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Changing image intensities causes problems for many computer vision applica-
tions operating in unconstrained environments. We propose generally applicable
algorithms to correct for global differences in intensity between images recorded
with a static or slowly moving camera, regardless of the cause of intensity varia-
tion. The proposed intensity correction is based on intensity-quotient estimation.
Various intensity estimation methods are compared. Usability is evaluated with
background classification as example application. For this application we intro-
duced the PIPE error measure evaluating performance and robustness to parame-
ter setting. Our approach retains local intensity information, is always operational
and can cope with fast changes in intensity. We show that for intensity estima-
tion, outlier removal is essential for dynamic scenes. For image sequences with
changing intensity, the best performing algorithm (MofQ) improves foreground-
background classification results up to a factor two to four on real data.
Keywords: Intensity correction, Intensity variation, Camera calibration, Pixel
classification, Time-varying imagery
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Section 1 Introduction 1

1 Introduction

Computer vision has proved very successful in well-constrained industrial environments (for
instance when illumination, objects types, and orientations are known). However, in many
practical applications, including airborne or remote sensing, medical imaging, face recognition,
outdoor robotics, and surveillance applications, the environment can hardly be controlled. Illu-
mination changes by lights switching on or off, or by clouds moving in front of the sun. Automatic
gain control (AGC), white balance and iris are often applied to optimally map the amount of
reflected light to the digitizer dynamic range. However, when scene content changes they cause
changing image intensity over time.

Problems then arise with many algorithms that assume Constant Image Brightness (CIB) or
that are based on the Brightness Constancy Constraint Equation (BCCE). Applications where
image intensity changes cause problems include background subtraction, object tracking, stereo
matching, optical flow computation, video coding and image retrieval.

In this paper we introduce algorithms for correction of global intensity changes in image
sequences. The algorithms estimate and correct for global temporal intensity variations. They
can be applied as pre-processing step for other image processing algorithms as mentioned above.
We limit ourselves to closed form solutions to guarantee possible implementation for real-time
applications. Based on a model of a CCD camera a number of algorithms are proposed. The
algorithms are evaluated on both simulated and real images.

Evaluation of the algorithms is performed on three criteria. First, the precision of the
parameter estimation is evaluated using the sum of squared differences between a reference
image and the corrected image. Second, the usability of the correction is evaluated using the
performance of a representative post processing algorithm. Third, the robustness of the post
processing is evaluated. For all evaluation methods we will show the impact of outlier removal.

For real-world application we will focus on the foreground-background classification problem.
We use the popular online Expectation Maximization (EM) algorithm to estimate a multi-
Gaussian model of the background color for each pixel, see [18, 22, 28]. The model is used
to classify pixels as foreground or background. This is an essential step in many surveillance
applications.

This paper is structured as follows: in section 2 we discuss existing techniques to handle
changes in intensity. We will introduce our model of changing intensity in section 3. There
we will consider the differences between changes in intensity caused by the combination of
a changing scene and automatic gain control, and by changing illumination. In section 4 the
proposed methods are described, according to a model of the CCD camera evaluated in Appendix
A. These methods are evaluated by both simulation and experiments on real images in section
5. Finally, conclusions are presented in section 6.

2 Previous Work

There exists an extensive amount of literature concerning applications like moving object de-
tection, stereo matching or optic flow calculation. Considering that these algorithms normally
expect constant image intensity, it is surprising how little work is done in the area of intensity
correction. In this section we shortly introduce the different techniques that are available for
intensity correction. We evaluate them on accuracy, usability and computational complexity.

The intended algorithm will be used for dynamic scenes with moving objects. These objects
cause a scene change and can decrease the accuracy of the intensity correction. It is therefore
important to have outlier removal, as will be shown in the experiments in section 5. The simplest
way of dealing with changes in intensity is ignoring all intensity information. Intensity invariants
[21] or normalized colors can be used. Instead of intensity information other features can be used,
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for example color [3, 9], edges [11, 13], or depth [5]. However, using these features disregards
the information available in the intensity.

Local changes in intensity are beyond the scope of this paper. However, techniques dealing
with local changes could be used to correct for global changes in intensity. For example, the
pixel ordering in a neighborhood [29] can be used, one can use a maximum likelihood estimate
in an image region [16], or one can use the low frequencies [23]. For background modelling, one
can consider shadow detection, see for example [27, 9, 10, 17]. The use of Kalman prediction to
the kernels in the EM model [22] is another example of a local technique in conjunction with
background modelling. The drawback of these techniques is that they ignore the fact that all
pixels change simultaneously. This leads to a less accurate estimate of the global effect.

Literature reports complicated methods: dynamic histogram warping changes image inten-
sities such that the histograms of the two images become equal [2], by an iteratively weighted
least squares estimation, the bias, gain and gamma of an image can be estimated and corrected
for [25], and estimation of the gain and bias together with optic flow allows the use of optic
flow under global intensity changes [1]. Drawback of these methods is the high computational
complexity. This makes real-time implementation difficult and expensive. Also, [2] and [1] do
not perform outlier removal.

Considering background modelling techniques, a frequently used approach for dealing with
changes in image intensity is relying on the adaptation speed of the background modelling
technique [15]. However, this adaptation will only resolve the problem for relatively slow changes
in intensity, and it is difficult to tune the update speed of the model. A high update speed may
learn slow objects into the background model (missed objects), while a low update speed can
be unable to adapt the model fast enough to cope with changes in intensity (false alarms), see
[24]. No single update speed guarantees acceptable results for all possible situations.

An approach, closely related to relying on the adaptation of the background classification
algorithm, is setting a limit on the fraction of allowed foreground pixels (e.g. 70 %). When this
fraction is exceeded another background model (if available) is chosen or the background model
is re-initialized [13, 24]. The performance will decrease in applications where illumination or
gain changes frequently occur, because after re-initialization a new background model must be
learned. During each learning period classification results are unreliable.

