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Abstract Changing image intensities causes problems for
many computer vision applications operating in uncon-
strained environments. We propose generally applicable
algorithms to correct for global differences in intensity
between images recorded with a static or slowly mov-
ing camera, regardless of the cause of intensity variation.
The proposed intensity correction is based on intensity-
quotient estimation. Various intensity estimation methods
are compared. Usability is evaluated with background clas-
sification as example application. For this application we
introduced the PIPE error measure evaluating performance
and robustness to parameter setting. Our approach retains lo-
cal intensity information, is always operational and can cope
with fast changes in intensity. We show that for intensity
estimation, robustness to outliers is essential for dynamic
scenes. For image sequences with changing intensity, the
best performing algorithm (MofQ) improves foreground-
background classification results up to a factor two to four
on real data.
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1 Introduction

Computer vision has proved very successful in well-con-
strained industrial environments (for instance when illumi-
nation, object types, and orientations are known). However,
in many practical applications, including airborne or re-
mote sensing, medical imaging, face recognition, outdoor
robotics, and surveillance applications, the environment can
hardly be controlled. Illumination changes by lights switch-
ing on or off, or by clouds moving in front of the sun.
Automatic gain control (AGC), white balance and iris are
often applied to optimally map the amount of reflected
light to the digitizer dynamic range. However, when scene
content changes they cause changing image intensity over
time.

Problems then arise with many algorithms that assume
Constant Image Brightness (CIB) or that are based on the
Brightness Constancy Constraint Equation (BCCE). Appli-
cations where image intensity changes cause problems in-
clude background subtraction, object tracking, video coding
image retrieval, stereo matching and optical flow computa-
tion. Of course, applications will benefit only when not al-
ready using (local) normalization.

In this paper we introduce algorithms for correction of
global intensity changes in image sequences. The algorithms
estimate and correct for global temporal intensity variations.
They can be applied as pre-processing step for other image
processing algorithms as mentioned above. We limit our-
selves to closed form solutions to guarantee possible imple-
mentation for real-time applications. Based on a model of
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a CCD camera a number of algorithms are proposed. The
algorithms are evaluated on both simulated and real images.

Evaluation of the algorithms is performed on three crite-
ria. First, the accuracy of the parameter estimation is evalu-
ated using the sum of squared differences between a refer-
ence image and the corrected image. Second, the usability of
the correction is evaluated using the performance of a repre-
sentative post processing algorithm. Third, the robustness of
the post processing is evaluated. For all evaluation methods
we will show the impact of statistical outlier removal.

For real-world application we will focus on the fore-
ground-background classification problem. We use the pop-
ular online Expectation Maximization (EM) algorithm to es-
timate a multi-Gaussian model of the background color for
each pixel, see Priebe (1994), Stauffer and Grimson (2000),
Withagen et al. (2004), Withagen (2006). The model is used
to classify pixels as foreground or background. This is an
essential step in many surveillance applications.

This paper is structured as follows: in Sect. 2 we dis-
cuss existing techniques to handle changes in intensity. We
will introduce our model of changing intensity in Sect. 3.
There we will consider the differences between changes in
intensity caused by the combination of a changing scene
and automatic gain control, and by changing illumination.
In Sect. 4 the proposed methods are described, according to
a model of the CCD camera given in Appendix A. These
methods are evaluated by both simulation and experiments
on real images in Sect. 5. Finally, conclusions are presented
in Sect. 6.

2 Previous Work

There exists an extensive amount of literature concerning
applications like moving object detection, stereo matching
or optic flow calculation. Considering that these algorithms
normally expect constant image intensity, it is surprising
how little work is done in the area of intensity correction.
In this section we shortly introduce the different techniques
that are available for intensity correction. We evaluate them
on accuracy, usability and computational complexity.

The intended algorithm will be used for dynamic scenes
with moving objects. These objects cause a scene change
and can decrease the accuracy of the intensity correction. It
is therefore important to be robust against outliers, as will
be shown in the experiments in Sect. 5. The simplest way of
dealing with changes in intensity is ignoring all intensity in-
formation. Intensity invariants (Siebert 2001) or normalized
colors can be used. Instead of intensity information other
features can be used, for example color (Greiffenhagen et
al. 2001; Horprasert et al. 1999), edges (Jabri et al. 2000;
Javed and Shah 2002), or depth (Harville et al. 2001). How-
ever, using these features disregards the information avail-
able in the intensity.

Local changes in intensity are beyond the scope of this
paper. However, techniques dealing with local changes
could be used to correct for global changes in inten-
sity. For example, the pixel ordering in a neighborhood
(Xie et al. 2004) can be used, one can use a maximum
likelihood estimate in an image region (Ohta 2001), or
one can use the low frequencies (Toth et al. 2000). For
background modelling, one can consider shadow detection,
see for example Withagen (2006), Withagen et al. (2008),
Horprasert et al. (1999), Hsieh et al. (2003), Pavlidis and
Morellas (2001). The use of Kalman prediction to the ker-
nels in the EM model (Stauffer and Grimson 2000) is an-
other example of a local technique in conjunction with back-
ground modelling. A drawback of these techniques is that
they ignore the fact that all pixels change simultaneously.
This leads to a less accurate estimate of the global effect.

Literature reports complicated methods: dynamic his-
togram warping changes image intensities such that the his-
tograms of the two images become equal (Cox et al. 1995),
by an iteratively weighted least squares estimation, the bias,
gain and gamma of an image can be estimated and corrected
for Tsin et al. (2001), and estimation of the gain and bias
together with optic flow allows the use of optic flow under
global intensity changes (Altunbasak et al. 2003). A draw-
back of these methods is the high computational complexity.
This makes real-time implementation difficult and expen-
sive. Also, Cox et al. (1995) and Altunbasak et al. (2003) do
not perform outlier removal.

