗. This value is defined as2

Q̆∗(s, a) =
∑
s′ /∈M

Ps′
sa [Rs′

sa + γmax
a′

Q∗(s′, a′)]/(1−PM
sa) . (C.11)

Using this equation, we can express Q∗ as

Q∗(s, a) =
∑
s′ /∈M

Ps′
sa[Rs′

sa + γmax
a′

Q∗(s′, a′)] +
∑
s′∈M

Ps′
sa[Rs′

sa + γmax
a′

Q∗(s′, a′)]

= (1−PM
sa)Q̆

∗(sa) +
∑
s′∈M

Ps′
sa[Rs′

sa + γmax
a′

Q∗(s′, a′)] . (C.12)

Note that it follows from (C.12), that

Q∗(s, a) = Q̆∗(s, a) , if PM
sa = 0 . (C.13)

1Note that R̂sa and P̂s′
sa do not converge to Rsa and Ps′

sa, but to normalized values of these variables.
2For PM

sa = 1, that is, when all samples are stored by the NTM, Q̆∗(s, a) is not defined. However, in this
case, Q̆(s, a) does not receive any updates, nor is it used by any other update. Therefore, we can safely ignore
the value Q̆(s, a), and consequently Q̆∗(s, a), if PM

sa = 1.

C.4. Theorem 6 145

Convergence of Qj to Q∗ requires convergence of Q̆j to Q̆∗, and vice versa. To deal
with this mutual dependence relation, we simultaneously prove their convergence. To
achieve this, we define a function U : S × A × B → IR that encompasses both func-
tions Q and Q̆. B is a set consisting of only two elements: ‘mf’ and ‘bm’, which indicate
the Q-value type. We define Uj as

Uj(s, a, b) =

{
Q̆j(s, a) if b = ‘mf’

Qj(s, a) if b = ‘bm’ .
(C.14)

Both updates (C.6) and (C.7) can now be interpreted as updates of Uj(sj , aj , bj). It follows
from (C.14) that when the model-free update is performed, bj = ‘mf’, while for the best-
match update bj = ‘bm’.

We will prove convergence of Uj to U∗
j , defined as

U∗(s, a, b) =

{
Q̆∗(s, a) if b = ‘mf’

Q∗(s, a) if b = ‘bm’ .

The difficulty with this proof is that we cannot simply apply Lemma 4 (or similar
stochastic approximation lemmas), used to prove convergence of BM-LVM, since the∑

t(αt(xt))
2 <∞ condition of Lemma 4 is not met for b = ‘bm’. On the other hand, a re-

lated lemma can be deduced (see Appendix C.5), that does not require
∑

t(αt(xt))
2 <∞,

however, it requires that the contraction condition holds for the value of Ft, instead of its
expected value. Hence, also this lemma cannot be directly applied.

To deal with this, we define a related function U ′
j , that does comply with the∑

t(αt(xt))
2 < ∞ condition, hence we can prove convergence of it to U∗ using Lemma

4. On the other hand, the difference between U ′
j and Uj complies with all the conditions of

Lemma 7, hence we can prove that Uj converges to U ′
j using Lemma 7. Adding these two

results together, proves the theorem.
We define U ′

j as

U ′
j(s, a, b) =

{
Q̆′(s, a) if b = ‘mf’

Q′(s, a) if b = ‘bm’ .

Q̆′ and Q′ are updated using the same sample sequence as used for Q̆ and Q. The update
for Q̆′ is

Q̆′
j+1(sj , aj) = (1− αsjaj)Q̆′

j(sj , aj) + αsjaj [rj+1 + γmax
a′

Q′
j(s

′
j+1, a

′)] ,

while the update for Q′ is

Q′
j+1(sj , aj) =

{
Q̆′

j(sj , aj) if PM
sa = 0

(1− βsjaj)Q′
j(sj , aj) + βsjajY ′

j (sj , aj) if PM
sa > 0 ,

(C.15)

with

Y ′
j (sj , aj) = w

sj ,aj
0 Q̆′

j(sj , aj) + (1− w
sjaj
0)

[
R̂sjaj + γ

∑
s′

P̂s′
sjaj max

a′
Q′

j(s
′, a′)

]
.

146 Appendix C. Proofs

Note that the only difference with the updates of Q and Q̆ is the way Q′ is updated for
PM
sa > 0. Instead of setting Q′

j+1(sj , aj) equal to Y ′
j (sj , aj), it is set equal to a weighted

average of Y ′
j (sj , aj) and Q′

j(sj , aj). The weighting is controlled by βj , which is an arbi-
trary learning rate with properties βsa

j ∈ [0, 1],
∑

j β
sa
j =∞ ,

∑
j(β

sa
j)2 <∞ w.p.1., and

βsa
j = 0 unless (s, a) = (sj , aj) and bj = ‘bm’.3 Because of this learning rate, Lemma 4

can be used to prove convergence of U ′
j to U∗.

C.4.2 Convergence of U ′
j to U∗

Lemma 5. U ′
j(s, a, b) converges in the limit to U∗(s, a, b) w.p.1.

Proof. We define ∆′(s, a, b) = U ′
j(s, a, b) − U∗

j (s, a, b) and will prove that ∆′(s, a, b)

converges to 0 using Lemma 4. For bj = ‘bm’, we use the contraction factor κsa, defined
as

κsa = (1−PM
sa) + γ PM

sa . (C.16)

To ensure that κsa < 1, PM
sa has to be larger than 0. Therefore, we exclude (s, a, b)

triples for which b = ‘bm’ ∧ PM
sa = 0 from the domain of ∆′. This can be done, because

Algorithm 11 states that at least one best-match update occurs in between two model-free
updates. Therefore, if PM

sa = 0 , Q′
j(s, a) is either equal to Q̆′

j(s, a) or one (model-free)
update apart. Since αsa

j converges to 0, it follows that Q′
j(s, a) converges in the limit to

Q̆′
j(s, a). Alternatively, we can say

Q′
j(s, a) = Q̆′

j(s, a) + c′j(s, a) , if PM
sa = 0 , (C.17)

with c′j(s, a) converging to 0 w.p.1.4 Combining this with (C.13), the following holds:

lim
j→∞

Q̆′
j(s, a) = Q̆∗(s, a) ⇒ lim

j→∞
Q′

j(s, a) = Q∗(s, a) , if PM
sa = 0 . (C.18)

Note, ∥Q̆′
j − Q̆∗∥ ≤ ∥∆′

j∥. However, because of the exclusion of (s, a, ‘bm’) triples
with PM

sa = 0, ∥Q′
j −Q∗∥ ≤ ∥∆j∥ does not hold in general. Instead, the following holds:

∥Q′
j −Q∗∥ = max(∥Q′

j −Q∗∥PM
sa >0, ∥Q′

j −Q∗∥PM
sa =0)

≤ max(∥Q′
j −Q∗∥PM

sa >0, ∥Q̆′
j − Q̆∗∥PM

sa =0 + ∥c′j∥)
≤ max(∥U ′

j − U∗∥, ∥U ′
j − U∗∥+ ∥c′j∥)

= ∥U ′
j − U∗∥+ ∥c′j∥

= ∥∆′∥+ ∥c′j∥ .

Because of the exclusion of the (s, a, b) triples mentioned above, for all (s, a, ‘bm’)
triples in the domain of ∆′

j , PM
sa > 0.

∆′
j is updated according to

∆′
j+1(s, a, b) = (1− ζ ′j(s, a, b))∆

′
j(s, a, b) + ζ ′j(s, a, b)F

′
j(s, a, b) .