The idea of using multiple instances of a scene taken under different illumination conditions
is also considered in [4, 8]. They use an eigenspace method to overcome complex changes in
illumination (not only intensity but also illumination direction may change). An interesting
approach in conjunction with image retrieval is given in [12]. Their method assumes that the
pixel-wise image ratio of two images from the same object is simpler than the ratio of two
different objects (they define simplicity as based on the complexity of the algebraic function
needed to locally approximate the shape of the image). This assumption allows for object
comparison under complex changes in illumination. Only one measure of similarity is calculated
for the entire image. Therefore, usability is restricted to applications like face recognition and
image retrieval, so this is less general than the scope of this paper, were we are aiming at a
generally applicable method.

A useful approach for real-time applications is the direct calculation of the intensity difference
between two images. This is done using the average [6] or a least squares estimate [14]. However,
these methods are sensible to outliers.

In this paper we want to develop a method for the correction of global changes in intensity
for a static or slowly moving camera that overcomes the above limitations. The method should
be generally applicable and insensitive to outliers in dynamic scenes. It should make optimal
use of local intensity information. Furthermore, it should have low computational cost so that
it can be implemented in real-time.
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3 Model Description

In this section we present a correction algorithm for global changes in intensity. We then
introduce a simplified model of a CCD camera. This model has been experimentally verified for
a range of cameras in Appendix A. Using this model we then introduce the apparent gain factor
that needs to be estimated.

3.1 Global intensity correction

The goal of this paper is to correct for global differences in intensity between two images.
Consider two images ir and it depicting an equal scene at different time instances. There is
global difference in intensity between the two images. We intend to correct for this intensity
difference by

it,corrected =
it
a

, (1)

with a the apparent gain factor. it,corrected and ir have equal global intensity. We will give an
equation for a in this paper.

3.2 Model of CCD cameras

Based on a general model of CCD cameras [7], we report in Appendix A the experimental results
of the different contributions in the CCD model with added gamma correction. An important
conclusion from this work, also published in [26], is that it has been shown that: ”It is wrong
to pick a general model and assume its validity. It is important to validate the model for the
specific camera used.”

For the cameras used in Appendix A that do adhere to the model, the experimental results
allow for simplification of the model. For sufficiently large intensity values, both offset and
additive noise can be neglected. The simplified model of the CCD camera to be used in the
remainder of this paper is now given by

it = gγ
t

(
hti0 + NS

)γ
, (2)

with gt the camera gain, i0 the scene irradiance, ht a factor related to the camera shutter time,
iris size and scene illumination, NS multiplicative noise and γ the value of the gamma function.

3.3 The apparent gain factor

The image recorded at time t will be compared to some reference image r recorded earlier. These
images are given by

it = gγ
t

(
hti0 + NS

)γ (3)

ir = gγ
r

(
hri0 + NS

)γ
. (4)

Changes in image intensity can be caused by either changes in the camera gain gt or changes in
the illumination intensity, iris or shutter resulting in a changed ht.

Considering equal scene, the relation between it and ir is

it = air + Ntotal , (5)

with a equal to that defined in equation 1. As noise Ntotal is zero-mean, this shows that equation
1 can be used for global intensity correction.
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The apparent gain factor a is given by:

a =
( gtht

grhr

)γ
. (6)

Considering the noise of the two images independent gives for the variance in Ntotal:

σ2
total ≈

(
(a2g2

rhr + g2
t ht)i0σ2

t

)γ
, (7)

with σ2
t he variance in the noise in each of the images.

Regardless of the cause, the effect on the apparent gain factor a is the same, see equation
6. Therefore, without loss of generality we can limit ourselves to the estimation of a in the
remainder of this paper. However, there is a difference in effect on the image noise. When the
change in intensity is caused by camera gain the increase in noise is different than when the
illumination intensity, iris or shutter time changes1.

4 Proposed algorithms

To correct for changing intensity we need to estimate the apparent gain factor a between two
images ir and it defined in subsection 3.1. To obtain constant intensity over time we compare
all images to the reference image ir. This results in the apparent gain factor between the
reference image and each other image. These apparent gain factors will be used to correct the
corresponding images.

Because of the noise in both images, this parameter estimation problem is not trivial. Besides
a theoretically optimal estimate, several alternative algorithms will be given here. They will be
compared experimentally in section 5.

4.1 Estimation of the intensity factor

We intend to give an accurate non-iterative estimate of the apparent gain factor a. The less
computation an algorithm requires, the easier it can be implemented in real-time. Therefore
we also present simplifications to the theoretically optimal algorithm. In section 5 we will
experimentally compare these algorithms.

As the majority of the noise contributions are multiplicative, a Weighted Least Squares
(WLS) estimate is a theoretically optimal non-iterative estimate. Minimizing the criterion

L2 =
∑
s∈S

w2
s(it − air)2 , (8)

for all pixels s in set S in least squares sense gives

aWLS =
∑

s∈S w2
sir,sit,s∑

s∈S w2
si

2
r,s

. (9)

The weights w can be calculated using the inverse of the image noise, which depends on the
intensity. Using the common simplification of only multiplicative (shot) noise leads to the
following weights

w2
s =

ir,s
it,sir,s + i2t,s

, (10)

1For an equal change in intensity, the variance in the noise σ2
total,g caused by changing camera gain is approx-

imately σ2
total,g = 1+n

2
σ2

total,h , for γ = 0.5 and with n the amount of change n = gt
gr

or n = ht
hr

respectively.



Section 4 Proposed algorithms 5

using the approximation a = it,s
ir,s

in the weights. This will however increase the influence of low
intensity values. For these values the simplification used is not valid, as the amount of additive
noise will be larger than the amount of multiplicative noise.