Considering background modelling techniques, a fre-
quently used approach for dealing with changes in image in-
tensity is relying on the adaptation speed of the background
modelling technique (McKenna et al. 2000). However, this
adaptation will only resolve the problem for relatively slow
changes in intensity, and it is difficult to tune the update
speed of the model. A high update speed may learn slow
objects into the background model (missed objects), while
a low update speed can be unable to adapt the model fast
enough to cope with changes in intensity (false alarms), see
Toyama et al. (1999). No single update speed guarantees ac-
ceptable results for all possible situations.

An approach, closely related to relying on the adapta-
tion of the background classification algorithm, is setting
a limit on the fraction of allowed foreground pixels (e.g.
70%). When this fraction is exceeded another background
model (if available) is chosen or the background model is
re-initialized (Javed and Shah 2002; Toyama et al. 1999).
The performance will decrease in applications where illu-
mination or gain changes frequently occur, because after re-
initialization a new background model must be learned. Dur-
ing each learning period classification results are unreliable.

The idea of using multiple instances of a scene taken un-
der different illumination conditions is also considered in
Hager and Belhumeur (1998), Hischof et al. (2004). They
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use an eigenspace method to overcome complex changes in
illumination (not only intensity but also illumination direc-
tion may change). An interesting approach in conjunction
with image retrieval is given in Jacobs et al. (1998). Their
method assumes that the pixel-wise image ratio of two im-
ages from the same object is simpler than the ratio of two
different objects (they define simplicity as based on the com-
plexity of the algebraic function needed to locally approxi-
mate the shape of the image). This assumption allows for
object comparison under complex changes in illumination.
Only one measure of similarity is calculated for the entire
image. Therefore, usability is restricted to applications like
face recognition and image retrieval, so this is less general
than the scope of this paper, were we are aiming at a gener-
ally applicable method.

A useful approach for real-time applications is the direct
calculation of the intensity difference between two images.
This is done using the average (He et al. 2003) or a least
squares estimate (Kamikura et al. 1998). However, these
methods are sensitive to outliers.

In this paper we want to develop a method for the cor-
rection of global changes in intensity for a static or slowly
moving camera that overcomes the above limitations. The
method should be generally applicable and insensitive to
outliers in dynamic scenes. It should make optimal use of
local intensity information. Furthermore, it should have low
computational cost so that it can be implemented in real-
time.

3 Model Description

In this section we present a correction algorithm for global
changes in intensity. We then introduce a simplified model
of a CCD camera. This model has been experimentally ver-
ified for a range of cameras in Withagen et al. (2007).

3.1 Global Intensity Correction

The goal of this paper is to correct for global differences in
intensity between two images. Consider two images ir and
it depicting an equal scene at different time instances. There
is global difference in intensity between the two images. We
intend to correct for this intensity difference by

it,corrected = it

a
, (1)

with a the apparent gain factor. it,corrected and ir have equal
global intensity. We will give an equation for a in this paper.

3.2 Model of CCD Cameras

Based on a general model1 of CCD cameras (Healey and
Kondepudy 1994), we report in Appendix A a simplified
CCD model with added gamma correction. This model is
based on experimental evaluation described in Withagen et
al. (2007, 2005). An important conclusion from this work is
that it has been shown that: “It is wrong to pick a general
model and assume its validity. It is important to validate the
model for the specific camera used.”

For the cameras that adhere to the model, the experimen-
tal results allow for simplification of the model. For suffi-
ciently large intensity values, both offset and additive noise
can be neglected. The simplified model of the CCD camera
to be used in the remainder of this paper is now given by

it = g
γ
t (ht i0 + NS)γ , (2)

with gt the camera gain, i0 the scene irradiance, ht a factor
related to the camera shutter time, iris size and scene illu-
mination, NS signal dependent noise and γ the value of the
gamma function.

3.3 The Naive Gain Factor

The image recorded at time t will be compared to some ref-
erence image r recorded earlier. These images are given by

it = g
γ
t (ht i0 + NS)γ , (3)

ir = g
γ
r (hr i0 + NS)γ . (4)

Changes in image intensity can be caused by either changes
in the camera gain gt or changes in the illumination inten-
sity, iris or shutter resulting in a changed ht .

From (1) follows that

a = g
γ
t (ht i0 + NS)γ

g
γ
r (hr i0 + NS)γ

=
(

gt (ht i0 + NS)

gr(hr i0 + NS)

)γ

. (5)

Neglecting noise terms, the naive gain factor an is given by:

an =
(

gtht

grhr

)γ

. (6)

Both with changes in gain g and amount of light h, the
effect on the naive gain factor an is the same, see (6).

4 Proposed Algorithms

To correct for changing intensity we need to estimate the
apparent gain factor a between two images ir and it defined

1Only the characteristics of the CCD sensor have been modeled, not
the optical effects such as vignetting.
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in Sect. 3.1. To obtain constant intensity over time we com-
pare all images to the reference image ir . This results in the
apparent gain factor between the reference image and each
other image. These apparent gain factors will be used to cor-
rect the corresponding images.

4.1 Estimation of the Intensity Factor

We intend to give an accurate non-iterative estimate of the
apparent gain factor a. Because of the noise in both images,
this parameter estimation problem is not trivial. Also, the
less computation an algorithm requires, the easier it can be
implemented in real-time. Therefore we also present simpli-
fications to the theoretically optimal algorithm. In Sect. 5 we
will experimentally compare these algorithms.