3Note that such a β always exists.
4We use the notational convention to indicate variables that converge to 0 with probability 1 with lowercase,

Latin, letters: c, d, e,

C.4. Theorem 6 147

For (s, a, b) ̸= (sj , aj , bj), ζ ′j(s, a, b) = 0 and F ′
j(s, a, b) = 0. For (sj , aj , bj) the follow-

ing holds:

ζ ′j(sj , aj , bj) =

{
α
sjaj
j if bj = ‘mf’

β
sjaj
j if bj = ‘bm’ ,

F ′
j(sj , aj , bj) =

{
rj+1 + γmaxa′ Q

′
j(s

′
j+1, a

′)− Q̆∗(sj , aj) if bj = ‘mf’

Y ′
j (sj , aj)−Q∗(sj , aj) if bj = ‘bm’ .

We now prove that ∆′
j converges to zero, by showing the conditions for Lemma 4 hold,

using the σ-field Pj , defined as5

P0 = {Q′
0, Q̆

′
0, ζ0, w0,0, P̆0, R̆0, s0, a0} ,

Pj = Pj−1 ∩ {rj , s′j , ζj , w0,j , P̆j , R̆j , sj , aj} .

Conditions 1, 2 and 4 of the Lemma 4 follow from conditions 1,2, and 3 of Theorem 6 and
the conditions that hold for βsa

j . Condition 3 of the lemma, we prove below.
For bj = ‘mf’, using (C.11), the following holds:

|E{F ′
j(sj , aj , ‘mf’)|Pj}| =

∣∣∣ ∑
s′ /∈M

Ps′
sjaj [R

s′
sjaj + γmax

a′
Q′

j(s
′, a′)]/(1− PM

sjaj)− Q̆∗(sj , aj)
∣∣∣

= γ
∑
s′ /∈M

Ps′
sjaj

∣∣∣max
a′

Q′
j(s

′, a′)−max
a′

Q∗(s′, a′)
∣∣∣/(1− PM

sjaj)

≤ γ∥Q′
j −Q∗∥

≤ γ∥∆′
j∥+ γ∥c′j∥ . (C.19)

For bj = ‘bm’, using (C.12), we can write

|F ′
j(sj , aj , ‘bm’)| = |Y ′

j (sj , aj)−Q∗(sj , aj)|

≤
∣∣∣(1− PM

sjaj)(Q̆
′
j(sj , aj)− Q̆∗(sj , aj))

+ γ
∑
s′∈M

Ps′
sjaj [max

a′
Q′

j(s
′, a′)−max

a′
Q∗(s′, a′)]

∣∣∣
+

∣∣∣ [wsjaj
0 − (1− PM

sjaj)
]
· Q̆′

j(sj , aj)
∣∣∣

+
∣∣∣(1− w

sjaj
0)R̂sjaj −

∑
s′∈M

Ps′
sjajR

s′
sjaj

∣∣∣
+ γ

∣∣∣ ∑
s′∈M

[
(1− w

sjaj
0)P̂s′

sjaj − P
s′
sjaj

]
·max

a′
Q′

j(s
′, a′)

∣∣∣ .
The sum of the last three terms we call dj(sj , aj). By substituting (C.8), (C.9) and
(C.10) in these three terms, it follows that limj→∞ dj(sj , aj) = 0. We can further bound

5There is no explicit sample related to a best-match update. For consistency, we define rj = ∅ and s′j = ∅
if bj−1 = ‘bm′.

148 Appendix C. Proofs

|F ′
j(sj , aj , ‘bm’)| as follows:

|F ′
j(sj , aj , ‘bm’)| ≤ (1− PM

sjaj)∥Q̆j − Q̆∗∥+ γ PM
sjaj∥Qj −Q∗∥+ dj(sj , aj)

≤ (1− PM
sjaj)∥∆

′
j∥+ γ PM

sjaj

(
∥∆′

j∥+ ∥cj∥
)
+ dj(sj , aj)

≤
(
(1−PM

sjaj) + γ PM
sjaj

)
· ∥∆′

j∥+ γ PM
sjaj∥c

′
j∥+ dj(sj , aj)

= κsjaj ∥∆′
j∥+ γ PM

sjaj∥c
′
j∥+ dj(sj , aj) . (C.20)

Note ∥c′j∥, as well as dj(sj , aj), converge to 0. Note also that κsjaj < 1, since PM
sjaj > 0

and γ < 1. From (C.19) and (C.20) it follows that the third condition of Lemma 4 is also
satisfied. Hence, all conditions hold and ∆′

j converges to 0 w.p.1. Combining this with
(C.18), proves Lemma 5.

C.4.3 Convergence of Uj to U ′
j

Lemma 6. Uj(s, a, b) converges in the limit to U ′
j(s, a, b) w.p.1.

Proof. We define ∆(s, a, b) = U ′
j(s, a, b)− Uj(s, a, b) and will prove that ∆(s, a, b) con-

verges to 0 using Lemma 7. We exclude (s, a, ‘bm’) triples for which PM
sa = 0 from the

domain of ∆. Similar to the reasoning behind (C.18) and (C.17), we can deduce

Qj(s, a) = Q̆j(s, a) + cj(s, a) , if PM
sa = 0 ,

with cj(s, a) converging to 0 in the limit, as well as

lim
j→∞

(
Q̆′

j(s, a)−Q̆j(s, a)
)
= 0 ⇒ lim

j→∞

(
Q′

j(s, a)−Qj(s, a)
)
= 0 , if PM

sa = 0 .

(C.21)
Note, ∥Q̆′

j − Q̆j∥ ≤ ∥∆j∥. However, ∥Q′
j − Qj∥ ≤ ∥∆j∥ does not hold in general,

because of the exclusion of (s,a,‘bm’) triples withPM
sa = 0 from the domain of ∆j . Instead,

the following holds:

∥Q′
j −Qj∥ = max(∥Q′

j −Qj∥PM
sa >0, ∥Q′

j −Qj∥PM
sa =0)

≤ max(∥Q′
j −Qj∥PM

sa >0, ∥Q̆′
j − Q̆j∥PM

sa =0 + ∥cj∥+ ∥c′j∥)
≤ max(∥U ′

j − Uj∥, ∥U ′
j − U∗∥+ ∥cj∥+ ∥c′j∥)

= ∥U ′
j − Uj∥+ ∥cj∥+ ∥c′j∥

= ∥∆′
j∥+ c′′j ,

with c′′j = ∥cj∥+ ∥c′j∥ converging to 0 w.p.1.
For PM

sa > 0 we can rewrite (C.15) as

Q′
j+1(sj , aj) = (1− βsjaj)Q′

j(sj , aj) + βsjajY ′
j (sj , aj)

= Y ′
j (sj , aj) + (1− βsjaj)[Q′

j(sj , aj)− Y ′
j (sj , aj)] .

In Section C.4.2 we proved that ∆′
j(s, a, ‘bm’) = Q′(s, a) − Q∗(s, a)j converges to 0

w.p.1. On the other hand, it follows from (C.20), that F ′
j(sj , aj , ‘bm’), which is equal

C.4. Theorem 6 149

to Y ′
j (sj , aj) − Q∗(sj , aj), also converges to 0 w.p.1. Therefore, both Q′

j(sj , aj) and
Y ′
j (sj , aj) converge to the same value, so we can write

Q′
j+1(sj , aj) = Y ′

j (sj , aj) + ej(sj , aj) , if PM
sjaj > 0 ,

with ej(sj , aj) converging to 0 w.p.1.
∆j is updated according to

∆j+1(s, a, b) = (1− ζj(s, a, b))∆j(s, a, b) + ζj(s, a, b)Fj(s, a, b) .

