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Abstract—A modular technique originally proposed for wave-
guide junctions, the multimode equivalent network approach
based on the integral equation formulation (IEMEN), is extended
to the analysis of multilayer Frequency Selective Surfaces inte-
grated with waveguide array antennas. This technique represents
each layer and transition between layers in terms of a generalized
impedance or admittance matrix, obtained directly from the
solution of an integral equation with reduced kernel. Thanks to
the adopted formulation, the integral equation needs to be solved
only in a limited set of frequency points. The IEMEN method is
validated by comparison with results available in literature.

Index Terms—Admittance matrix, antenna phased arrays, fre-
quency selective surfaces (FSS), impedance matrix, periodic struc-
tures.

I. INTRODUCTION

FREQUENCY selective surfaces (FSS) are arrays of period-
ically arranged metallic patches or apertures on a metallic

plane, designed to have a particular filtering behavior as a func-
tion of the frequency or/and the angle of incidence. As a typical
application, they are used to shape antennas frequency or an-
gular response. Originally, the FSS and the antenna have been
studied as stand-alone structures, without taking into account
the mutual interactions. The integration of the FSS with the
target antenna from the beginning of the design offers inter-
esting possibilities. The end structure is more compact and it
can follow the profile of the platform, which is especially im-
portant when a low radar cross section (RCS) has to be achieved
[1]. Moreover, additional functionalities can be associated to the
FSS, as for example realization of improved matching layers
and prevention of interference problems [2].

Fig. 1 shows a multilayer FSS, consisting of three planar
dielectric layers loaded by patch- and slot-based resonant
elements, cascaded to an infinite periodic array of open-ended
waveguides. For this kind of structure, either the scattering
problem is tackled simultaneously at all layers, by solving the
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Fig. 1. Geometry of an iris-loaded waveguide array integrated with a generic
FSS structure, comprising a slot-based FSS and a patch-based FSS sandwiched
between different dielectric layers.

corresponding system of coupled integral equations [3], or it
is treated separately at each layer by resorting to a modular
methodology.

The latter approach is computationally convenient, as argued
in [4]. Moreover, it can be implemented in a general-pur-
pose software tool that allows analyzing an arbitrary number
of layers and is therefore an efficient design instrument.
Techniques based on the derivation of equivalent microwave
networks can be used for this purpose. They were originally
developed to study discontinuities in waveguide and wave-
guide junctions [5], [6] and subsequently extended to layered
periodic structures by virtue of the Bloch-Floquet theorem.
Starting from a modal expansion of the fields in each layer,
these techniques lead to a representation of the layer and of the
transition between two adjacent layers in terms of an equivalent
network; the different networks are then cascaded to represent
the entire structure. The form of the matrix describing this net-
work depends on the type of parameter used to characterize the
structure performances: for example the generalized scattering
matrix (GSM) [7], the generalized impedance matrix (GIM)
and the generalized admittance matrix (GAM) [8].

In a GSM-based representation, the problem is typically
solved separately for each incident Floquet harmonic, by
calculating the corresponding induced current and scattering
parameters [7]. A more efficient formulation proposed in [4],
[9], [10] allows the computation of the scattering parameters
for all incident modes at once.

In many cases, the calculation of the GIM or GAM equivalent
representation is the goal of the analysis. An appealing charac-
teristic of these representations is that they can be directly inter-
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preted in terms of physical parameters of the represented struc-
ture. For example, in [4] a GSM formulation was presented to
analyse a microstrip phased array antenna and, to obtain the an-
tenna input impedance, from the calculated GSM the GAM of
the slot/microstrip-line transition was derived. In a recent paper
[11], it has been shown that the equivalent admittance matrix of
a dipole FSS is a useful tool to investigate the dispersion prop-
erties of the surface waves modes, and it can be directly linked
to the phase behavior of the reflection coefficient. In [8], [12]
a zero-thickness planar grating was characterized in terms of
GAM and GIM, but only the two-dimensional cases were con-
sidered.

This paper describes an efficient method to calculate the
GIM or GAM representation of multilayer planar structures,
consisting of infinite periodic waveguide phased arrays and
FSSs, composed by zero-thickness apertures and patches with
an arbitrary shape, arranged in a rectangular or triangular
lattice. The method, further referred here as the multimode
equivalent network approach based on the integral equation
formulation (IEMEN), was originally proposed for waveguide
junctions [13], [14] and conformal waveguide arrays [15], and
is extended here to the analysis of FSSs.