To reduce the influence of low intensities and at the same time reduce computational re-
quirements, we can use equal weights. This gives us the standard Least Squares (LS) estimate

aLS =
∑

s∈S ir,sit,s∑
s∈S i2r,s

. (11)

Even simpler and requiring fewer computations is using only the Quotient of the Average
(QofA), related to the L1 criterion:

aQofA =
∑

s∈S it,s∑
s∈S ir,s

. (12)

All methods given above calculate the quotient of two numbers. For statistical outlier re-
moval, see subsection 4.2, it would be profitable to have an intensity ratio per pixel. This can
also be useful for the extension to local intensity correction, see [27] Therefore, we also take the
Average of the pixel-wise Quotient (AofQ) into account

aAofQ =
1
|S|

∑
s∈S

it,s
ir,s

, (13)

with |S| the number of pixels in the set of pixels S.
The experiments will show that it is important to perform outlier removal. Also, the quotient

between two images typically has a positively skewed distribution where the mean would over-
estimated the apparent gain factor. For these reasons the median is also taken into account

aQofM =
Ms∈Sit,s
Ms∈Sir,s

, (14)

and
aMofQ = Ms∈S

it,s
ir,s

, (15)

where M denotes the median of a set of numbers.

4.2 Outlier Removal Algorithm

Comparing the two images ir and it we should take into account that not all pixels will be
stationary in dynamic scenes. Pixels depicting dynamic scene violate the assumption of equal
scene introduced in subsection 3.1. The equations given above are thus only valid for pixels
depicting stationary scene. Non-stationary pixels should be excluded from the apparent gain
factor estimation.

We will investigate outlier removal based on statistics. For applications using foreground/-
background classification, moving objects will cause outliers. In such case classification between
foreground and background can be used for outlier removal. However, this makes the global
intensity correction algorithm less general.

Statistical outlier removal is based on the observation that the majority of the pixels depict
the same scene in both images. We calculate the average µq and standard deviation σq of the
pixel-wise ratio qs between the two images. Pixels for which |qs − µq| < Toutlierσq holds are
labelled as outlier. Toutlier should be chosen such that enough pixels remain for a statistically
accurate estimate, but that only those pixels remain that are very unlikely to be outliers. We
will use Toutlier = 1.
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Another set of pixels that should not be taken into account are pixels that are close to either
the upper or lower bound of the range of pixel values. For pixels close to the lower bound the
additive noise and dark current cannot be neglected, while pixels close to the upper bound may
suffer from saturation problems. Therefore, we will ignore pixels within 10 percent of the upper
and lower bound.

4.3 Creation of the Reference Image

All algorithms proposed need a reference image to compare the current image to. In our exper-
iments, we will use the first image of the image sequences as reference image. This is the most
general solution and requires the least amount of computations. For most applications however,
the reference image should be updated as the scene might change. Some alternatives will be
discussed below.

The reference image can be periodically renewed by selecting a new image from the input.
The image can be selected at random, or based on the amount of background it contains. The
latter is preferred as it will contain less moving objects.

When using background modelling [18, 22] it is possible to use the background model as
reference. With a Gaussian mixture model, the average of the kernel with the largest weight
can be used to compare the current image to, but it is also possible to use the mean of the
best fitting kernel. The latter is expected to give better results for multi-modal backgrounds.
Compared to choosing an image from the sequence, we expect the amount of noise and the
number of foreground pixels in the EM–model reference image to be lower. An additional
advantage of using the EM–model to create the reference image is that it is always up-to-date.
When the background changes, the reference image is automatically adapted. Drawbacks are a
small amount of additional computation.

For a slowly moving camera, each image can be compared to the previous image. If the
motion is (approximately) known, only the overlapping area between the images should be used
for apparent gain factor estimation.

5 Experimental Evaluation

We will experimentally evaluate the proposed algorithms. We will use simulated images to
evaluate the accuracy and usability of the different intensity estimation algorithms in subsection
5.1. We compare the algorithms to each other and to ground truth. Also, the need for outlier
removal is evaluated. The effect of intensity correction in conjunction with classification between
foreground and background on real images is demonstrated in subsection 5.2. We look into the
runtime of the algorithms in subsection 5.3. A discussion of experimental results is given in
subsection 5.4.

For the evaluation of the usability we demonstrate intensity correction in conjunction with
foreground/background classification. For each image the apparent gain factor is calculated and
the image is corrected for it. With this corrected image, a model of the background is updated
using the online Expectation Maximization (EM) algorithm [18]. Four kernels are used to model
the background. They are updated with an update speed uB.

The classification algorithm proposed by Stauffer [22] is used to do classification between
foreground and background. It is based on the assumption that the color distributions of the
foreground and background are distinct. This way, separate kernels will be used to model the
foreground and background. Each kernel is assigned a label, determining whether it models
foreground or background. The background kernels together describe more then a fraction F
of all data. We use F = 0.5 as proposed by Stauffer. Pixel classification is performed by
determining whether a pixel can be assigned to any of the kernels labelled as background. A
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pixel is assigned to a kernel if it’s value is within TStauffer times the kernels standard deviation
from the kernel mean (Stauffer proposes TStauffer = 2.5 in [22]).

5.1 Comparison by simulation

We will evaluate the proposed algorithms using a simulated image sequence. For each image
the apparent gain factor a is estimated and the image is corrected according to equation 1. The
corrected image is used to measure the performance of the intensity correction algorithm and
to perform foreground/background classification.

5.1.1 Image generation

Images are generated based on the full model of the CCD given by equation 20, so without
simplifications. As scene we use the red channel of the first image from the Intratuin image
sequence, see figure 3. In each frame 20 % of the pixels is selected at random and they are given
a foreground value. The foreground value is drawn from a uniform distribution between 0 and
0.5, while the distribution of the background lies between 0 and 1 with peaks around 0.3, 0.6 and
0.8, see figure 5.1.1 for a noiseless example image and figure 5.1.1 for its histogram. We choose
the parameter settings of the image simulation such that they approach an average camera from
the cameras characterization in Appendix A.

The scene intensity is kept constant ht = hr and the camera gain gt is varied, see figure
2. The camera gain is 1 for images 1 to 150 for training and evaluation of the algorithms on
images without changes in intensity. The intensity linearly decreases from 1 at image 150 to 0.5
at image 200 for the evaluation of the algorithms on images with a changing intensity.