For (s, a, b) ̸= (sj , aj , bj), ζj(s, a, b) = 0 and Fj(s, a, b) = 0. While for (sj , aj , bj) the
following holds:

ζj(sj , aj , bj) =

{
α
sjaj
j if bj = ‘mf’

1 if bj = ‘bm’ ,

and

Fj(sj , aj , bj) =

{
γmaxa′ Q

′
j(s

′
j+1, a

′)− γmaxa′ Qj(s
′
j+1, a

′) if bj = ‘mf’

Y ′
j (sj , aj)− Yj(sj , aj , bj) + ej(sj , aj) if bj = ‘bm’ .

We now check the three conditions of Lemma 7. Conditions 1 and 2 from the lemma
follow from conditions 1 and 2 of Theorem 6. Condition 3, we prove below.

For bj = ‘mf’, the following holds:

|Fj(sj , aj , ‘mf’)| = γ

∣∣∣∣max
a′

Q′
j(s

′
j+1, a

′)−max
a′

Qj(s
′
j+1, a

′)

∣∣∣∣
≤ γ∥Q′

j −Qj∥
≤ γ∥∆j∥+ γ c′′j , (C.22)

while for bj = ‘bm’, we can write

|Fj(sj , aj , ‘bm’)| = |Y ′
j (sj , aj)− Yj(sj , aj) + ej(sj , aj , bj)|

≤ w
sj ,aj
0 |Q̆′

j(sj , aj)− Q̆j(sj , aj)|+ |ej(sj , aj)|+

γ(1− w
sjaj
0)

∑
s′

P̂s′
sjaj

∣∣∣∣max
a′

Q′
j(s

′, a′)−max
a′

Qj(s
′, a′)

∣∣∣∣
≤ w

sj ,aj
0 ∥∆j∥+ γ(1− w

sjaj
0)∥∆j∥+ |ej(sj , aj)|+ γ(1− w

sjaj
0) c′′j

=
(
(1− PM

sjaj) + γ PM
sjaj

)
∥∆j∥+ |ej(sj , aj)|+ γ(1− w

sjaj
0) c′′j +(

w
sj ,aj
0 + γ(1− w

sjaj
0)− (1− PM

sjaj)− γ PM
sjaj

)
∥∆j∥ .

We define

fj(sj , aj) =
(
w

sj ,aj
0 + γ(1− w

sjaj
0)− (1− PM

sjaj)− γ PM
sjaj

)
∥∆j∥

+|ej(sj , aj)|+ γ(1− w
sjaj
0) c′′j .

150 Appendix C. Proofs

Note that limj→∞ fj = 0, since ej and c′′j converge to 0 and w
sj ,aj
0 converges to 1−PM

sjaj .
Using this definition and (C.16), we can write

|Fj(sj , aj , ‘bm’)| ≤ κsjaj∥∆j∥+ fj(sj , aj) . (C.23)

Note that κsjaj < 1. From (C.22) and (C.23) it follows that the third condition of Lemma
7 is also satisfied. Hence, all conditions hold and ∆j converges to 0 w.p.1.Combining this
with (C.21), proves Lemma 6.

C.4.4 Proof of Theorem 6

Because U ′
j converges to U∗ (Lemma 5) and Uj converges to U ′

j (Lemma 6), it follows that
also Uj converges to U∗. From this it follows that Q converges to Q∗, proving Theorem 6.

C.5 Lemma 7

Lemma 7. Consider a stochastic process (αt,∆t, Ft), t ≥ 0, where αt,∆t, Ft : X → IR

satisfy the equations:

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x) ,

where x ∈ X and t = 0, 1, 2, Assume that the following conditions hold:

1. The set X is finite.

2. αt(x) = [0, 1],
∑

t αt(x) =∞.

3. ∥Ft∥ ≤ κ∥∆t∥+ ct, where κ ∈ [0, 1) and ct converges to zero w.p. 1 ,

where ∥ · ∥ denotes a maximum norm. Then ∆t converges to zero with probability one.

Note that this lemma is similar to Lemma 4, but the conditions for the learning rates
are less strict (

∑
t(αt(xt))

2 < ∞ is missing), while the condition for Ft is more strict
(condition 3 uses the value of Ft instead of its expected value).

Proof. The outline of this proof is that we define a related process ∆′
t that converges to 0

and show that ∥∆t∥ ≤ ∥∆′
t∥ for all t. We will ignore ct in this proof. This can be safely

done, since ct converges to zero, κ < 1 and
∑

t αt(x) =∞ for all x. Therefore, this term
is asymptotically unimportant.

We define ∆′
0(x) = ∥∆0∥ for all x. For t > 0, ∆′

t(x) is defined as

∆′
t+1(x) = (1− βt(x))∆

′
t(x) + βt(x)κ∥∆′

t∥ , (C.24)

with βt(x) ≤ αt(x) and βt(x) ∈ [0, 1],
∑

t βt(x) = ∞ ,
∑

t(βt(x))
2 < ∞ w.p.1. It

follows from (C.24) that ∥∆′
t+1∥ ≤ ∥∆′

t∥. It also follows that if ∆′
t(x) ≥ κ∥∆′

t∥ then
∆′

t+1(x) ≥ κ∥∆′
t∥ ≥ κ∥∆′

t+1∥. And since ∆′
0(x) ≥ κ∥∆′

0∥ it follows that

∆′
t(x) ≥ κ∥∆′

t∥ , for all t . (C.25)

C.6. Theorem 7 151

Using Lemma 17, it can easily be shown that ∆′ converges in the limit to 0 w.p.1.
We now prove that ∥∆t∥ ≤ ∥∆′

t∥ for all t. We start by proving

|∆t(x)| ≤ ∆′
t(x) for all x ⇒ |∆t+1(x)| ≤ ∆′

t+1(x) for all x . (C.26)

Assuming the left part of (C.26), for |∆t+1(x)| the following holds:

|∆t+1(x)| ≤ (1− αt(x))|∆t(x)|+ αt(x)κ∥∆t∥
≤ (1− αt(x))∆

′
t(x) + αt(x)κ∥∆′

t∥ .

Since (C.25) and βt(x) ≤ αt(x), we can continue as

|∆t+1(x)| ≤ (1− βt(x))∆
′
t(x) + βt(x)κ∥∆′

t∥
≤ ∆′

t+1(x) .

This proves (C.26). And since |∆0(x)| ≤ ∆′
0(x), it follows that |∆t(x)| ≤ ∆′

t(x) holds
for all t, and hence, ∥∆t∥ ≤ ∥∆′

t∥ proving the lemma.

C.6 Theorem 7

Theorem 7 Consider the MDP M = ⟨X, A, T,R⟩. A subset of features Y ⊂ X is valid
w.r.t. M if for the set of missing features the following holds

∀Xi /∈ Y : Xi is irrelevant w.r.t. Y or Xi is an independent feature. (C.27)

Proof. For the proof we will make use the following formulas that can be easily deduced
from the Bayesian statistics rules:

P (a|b, c) · P (b|c) = P (a, b|c) (C.28)

P (a|b) = P (a|b, c, d) ⇒ P (a|b) = P (a|b, c) (C.29)

P (a, bi|c) = P (a, bi|c, d) for all i ⇒ P (a|c) = P (a|c, d) (C.30)

with P (bi, bj) = 0 for all i ̸= j and
∑

i P (bi) = 1.
Let Xind ⊂ X be the set of all independent features that are not in Y and Xirr ⊂ X

be the set of all irrelevant features w.r.t. Y that are not in Y. We start by proving that the
Markov property holds for Z = X \Xind and then prove it holds for Y = Z \Xirr.