It was already pointed out in [16] that the GAM and GIM
representations encounter a stability problem when matrices
with a large number of entries are cascaded. To prevent this
problem, additional operations should be undertaken to derive
from the complete matrix a reduced form corresponding only
to the interacting modes between adjacent discontinuities. In
this respect, the IEMEN method allows directly calculating
an equivalent impedance matrix representation in terms of
these modes only. The formulation of the problem is centred
around a single integral equation (IE) with a fixed reduced
kernel and multiple forcing terms. In this paper, the IEMEN
formulation is presented for both patch- and aperture-based
FSSs. In [11] it was shown that poles and zeros of the FSS
admittance matrix are slowly varying functions of the frequency
and can be interpolated. This property becomes explicit in
the IEMEN formulation, thanks to the adopted expression of
the reduced spectral periodic Green’s Function. The solution
of a reduced kernel IE was already presented in [4] to derive
a GSM representation of slot junctions, but the properties of
this kernel were not further investigated.

The presented IEMEN method is suited to be very efficiently
interpolated in frequency, so that results on large bandwidths
can be rapidly calculated. Moreover, with respect to other tech-
niques based on the derivation of microwave network represen-
tations, it offers several other advantages that will be discussed
in detail in the paper.

The paper is structured as follows. In Section II, the theo-
retical formulation of the IEMEN method is briefly recalled.
In Section III and Section IV the formulation is applied to the
analysis of planar FSSs. In Section V considerations on the nu-
merical implementation of the method with some emphasis on
the solution of the pertinent IE are reported. Finally, validation
of the method is performed in Section VI through comparison
with results available in literature. Conclusions are drawn in
Section VII.

Fig. 2. Accessible and localized modes in a waveguide junction.

II. MEN FORMULATION FOR THE TRANSITIONS

To present the idea underlying the IEMEN approach, we con-
sider the multilayer structure depicted in Fig. 1. The propaga-
tion of the electromagnetic field in the presence of an infinite
periodic phased array can be described as the propagation in an
equivalent waveguide with cross section equal to the array unit
cell: the phase shift wall waveguide (PSWW) [17], satisfying
the periodic boundary conditions dictated by the array. For each
uniform waveguide region ( -invariant regions between discon-
tinuities) and each discontinuity a representation in terms of a
multimode impedance or admittance matrix is derived.

The first step consists in expressing the fields in each region in
terms of modes and identifying their pertinent transmission-line
representations (along ). In the special case of Fig. 1, these dis-
continuities are localized at the planes , , ,

. -invariant regions can be treated as uniform waveguide
sections and the calculation of the corresponding equivalent net-
work is a canonical problem [14].

In the second step, the concept of accessible and localized
modes is exploited. Accessible are the modes that contribute
to the interaction between adjacent discontinuities, not only the
propagating ones, but also modes below cutoff. All remaining
higher order modes are further indicated as localized [18]. As
an illustration, Fig. 2 shows the junction between two uniform
waveguide regions, indicated as regions 1 and 2. In the case of
an FSS, they are the PSWWs corresponding to the unit cell con-
taining the patch or the aperture, located at . The terminal
planes and define the boundaries between the disconti-
nuity region (namely, the region containing the junction) and
the two waveguides. If the structure consists of more than two
waveguides, the terminals are located in between the adjacent
junctions. Otherwise they can be chosen arbitrarily far from the
current junction at . A complete representation of the
transverse field at the junction requires taking into account an
infinite number of evanescent modes. Instead, the field distribu-
tion at the two terminal planes can be described, within a cer-
tain accuracy, in terms of a finite number of modes (accessible
modes). The accuracy of this description is specified by setting
a maximum value of attenuation of the modes when they reach
the terminal planes.

In particular, if and accessible modes are sufficient
to obtain the desired accuracy at the terminal planes and in
Fig. 2, the modal expression of the electric and magnetic fields
[19] can be correspondingly separated into two contributions:
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one with the accessible modes (the first modes, with ,
2 indicating one of the two regions), and one with all remaining
localized modes

(1)

These two contributions will be treated differently in solving
the IE, as outlined in the next sections.

By virtue of the uniqueness property of the electromagnetic
field, if the region enclosed by the terminal planes is source-free,
the knowledge of either the tangential electric or the tangential
magnetic field at the terminal planes characterizes uniquely the
electromagnetic field within that region [20]. Therefore, once
the accuracy in the calculation of the field at the terminal planes
is set and the pertinent accessible modes have been identified,
the corresponding modal coefficients ( and ) in (1) are
the fundamental unknowns of the problem, in the sense that all
the fields in the region delimited by the terminal planes can be
expressed, with the specified accuracy, in terms of these modal
coefficients only. These modes define the ports of the equivalent
network. As we approach the transition at , more modes
are needed to obtain a complete field representation at that sec-
tion (all the localized ones), but their contribution to the field
representation at the terminal planes still depends on the funda-
mental unknowns. This is actually the basic idea of the IEMEN
method. The method is explicitly described, for the FSS case, in
the next section. Before presenting it, a few considerations are
in order.