Besides the image sequence it, two additional images are created. The reference image ir
which is used for the estimation of the apparent gain factor together with the current image,
and the ground truth image igt. These images have equal illumination and camera gain and do
not have foreground pixels. The ground truth image is noiseless, the reference image contains
noise.

(a) Simulation image

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

(b) Histogram of simulation image

Figure 1: Simulation image and its histogram. The image on the left shows an example image used
for the simulation experiments. On the right the histogram of this image is given.
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Figure 2: The value of the camera gain for the simulated images.

5.1.2 Evaluation criteria

Two criteria for evaluation are used, one for the accuracy of the apparent gain factor and one
for the usability in conjunction with foreground/background classification.

For accuracy evaluation we use the average root mean squares error between the intensity
corrected current image and the ground truth image for all pixels depicting background:

eaccuracy =
1
|B|

∑
b∈B

(
igt,b −

1
a
it,b

)2
, (16)

with |B| the number of pixels in the set of background pixels B. Note that as we use a realistic
setting with noise in the current image, this criterion gives for perfect intensity correction the
standard deviation of the image noise.

The usability of the intensity correction algorithm is evaluated with foreground/background
classification. A Mixture of Gaussians models is updated using online Expectation Maximiza-
tion, with an update speed uB = 0.05. With this model, classification is performed using the
algorithm of Stauffer with a threshold TStauffer = 3. These settings were found to be optimal
for the reference method, without intensity correction, and the given evaluation criterion for
usability defined below. Evaluation is started after 100 frames, allowing the EM background
model to learn on the first 100 frames.

The impact of the intensity correction for our application is expressed in a usability measure:
the classification performance. It shows wether using intensity correction gives an improvement
in the results. We define the usability of the intensity correction as the fraction of erroneously
classified pixels

eusability =
Nerroneous

Ntotal
, (17)

with Nerroneous the number of erroneously classified pixels and Ntotal the total number of pixels.
This assumes equal cost for missed foreground pixels and erroneously detected foreground pixels.
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5.1.3 Simulation results

Besides the six proposed methods, correcting with the ground truth a (GT) and using the
uncorrected image (No) are also presented. The different algorithms for estimating the apparent
gain factor are evaluated with and without outlier removal. For all results, the mean and
standard deviation over the images were calculated for the two sections: static and changing
intensity. The results shown are averaged over fourteen independent noise realizations.

The results for all combinations are given in tables 1 and 2. Most important observations are
a ten times lower accuracy error and a three times lower usability error for methods using outlier
correction compared to no correction. Methods without outlier correction perform significantly
worse.

From the accuracy results we see that as long as there is some kind of outlier removal
(statistical or methods based on the median), accuracy is for most combinations close to the
image noise. Exception is the method QofM, which performs slightly worse. For changing
intensity, the error with correction is ten times lower than without correction. Without outlier
removal results are significantly worse, even on the section with constant intensity.

For usability the results are even more consistent. All combinations that do some kind of
outlier removal (statistical or median) give errors close to the error of correcting with the ground
truth. The error of 6.8% is caused by the fraction of the 20% foreground pixels that overlap
in color with the scene. This should be compared to no correction, where the error triples in
dynamic situations. Combinations without outlier removal perform again worse than those with.

As could be expected the WLS method is only optimal when its assumptions are fulfilled,
in particular with respect to the probability density distributions, so without outliers. The
method is extremely sensitive to outliers, shown by the results without outlier removal. Even
the few outliers remaining after outlier removal are sufficient to decrease the performance of the
WLS method. To a lesser extend, the same holds for LS. A solution would be to use robust
iterative estimators, like M–estimators, but those are very time-consuming and difficult, if not
impossible, to use in real-time. The difference in performance between LS and WLS suggests
that an additive noise model (LS) gives in this case a better description of the data than the
multiplicative noise model used in WLS.

5.2 Evaluation using real image sequences

In simulation experiments optimal parameter settings for the background classification algo-
rithm can be used. In practical situations these optimal settings are often unknown, and the

Table 1: Accuracy results for simulated data. Shown is the average of the error eaccuracy in per-
centages (lower is better). The standard deviations over the frames are given between brackets.

Static intensity Changing intensity
Outl. rem.: No Yes No Yes
Method:

No 1.261 (0.009) 12.56 (7.28)
GT 1.261 (0.009) 1.2660 (0.008)

QofA 2.640 (0.094) 1.2628 (0.009) 2.631 (0.076) 1.268 (0.008)
QofM 2.402 (0.183) 1.2854 (0.038) 2.319 (0.169) 1.307 (0.047)
AofQ 2.361 (0.083) 1.2619 (0.009) 2.361 (0.072) 1.267 (0.008)
MofQ 1.263 (0.011) 1.2606 (0.009) 1.277 (0.008) 1.266 (0.008)
LS 2.897 (0.107) 1.2637 (0.009) 2.878 (0.084) 1.269 (0.008)

WLS 7.496 (0.410) 1.2714 (0.009) 7.199 (0.354) 1.276 (0.009)
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(a) 500 (b) 750 (c) 1000 (d) 1250

Figure 3: Some images from the Intratuin sequence.

system will operate in general at sub-optimal settings of these parameters. So the sensitivity of
the performance to suboptimal settings will play a major role in the evaluation on real image
sequences.

5.2.1 Image sequences

Three image sequences were used for the evaluation, see also figures 3, 4 and 5:

• Intratuin: Parking lot with waving tree branches. In this sequence there is no significant
variation in intensity.The sequence contains cars and pedestrians, moving both slowly and
fast. This sequence has 150x350 pixels and 1250 frames.

• Schiphol: Recorded in the main hall of Schiphol airport. There are a lot of global intensity
variations due to automatic gain control. The sequence contains relatively large objects,
some of which become stationary. This sequence has 90x120 pixels and 1750 frames.