Let Xi ∈ Xind be an independent feature and let X− = X \ Xi. We start with the
Markov property for X:

P (xt+1, rt+1|xt, at) = P (xt+1, rt+1|xt, at, rt,xt−1, at−1, . . . , r1,x0, a0)

P (x−
t+1, rt+1|xt, at) = P (x−

t+1, rt+1|xt, at, rt,xt−1, at−1, . . . , r1,x0, a0) using (C.30)

152 Appendix C. Proofs

We now multiply both sides with P (xit|x−
t , at), where xit ∈ Xi, and rewrite the left part as

P (x−
t+1, rt+1|xt, at) · P (xit|x−

t , at) = P (x−
t+1, rt+1, x

i
t|x−

t , at) using (C.28)

For the right part, we rewrite P (xit|x−
t , at) as

P (xkt |x−
t , at) = P (xit|x−

t , at, rt,xt−1, at−1, ..., r1,x0, a0) using (5.2)

Multiply this with the right part and rewriting it using (C.28) gives:

P (x−
t+1, rt+1, x

i
t|x−

t , at, rt,xt−1, at−1, ..., r1,x0, a0)

Combining now the left and right part again gives:

P (x−
t+1, rt+1, x

i
t|x−

t , at) = P (x−
t+1, rt+1, x

i
t|x−

t, at, rt,xt−1, at−1, ..., r1,x0, a0)

P (x−
t+1, rt+1|x−

t , at) = P (x−
t+1, rt+1|x−

t, at, rt,xt−1, at−1, ..., r1,x0, a0) using (C.30)

P (x−
t+1, rt+1|x−

t , at) = P (x−
t+1, rt+1|x−

t , at, rt,x
−
t−1, at−1, ..., r1,x

−
0 , a0) using (C.29)

By repeating this for each independent feature in Xi, the following equation is obtained.

P (zt+1, rt+1|zt, at) = P (zt+1, rt+1|zt, at, rt, zt−1, at−1, . . . , r1, z0, a0) (C.31)

where zt = xt[Z] and Z = X \Xi.
Starting from Equation C.31 we can prove the Markov property holds for Y = Z \Xirr

as following:

P (zt+1, rt+1|zt, at) = P (zt+1, rt+1|zt, at, rt, zt−1, at−1, ..., r1, z0, a0)

P (yt+1, rt+1|zt, at) = P (yt+1, rt+1|zt, at, rt, zt−1, at−1, ..., r1, z0, a0) using (C.30)

P (yt+1, rt+1|yt, at) = P (yt+1, rt+1|zt, at, rt, zt−1, at−1, ..., r1, z0, a0) using (5.1)

P (yt+1, rt+1|yt, at) = P (yt+1, rt+1|yt, at, rt,yt−1, at−1, ..., r1,y0, a0) using (C.29)

This last equation proves that Y is a valid representation (see Definition 14).

Publications by the Author

Almost all research described in this thesis is based on previous publications by the author,
with the exception of the research on policy restrictions (Chapter 6), which has not been
submitted yet to any conference or journal. Below we relate the different research topics to
their corresponding publications.

The theoretical and empirical evaluation of Expected Sarsa (Section 3.1), has been
published at the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (van Seijen et al., 2009).

Just-in-time Q-learning (Section 3.2) together with best-match learning (Chapter 4)
has been published by the Journal of Machine Learning Research (JMLR) (van Seijen
et al., 2011). The combination of just-in-time learning with (Expected) Sarsa (Section 3.3)
is new material. An early version of the work on just-in-time learning and best-match
learning was published at the International Conference on Intelligent Systems Design and
Applications (van Seijen and Whiteson, 2009). In this paper just-in-time learning was
referred to as ‘basic postponing’, while the BM-LVM method (Algorithm 10) was called
‘model-free prioritized sweeping’. The JMLR article extended this research in a major
way by introducing the generalized best-match equations (see Definition 6) from which
BM-NTM (Algorithm 11) is derived, which can tune its space requirements, as well as
gradient-descent best-match learning (Algorithm 12).

The research on representation selection (Chapter 5) has a long history. Initial work
was presented at a NIPS workshop and later published at the Artificial Intelligence and
Applications Conference (van Seijen et al., 2008). This paper presented representation se-
lection informally and showed promising empirical results on two specific tasks. However,
extending these results to a general class of tasks turned out to be far from trivial, due to
convergence issues. After the initial work the research was put on hold for a long period
of time, during which best-match learning was developed. When the work on represen-
tation selection continued, the research focus was mainly on the conditions under which
convergence could be achieved. This resulted in a book chapter (van Seijen et al., 2010), in
which representation selection was presented in a formal way. The research in Chapter 5
improves and extends the research from this book chapter in a major way, by proving that
under certain conditions the derived task resulting from representation selection obeys the
Markov property, and hence can be solved with regular reinforcement learning methods.
In addition, representation selection for MDPs with context-specific structure (Section 5.4)
was added. The research as presented by Chapter 5 is currently under review for journal
publication.

Bibliography

C.G. Atkeson, A.W. Moore, and S. Schaal. Locally weighted learning. Artificial intelli-
gence review, 11(1):11–73, 1997. 32

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002. 9, 76

H.B. Barlow. Unsupervised learning. Neural Computation, 1(3):295–311, 1989. 1

R. Bellman. A problem in the sequential design of experiments. Sankhy, 16:221–229,
1956. 2

R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ., 1957.
3, 15

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic Programming. Athena Scientific,
Belmont, MA, 1996. 1

C. M. Bishop. Pattern recognition and machine learning. Springer, 2006. 1

C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy construction.
In International Joint Conference on Artificial Intelligence, volume 14, pages 1104–
1113, 1995. 6, 71, 72, 75

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with fac-
tored representations* 1. Artificial Intelligence, 121(1-2):49–107, 2000. 103

J. Boyan and A.W. Moore. Generalization in reinforcement learning: Safely approximating
the value function. In Advances in Neural Information Processing Systems 7, 1995. 65

R.I. Brafman and M. Tennenholtz. R-max: a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231,
2002. 3, 15, 53

D. Chapman and L.P. Kaelbling. Input generalization in delayed reinforcement learning:
An algorithm and performance comparisons. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence, pages 726–731. Citeseer, 1991. 103

R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Pro-
ceedings of the 5th International Conference on Computers and Games, pages 72–83,
2006. 130

R.H. Crites and A.G. Barto. Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33(2):235–262, 1998. 1, 10

T. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Com-
putational Intelligence, 5(2):142–150, 1989. 6, 71

156 Bibliography

T. Dean, R. Givan, and S. Leach. Model reduction techniques for computing approximately
optimal solutions for Markov decision processes. In Proceedings of the Thirteenth Con-
ference on Uncertainty in Artificial Intelligence, pages 124–131. Citeseer, 1997. 103

Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000. 103

C. Diuk, L. Li, and B.R. Leffler. The adaptive k-meteorologists problem and its application
to structure learning and feature selection in reinforcement learning. In Proceedings of
the 26th Annual International Conference on Machine Learning, 2009. 3, 6, 15, 71, 102

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6(1):503–556, 2005. 68

N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov decision processes.
In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
162–169. AUAI Press, 2004. 103