In case of an FSS-type of transition, the modal functions in (1)
are Floquet waves and, since the tangential electric and magnetic
fields are continuous at the interface between the two dielectric
half spaces, if the unit cell is the same (same cross section for
the two PSWWs in Fig. 2) the modal functions are the same in
the two regions and the superscript may be dropped, (the
explicit expressions of the Floquet vector modal functions
and are given in the Appendix). The description of the fields
of the terminal planes involves then modal
voltages and the same number of modal currents, related by

linear equations.
GAM/GIM-based methods, in their classical implementa-

tions, may encounter a stability problem. The problem has been
well outlined in [16] for the case of a branch guide coupler
studied as cascade of the GAM corresponding to waveguides
and stubs. Normally, the GAM is calculated for a large number
of entries, corresponding to the modes (accessible and local-
ized) used in the representation of the fields at the junction,

Fig. 3. Unit cell of a planar FSS, seen as (a) a patch transition for the patch
formulation and (b) a slot transition for the aperture formulation.

according to (1). If in this representation are included also
evanescent modes that arrive very attenuated to the next junc-
tion, the corresponding entries of the waveguide admittance
matrix are close to zero leading to a not invertible matrix.
As suggested in [16], the problem can be circumvented by
calculating a reduced form of this matrix, which contains only
the accessible modes. Moreover, it has the advantage of using
less computer memory. Usually, to derive the reduced form of a
GAM or GIM representation, the input and output ports of the
equivalent network corresponding to the non-accessible modes
are closed with the characteristic admittances/impedances. The
numerical implementation of this operation implies performing
an additional matrix inversion (with size equal to the number
of localized modes) [16].

The IEMEN method avoids this extra operation and directly
obtains a reduced GIM- or GAM-based network by solving a
reduced kernel IE. Analogous considerations hold also for the
GAM-based analysis of an FSS-type of transition (FSS cas-
caded to a PSWW).

III. PATCH-BASED FSS

As shown in Fig. 3, for a general array of zero thickness
patches, two complementary IEs can be obtained, in which ei-
ther the induced currents on the patches or the tangential elec-
tric fields in the complementary apertures are treated as the un-
knowns of the problem. The choice depends on the shape of
the patch/complementary aperture and on the polarization of the
field [8], [9]. In the patch formulation, the problem is formal-
ized in terms of an electric field integral equation (EFIE) and
the unknown quantities are the induced electric surface currents
on the patch. Equivalently, they can be seen as currents flowing
in a generalized load connected in parallel to the transmission
lines associated to the Floquet modes, defined above and below
the FSS discontinuity. The corresponding representation of the
transition is a shunt multimode admittance network. In the aper-
ture formulation instead, the problem is formalized in terms of
a magnetic field integral equation (MFIE). In this case, the un-
knowns are the equivalent magnetic currents (tangential electric
field in the aperture), and the transition is represented in terms
of a shunt multimode impedance network. In the following, we
will explicitly derive the equivalent network representations for
these transitions. The patch formulation is described in detail in
this section, while the aperture formulation is briefly presented
in Section IV.
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A. Reduced Integral Equation

Fig. 3(a) shows a cross sectional view of the unit cell of an
infinite doubly periodic distribution of metallic patches between
two different dielectric half spaces. In each elementary cell of
the array, the total tangential electric field must vanish on the
surface of the patches, which are assumed perfectly conducting
and infinitesimally thin. As described in Section II, the repre-
sentation in terms of Floquet vector mode functions, and ,
is the same in the two half spaces. Accordingly, the boundary
condition for the tangential electric field on the patch located at
the origin of the reference system, , can be expressed as

(2)

where identifies a point on the patch, with re-
spect to the Cartesian reference system indicated in Fig. 3(a),
and is the surface of the patch. Note that with the index
we have indicated both TE and TM modes. Equation (2) is valid
in both regions. The modal voltages are here evaluated at the
discontinuity and, for the sake of simplicity, we have indicated

. The first step in the definition of the Mul-
timode Equivalent Network of the transition is the identifica-
tion of the subsets of Floquet modes and that are
considered accessible in the two dielectric half spaces, with re-
spect to the chosen pair of terminal planes. The corresponding
modal voltages are the fundamental unknowns of the scat-
tering problem. In the present case, the number of fundamental
unknowns is equal to the maximum number of accessible modes
between those relevant at the terminal plane and those at the
terminal plane : . Consequently, it
is appropriate to express the equivalent electric current distribu-
tion on the metallic conductors ,
which is the unknown physical quantity of the problem, in terms
of the first modal voltages, with suitable functions
as unknown vectorial coefficients to be determined