As the majority of the noise contributions are signal de-
pendent, a Weighted Least Squares (WLS) estimate is a
theoretically optimal non-iterative estimate. Minimizing the
criterion

L2 =
∑
s∈S

w2
s (it,s − air,s)

2, (7)

for all pixels s in set S in least squares sense gives

aWLS =
∑

s∈S w2
s ir,s it,s∑

s∈S w2
s i

2
r,s

. (8)

The weights w can be calculated using the inverse of the
image noise, which depends on the intensity. The general
formula for a non-unity γ is quite complicated, and here is
approximated by the case for unity γ . Assuming shot noise,
the noise variance of it will relate to it , and similar the noise
variance of ir will relate to ir . This leads to the following
weights

w2
s = ir,s

it,s ir,s + i2
t,s

, (9)

using a = it,s
ir,s

, as follows from (1), in the weights. This
will however increase the influence of low intensity values.
For these values the simplification used is not valid, as the
amount of additive noise will be larger than the amount of
signal dependent noise.

To reduce the influence of low intensities and at the same
time reduce computational requirements, we can use equal
weights. This gives us the standard Least Squares (LS) esti-
mate

aLS =
∑

s∈S ir,s it,s∑
s∈S i2

r,s

. (10)

Even simpler and requiring fewer computations is using
only the Quotient of the Average (QofA), related to the L1

criterion:

aQofA =
∑

s∈S it,s∑
s∈S ir,s

. (11)

All methods given above calculate the quotient of two
numbers. For statistical outlier removal, see Sect. 4.2, it
would be profitable to have an intensity ratio per pixel. This
can also be useful for the extension to local intensity correc-
tion, see Withagen et al. (2008) Therefore, we also take the
Average of the pixel-wise Quotient (AofQ) into account

aAofQ = 1

|S|
∑
s∈S

it,s

ir,s
, (12)

with |S| the number of pixels in the set of pixels S.
The experiments will show that it is important to be

robust against outliers. Also, the quotient between two
noisy images typically has a positively skewed distribution
(Wikipedia on Ratio distribution) where the mean would
over-estimated the apparent gain factor. For these reasons
the median is also taken into account

aQofM = Ms∈Sit,s

Ms∈Sir,s
, (13)

and

aMofQ = Ms∈S

it,s

ir,s
, (14)

where M denotes the median of a set of numbers.

4.2 Outlier Removal Algorithm

Comparing the two images ir and it we should take into
account that not all pixels will be stationary in dynamic
scenes. Pixels depicting dynamic scenes violate the assump-
tion of equal scene introduced in Sect. 3.1. The equations
given above are thus only valid for pixels depicting station-
ary scene. Non-stationary pixels should be excluded from
the apparent gain factor estimation.

We will investigate outlier removal based on statistics.
For applications using foreground/background classifica-
tion, moving objects will cause outliers. In such case clas-
sification between foreground and background can be used
for outlier removal. However, this makes the global intensity
correction algorithm less general.

Statistical outlier removal is based on the observation that
the majority of the pixels depict the same scene in both im-
ages. We calculate the average μq and standard deviation
σq of the pixel-wise ratio qs between the two images. Pixels
for which |qs − μq | < Toutlierσq holds are labelled as out-
lier. Different values of Toutlier have not been evaluated, but
it should be of minor influence as long as it is chosen such
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that enough pixels remain for a statistically accurate esti-
mate, but that only those pixels remain that are very unlikely
to be outliers. We will use Toutlier = 1.

Another set of pixels that should not be taken into ac-
count are pixels that are close to either the upper or lower
bound of the range of pixel values. Pixels close to the up-
per bound may suffer from saturation problems. For pixels
close to the lower bound the additive noise and dark current
cannot be neglected, and also the influence of the shot noise,
with a

√
i relationship, will be higher. For the low values this

may lead to a more biased estimates. Therefore, we will ig-
nore pixels within 10 percent of the upper and lower bound.
Again, varying these numbers is expected to have minor in-
fluence on the results.

4.3 Creation of the Reference Image

All algorithms proposed need a reference image to compare
the current image to. In our experiments, we will use the
first image of the image sequences as reference image. This
is the most general solution and requires the least amount of
computations. For most applications however, the reference
image should be updated as the scene might change. Some
alternatives will be discussed below.

The reference image can be periodically renewed by se-
lecting a new image from the input. The image can be se-
lected at random, or based on the amount of background it
contains. The latter is preferred as it will contain less mov-
ing objects.

When using background modelling (Priebe 1994; Stauf-
fer and Grimson 2000) it is possible to use the background
model as reference. With a Gaussian mixture model, the
average of the kernel with the largest weight can be used
to compare the current image to, but it is also possible to
use the mean of the best fitting kernel. The latter is ex-
pected to give better results for multi-modal backgrounds.
Compared to choosing an image from the sequence, we ex-
pect the amount of noise and the number of foreground
pixels in the EM-model reference image to be lower. An
additional advantage of using the EM-model to create the
reference image is that it is always up-to-date. When the
background changes, the reference image is automatically
adapted. Drawbacks are a small amount of additional com-
putation.

For a slowly moving camera, each image can be com-
pared to the previous image. If the motion is (approx-
imately) known, only the overlapping area between the
images should be used for apparent gain factor estima-
tion.

5 Experimental Evaluation

We will experimentally evaluate the proposed algorithms.
We will use simulated images to evaluate the accuracy and

usability of the different intensity estimation algorithms in
Sect. 5.1. We compare the algorithms to each other and to
ground truth. Also, the need for outlier removal is evaluated.
The effect of intensity correction in conjunction with classi-
fication between foreground and background on real images
is demonstrated in Sect. 5.2. We look into the runtime of the
algorithms in Sect. 5.3. A discussion of experimental results
is given in Sect. 5.4.