R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in Markov
decision processes. Artificial Intelligence, 147(1-2):163–223, 2003. 103

M. Grzes and D. Kudenko. Learning shaping rewards in model-based reinforcement learn-
ing. In Proc. AAMAS 2009 Workshop on Adaptive Learning Agents, 2009. 115

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution
algorithms for factored mdps. Journal of Artificial Intelligence Research, 19:399–468,
2003. 75

J.A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc., 1975. 1

T. Jaakkola, M.I. Jordan, and Satinder Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6:1185–1201, 1994. 18, 92,
133

Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant state vari-
ables. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, pages 752–757, 2005. 103

Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996. 1, 2, 9

Shivaram Kalyanakrishnan and Peter Stone. Characterizing reinforcement learning meth-
ods through parameterized learning problems. Machine Learning, 84(1–2):205–247,
July 2011. 7

M. Kearns and D. Koller. Efficient reinforcement learning in factored mdps. In Interna-
tional Joint Conference on Artificial Intelligence, volume 16, pages 740–747, 1999. 6,
71

Bibliography 157

M. Kearns and S. Singh. Finite-sample convergence rates for Q-learning and indirect algo-
rithms. Advances in Neural Information Processing Systems, 11:996–1002, 1999. ISSN
1049-5258. 6, 41

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2):209–232, 2002. 3, 15, 53

L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In 15th European Con-
ference on Machine Learning, pages 282–293, 2006. 130

G. Konidaris and A. Barto. Autonomous shaping: Knowledge transfer in reinforcement
learning. In Proceedings of the 23rd International Conference on Machine Learning,
pages 489–496, 2006. 115

Mark Kroon and Shimon Whiteson. Automatic feature selection for model-based rein-
forcement learning in factored MDPs. In ICMLA 2009: Proceedings of the Eighth Inter-
national Conference on Machine Learning and Applications, pages 324–330, December
2009. 6, 71, 102

M.G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1149, 2003. 68

T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985. 9, 76

J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed bandits.
Advances in Neural Information Processing Systems, 2007. 10, 76

J. Langford, A. Strehl, and J. Wortman. Exploration scavenging. In Proceedings of the
Twenty-Fifth International Conference on Machine Learning, pages 528–535. ACM,
2008. 10, 76

L. Li, M.L. Littman, and T.J. Walsh. Knows what it knows: a framework for self-aware
learning. In Proceedings of the 25th international conference on Machine learning,
pages 568–575. ACM New York, NY, USA, 2008. 6, 71, 102

L.J. Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3):293–321, 1992. 41, 48

L.J. Lin. Reinforcement learning for robots using neural networks. PhD thesis, 1993. 1

H.R. Maei and R.S. Sutton. Gq (λ): A general gradient algorithm for temporal-difference
prediction learning with eligibility traces. In AGI, pages 91–96. Citeseer, 2010. 18

Andrew Kachites McCallum. Reinforcemennt Learning with Selective Perception and Hid-
den States. PhD thesis, University of Rochester, 1995. 103

Andrew Moore and Christopher Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less real time. Machine Learning, 13:103–130, 1993. 3, 15, 42, 52

158 Bibliography

D.E. Moriarty, A.C. Schultz, and J.J. Grefenstette. Evolutionary algorithms for reinforce-
ment learning. Journal of Artificial Intelligence Research, 11(241-276), 1999. 7

A.Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: The-
ory and application to reward shaping. In Proceedings of the 16th International Confer-
ence on Machine Learning, pages 278–287, 1999. 115

S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski. Bandits for taxonomies: A
model-based approach. In SIAM Data Mining Conference. Citeseer, 2007. 76

J. Peng and R.J. Williams. Incremental multi-step q-learning. Machine Learning, 22(1):
283–290, 1996. 5, 18

D. Precup. Temporal abstraction in reinforcement learning. PhD thesis, Department of
Computer Science, University of Massachusetts, Amherst, USA, 2000. 105, 115

M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
1994. 2, 10

B. Ravindran and A.G. Barto. SMDP homomorphisms: An algebraic approach to abstrac-
tion in semi-Markov decision processes. In International Joint Conference on Artificial
Intelligence, volume 18, pages 1011–1018. Citeseer, 2003. 103

G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Tech-
nical report, Tech. rep. CUED/F-INENG/TR166, Cambridge University, 1994. 3, 15

Gavin Adrian Rummery. Problem Solving With Reinforcement Learning. PhD thesis,
University of Cambridge, 1995. 5, 19

J. Rust. Using randomization to break the curse of dimensionality. Econometrica, 65(3):
487–516, 1997. 130

L. Schomaker. Using stroke-or character-based self-organizing maps in the recognition of
on-line, connected cursive script. Pattern Recognition, 26(3):443–450, 1993. 1

D. Silver. Reinforcement learning and simulation-based search in computer Go. PhD
thesis, Department of Computing Science, University of Alberta, Canada, 2009. 130

S. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Convergence results for single-step
on-policy reinforecement-learning algorithms. Machine Learning, 38:287–308, 2000.
21, 92, 142

Matthijs Snel and Shimon Whiteson. Multi-task evolutionary shaping without pre-specified
representations. In GECCO 2010: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 1031–1038, July 2010. 115

Matthijs Snel and Shimon Whiteson. Multi-task reinforcement learning: Shaping and fea-
ture selection. In EWRL 2011: Proceedings of the Ninth European Workshop on Rein-
forcement Learning, September 2011. 115

Bibliography 159

K.O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10(2):99–127, 2002. 7

Martin Stolle and Doina Precup. Learning options in reinforcement learning. Lecture Notes
in Computer Science, 2371:212–223, 2002. 105, 115

Alexander Strehl and Michael Littman. A theoretical analysis of model-based interval
estimation. In Proceedings of the Twenty-Second International Conference on Machine
Learning, pages 856–863, 2005. 3, 15, 53

Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman.
PAC model-free reinforcement learning. In Proceedings of the 23rd international con-
ference on Machine learning, pages 881–888, 2006. 3, 15, 41, 53, 68

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44, 1988. 3, 15, 17, 41

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International Con-
ference on Machine Learning, pages 216–224, 1990. 3, 12, 15, 34

Richard S. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In Advances in Neural Information Processing Systems 8, pages
1038–1045, 1996. 3, 15, 65

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, Massachussets, 1998. 1, 2, 5, 9, 19, 25, 52, 64, 65, 82, 133, 134

Richard S. Sutton and Satinder P. Singh. On step-size and bias in temporal-difference
learning. In Proceedings of the Eight Yale Workshop on Adaptive and Learning Systems,
1994. 48, 133

R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211,
1999. 103, 105, 115

M.E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey.
The Journal of Machine Learning Research, 10:1633–1685, 2009. 103

G. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level
play. Neural computation, 6(2):215–219, 1994. 1

Harm van Seijen and Shimon Whiteson. Postponed updates for temporal-difference rein-
forcement learning. In ISDA 2009: Proceedings of the Ninth International Conference
on Intelligent Systems Design and Applications, pages 665–672, November 2009. 153

Harm van Seijen, Bram Bakker, and Leon Kester. Switching between different state rep-
resentations in reinforcement learning. In Proceedings of the Artificial Intelligence and
Applications Conference, 2008. 153

160 Bibliography

Harm van Seijen, Hado van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical
and empirical analysis of expected sarsa. In ADPRL 2009: Proceedings of the IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pages
177–184, March 2009. 153