(3)

We can also write the total transverse electric field in (2) as a
superposition of accessible and localized contributions

(4)

where we are taking into account both TE and TM modes. Note
that the field associated to the localized modes does
not interact with any other part of the circuit (it does not con-
tribute to the field at the terminal planes) and stores the reactive
energy. In view of this, it is convenient to define the non-acces-
sible constituent of the infinite array dyadic Green’s func-
tion (GF) for the electric field, , as derived in the Appendix,

(34a)

(5)
where is valid for electric source and electric ob-
servation located at and .

are the modal impedances at the section , ob-
tained by connecting in parallel the input impedances on the left

and on the right of the FSS

(6)

By using this concept, can be expressed as

(7)
To simplify the notation, we have omitted the explicit indica-
tion of the mode type. Note that, for the case of a stacked FSS,
the IEMEN formulation is applied to each patch transition sepa-
rately and indicates the equivalent current distribution per-
tinent to the patch layer under analysis. Inserting (7) and (4) in
(2), the following EFIE is obtained for both TE and TM modes:

(8)

where . This equation relates the accessible modes to the
equivalent currents on the patch. Inserting the expression for the
unknown equivalent currents (3) into (8) leads to

(9)

By virtue of the nature of the accessible modal voltages, this
equation is valid for all possible values of , with .
As a consequence, we can equate the coefficients of on both
sides of the equation and obtain the IE

(10)

where . The IEMEN formulation resorts to a
single IE with, as forcing terms, the extracted Floquet modes
and with a reduced kernel containing the non-accessible GF,

, rather than the standard periodic array GF.
Since the extracted low-order Floquet modes are the most

frequency dependent ones, has a weaker frequency de-
pendence than the standard periodic GF. Thus, as a first con-
sequence of the present formulation, the larger the number of
accessible modes, the slower is the variation of each solution
with the frequency.

B. Multimode Equivalent Network

The unknown functions , obtained by solving IE (10),
weighted by proper coefficients as in (3), provide a representa-
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tion of the equivalent current and consequently of the total
tangential magnetic field difference at the interface containing
the patch .

The Floquet expansion of the magnetic fields:
, with ,2, can then be invoked to derive

a relation between the modal voltages and currents in input
to the equivalent network that represents the transition

(11)

The terminal conditions are obtained by performing the integral
projection of both sides of (11) on the set of accessible modes

, with

(12)

where is the periodic cell surface. Using the orthogonality
of the Floquet modes on the unit cell [21], and some straight-
forward algebraic manipulations, (12) results in the following
terminal conditions:

(13)

where and

(14)

Thus, the equivalent network for the patch transition, obtained
by applying the IEMEN formulation, is a multimode admittance
in parallel to the transmission lines associated to the accessible
modes in the two different dielectric regions. This network is
depicted in Fig. 4. It is worth to note that, if
then for , which means that the cor-
responding ports of the equivalent network are
closed with the characteristic admittance of those modes.
The same holds when at the other side of the net-
work.

Since the solutions are slowly varying functions of the fre-
quency, the same holds for the terms . While this is a general
property of the GAM, which remains valid no matter how the
matrix is obtained (it has also been observed in [11]), the present
derivation makes it explicitly evident.

IV. APERTURE-BASED FSS

The problem of an aperture-based FSS, obtained from a thick
metal plate, can be formulated as a discontinuity problem be-
tween a waveguide array and free space. It has already been

Fig. 4. Multimode equivalent network of a capacitive FSS, made of metal
dipoles, for which the IEMEN method with the patch formulation is used; the
matrix elements are defined in (14).

treated with the IEMEN method for a cylindrical geometry [15]
and extended to the planar geometry in [22]. The application of
the procedure described in Section III for the patch-based FSS
to the case of infinitesimally thin screen is straightforward and
leads to the following reduced kernel IE:

(15)

where (surface of the aperture), and
are unknown vectorial functions. Note, that here

(16)

is the sum of the non-accessible constituents of the infinite array
periodic GF, for the case of magnetic source and magnetic obser-
vation point, given by (35) in the Appendix. The corresponding
equivalent network is a multimode impedance matrix analogous
to the admittance matrix shown in Fig. 4 for the patch formula-
tion, connected in parallel to the transmission lines associated
to the accessible modes. The interested reader can refer to [22]
for a detailed derivation.