For the evaluation of the usability we demonstrate inten-
sity correction in conjunction with foreground/background
classification. For each image the apparent gain factor is
calculated and the image is corrected for it. With this cor-
rected image, a model of the background is updated us-
ing the online Expectation Maximization (EM) algorithm
(Priebe 1994). Four kernels are used to model the back-
ground. They are updated with an update speed uB.

The classification algorithm proposed by Stauffer (2000)
is used to do classification between foreground and back-
ground. It is based on the assumption that the color distrib-
utions of the foreground and background are distinct. This
way, separate kernels will be used to model the foreground
and background. Each kernel is assigned a label, determin-
ing whether it models foreground or background. The back-
ground kernels together describe more then a fraction F of
all data. We use F = 0.5 as proposed by Stauffer. Pixel clas-
sification is performed by determining whether a pixel can
be assigned to any of the kernels labelled as background. A
pixel is assigned to a kernel if it’s value is within TStauffer

times the kernels standard deviation from the kernel mean
(Stauffer proposes TStauffer = 2.5 in Stauffer and Grimson
2000).

5.1 Comparison by Simulation

We will evaluate the proposed algorithms using a simulated
image sequence. For each image the apparent gain factor
a is estimated and the image is corrected according to (1).
The corrected image is used to measure the performance
of the intensity correction algorithm and to perform fore-
ground/background classification.

5.1.1 Image Generation

Images are generated based on the full model of the CCD
given by (19), so without simplifications. As scene we use
the red channel of the first image from the Intratuin image
sequence, see Fig. 1. In each frame 20% of the pixels is se-
lected at random and they are given a foreground value. The
foreground value is drawn from a uniform distribution be-
tween 0 and 0.5, while the distribution of the background
lies between 0 and 1 with peaks around 0.3, 0.6 and 0.8,
see Fig. 1 for a noiseless example image and its histogram.
We choose the parameter settings of the image simulation
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Fig. 1 Simulation image and its histogram. The image on the left shows an example image used for the simulation experiments. On the right the
histogram of this image is given

Fig. 2 The value of the camera
gain for the simulated images

such that they approach an average camera from the cam-
eras characterization in Withagen et al. (2007).

The scene intensity is kept constant ht = hr and the cam-
era gain gt is varied, see Fig. 2. The camera gain is 1 for im-
ages 1 to 150 for training and evaluation of the algorithms
on images without changes in intensity. The intensity lin-
early decreases from 1 at image 150 to 0.5 at image 200 for
the evaluation of the algorithms on images with a changing
intensity.

Besides the image sequence it , two additional images are
created. The reference image ir which is used for the esti-
mation of the apparent gain factor together with the current
image, and the ground truth image igt. These images have
equal illumination and camera gain and do not have fore-
ground pixels. The ground truth image is noiseless, the ref-
erence image contains noise.

5.1.2 Evaluation Criteria

Two criteria for evaluation are used, one for the accuracy of
the apparent gain factor and one for the usability in conjunc-
tion with foreground/background classification.

For accuracy evaluation we use the root mean squares
error between the intensity corrected current image and the
ground truth image for all pixels depicting background:

eaccuracy =
√√√√ 1

|B|
∑
b∈B

(
igt,b − 1

a
it,b

)2

, (15)

with |B| the number of pixels in the set of background pix-
els B . Note that as we use a realistic setting with noise in
the current image, this criterion gives for perfect intensity
correction the standard deviation of the image noise.

The usability of the intensity correction algorithm is eval-
uated with foreground/background classification. A Mixture
of Gaussians model is updated using online Expectation
Maximization, with an update speed uB = 0.05. With this
model, classification is performed using the algorithm of
Stauffer with a threshold TStauffer = 3. These settings were
found to be optimal for the reference method, without in-
tensity correction, and the given evaluation criterion for us-
ability defined below. Evaluation is started after 100 frames,
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Table 1 Accuracy results for
simulated data. Shown is the
average of the error eaccuracy in
percentages (lower is better).
The standard deviations over the
frames are given between
brackets

Outl. rem.: Static intensity Changing intensity

No Yes No Yes

Method:

No 1.261 (0.009) 12.56 (7.28)

GT 1.261 (0.009) 1.2660 (0.008)

QofA 2.640 (0.094) 1.2628 (0.009) 2.631 (0.076) 1.268 (0.008)

QofM 2.402 (0.183) 1.2854 (0.038) 2.319 (0.169) 1.307 (0.047)

AofQ 2.361 (0.083) 1.2619 (0.009) 2.361 (0.072) 1.267 (0.008)

MofQ 1.263 (0.011) 1.2606 (0.009) 1.277 (0.008) 1.266 (0.008)

LS 2.897 (0.107) 1.2637 (0.009) 2.878 (0.084) 1.269 (0.008)

WLS 7.496 (0.410) 1.2714 (0.009) 7.199 (0.354) 1.276 (0.009)

Table 2 Usability results for
simulated data. Shown is the
average of the error eusability in
percentages (lower is better).
The standard deviations over the
frames are given between
brackets. Note that these results
cannot be compared to the
results on real data as only one
color has been used in the
simulation

Outl. rem.: Static intensity Changing intensity

No Yes No Yes

Method:

No 6.822 (0.716) 17.87 (5.16)

GT 6.822 (0.716) 6.699 (0.664)

QofA 8.096 (1.162) 6.813 (0.708) 6.887 (0.713) 6.706 (0.665)

QofM 7.894 (1.066) 6.876 (0.694) 6.873 (0.716) 6.760 (0.669)

AofQ 7.751 (1.027) 6.817 (0.711) 6.828 (0.706) 6.705 (0.665)

MofQ 6.823 (0.717) 6.822 (0.716) 6.710 (0.652) 6.710 (0.661)

LS 8.403 (1.335) 6.819 (0.705) 6.937 (0.714) 6.705 (0.664)

WLS 18.11 (6.38) 6.820 (0.708) 7.927 (1.102) 6.709 (0.664)

allowing the EM background model to learn on the first 100
frames.