Harm van Seijen, Shimon Whiteson, and Leon Kester. Switching between representations
in reinforcement learning. In Robert Babuska and Frans Groen, editors, Interactive
Collaborative Information Systems, Studies in Computational Intelligence, pages 65–
84. Springer, Berlin, Germany, 2010. 153

Harm van Seijen, Shimon Whiteson, Hado van Hasselt, and Marco Wiering. Exploiting
best-match equations for efficient reinforcement learning. Journal of Machine Learning
Research, 12:2045–2094, 2011. 153

V Vapnik. The nature of statistical learning theory. Springer, 1995. 1

C.C. Wang, S.R. Kulkarni, and H.V. Poor. Bandit problems with side observations. IEEE
Transactions on Automatic Control, 50:338–355, 2005. 76

C. Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge,
England, 1989. 3, 5, 15, 17, 18, 41, 53, 133

Christopher Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):9–44, 1992.
32

Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Critical factors in the empirical
performance of temporal difference and evolutionary methods for reinforcement learn-
ing. Autonomous Agents and Multi-Agent Systems, 21(1):1–27, 2010. 7

Marco Wiering and Jürgen Schmidhuber. Fast online Q(λ). Machine Learning, 33:105–
115, 1998. 32

E. Wiewiora. Potential-based shaping and q-value initialization are equivalent. Journal of
Artificial Intelligence Research, 19(1):205–208, 2003. 115

N. Zhang and D. Poole. On the role of context-specific independence in probabilistic
inference. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), pages 1288–1293, 1999. 75

Summary

Many important real-life tasks can be modeled as an agent (which represents some decision
making process) that interacts with its environment by taking a sequence of actions on
different moments in time. Often, the effect of an action is (initially) unknown. The task
of finding a good policy for an agent that interacts with an initially unknown environment
is the research domain that reinforcement learning (RL) is concerned with.

The challenges presented by such a domain should not be underestimated. In general,
the number of possible policies grows exponentially with the number of problem parame-
ters. Besides that, the number of environment states and/or the number of actions can be
infinite and the current environment state can only be partially observable. Despite these
challenges, there are multiple examples of successful RL applications in practise, and the
potential rewards that lie in broadening this application domain makes RL an active area of
research.

The research focus of this thesis lies on methods that are efficient with respect to the
computation time and memory space they require. Efficiency with respect to these re-
sources is important, since any practical system has only a limited amount of resources.
Hence, the efficiency of methods with respect to these resources determines the problem
size a system can deal with.

This thesis discusses the problem of efficiency in the context of Markov decision pro-
cesses (MDPs), a core formalism for describing RL tasks. An effective strategy for solving
MDPs is to use value functions, that predict the payoff for each state-action combination.
Value-function methods improve their policy by iteratively improving a value function, us-
ing samples collected from interaction with the environment. This thesis has three main
contributions, in the form of three ideas that build on the value-function theory.

The first one is best-match learning, which builds on temporal-difference (TD) learn-
ing, an important strategy for efficient RL. TD methods have at their core an update that
computes a new value for a state-action pair by taking a weighted average between its old
value and an update target, constructed from sample information and values of other state-
action pairs. To improve the sample efficiency, i.e., to decrease the number of environment
samples required to obtain a good policy, a popular strategy is to use the same sample mul-
tiple times for an update, as if it was observed more than once. To avoid an unfair bias
towards such a sample, which hurts performance, every sample receives a similar number
of additional updates. The idea behind a best-match update is that instead of performing
additional updates with the same sample, previous updates with that sample are corrected.
Like the strategy of additional updates, the strategy of correcting updates improves the
sample efficiency. However, in contrast to additional updates, correcting updates removes
the constraint that every sample has to receive a similar number of updates.

This idea is remarkably powerful. It allows for the construction of new RL methods
with unique properties. For example, it allows for methods that can tune their time and

162 Summary

space requirements to the available amount of resources, while maintaining a guarantee of
convergence to the optimal policy. Earlier methods with the property of tuning their space
requirements could only achieve this at the cost of losing the convergence guarantee. Em-
pirically, this means that methods using best-match updates can substantially outperform
these earlier methods, while using the same amount of space and time resources.

The second idea this thesis introduces involves switching on-line between state repre-
sentations. The state representation of a problem defines which environment features the
agent can observe. The task of selecting the right features is a typical one for the problem
designer. Selecting good features is an important and difficult task, since it not only deter-
mines the maximum performance that can be obtained by an agent, but also the size of the
problem. Our proposed strategy removes part of this burden from the designer, by allowing
the designer to specify multiple candidate representations. The agent then determines on-
line the most effective representations as well as an optimal policy corresponding to that
representation.

The final idea deals with policy restrictions. Like the idea involving switching be-
tween representations, at its core this idea is about exploiting prior knowledge. Exploiting
prior knowledge effectively reduces the problem size, allowing for an improved sample
efficiency for the same space and time requirements. For the idea of switching between
representations, prior knowledge about potentially effective feature sets is exploited. The
prior knowledge that is exploited in this final idea is knowledge about restrictions on the
policy set that should be considered when searching for an optimal policy. These restric-
tions form a natural way to specify prior knowledge about a task. In case of policy-search
RL, that is, RL methods that search for the optimal policy directly in the policy space,
the advantage of a smaller policy set is obvious. However, policy-search methods excel
in different task domains than value-function methods. Therefore, for task domains where
value-function methods are superior, one would like to use value-function methods but
still be able to exploit prior knowledge about policy restrictions. This thesis presents and
evaluates a strategy that can achieve this. We demonstrate that the range of restrictions
that can be effectively described using the proposed strategy is larger than that of existing
alternatives.

This thesis provides a thorough theoretical analysis of each of the above ideas, gives
intuitive examples for understanding the benefits of each approach and provides extensive
empirical comparisons with relevant competitive techniques. The thesis concludes by an-
swering in detail a number of specific questions related to reinforcement learning under
space and time constraints and by discussing the three most promising avenues of future
work that came out of this research.

Samenvatting

Veel situaties uit het alledaagse leven kunnen worden gezien als een beslissingsproces
dat op verschillende tijdstippen keuzes maakt en acties uitvoert. Deze acties veroorzaken
bepaalde veranderingen in de omgeving, terwijl niet altijd van tevoren bekend is wat voor
veranderingen dit zijn. De taak van het vinden van een goede strategie voor het besliss-
ingsproces in zo’n situatie is het onderzoeksdomein waar reinforcement learning (RL) zich
mee bezig houdt. Het beslissingsproces wordt de agent genoemd en de strategie van de
agent heet de policy.

Het onderzoeksdomein van reinforcement learning bevat veel uitdagingen. Zo kan het
totaal aantal omgevingstoestanden oneindig zijn, en ook het aantal acties waaruit de agent
kan kiezen. Bovendien groeit het aantal mogelijke policies, in het algemeen, exponentieel
met het aantal probleem parameters, waardoor al snel een zeer groot probleem kan ontstaan
dat erg lastig op te lossen is. Toch zijn er verschillende succesvolle RL toepassingen in de
praktijk, en de belofte van meer succesvolle toepassingen maakt dat RL een actief onder-
zoeksgebied is.

Het onderzoek waar dit proefschrift over gaat houdt zich bezig met RL methodes die
efficiënt zijn in het gebruik van de beschikbare rekenkracht en geheugenruimte. Efficiën-
tie ten opzichte van deze resources is belangrijk, omdat elk systeem in de praktijk maar
beperkte resources heeft. Daarom zullen methodes die deze resources optimaal kunnen
benutten in staat zijn grotere problemen op te lossen.