V. SOLUTION OF THE INTEGRAL EQUATIONS

The peculiar aspect of IEs (10) and (15) is the reduced kernel,
i.e., the extraction of the accessible modes from the complete
GF. The IE can be solved numerically for the currents, with the
aid of the Method of Moment (MoM) [23]. In particular, in IE
(10) the unknowns have been expanded in terms of
sub-domain functions , piecewise linear (PWL) or
piecewise sinusoidal (PWS), located around for

(17)
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where are weights to be determined by solving the IE. Ap-
plying the MoM with Galerkin’s procedure to (10) and substi-
tuting this expression of the unknowns leads to

(18)

where and . Using (28) from the
Appendix, the IE (18) becomes

(19)

where the quantities with “ ” are Fourier transforms
of the corresponding quantities without and where

for the sake of simplicity. IE (19)
is solved for for each forcing term , and then the
corresponding equivalent currents in (17) are substituted in
(14) to determine each raw of the admittance matrix Y. Once
the equivalent GAM or GIM of each transition and length of
uniform waveguide is calculated, they are cascaded using the
technique described in [24] to derive the matrix representation
of the whole multilayer structure. From this, the derivation of
the corresponding scattering parameters is straightforward.

Compared to a standard IE, where all Floquet modes con-
tribute to the kernel, in case of reduced kernel it is observed
that:

1) the MoM matrix elements might need to be calculated with
higher accuracy;

2) the MoM matrix elements can be interpolated in frequency
over larger intervals.

These two aspects will be treated in more detail in the fol-
lowing sections.

A. Convergence of the MoM Solution

In the design of a device that should exhibit a steep frequency
filtering function over a wide range of angular incidences, it is
usually needed to consider the cascade of several periodic sur-
faces. Moreover, to reduce the angle dependence, they are sand-
wiched between slabs of dielectric materials with high permit-
tivity [1]. If the IEMEN approach is applied to characterize this
multilayer structure, a large number of accessible modes has to
be taken into account.

The corresponding IE has spatially fast varying forcing fields
(the accessible modes) and requires a large number of unknowns
to correctly represent the behavior of the currents induced on the
patches. As a consequence, a large number of terms has to be
summed in (19) to achieve convergence, with respect to a given
relative precision.

The problem of relative convergence is common to all
IE-based methods used to study the scattering of an FSS under
plane-wave incidence and it is well explained in [25]. However,
in the present formulation the extraction of the accessible

Fig. 5. Geometry of the investigated two-dimensional problem: infinite peri-
odic array of conducting strips under TM plane-wave incidence.

modes from the kernel plays an important role in evaluating the
convergence of the MoM analysis. In fact, the forcing terms
in (10) are the electric fields associated to those same modes
which have been extracted from the kernel. Accordingly, it is
difficult for the unknown electric current on the patch to match
the forcing fields. In particular, it results that the larger is the
number of modes extracted from the kernel, the higher the
condition number of the MoM matrix becomes.

To quantify this effect, we consider a simple two-dimensional
geometry consisting of an infinite periodic array of metallic
strips in free space. The period is and the strips are
infinitely long in the -direction and have width . The
incident wave is assumed to be TM polarized with respect to the

-axis, so that the magnetic field is entirely along the -axis and
the electric field has a component along the -axis. Fig. 5 shows
the investigated geometry.

The unknown functions in (10) have been expanded in
terms of 101 PWS functions, with length .
The purpose of this choice is to simulate the complexity of a re-
alistic three-dimensional problem, concerning for example an
FSS that contains crossing points (e.g., a crossed dipole or a
loop), where a large number of basis functions is needed to prop-
erly characterize the continuity of the currents in these points.

The condition numbers of the MoM matrices that are obtained
by solving this scattering problem with conventional complete
kernel and with reduced kernel are shown in Fig. 6. Note that the
condition number is calculated as the product of the norm of the
matrix and the estimated norm of the inverse matrix. The MoM
matrix elements for this example were calculated with relative
precision of .

In abscissa, the case of complete kernel is plotted in corre-
spondence of , while, for a reduced kernel,
indicates the number of modes extracted from the kernel, with

. The graph shows for the complete kernel case
and for the case of only one accessible mode a similar
condition number: .

The relative precision of the IE solution, , can be approx-
imately related to the relative precision of the calculated MoM
matrix elements through the matrix condition number :

[26]. Since, as shown in Fig. 6, in case of reduced
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Fig. 6. Condition number of the MoM matrix obtained for different number of
modes extracted from the kernel. In all cases, 101 pws functions were used to
expand the unknown functions j (r ). Note that N = 0 corresponds to the
complete kernel.

kernel the condition number is higher than that with a complete
kernel, to guarantee a similar accuracy for the IE solution the el-
ements of the MoM matrix might have to be calculated with an
higher relative precision (lower ). This requires, for a certain
expansion of the unknowns, to sum a larger number of contri-
butions on the right-hand side of (19) (summation in ).