• PETS 2001: We used a cut-out from the images of dataset 3, training, camera 1 from the
IEEE International Workshop on Performance Evaluation of Tracking and Surveillance
2001 (PETS). There are large local changes in illumination intensity due to clouds. The
images contain relatively few object pixels. The part of the image that is used is between
rows 300 and 520, skipping the odd rows and between columns 350 and 750, skipping the
odd columns. This sequence has 120x200 pixels and 5500 frames.

All sequences are RGB color video data with eight bit per color. For each sequence, five to eleven
images were manually labeled. Each pixel was labeled: foreground, background or any. The
label any is used for the edges of objects, where it is difficult (for a human) to decide whether
this pixel should be labeled as either foreground or background. It is also used for some artifacts
in the images like moving objects that stop moving.

The Intratuin and Schiphol sequences are recorded by us and they are available through our
website (www...(left blank for review)), together with the manually labeled ground truth for all
sequences. The PETS 2001 data is available through pets2001.visualsurveillance.org.

5.2.2 ROC performance

We evaluate the intensity correction algorithms based on their usability in conjunction with
classification between foreground and background. The images are corrected with each of the
proposed intensity correction algorithms after which the background model is updated and fore-
ground/background classification is performed.

The choice of the best algorithm for foreground/background classification depends on the
application. In order to make a good choice, the ratio of the cost of a false alarm and the cost
of a missed detection must be known. For the experiments on simulated images described in
subsection 5.1, unity cost was assumed.
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Table 2: Usability results for simulated data. Shown is the average of the error eusability in percent-
ages (lower is better). The standard deviations over the frames are given between brackets. Note
that these results cannot be compared to the results on real data as only one color has been used in
the simulation.

Static intensity Changing intensity
Outl. rem.: No Yes No Yes
Method:

No 6.822 (0.716) 17.87 (5.16)
GT 6.822 (0.716) 6.699 (0.664)

QofA 8.096 (1.162) 6.813 (0.708) 6.887 (0.713) 6.706 (0.665)
QofM 7.894 (1.066) 6.876 (0.694) 6.873 (0.716) 6.760 (0.669)
AofQ 7.751 (1.027) 6.817 (0.711) 6.828 (0.706) 6.705 (0.665)
MofQ 6.823 (0.717) 6.822 (0.716) 6.710 (0.652) 6.710 (0.661)
LS 8.403 (1.335) 6.819 (0.705) 6.937 (0.714) 6.705 (0.664)

WLS 18.11 (6.38) 6.820 (0.708) 7.927 (1.102) 6.709 (0.664)

(a) 250 (b) 750 (c) 1250 (d) 1750

Figure 4: Some images from the Schiphol sequence.

(a) 2000 (b) 3500 (c) 4500 (d) 5500

Figure 5: Some images from the PETS sequence.
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When comparing different classification algorithms, the parameter settings of all algorithms
should be optimized for the chosen cost ratio. For a different application, a different ratio might
be in use and therefore a different algorithm might be optimal. It would be efficient to compare
for different cost rations at once.

Often, Receiver Operator Characteristics (ROCs) are used for this. We construct a ROC
curve by computing the convex hull of the foreground/background classification results for a
selection of parameter settings, see [19, 20]. Given a certain cost fraction, the optimal method
can now easily be found in the graph. We call this curve the total–ROC.

Before foreground/background classification, the EM model was initialized by updating the
model for images 500, 499, and so on until image 1 using a constant update speed uB = 0.05. As
the first frame on which we evaluate is frame 500, this allows the algorithm to initialize during
1000 frames. This enables the evaluation of very low update speeds, for which the sequences
would not be long enough to obtain a converged model of the background. The entire image
sequence was processed several times. Each time using different values for the update speed uB

and threshold TStauffer.
In figure 6 total–ROC curves for a number of methods are given. This are the convex hulls

of the results of experiments in which both the update speed uB and the classification threshold
TStauffer of the background modelling and classification algorithm are varied. As most methods
coincide, we selected only a few methods: the reference method No correction, MofQ with and
without outlier removal and QofA with outlier removal. For the PETS01-3TR1 and Schiphol
sequences the improvement with any of the proposed methods is significant, for the Intratuin
sequence there is also a slight improvement.

Table 3 gives an overview of the surface above the ROC for all methods. For Intratuin,
most methods that do some kind of outlier removal, i.e. statistical outlier removal or using the
median, perform slightly better than without global intensity correction. Only exception is QofM
without outlier removal. For Schiphol and PETS01-3TR1 the methods with outlier removal
perform significantly better with an error reduction of a factor two and three respectively. Best
performance is obtained using MofQ without statistical outlier removal.

5.2.3 Parameter Invariant Performance Evaluation (PIPE)

Unfortunately, the total–ROC is in this case not a sufficient criterion. The problem is that the
effect of global intensity differences can be partially solved by faster updating of the background,
at the cost of robustness. A method might perform well on one image sequence with a certain
update speed, but this does not mean it will perform that well with equal update speed on
another set of images, recorded under different conditions. This is a matter of robustness

Table 3: ROC results for real image sequences. Given is the average of the surface above the
total–ROC in percentages (lower is better).

Data: Intratuin Schiphol PETS01-3TR1 Average
Outlier removal: No Yes. No Yes No Yes No Yes

Method:
No 3.95 2.59 2.28 2.94

QofA 4.19 3.67 2.71 1.38 0.80 0.81 2.57 1.95
QofM 5.38 3.71 1.35 1.34 0.82 0.80 2.51 1.95
AofQ 4.21 3.68 2.03 1.35 0.82 0.79 2.35 1.94
MofQ 3.68 3.68 1.25 1.32 0.76 0.78 1.90 1.93
LS 4.44 3.69 3.01 1.42 0.81 0.80 2.75 1.97

WLS 7.67 3.68 6.08 1.60 1.16 0.80 4.97 2.03
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against setting the parameters, specifically the update speed, that is not taken into account by
comparing total–ROCs.