Een formele manier om RL problemen te beschrijven is door middel van Markov de-
cision processes (MDPs). Een veelgebruikte techniek om deze MDPs op te lossen, is het
gebruik van value functions, die een voorspelling geven van hoe voordelig het is om een
bepaalde actie in een bepaalde situatie te nemen. Methodes gebaseerd op value functions
verbeteren hun policy door stap voor stap de voorspellingen die de value function geeft
te verbeteren, gebruik makend van samples. Een sample is opgebouwd uit informatie die
verkregen is door een enkele interactie met de omgeving. De bijdrage van dit proefschrift
bestaat uit drie nieuwe ideeën, gebaseerd op de value function theorie.

Het eerste idee noemen we best-match learning, dat voortborduurt op een belangrijke
techniek voor efficiënte RL, genaamd temporal-difference (TD) learning. TD methodes
gebruiken een update, om een nieuwe waarde van de value function te berekenen, die
gebaseerd is op een gewogen gemiddelde tussen een oude waarde en een update target,
dat een nieuwe voorspelling geeft van hoe voordelig een actie is gebaseerd op een sample.
Om de sample efficiëntie te verbeteren, dat wil zeggen, om het aantal samples dat nodig is
om een goede policy te berekenen te verkleinen, wordt vaak een techniek gebruikt waarbij
hetzelfde sample meerdere keren wordt gebruikt voor een update (alsof de agent dit sam-
ple meer dan een keer heeft geobserveerd). Om een bias ten opzichte van dit sample te
voorkomen (wat een slechtere sample efficiëntie tot gevolg heeft) ontvangt elk sample dat
door de agent wordt geobserveerd een vergelijkbaar aantal extra updates. Het idee achter

164 Samenvatting

best-match learning is dat in plaats van dat een sample meerdere keren wordt gebruikt voor
extra updates, dit sample wordt gebruikt om eerdere updates te corrigeren. Het effect hier-
van is dat de sample efficiëntie wordt verbeterd, zoals ook gebeurt als extra updates worden
uitgevoerd, alleen is het niet langer nodig dat elk sample een vergelijkbaar aantal updates
gebruikt. Hierdoor is het mogelijk nieuwe methodes te maken met unieke eigenschappen.

Een voorbeeld van zo’n nieuwe methode is een methode waarbij de benodigde reken-
kracht en geheugenruimte kunnen worden aangepast aan de beschikbare hoeveelheid re-
sources, terwijl convergentie naar een optimale policy wordt gegarandeerd. Eerdere meth-
odes waarbij de benodigde rekenkracht en geheugenruimte kan worden aangepast hebben
deze garantie niet. In de praktijk komt dit erop neer, dat een methode gebaseerd op best-
match learning een betere sample efficiëntie behaalt dan deze eerdere methodes, terwijl de
benodigde rekenkracht en geheugenruimte vergelijkbaar is.

Het tweede idee dat dit proefschrift beschrijft gaat over het switchen tussen verschil-
lende omgevings-representaties. De omgevings-representatie bepaalt welke features van
de omgeving een agent kan observeren. Normaal gesproken is de problem designer, dat
wil zeggen, de persoon die een taak definieert, verantwoordelijk voor het uitkiezen van
deze features. Dit is een erg belangrijk onderdeel, omdat de features de maximale sam-
ple efficiëntie bepalen die kan worden behaald en bovendien de grootte van een probleem
bepaalt. Een goede representatie bestaat uit features die nuttige informatie bevatten maar
die er ook voor zorgen dat het totaal aantal omgevings-toestanden niet te groot wordt, wat
het moeilijker maakt een probleem op te lossen. De techniek die in dit proefschrift wordt
besproken neemt een deel van de verantwoordelijkheid van de problem designer uit han-
den, door toe te staan dat verschillende kandidaat representaties worden gedefinieerd. De
RL agent bepaalt vervolgens zelf wat de beste representatie is en wat de optimale policy is
voor die representatie.

Het laatste idee dat dit proefschrift beschrijft gaat over policy restricties. Net als het
tweede idee, gaat ook dit idee over het benutten van bepaalde voorkennis. In het alge-
meen is het gebruiken van voorkennis nuttig, omdat de grootte van het probleem hierdoor
kleiner wordt. Daardoor kan, met dezelfde hoeveelheid rekenkracht en geheugenruimte,
een beter sample efficiëntie worden behaald. In het geval van switchen tussen represen-
taties was dit voorkennis over mogelijk effectieve feature sets. In het geval van dit laatste
idee gaat het over voorkennis van restricties ten aanzien van de totale policy set van een
MDP. Als bijvoorbeeld van tevoren bekend is dat bepaalde policies slecht zijn, kunnen deze
uit de policy set worden gehaald zodat de zoekruimte waarbinnen naar de optimale policy
wordt gezocht, kleiner wordt. Het probleem bij RL gebaseerd op value-functions, waar dit
proefschrift over gaat, is dat niet rechtstreeks naar de optimale policy wordt gezocht, maar
indirect, door te zoeken naar de optimale value function. Dit laatste idee gaat erover hoe,
terwijl er wordt gezocht naar een optimale value function, toch voorkennis kan worden
benut dat is uitgedrukt in termen van policy restricties. Hoewel er ook andere methodes
zijn die dit kunnen bereiken, kan met de methode die wij voorstellen, een veel grotere
hoeveelheid voorkennis worden benut, wat een betere sample efficiëntie tot gevolg heeft.

In dit proefschrift geven we, naast een uitgebreide theoretische analyse van elk idee,
ook intuïtieve voorbeelden, alsmede uitgebreide empirische vergelijkingen met relevante
andere technieken. Het proefschrift eindigt met het geven van een gedetailleerd antwoord

Samenvatting 165

op enkele specifieke vragen ten aanzien van reinforcement learning methodes die efficiënt
zijn met betrekking tot de rekenkracht en geheugenruimte, en het geven van een aantal
suggesties voor vervolg-onderzoek.

Acknowledgements

The motivation for starting a Ph.D. and route towards it is different for every Ph.D. student.
In my case, I took the rather unusual route of finishing a master in applied physics, then
working at TNO as a research scientist for four years, and after that starting a Ph.D. in
reinforcement learning. I want to use this section to recount the story behind this route and
to credit the people along the way that have helped me go the distance.

The route towards this thesis began in the summer of 2002 in California, where I was
working as a graduate intern at a company that makes scanning probe microscopes. While
really enjoying my stay in California, I was very aware of the fact that I was close to
finishing my master in applied physics. Therefore, I spend some time contemplating my
future career and figuring out what I was looking for in a job. This made me realize that,
although in general I liked physics and doing research, it was not a perfect fit. I felt there
was something missing, although I couldn’t really pinpoint what it was.

So, in order to get a better understanding of what I was looking for, I spend some of
my free time reading about different types of research and different types of jobs. This
continued until, on one afternoon, I came across an article in the New Scientist called ‘Go
for it’. The article narrated the story of Michael Reiss, a guy that had spend more than a
decade working on a computer program that plays the game of Go. The article continued
to describe the challenges involved in trying to program a top-level Go-playing computer
and the possible consequences of achieving this for the field of artificial intelligence.

The article intrigued me on multiple levels. How can a game constructed from such
simple rules pose such a challenge? Also, if humans are so good in it, why can’t they
formulate the strategy that brings them this success. And finally, apparently it is possible
to make a living, albeit a modest one, by working on such problems. By the time I was
done reading, the mystery surrounding the type of intelligence a game of Go required and
the potential implications of being able to capture this in a computer program had won me
over completely.