The impact of the intensity correction for our application
is expressed in a usability measure: the classification perfor-
mance. It shows whether using intensity correction gives an
improvement in the results. We define the usability of the
intensity correction as the fraction of erroneously classified
pixels

eusability = Nerroneous

Ntotal
, (16)

with Nerroneous the number of erroneously classified pixels
and Ntotal the total number of pixels. This assumes equal
cost for missed foreground pixels and erroneously detected
foreground pixels.

5.1.3 Simulation Results

Besides the six proposed methods, correcting with the
ground truth a (GT) and using the uncorrected image (No)
are also presented. The different algorithms for estimating
the apparent gain factor are evaluated with and without out-
lier removal. For all results, the mean and standard deviation
over the images were calculated for the two sections: static

and changing intensity. The results shown are averaged over
fourteen independent noise realizations.

The results for all combinations are given in Tables 1
and 2. Most important observations are a ten times lower
accuracy error and a three times lower usability error for
methods using outlier correction compared to no correc-
tion. Methods without outlier correction perform signifi-
cantly worse.

From the accuracy results we see that as long as there
is some kind of outlier robustness (statistical outlier re-
moval or methods based on the median), accuracy is for
most combinations close to the image noise. Exception is the
method QofM, which performs slightly worse. For changing
intensity, the error with correction is ten times lower than
without correction. Without outlier removal results are sig-
nificantly worse, even on the section with constant inten-
sity.

For usability the results are even more consistent. All
combinations that are robust to outliers (statistical outlier
removal or median) give errors close to the error of cor-
recting with the ground truth. The error of 6.8% is caused
by the fraction of the 20% foreground pixels that overlap in
color with the scene. This should be compared to no cor-
rection, where the error triples in dynamic situations. Com-
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Fig. 3 Some images from Intratuin sequence

Fig. 4 Some images from Schiphol sequence

Fig. 5 Some images from PETS sequence

binations without outlier removal perform again worse than
those with.

As could be expected the WLS method is only optimal
when its assumptions are fulfilled, in particular with respect
to the probability density distributions, so without outliers.
The method is extremely sensitive to outliers, shown by the
results without outlier removal. Even the few outliers re-
maining after outlier removal are sufficient to decrease the
performance of the WLS method. To a lesser extend, the
same holds for LS. A solution would be to use robust itera-
tive estimators, like M-estimators, but those are very time-
consuming and difficult, if not impossible, to use in real-
time. The difference in performance between LS and WLS
suggests that an additive noise model (LS) gives in this case
a better description of the data than the signal dependent
noise model used in WLS.

5.2 Evaluation Using Real Image Sequences

In simulation experiments optimal parameter settings for the
background classification algorithm can be used. In practi-
cal situations these optimal settings are often unknown, and
the system will operate in general at sub-optimal settings of
these parameters. So the sensitivity of the performance to
suboptimal settings will play a major role in the evaluation
on real image sequences.

5.2.1 Image Sequences

Three image sequences were used for the evaluation, see
also Figs. 3, 4 and 5:

• Intratuin: Parking lot with waving tree branches. In this
sequence there is no significant variation in intensity.
The sequence contains cars and pedestrians, moving both
slowly and fast. This sequence has 150 × 350 pixels and
1250 frames.

• Schiphol: Recorded in the main hall of Schiphol airport.
There are a lot of global intensity variations due to auto-
matic gain control. The sequence contains relatively large
objects, some of which become stationary. This sequence
has 90 × 120 pixels and 1750 frames.

• PETS 2001: We used a cut-out from the images of
dataset 3, training, camera 1 from the IEEE International
Workshop on Performance Evaluation of Tracking and
Surveillance 2001 (PETS). There are large local changes
in illumination intensity due to clouds. The images con-
tain relatively few object pixels. The part of the image
that is used is between rows 300 and 520, skipping the
odd rows and between columns 350 and 750, skipping
the odd columns. This sequence has 120 × 200 pixels and
5500 frames.

All sequences are RGB color video data with eight bit per
color. For each sequence, five to eleven images were man-
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ually labeled. Each pixel was labeled: foreground, back-
ground or any. The label any is used for the edges of ob-
jects, where it is difficult (for a human) to decide whether
this pixel should be labeled as either foreground or back-
ground. It is also used for some artifacts in the images like
moving objects that stop moving.

The Intratuin and Schiphol sequences are recorded by us
and they are available through our website [www.science.uva.
nl/sites/PedestrainClass/paul/] together with the manually
labeled ground truth for all sequences. The PETS 2001 data
is available through pets2001.visualsurveillance.org.

5.2.2 ROC Performance

We evaluate the intensity correction algorithms based on
their usability in conjunction with classification between
foreground and background. The images are corrected with
each of the proposed intensity correction algorithms after
which the background model is updated and foreground/-
background classification is performed.

The choice of the best algorithm for foreground/back-
ground classification depends on the application. In order to
make a good choice, the ratio of the cost of a false alarm and
the cost of a missed detection must be known. For the exper-
iments on simulated images described in Sect. 5.1, unity cost
was assumed.

When comparing different classification algorithms, the
parameter settings of all algorithms should be optimized for
the chosen cost ratio. For a different application, a differ-
ent ratio might be in use and therefore a different algorithm
might be optimal. It would be efficient to compare for dif-
ferent cost ratios at once.