We therefore propose the Parameter Invariant Performance Evaluation (PIPE) criterion.
PIPE is a measure that gives in one number the average performance on an image sequence
and the robustness against changing the parameters to the optimal parameter settings for other
image sequences. A low error can be achieved by a method that performs well with all pa-
rameter settings, or one that has optimal performance for one setting regardless of the image
sequence. Both cases are attractive to use in practice, where it is difficult and impractical to
tune parameters as the circumstances change.

PIPE is based on ROCs. The parameters we intend to vary are the threshold TStauffer and
the update speed uB, where the update speed is the parameter we wish to be robust against. We
first analyze the effect of this parameter. Therefore, we create for each image sequence lseq and
update speed uB a uB–ROC by varying threshold TStauffer only. We calculate area A(lseq, uB)
under this uB–ROC. This area lies between zero and one, where one corresponds to the perfect
classification result and a value of 0.5 can be obtained by classifying at random.

Figure 7 shows the areas A(lseq, uB) under the uB–ROC for different update speeds for the
methods selected before. This immediately shows that different image sequences can require
different parameter settings, but that intensity correction makes the algorithm more robust
against setting of the update speed. As a consequence, intensity correction makes the algorithm
more robust against changes of the environment. The figure also shows that intensity correction
cannot be substituted by faster updating of the background model. For the PETS01-3TR1
sequence this might be a solution, but for the Intratuin and Schiphol sequences performance
significantly drops for higher update speeds due to misclassification of slowly moving objects.

We wish to obtain one error measure for each image sequence. This can be achieved by
averaging the results of the uB–ROC over the different values of the update speed. In order to
introduce robustness into the evaluation criterium, we weight the different contributions. The
weight is determined by the number of times this update speed was optimal for any of the
image sequences. A value of the update speed is optimal when it lies on the convex hull of the
total–ROC. U(uB) is the average over all image sequences of the normalized histograms of the
occurrence frequency of update speeds on the convex hulls of the total–ROCs. See figure 5.2.3
for some of these histograms.

Our Parameter Invariant Performance Evaluation error ePIPE is now given by one minus this
weighted average

ePIPE(l) = 1− 1
NuB

∑
uεnuB

U(uB)A(l, uB) , (18)

with nuB the list of NuB different values of uB that are used.

5.2.4 PIPE results

Full results according to ePIPE described above are given in table 4. Error reductions of almost
a factor two on the Schiphol sequence and almost a factor four on the PETS01-3TR1 sequence
are obtained. Below we will discuss the results for all sequences in more detail.

For the Intratuin sequence, results of combinations that either do statistical outlier removal
or are based on the median are slightly better then the result without correction, except for QofM
without statistical outlier removal. It is not surprising that the results are close to that without
correction as this image sequence does not contain significant intensity variations. However, this
data does show that the use of intensity correction does not make results worse when there is
no need for correction. Methods that perform best are AofQ and QofA with statistical outlier
removal and MofQ.
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The Schiphol sequence contains considerable changes in intensity due to automatic gain
control. The error is reduced by approximately a factor one-and-a-half for methods that do
some kind of outlier removal. Without outlier removal results are significantly worse. Best
performance is obtained using MofQ.

The PETS01-3TR1 sequence contains changes in intensity caused by moving clouds. There-
fore, these changes are not always global. Nevertheless, results improve significantly when using
any of the the proposed global intensity correction algorithms. An error reduction of almost a
factor four is obtained, the methods based on the median perform best on this image sequence.
Outlier removal does not seem necessary for the LS method on this image sequence. This is
because compared to the other data, there are much less outliers in this image sequence as only
a small fraction of the pixels depict foreground. In this case outlier removal still reduces the
number of pixels and consequently the estimation accuracy of the apparent gain factor.

On average, outlier removal is essential for good results. MofQ performs best with an average
error reduction of more than a factor 1.6.

5.3 Runtime

Our goal is to find an intensity correction algorithm to be used as pre-processing for real-time
applications. Therefore, runtime is an important issue.

We ran all algorithms on an image of 100,000 pixels. The runtime of each algorithm was
averaged over 100 runs. The computations were performed on a Pentium IV 2500 MHz pro-
cessor under Windows 2000 Professional. The algorithms were implemented in Matlab 6.1
(www.mathworks.com). The Matlab implementations for the computation of the mean and
median were used and all computations were performed in double precision.

The results are given in table 5. This table shows that when no statistical outlier removal is
necessary, QofA and AofQ are most affordable, followed by LS. These methods are a good choice
in conjunction with other ways of outlier removal like foreground/background classification.

Otherwise statistical outlier removal should be used, except for methods based on the median
as we have shown. We therefore compare the methods with a median without outlier removal to
the other methods with statistical outlier removal. Then MofQ is the most affordable algorithm,
followed by AofQ and QofA, all very close to each other.

It should be noted that it is not necessary to use all pixels in the image for intensity esti-
mation. According to the amount of processing power available and the accuracy requested, a
fraction of the available pixels can be used. Outlier removal also reduces the number of pixels
that needs to be taken into account.

Table 4: PIPE results for real image sequences. Given is the average of the error ePIPE in percentages
(lower is better).

Data: Intratuin Schiphol PETS01-3TR1 Average
Outlier removal: No Yes. No Yes No Yes No Yes

Method:
No 8.66 6.15 5.04 6.61

QofA 7.92 7.39 5.13 3.97 1.53 1.46 4.86 4.27
QofM 8.96 7.54 3.83 3.90 1.39 1.41 4.73 4.28
AofQ 7.94 7.39 4.92 3.83 1.48 1.47 4.78 4.23
MofQ 7.14 7.23 3.47 3.63 1.41 1.35 4.01 4.07
LS 8.50 7.67 5.38 4.16 1.45 1.45 5.11 4.43

WLS 12.32 7.90 10.17 4.44 1.76 1.49 8.08 4.61
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Table 5: The runtime of the different methods. Times are in milliseconds, standard deviation is
lower than 1.0 ms for all measurements.

method: WLS LS QofA QofM AofQ MofQ
No outlier removoval 36.1 10.2 2.5 52.0 6.1 30.6

Statistical outlier removoval 73.1 46.9 39.4 89.1 38.3 62.7

5.4 Discussion of the experiments

According to simulation results, many algorithms seem to perform very good. Results on real
images shall therefore be used to select between algorithms. We will look at the average ROC
and PIPE performance over all image sequences. We then see that MofQ performs best. This is
also the least computational complex algorithm. AofQ and QofA with statistical outlier removal
are slightly more expensive, and their performance is also lower.