While the article marked the end of a long search period and gave me some inner
peace, there was the inevitable follow-up question “OK, so now what?". I was close to
having a degree in applied physics and was looking forward to getting off the tight student
budget and finally start making some money. Besides that, my knowledge of AI techniques
was only rudimentary. So, landing a job in AI or starting all over again were no realistic
scenarios. After evaluating my different options, I eventually applied for a job at TNO, a
large Dutch research institute, where a wide variety of research topics is covered. I figured
that working in such a versatile environment would allow me to move from physics in the
direction of AI over time.

I started working in the Electro-Optics group, headed by Jan Olijslager. While there
were mainly physics projects in this group, I also got to work on several AI-related projects
over the years. However, a returning theme at the yearly performance evaluations I had with

168 Acknowledgements

Jan was that I wanted to work more on AI. At the fourth yearly evaluation, Jan confronted
me with this returning theme and gave the advice that if I was really serious about my
plans to work in AI, I should stop talking about it and start taking some action. This was
a much needed push in the right direction, for which I’m thankful to this day. I made
up my mind and finally felt ready to leave my comfortable surroundings, and make some
bold and uncertain moves to pursue my wish to do research in AI fulltime. About a month
after this conversation, when I was about to quit my job at TNO, I heard that there was a
position coming available within TNO to work fulltime as a Ph.D. student on an artificial
intelligence related topic. Obviously, I was interested.

The interview for the position was with Leon Kester, the co-promotor and technology
expert at the Distributed Sensor Systems group at TNO, and Frans Groen, the promotor
and head of the Intelligent Autonomous Systems group at the University of Amsterdam
(UvA). While I didn’t have a strong background in AI at that point, they were willing to
give me a chance for which I want to thank them both sincerely. I also want to thank
them for providing a comfortable working environment throughout my Ph.D. period and
giving me some freedom in terms of the research topic, as well as for the many stimulating
conversations we had about the research.

So, in may 2007, almost five years after reading the Go article, I was in a position where
I could spend 100% of my time on AI research. This ended the challenge to find projects
related to AI, but started a new one, since the road towards a Ph.D. degree is one full of
pitfalls.6 In this context, there are two persons in particular I want to thank for guiding me
around many of them.

The first one is Bram Bakker, at the time a PostDoc at the UvA working on reinforce-
ment learning (RL), whom I met about three months into my Ph.D. period. Until I met
Bram, I had only a vague idea of what I wanted to do and my topic of research changed
frequently (AI is a very broad area). Bram introduced me to reinforcement learning, a
research area I immediately loved, and became, besides Leon and Frans, a third supervi-
sor, with whom I met at a weekly basis to discuss about RL. My meetings with Bram were
always inspiring and put my research into high gear at an early moment in my Ph.D. period.

The second one is Shimon Whiteson, who took over the role as weekly supervisor from
Bram, about one year into my Ph.D. period, after Bram left UvA. Shimon proved time and
again to be an excellent supervisor with whom I had many long and vivid discussions
about RL and doing research in general, which helped me around several Ph.D. pitfalls. In
addition, through his methodical feedback and high standards, I learned a lot from Shimon
in terms of writing high quality papers.

I also want to thank Hado van Hasselt and Marco Wiering, coauthers on two papers.
I worked closely together with Hado on the convergence proofs for the best-match LVM
and NTM classes, two very hard nuts, which eventually we managed to crack. Marco was
a valuable discussion partner and has been inspiring in terms of out-of-the-box ideas.

Finally, since life’s all about balance, I want to thank my family, friends and colleagues
at TNO as well as at the UvA for keeping my life in balance by providing the necessary

6An entertaining account of the many pitfalls a Ph.D. student faces can be found here: http://
homepages.inf.ed.ac.uk/bundy/how-tos/resbible.html

http://homepages.inf.ed.ac.uk/bundy/how-tos/resbible.html
http://homepages.inf.ed.ac.uk/bundy/how-tos/resbible.html

Acknowledgements 169

support and relaxation in the form of (including, but not limited to) Dalmuti games, frisbee
games, Take 5, beers, hiking trips (abroad, obviously), Take 4, dart games, more beers,
Take 3? (no, thank you), random discussions, discussions about randomness, Lowlands,
Nespresso moments combined with xkcd moments (‘no mister Bond, I expect you to die!’),
BBQs, crossloop challenges, nieuwjaarsduiken, city trips (� Barcelona! �), movies, din-
ners and random parties. :)

170 Acknowledgements

	Introduction
	Reinforcement Learning
	The Reinforcement Learning Problem
	Solution Strategies

	Focus of this Thesis
	Topics
	Research Questions

	Outline

	Background
	The Reinforcement Learning Problem
	The (Contextual) Multi-Armed Bandit Problem
	Markov Decision Processes
	Value Functions and the Bellman Equations

	Solution Strategies
	Dynamic Programming
	Model-Based and Model-Free Learning
	Temporal-Difference Learning
	Eligibility Traces

	Maximizing Performance under Severe Space and Time Constraints
	Expected Sarsa
	Convergence
	Variance Analysis
	Hypotheses
	Empirical Results

	Just-In-Time Q-learning
	Just-In-Time (Expected) Sarsa
	Conclusion

	Trading Space and Time for Performance
	Best-Match Last-Visit Model
	Best-Match LVM Equations
	Best-Match LVM Evaluation
	Best-Match LVM Control
	Best-Match LVM Prioritized Sweeping

	Best-Match n-Transition Model
	Generalized Best-Match Equations
	Best-Match Learning based on the n-transition Model
	Experimental Results

	Best-Match Function Approximation
	Tabular Sequence Based Best-Match Learning
	Best-Match Gradient Descent Learning

	Discussion
	Future Work
	Conclusion

	Reducing the Problem Size by Representation Selection
	Representations
	Factored MDPs
	Feature Types
	Valid Representations
	Context-Specific Representations

	Representation Selection for Contextual Bandit Problems
	Contextual Bandit Problems
	Representation Selection
	Model-Free Updating
	Experimental Results

	Representation Selection for MDPs
	Derived Tasks
	Model-Free Updating
	Experimental Results

	Representation Selection for MDPs with Context-Specific Structure
	Candidate Context Representations
	Derived Tasks
	Model-Free Updating
	Experimental Results

	Discussion and Future Work
	Related Work
	Conclusion

	Reducing the Problem Size by Policy Space Reduction
	Policy Restrictions
	Restrictions in the Policy Space
	The Policy Restriction Set
	Illustrative Example
	Advantages of Policy Restrictions

	Related Work
	Methods
	Q-learning with Policy Restrictions (PR)
	Q-learning with Policy Restrictions and Aggregation (A-PR)
	Q-learning with Projected Policy Restrictions (P-PR)
	Multi-Step Variants (PR+, A-PR+, P-PR+)

	Empirical Results
	Discussion and Future Work
	Conclusion

	Conclusions and Future Work
	Evaluation of Research Questions
	Future Work

	Relationship between Best-Match LVM and TD()
	Background on TD()
	Forward View Best-Match LVM Values

	Off-Policy Monte Carlo Update
	Proofs
	Theorem 2
	Lemma 3
	Theorem 5
	Theorem 6
	Preliminaries
	Convergence of U'j to U*
	Convergence of Uj to U'j
	Proof of Theorem 6

	Lemma 7
	Theorem 7

	Publications by the Author
	Bibliography
	Summary
	Samenvatting
	Acknowledgements