Often, Receiver Operator Characteristics (ROCs) are
used for this. We construct a ROC curve by computing the
convex hull of the foreground/background classification re-
sults for a selection of parameter settings, see Provost and
Fawcett (2001), Scott et al. (1998). Given a certain cost frac-
tion, the optimal method can now easily be found in the
graph. We call this curve the total-ROC.

Before foreground/background classification, the EM
model was initialized by updating the model for images
500, 499, and so on until image 1 using a constant update
speed uB = 0.05. As the first frame on which we evaluate
is frame 500, this allows the algorithm to initialize during
1000 frames. This enables the evaluation of very low update
speeds, for which the sequences would not be long enough
to obtain a converged model of the background. The entire
image sequence was processed several times, each time us-
ing different values for the update speed uB and threshold
TStauffer.

In Fig. 6 total-ROC curves for a number of methods are
given. These are the convex hulls of the results of exper-
iments in which both the update speed uB and the clas-
sification threshold TStauffer of the background modelling

and classification algorithm are varied. As most methods
coincide, we selected only a few methods: the reference
method No correction, MofQ with and without outlier re-
moval and QofA with outlier removal. For the PETS01-
3TR1 and Schiphol sequences the improvement with any
of the proposed methods is significant, for the Intratuin se-
quence there is also a slight improvement.

Table 3 gives an overview of the surface above the ROC
for all methods. For Intratuin, most methods that are robust
to outliers, i.e. statistical outlier removal or using the me-
dian, perform slightly better than without global intensity
correction. The only exception is QofM without outlier re-
moval. For Schiphol and PETS01-3TR1 the methods with
outlier removal perform significantly better with an error
reduction of a factor two and three respectively. Best per-
formance is obtained using MofQ without statistical outlier
removal.

5.2.3 Parameter Invariant Performance Evaluation (PIPE)

Unfortunately, the total-ROC is in this case not a sufficient
criterion. The problem is that the effect of global inten-
sity differences can be partially solved by faster updating of
the background, at the cost of robustness. A method might
perform well on one image sequence with a certain update
speed, but this does not mean it will perform that well with
equal update speed on another set of images, recorded under
different conditions. This is a matter of robustness against
setting the parameters, specifically the update speed, that is
not taken into account by comparing total-ROCs.

We therefore propose the Parameter Invariant Perfor-
mance Evaluation (PIPE) criterion. PIPE is a measure that
gives in one number the average performance on an image
sequence and the robustness against changing the parame-
ters to the optimal parameter settings for other image se-
quences. A low error can be achieved by a method that per-
forms well with all parameter settings, or one that has op-
timal performance for one setting regardless of the image
sequence. Both cases are attractive to use in practice, where
it is difficult and impractical to tune parameters as the cir-
cumstances change.

PIPE is based on ROCs. The parameters we intend to vary
are the threshold TStauffer and the update speed uB, where the
update speed is the parameter we wish to be robust against.
We first analyze the effect of this parameter. Therefore, we
create for each image sequence lseq and update speed uB

a uB-ROC by varying threshold TStauffer only. We calculate
area A(lseq, uB) under this uB-ROC. This area lies between
zero and one, where one corresponds to the perfect classifi-
cation result and a value of 0.5 can be obtained by classify-
ing at random.

Figure 7 shows the areas A(lseq, uB) under the uB-ROC
for different update speeds for the methods selected before.

http://www.science.uva.nl/sites/PedestrainClass/paul/
http://www.science.uva.nl/sites/PedestrainClass/paul/
http://pets2001.visualsurveillance.org
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Fig. 6 Total-ROCs of the
classification results on real data
with different values of update
speed and threshold. Only a
selection of the methods is
shown as most methods coincide

Table 3 ROC results for real
image sequences. Given is the
average of the surface above the
total-ROC in percentages (lower
is better)

Data: Intratuin Schiphol PETS01-3TR1 Average

Outlier removal: No Yes No Yes No Yes No Yes

Method:

No 3.95 2.59 2.28 2.94

QofA 4.19 3.67 2.71 1.38 0.80 0.81 2.57 1.95

QofM 5.38 3.71 1.35 1.34 0.82 0.80 2.51 1.95

AofQ 4.21 3.68 2.03 1.35 0.82 0.79 2.35 1.94

MofQ 3.68 3.68 1.25 1.32 0.76 0.78 1.90 1.93

LS 4.44 3.69 3.01 1.42 0.81 0.80 2.75 1.97

WLS 7.67 3.68 6.08 1.60 1.16 0.80 4.97 2.03

This immediately shows that different image sequences can
require different parameter settings, but that intensity cor-
rection makes the algorithm more robust against setting of
the update speed. As a consequence, intensity correction
makes the algorithm more robust against changes of the en-
vironment. The figure also shows that intensity correction
cannot be substituted by faster updating of the background
model. For the PETS01-3TR1 sequence this might be a so-
lution, but for the Intratuin and Schiphol sequences perfor-
mance significantly drops for higher update speeds due to
misclassification of slowly moving objects.

We wish to obtain one error measure for each image se-
quence. This can be achieved by averaging the results of the
uB-ROC over the different values of the update speed. In or-
der to introduce robustness into the evaluation criterium, we
weight the different contributions. The weight is determined
by the number of times this update speed was optimal for
any of the image sequences. A value of the update speed is
optimal when it lies on the convex hull of the total-ROC.
U(uB) is the average over all image sequences of the nor-
malized histograms of the occurrence frequency of update
speeds on the convex hulls of the total-ROCs.