From Fig. 6, it is apparent that the worsening of the MoM
matrix conditioning is a consequence of the adopted reduced-
kernel formulation. The same geometrical configuration does
not give rise to conditioning problems when the equivalent elec-
tric currents on the dipoles are calculated by solving the stan-
dard IE (complete kernel), even if the incident electric fields are
highly spatially varying functions. However, according to our
experience, this convergence problem seldom occurs. Consid-
ering again the results for the simple strip case in Fig. 6, for
a configuration including five accessible modes in the analysis
(up to the indices 2), the condition number grows to .
Note that this case corresponds, for a three dimensional problem
to a maximum of 25 modes (supposing all possible combina-
tions of indices are taken into consideration), which would cover
the most typical configurations, where FSSs are sandwiched be-
tween dielectric layers designed to function as quarter-wave-
length transformers [22].

Moreover, if one wishes to obtain the admittance matrix as a
by product of the evaluation of the scattering matrix , calcu-
lated by means of a standard GSM method, a similar problem
could be encountered. In the case of a single accessible mode,
the relation between reflection coefficient and input admittance
can be derived from its equivalent transmission line circuit

(20)

If the input admittance explodes. This observation
can be extended to the multimodal case. The admittance matrix,

normalized to the modal characteristic impedance, can be ex-
pressed as a function of the scattering parameters [27]

(21)

where is the identity matrix.
When the dipole width is such that the i-th Floquet mode

(even if of high order) is approaching resonance, the corre-
sponding parameter becomes close to 1. The overall result
is that the determinant of assumes low values, which
is symptomatic of an ill-conditioned matrix. To perform the
matrix inversion in (21), the mutual coupling between basis and
test functions should be calculated with an accuracy higher than
that needed to evaluate the diagonal elements (associated to the
self coupling). Thus, it seems that the conditioning problem is
intrinsical to the evaluation of the generalized admittance (or
impedance) matrix and not specifically related to the IEMEN
method.

B. Efficiency of the 3D Implementation

For the IEMEN method to be numerically handled, the eval-
uation of the series in the IE kernel has been accelerated by ex-
tracting the quasi-static contribution of the mutual coupling it-
self. The followed procedure, described in detail in [28], closely
resembles the one presented by Wilton in [29] and is based on
the Kummer transformation. However, while in [29] the accel-
eration method was developed for the case of scalar free-space
GF, in [28] it has been extended to the dyadic multilayer GF.
Moreover, geometrical symmetries are exploited in the calcula-
tion of the coupling between basis and test functions.

Despite the fact that the broad band analysis can benefit from
the lower frequency variation of the MoM matrix elements, the
solution of IE (10) may become cumbersome for a large number
of accessible modes (see Fig. 6). This happens for example
when the FSSs are printed on very thin dielectric slabs. To tackle
this problem, instead of extracting from the kernel of the IE all
the modes that reach the next dielectric stratification, we select
only the propagating ones. For the remaining modes, we include
the information about the finiteness of the dielectric directly in
a multilayer spectral GF. This approach was already suggested
in [7], [9], [10] for the GSM formulation and is implemented
here in the reduced kernel IE obtained by applying the IEMEN
method. Let us consider, for example, a patch FSS printed on
a very thin board; a unit cell is shown in Fig. 7. We can write
the left-hand side of (9) as dependent only on the first
accessible modes (accessible at the terminal planes placed in re-
gion 2 and region 3) and include the remaining accessible modes
in the kernel:

(22)
where

(23)
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Fig. 7. Unit cell of a patch FSS etched on a thin dielectric slab and corre-
sponding equivalent transmission line circuit.

The impedances are obtained by connecting in par-
allel the input impedances on the left and right of the FSS,
and , shown in the equivalent circuit at the side of Fig. 7.
The GF now depends on the input impedance at the two sides of
the transition. The same procedure can be followed to model the
case of the patch etched on a semi-infinite dielectric half-space
and covered by a thin dielectric slab.

C. Frequency Dependence

In spite of the worse conditioning with respect to a conven-
tional kernel, there is an important aspect that makes convenient
the numerical burden of the solution of the FSS problem via
the present IEMEN method. The lower order modes are char-
acterized by numbers that are more frequency dependent.
In a 2D problem with normal incidence for instance,

. Once the lower order modes have been ex-
tracted, the MoM matrix elements present a weaker frequency
dependence. As a consequence, the matrix entries can be inter-
polated over larger frequency domains, allowing a reduction of
the overall calculation time for a broad band analysis. Fig. 8
shows the elements , and , , of
the MoM matrix calculated by means of the IEMEN method,
in the frequency range 0.2–2 GHz. They are normalized to their
maximum value, indicated between brackets in the figure, and
multiplied by to de-embed the frequency depen-
dence. The same elements, obtained using the complete kernel,
are also plotted for comparison. Note that the curve obtained
for the complete kernel overlaps that corresponding to one ac-
cessible mode in Fig. 8(a) and those corresponding to one and
three accessible modes in Fig. 8(b).