The use of WLS or LS is expensive and these methods are sensitive to remaining outliers.
They are therefore not a good choice if perfect outlier removal cannot be guaranteed. Even
though their average performance is good.

Both AofQ or MofQ use a per-pixel estimate of the gain factor. This allows for easy extension
to local intensity correction. On the other hand, QofA and QofM have the advantage that they
can also be used when the images cannot be compared pixel-wise, like in stereo vision, or when
there is a small movement of the camera between the current image and the reference image.

In practice, the application requiring intensity correction should be considered before choos-
ing a method. Considerations are the required precision, the available computing power, whether
or not the camera is static and whether or not there is an outlier removal algorithm available.
If images can be compared pixel-wise, MofQ is the best choice.

6 Conclusions

6.1 Comparison to previous work

Using simulation we have shown that the proposed intensity correction algorithms perform
equally well as can be obtained using ground truth correction. Thus, under the assumptions of
constant gamma and only global changes in intensity, there is no need to use more expensive
algorithms like dynamic histogram warping [2], iterative weighted least squares estimation of
the bias, gain and gamma [25] and estimation of the gain and bias together with optic flow
estimation [1]. Also, [2] and [1] do not perform outlier removal. We have shown in this paper
that not using outlier removal significantly reduces accuracy and usability.

Our experiments on real data clearly show that only relying on the adaptation of the back-
ground modelling technique [15, 24] is not an option. Tweaking the update speed to reach
acceptable classification performance on one sequence immediately degrades the performance
on other image sequences.

[6] and [14] estimate the intensity change between two images using the average and a least
squares estimate respectively. However, these methods do not consider the effect of outliers,
reducing accuracy and usability.

6.2 Experimental evaluation

For the simulated images the RMS error between the corrected image and the ground truth
image evaluates the accuracy. Results show that methods that use some kind of outlier removal
(either statistical or using the median) performed very close to the noise level for image sequences
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without and with changes in intensity. This indicates that these methods are sufficiently accurate
to be used in practical applications.

Usability of the different methods is demonstrated using background classification on the
corrected image sequences. With constant image intensity, all methods with outlier removal
obtained equal performance compared to using no correction. For image sequences with changing
intensity these methods perform a factor ten better compared to no correction. This is similar
to correcting with ground truth values.

ROC and PETS results on real images without temporal intensity changes show that most
methods performing outlier removal have slightly better classification performance as without
intensity correction. Two image sequences with intensity changes show that the proposed meth-
ods cause significant improvement to the classification performance. Even with local intensity
changes, significant improvements are shown. Error reduction of almost a factor two on the
Schiphol sequence and more than a factor three on the PETS01-3TR1 sequence are obtained.

Using the proposed Parameter Invariant Performance Evaluation PIPE we have further
shown that our proposed intensity correction introduces robustness against varying the up-
date speed of the adaptive background modelling algorithm. It allows lower update speed to be
used, preventing slowly moving objects to be incorporated in the background model.

6.3 General conclusions

In this paper is shown that using global intensity correction based on the ratio of pixels in
conjunction with outlier removal significantly improves background classification results. For
image sequences not needing intensity correction, no decrease of performance is seen.

For the evaluation on real images the Parameter Invariant Performance Evaluation (PIPE)
error measure, based on the ROC, is proposed. It combines both classification error and robust-
ness against changes in parameter settings in one number.

It is believed that the proposed method can be applied and will provide similar benefit to
other image processing algorithms based on Constant Image Brightness (CIB) or the Brightness
Constancy Constraint Equation (BCCE).

A Theoretical model of a CCD camera

Healey [7] describes the following model for a single pixel recorded at time t using a CCD camera:

it = gt(hti0 + µDC + NS + NR) + NQ , (19)

with hti0 the measured scene intensity and it the image intensity. The following noise contri-
butions are present2: the dark current µDC is an offset, constant over time. The shot noise
NS has a Poisson distribution with µS = 0 and σS depending on i0. The readout noise NR

has a Gaussian distribution: µR = 0, σR constant. The quantization noise NQ has a uniform
distribution U(− q

2 , q
2) with q the smallest step in pixel value.

There are three ways to control the global image intensity, we will use the term apparent
gain for their joint effect. It can be controlled using the camera gain gt, or using camera shutter
time or lens iris, modelled together using ht. All can be fixed (manual control) or automatically
adapted to the scene (automatic gain/shutter/iris control).

Additionally, most cameras apply a gamma adjustment to map the range of intensity val-
ues from the CCD to the available output range. Assuming it is implemented in the camera
electronics just before digitization, equation 19 changes to

it = gγ
t

(
hti0 + µDC + NS + NR

)γ + NQ , (20)

2We use µx for the mean of x and σx for its standard deviation.
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with γ the gamma value which is assumed to be time constant and equal for all pixels.

A.1 Experimental validation of the CCD model

In this section we describe experimental evaluation of the model introduced in equation 20.
Besides verification of the model we intend to show the effect of the individual contributions in
the model to allow for the simplifications given in section A.2. In particular, we need to know:

• whether the gamma function used in the camera is sufficiently accurately described by our
model,

• what the effect of the dark current is,

• what the noise distribution is.

First, we will discuss the measurement setup. Then the gamma, dark current and noise
parameters are estimated. Finally, some artifacts and additional measurements are discussed.