Int J Comput Vis (2010) 86: 33–47 43

Fig. 7 Each legend entry
corresponds to two lines in each
figure. The curved line is the
area under the uB-ROC for
different values of the update
speed. The horizontal lines
indicates the area under the
total-ROC. Only a selection of
the methods is shown as most
methods coincide. Figure (d)
shows the corresponding U(uB)

histograms

Table 4 PIPE results for real
image sequences. Given is the
average of the error ePIPE in
percentages (lower is better)

Data: Intratuin Schiphol PETS01-3TR1 Average

Outlier removal: No Yes No Yes No Yes No Yes

Method:

No 8.66 6.15 5.04 6.61

QofA 7.92 7.39 5.13 3.97 1.53 1.46 4.86 4.27

QofM 8.96 7.54 3.83 3.90 1.39 1.41 4.73 4.28

AofQ 7.94 7.39 4.92 3.83 1.48 1.47 4.78 4.23

MofQ 7.14 7.23 3.47 3.63 1.41 1.35 4.01 4.07

LS 8.50 7.67 5.38 4.16 1.45 1.45 5.11 4.43

WLS 12.32 7.90 10.17 4.44 1.76 1.49 8.08 4.61

Our Parameter Invariant Performance Evaluation error
ePIPE is now given by one minus this weighted average

ePIPE(l) = 1 − 1

NuB

∑
uεnuB

U(uB)A(l, uB), (17)

with nuB the list of NuB different values of uB that are used.

5.2.4 PIPE Results

Full results according to ePIPE described above are given
in Table 4. Error reductions of almost a factor two on the
Schiphol sequence and almost a factor four on the PETS01-
3TR1 sequence are obtained. Below we will discuss the re-
sults for all sequences in more detail.

For the Intratuin sequence, results of combinations that
either do statistical outlier removal or are based on the me-
dian are slightly better then the result without correction,
except for QofM without statistical outlier removal. It is not
surprising that the results are close to that without correction
as this image sequence does not contain significant intensity
variations. However, this data does show that the use of in-
tensity correction does not make results worse when there is
no need for correction. Methods that perform best are AofQ
and QofA with statistical outlier removal and MofQ.

The Schiphol sequence contains considerable changes in
intensity due to automatic gain control. The error is reduced
by approximately a factor one-and-a-half for methods that
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Table 5 The runtime of the
different methods. Times are in
milliseconds, standard deviation
is lower than 1.0 ms for all
measurements

Method: WLS LS QofA QofM AofQ MofQ

No outlier removoval 36.1 10.2 2.5 52.0 6.1 30.6

Statistical outlier removoval 73.1 46.9 39.4 89.1 38.3 62.7

are robust to outliers. Non-robust methods results are signif-
icantly worse. Best performance is obtained using MofQ.

The PETS01-3TR1 sequence contains changes in inten-
sity caused by moving clouds. Therefore, these changes
are not always global. Nevertheless, results improve signifi-
cantly when using any of the proposed global intensity cor-
rection algorithms. An error reduction of almost a factor four
is obtained, the methods based on the median perform best
on this image sequence. Outlier removal does not seem nec-
essary for the LS method on this image sequence. This is
because compared to the other data, there are much less out-
liers in this image sequence as only a small fraction of the
pixels depict foreground. In this case outlier removal still re-
duces the number of pixels and consequently the estimation
accuracy of the apparent gain factor.

On average, outlier robustness is essential for good re-
sults. MofQ performs best with an average error reduction
of more than a factor 1.6.

5.3 Runtime

Our goal is to find an intensity correction algorithm to be
used as pre-processing for real-time applications. Therefore,
runtime is an important issue.

We ran all algorithms on an image of 100,000 pix-
els. The runtime of each algorithm was averaged over
100 runs. The computations were performed on a Pen-
tium IV 2500 MHz processor under Windows 2000 Pro-
fessional. The algorithms were implemented in Matlab 6.1
www.mathworks.com. The Matlab implementations for the
computation of the mean and median were used and all com-
putations were performed in double precision. On other plat-
forms results may differ, but the ordering of methods com-
plexity is assumed to be similar.

The results are given in Table 5. This table shows that
when no statistical outlier removal is necessary, QofA and
AofQ are most affordable, followed by LS. These methods
are a good choice in conjunction with other ways of outlier
removal like foreground/background classification.

Otherwise statistical outlier removal should be used, ex-
cept for methods based on the median as we have shown.
We therefore compare the methods with a median without
outlier removal to the other methods with statistical outlier
removal. Then MofQ is the most affordable algorithm, fol-
lowed by AofQ and QofA, all very close to each other.

It should be noted that it is not necessary to use all pix-
els in the image for intensity estimation. According to the

amount of processing power available and the accuracy re-
quested, a fraction of the available pixels can be used. Out-
lier removal also reduces the number of pixels that needs to
be taken into account.

5.4 Discussion of the Experiments

According to simulation results, many algorithms seem to
perform very well. Results on real images shall therefore be
used to select between algorithms. We will look at the aver-
age ROC and PIPE performance over all image sequences.
We then see that MofQ performs best, both with and with-
out outlier removal. Without outlier removal, this is also the
least computationally complex algorithm, considering that
other methods require outlier removal. AofQ and QofA with
statistical outlier removal are slightly more expensive, and
their performance is also lower.

The use of WLS or LS is expensive and these methods
are sensitive to remaining outliers. They are therefore not a
good choice if perfect outlier removal cannot be guaranteed.
Even though their average performance is good.

Both AofQ or MofQ use a per-pixel estimate of the gain
factor. This allows for easy extension to local intensity cor-
rection. On the other hand, QofA and QofM have the advan-
tage that they can also be used when the images cannot be
compared pixel-wise, like in stereo vision, or when there is
a small movement of the camera between the current image
and the reference image.

In practice, the application requiring intensity correction
should be considered before choosing a method. Consider-
ations are the required accuracy, the available computing
power, whether or not the camera is static and whether or
not there is an outlier removal algorithm available. If images
can be compared pixel-wise, MofQ is the best choice.