Grating lobes can be spotted at multiple frequencies of 500
MHz, both for the complete kernel case and for the reduced
kernel, if not all the modes that start propagating in the con-
sidered frequency range have been extracted. The different be-
havior with respect to the frequency is more evident for the
off-diagonal elements of the MoM matrix, as shown in Fig. 8(b).
In particular, it is observed that the larger the number of acces-
sible modes, the easier the interpolation of the MoM matrix el-
ements becomes. This property is particularly relevant for syn-
thesis problems.

The solutions for the currents in the present IEMEN formu-
lations provide, via simple projection onto the Floquet modes,
the elements of the multimode admittance matrix. Since the cur-
rents present a slow variation with frequency, also the multi-
mode admittance matrix elements are slowly varying with fre-
quency. This was already observed by [11] but never explicitly
demonstrated.

Fig. 8. Behavior of some elements of the MoM matrix as a function of the
frequency: (a) Z and (b) Z . The elements value is normalized to the
maximum value assumed in the considered frequency range (indicated between
brackets), and it is multiplied by k = 2�f

p
"�.

VI. NUMERICAL RESULTS

In this Section, we present some examples of the analysis
capabilities of the MEN approach.

Fig. 9 shows the power reflection coefficient of an infinite
array of crossed dipoles printed on a dielectric slab, versus the
slab thickness indicated with (the unit cell and element geom-
etry is shown in the inset). The simulations were performed for
three different permittivities of the slab, when a TE polarized
plane wave is impinging on the FSS plate almost at broadside

. The unknown currents were expanded in terms of 20
PWLs, and one accessible mode was included in the analysis.
The MoM matrix elements were calculated with a relative pre-
cision of . The results based on the IEMEN method
are displayed in Fig. 9, together with those presented in [7], ob-
tained using a GSM approach. The agreement is remarkable.

Furthermore, we have analysed an FSS, proposed in [1], con-
sisting of an infinite array of Jerusalem cross patches, arranged
in square lattice, with cell dimension 5.091 mm, embedded in a
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Fig. 9. Power reflection coefficient of a crossed-dipole FSS printed on a dielec-
tric slab: comparison between the IEMEN simulation results and those reported
by Mittra in [7].

Fig. 10. Magnitude of the reflection coefficient of a Jerusalem cross FSS em-
bedded in a dielectric slab: comparison between the IEMEN simulation results
and those reported by Munk in [1].

dielectric slab of permittivity and total thickness 1.016
mm. The cross width is 0.171 mm, the length is 4.959 mm, while
the transverse monopoles are 2.223 mm long, as shown in the
inset of Fig. 10. The same figure shows the magnitude of the re-
flection coefficient for TE and TM plane wave incidence at an
angle of on the E-plane, obtained by using 104 PWLs
to expand the unknown currents and by extracting 14 acces-
sible modes from the IE kernel. Excellent agreement is achieved
with the results presented by Munk in [1]. Also in this case, the
MoM matrix elements were calculated with a relative precision
of .

Note that the structure could have been analysed by applying
the procedure in Section V-B and considering only one acces-
sible mode. A more significant case to show the effect of ex-
tracting accessible modes from the IE kernel is depicted in the
inset of Fig. 11. It consists of the cascade of three equal screens

Fig. 11. Magnitude of the transmission coefficient of the 3-layer rectangular
slot FSS described in [30]. Note that the curves have been normalized to the
maximum value.

of rectangular slots arranged in a rectangular lattice and it is
based on the structure described in [30]. The lattice dimensions
are: and . The slots are 0.46 mm
long, 0.15 mm wide and they are cut on a metal plate 0.01 mm
thick. The FSS is studied for TE plane wave incidence, with

and . The structure has been simulated by
treating the thick slots as lengths of rectangular waveguides; the
first 6 accessible modes were extracted from the kernel and the
same modes were also used as basis and test functions. Fig. 11
shows the simulated transmission coefficient together with the
calculated result reported in [30] and the measured values. Note
that while losses in the dielectric could be easily taken into ac-
count in the IEMEN-based tool, the ohmic losses have not been
included yet, while they were introduced in the calculation re-
sults presented in [30]. These results have been normalized in
Fig. 11 with respect to the maximum value. The transmission co-
efficient of this 3-layer FSS has been simulated also for the case
of slots etched on an infinitesimally thin metal sheet, by solving
(15). The equivalent magnetic currents on the slots have been
meshed using 10 PWL functions and 3 accessible modes have
been taken into account in the analysis .
The result of this computation is also shown in Fig. 11. Note
that extracting also the corresponding TM modes with the same
indexes would not have changed the result, because the slots are
very narrow and the magnetic current is mainly oriented along
the direction.