A.1.1 Measurement setup

In order to answer the questions given above we did measurements with a range of cameras. A
list of the cameras used is given in table 6. As measurement object we used a half-transparent
plate which is homogeneously back-illuminated. In front of this plate are layers of gray and
brown filters with different thickness, see figure 8. There are nineteen different sections, zero to
five layers of gray filter on the top row and zero to thirteen layers of brown filter on the center
and bottom row. The intensity of each of the nineteen different sections differs, its average
intensity is measured by a photon counter.

Imagery depicting this object was recorded with several cameras. Different sequences were
recorded, each sequence consisting of 100 images to allow reducing the noise by averaging. For
different sequences, different parts of the object were covered. This changes the covered part of
the scene to black, while leaving the remainder of the scene unchanged. This will trigger the
automatic gain control of the cameras used while leaving some sections to measure on.

A.1.2 Gamma estimation

For each sequence of 100 images the standard deviation and average of the red color channel
were calculated per pixel and of the sections with equal intensity. The gamma can now be
estimated from a log-log plot of the average intensity per section against the true (photon
counter measured) intensity of that section. All data points should lie on a straight line (at least
for points with intensity much greater than the dark current) with a slope equal to gamma. An
example of such a graph is depicted in figure 9 top left. The estimated gammas for all cameras
are given in table 7. As expected, all cameras have a gamma smaller than one and the individual
data points are close to a straight line. Therefore we conclude that our model of the gamma is
sufficient.

A.1.3 Dark current estimation

Using the gamma estimated above we correct the image sequences and recalculate the average
intensity for each section. Plotting these against the true intensity of the sections should now
give a straight line which intersects the section-intensity axes at a value related to the dark
current, see figure 9 bottom left. The estimated dark current and the error of the estimate are
given in table 7. The dark current we estimated is for all cameras smaller then the standard
deviation of the estimate, so we conclude that for pixels with a sufficiently large intensity we
can neglect the dark current.
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Table 6: This table lists the cameras used to verify the CCD model.

Camera Description Gain control
JAI CV-M7+CL High end 10-bit digital camera with Bayer filter Fixed
Siemens C810 Digital computer vision color camera Automatic
JVC GR-DVL-157 Digital consumer color video camera Automatic
Philips PCVC680K Color webcam Automatic

Table 7: Results of the camera characterization for each of the cameras. All estimates are least
squares estimates of the available data. Between brackets are the standard deviations of the esti-
mates. The amount of multiplicative noise is given for the highest pixel value (one in our case).

Camera JAI Siemens JVC Philips
Gamma 0.66 (0.02) 0.53 (0.02) 0.72 (0.06) 0.70 (0.10)

Dark Current gthtµDC -0.003 (0.005) -0.0005 (0.009) 0.005 (0.016) 0.005 (0.03)
Add. noise gtNR 0.003 0.003 0.005 0.012

Multipl. noise gtNS 0.021 0.021 0.019 0.011
Quant. noise NQ 0.0003 0.001 0.001 0.001

A.1.4 Noise estimation

The distribution of the noise in the CCD model contains both additive and multiplicative noise.
We plot the standard deviation over the gamma-corrected images against its average for a
number of pixels to see the effect of both contributions, see figure 9 top right. The intersection
of a straight line fitted to this data with the standard deviation axes gives us the contribution
of the additive noise and the slope of the line gives the amount of multiplicative noise. From
estimates of the amount of additive and multiplicative noise given in table 7 we conclude that
for all cameras except the Philips web cam and for pixels with a sufficiently large intensity we
can neglect the additive part of the noise.

A.1.5 Artifacts and additional measurements

The Philips webcam seems to have some artifacts (among others a gamma that changes as the
intensity changes, violating the general model given in equation 20). Therefore our proposed
algorithms might not work correctly on data recorded with such a camera.

Experiments were repeated with different intensity-filters directly in front of the camera lens
to evaluate the effect of lower overall intensity. These additional experiments show the same
effects and therefore also support the conclusions given above. However, their results are not
given here.

In subsection 5.1 simulated images are described. These are based on the parameters as we
measured them in this appendix:

• γ = 0.65

• µDC = 0.07 (worst case from the measured cameras)

• σS = 0.02

• σR = 0.005.
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A.2 Simplifications to the model

The previous section reports the experimental results of the different contributions in this CCD
model. These results allow for simplification of the model. The simplifications are given in this
subsection and lead to the model of the CCD camera to be used in the remainder of this paper.

Our experimental validation concludes that we can neglect the contribution of the dark
current. This simplifies equation 20 to

it = gγ
t

(
hti0 + NS + NR

)γ + NQ . (21)

The remaining noise terms all are zero-mean. The shot noise NS is multiplicative and the readout
noise NR and the quantization noise NQ are additive.

Our experiments also showed that the additive noise contributions (NR and NQ) are negligi-
ble compared to the multiplicative noise contribution for sufficiently large intensity values. This
simplifies the above equation to

it = gγ
t

(
hti0 + NS

)γ
. (22)
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Figure 6: Total–ROCs of the classification results on real data with different values of update speed
and threshold. Only a selection of the methods is shown as most methods coincide.
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(d) U(u) histogram

Figure 7: The area under the uB–ROC for different values of the update speed. The horizontal
lines indicates the area under the total–ROC. Only a selection of the methods is shown as most
methods coincide. Figure (d) shows the corresponding U(uB) histograms.
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(a) Back-illumination off
(JVC)

(b) Back-illumination on, red
channel (JVC)

Figure 8: Two pictures of the measurement object.
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Figure 9: An example of each of the graphs mentioned. Each graph is shown for a different camera.
On the top left we see a log-log plot of the image intensity per section against the true intensity of
the sections. The bottom left graph shows a plot of gamma-corrected image intensity per section
against the true section intensities. The top right graph shows for a number of pixels the standard
deviation over time plot against the average over time. See [26] for more figures.
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