6 Conclusions

6.1 Comparison to Previous Work

Using simulation we have shown that the proposed inten-
sity correction algorithms perform equally well as can be
obtained using ground truth correction. Thus, under the as-
sumptions of constant gamma and only global changes in
intensity, there is no need to use more expensive algorithms
like dynamic histogram warping (Cox et al. 1995), itera-
tive weighted least squares estimation of the bias, gain and

http://www.mathworks.com
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gamma (Tsin et al. 2001) and estimation of the gain and bias
together with optic flow estimation (Altunbasak et al. 2003).
Also, Cox et al. (1995) and Altunbasak et al. (2003) do not
perform outlier removal. We have shown in this paper that
robustness against outliers significantly improves accuracy
and usability.

Our experiments on real data clearly show that only re-
lying on the adaptation of the background modelling tech-
nique (McKenna et al. 2000; Toyama et al. 1999) is not
an option. Tweaking the update speed to reach acceptable
classification performance on one sequence immediately de-
grades the performance on other image sequences.

He et al. (2003) and Kamikura et al. (1998) estimate the
intensity change between two images using the average and
a least squares estimate respectively. However, these meth-
ods do not consider the effect of outliers, reducing accuracy
and usability.

6.2 Experimental Evaluation

For the simulated images the RMS error between the cor-
rected image and the ground truth image evaluates the ac-
curacy. Results show that methods that are robust to out-
liers (either using statistical outlier removal or by using the
median) performed very close to the noise level for image
sequences without and with changes in intensity. This indi-
cates that these methods are sufficiently accurate to be used
in practical applications.

Usability of the different methods is demonstrated using
background classification on the corrected image sequences.
With constant image intensity, all methods that are robust
to outliers obtained equal performance compared to using
no correction. For image sequences with changing intensity
these methods perform a factor ten better compared to no
correction. This is similar to correcting with ground truth
values.

ROC and PETS results on real images without temporal
intensity changes show that most methods that are robust
to outliers have slightly better classification performance
as without intensity correction. Two image sequences with
intensity changes show that the proposed methods cause
significant improvement to the classification performance.
Even with local intensity changes, significant improvements
are shown. Error reduction of almost a factor two on the
Schiphol sequence and more than a factor three on the
PETS01-3TR1 sequence are obtained.

Using the proposed Parameter Invariant Performance
Evaluation PIPE we have further shown that our proposed
intensity correction introduces robustness against varying
the update speed of the adaptive background modelling al-
gorithm. It allows lower update speed to be used, preventing
slowly moving objects to be incorporated in the background
model.

The best method depends on the application. Overall, if
images can be compared pixel-wise, the Median of the pixel-
wise Quotient of images, MofQ, is the best choice. It is ro-
bust to outliers and noise, and it is also a computationally
efficient solution if it is compared to other methods with sta-
tistical outlier removal.

6.3 General Conclusions

In this paper is shown that using global intensity correc-
tion based on the ratio of pixels in conjunction with outlier
robustness significantly improves background classification
results. For image sequences not needing intensity correc-
tion, no decrease of performance is seen.

For the evaluation on real images the Parameter Invari-
ant Performance Evaluation (PIPE) error measure, based on
the ROC, is proposed. It combines both classification error
and robustness against changes in parameter settings in one
number.

It is believed that the proposed method can be applied
and will provide similar benefit to other image processing
algorithms based on Constant Image Brightness (CIB) or the
Brightness Constancy Constraint Equation (BCCE).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Theoretical Model of a CCD Camera

Healey (1994) describes the following model for a single
pixel recorded at time t using a CCD camera:

it = gt (ht i0 + μDC + NS + NR) + NQ, (18)

with ht i0 the scene irradiance and it the image intensity. The
following noise contributions are present:2 the mean of the
dark current μDC is an offset, constant over time. The shot
noise NS has a Poisson distribution with μS = 0 and σS de-
pending on i0. The readout noise NR has a Gaussian distri-
bution: μR = 0, σR constant. The quantization noise NQ has
a uniform distribution U(− q

2 ,
q
2 ) with q the smallest step in

pixel value.
There are three ways to control the global image in-

tensity, we will use the term apparent gain for their joint
effect. It can be controlled using the camera gain gt , or
using camera shutter time or lens iris, modelled together
using ht . All can be fixed (manual control) or automati-
cally adapted to the scene (automatic gain/shutter/iris con-
trol).

2We use μx for the mean of x and σx for its standard deviation.
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Additionally, most cameras apply a gamma adjustment
to map the range of intensity values from the CCD to the
available output range. Assuming it is implemented in the
camera electronics just before digitization, (18) changes
to

it = g
γ
t (ht i0 + μDC + NS + NR)γ + NQ, (19)

with γ the gamma value which is assumed to be time con-
stant and equal for all pixels.

A.1 Simplifications to the Model

In Withagen et al. (2007) we report the experimental results
of the different contributions in this CCD model. These re-
sults allow for simplification of the model. The simplifica-
tions are given in this subsection and lead to the model of
the CCD camera to be used in the remainder of this paper.

Our experimental validation concludes that we can ne-
glect the contribution of the dark current. This simplifies
equation 19 to

it = g
γ
t (ht i0 + NS + NR)γ + NQ. (20)

The remaining noise terms all are zero-mean. The shot noise
NS is signal dependent with NS = O(

√
i) and the readout

noise NR and the quantization noise NQ are additive.
Our experiments also showed that the additive noise con-

tributions (NR and NQ) are negligible compared to the signal
dependent noise contribution for sufficiently large intensity
values. This simplifies the above equation to

it = g
γ
t (ht i0 + NS)γ . (21)
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