Fig. 12 and Fig. 13 show the scattering and admittance ma-
trix elements calculated for each FSS layer. The admittance el-
ements have a smoother behavior and can be easily interpolated
in the whole frequency range.

VII. CONCLUSION

The IEMEN method, originally introduced to analyse mul-
tilayer waveguide structures, has been extended in this paper
to FSSs consisting of infinitesimally thin metal elements. The
method directly leads to a representation of the FSS in terms of
a GIM or a GAM that depends only on the accessible modes,
without need of additional matrix operations.
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Fig. 12. Some elements of the equivalent scattering matrix of the FSS in
Fig. 11, calculated by means of the IEMEN method with 3 accessible modes,
for TE plane wave incidence.

Fig. 13. Elements of the equivalent admittance matrix of the FSS in Fig. 11,
calculated by means of the IEMEN method with three accessible modes, for TE
plane wave incidence.

With respect to other methods based on equivalent network
representation of a transition (waveguide or FSS), the IEMEN
method offers two significant advantages.

• If a large number of accessible modes need to be
considered, the evaluation of the equivalent admit-
tance/impedance parameters might require high accuracy
in the MoM matrix calculation to prevent ill-conditioning.
While this problem appears in the IEMEN method directly
in the solution of the IE, in the GSM approach it shows
only at the end of the procedure, when deriving the GAM
or GIM from the scattering matrix;

• Since MoM matrix and GAM entries are slowly varying
function of the frequency, due to the extraction of the ac-
cessible modes from the IE kernel, the IEMEN method is
particularly suitable for frequency interpolation.

The application of the IEMEN technique to the analysis of
FSSs has been successfully validated versus results available in
the open literature.

In many cases the calculation of the equivalent admittance or
impedance matrices is the goal of the analysis and not just an
intermediate step toward the scattering parameters. The formu-
lation for the direct derivation of the (reduced) GAM and GIM is
a useful theoretical tool, since these matrices are proportional to
electromagnetic field quantities. For instance, in the evaluation
of the Green’s function of non periodic sources in the presence
of periodic structures [31], a spectral representation of the fields
can be directly obtained on the basis of multimode admittances
or impedance matrices.

APPENDIX

GREEN’S FUNCTION IN TERMS OF FLOQUET MODES

Fig. 14 shows an infinite periodic array of patches, arranged
in a rectangular lattice. The transverse components of the elec-
tric and magnetic fields in proximity of this structure can be ex-
pressed as a linear combination of Floquet vector mode func-
tions, defined with respect to the -axis. The vector mode func-
tions for the TM modes are

(24a)

(24b)

and those for the TE modes are

(25a)

(25b)

with

(26a)

(26b)

(26c)

and

(27)

In these expressions, the index refers to the th Floquet
mode. The propagation of the th Floquet mode along the -di-
rection can be characterized in terms of an equivalent transmis-
sion line circuit. For the case depicted in Fig. 14, it consists of
a current generator in parallel with the transmission lines
representing the propagation of the Floquet mode in the two
half-spaces, as shown in Fig. 15.

The spectral dyadic GF for a two-layered dielectric medium is
obtained by applying the spectral domain immittance approach
described in [32]. In particular, the infinite array periodic GF
for electric source and electric observation point located at the
same height , when the source is a unitary pulse in

with unit Fourier transform, is

(28)
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Fig. 14. Infinite periodic dipole array geometry.

Fig. 15. Equivalent transmission line circuit for a Floquet mode in presence of
a dipole array used for the definition of the GF for electric source and electric
observation.

where for the sake of simplicity
and . If the current generator has unit
amplitude, then the expression for the spectral dyadic GF is:

(29)

where

(30)

(31)

and are
the impedances at the section in the equivalent circuit of
Fig. 15, and they are equal to the parallel of the input imped-
ances, for the TM and TE th mode respectively, when looking
in each one of the two media.

The expression (29) is defined with respect to the polar basis
identified by the unit vectors , and

(32a)

(32b)

(32c)

Introducing the Floquet wave definitions given in (25) and
(24) in (28) and (29) leads to

(33)

where , TM indicates the mode type contribution. At
this point, we can use the concept of accessible modes and sep-
arate in this expression the contribution of the first accessible
modes from that of the localized ones

(34a)

(34b)

The same procedure can be applied for the case of an infinite
periodic array of slots cut on a ground plane (magnetic source
and magnetic observation point) and leads to the following ex-
pression of the infinite periodic GF

(35)
where . In this case are the modal
characteristic impedances for the , TM modes in regions

, 2.
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