
1

Foxtrot: phase space data representation for
correlation-aware aggregation

Tom Parker* Koen Langendoen
{T.E.V.Parker, K.G.Langendoen}@tudelft.nl

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands

(*Supported by the Dutch Organisation for Applied Scientific Research (TNO))

Abstract— Most existing work in aggregation and query-
ing for sensor network data has focused on the use of stan-
dard statistical operations (average, median, etc) to reduce
the quantity of transmitted data within a network. These
operations have been carried out without considering the
nature of the actual data in the network. In this paper,
we show how aggregation without correlation awareness
will result in variable (often high) levels of error in the
end results, and reformulate the nature of the aggregation
problem in terms of information loss v.s. packet rate
reduction.

We instead propose Foxtrot - using phase space data
representation combined with novel aggregation methods
to limit errors to application-specific ranges. Foxtrot re-
duces data rates without significant information loss. We
demonstrate that Foxtrot is able to achieve these goals,
both using simulation methods and a TinyOS implemen-
tation.

I. INTRODUCTION

Whatever the nature of the application, Wireless Sen-
sor Networks (WSNs) generate data. With increasing
numbers of nodes, the volume of data becomes ever
greater. Therefore, one of the fundamental problems for
these networks is managing the outputted data. Given
the energy and space limitations of WSNs, moving
increasing quantities of data to a sink node/end-user
computer where the data can be stored and analysed will
reduce the operational lifespan of such a network. It can
be concluded that reducing the amount of data that is
transmitted is a required goal in order to achieve usable
network lifetimes. This goal, however, conflicts with
the purpose of these networks: to gather information.
One approach to resolving these conflicting issues is the
use of aggregation techniques to remove redundant or
unimportant data and only transmit useful information.

A simplistic approach would involve the use of stan-
dard statistical techniques to combine many data points
into a smaller set. However, given that only incomplete
information is available at any given node, the choice of

techniques is somewhat limited. An exploration of exist-
ing work in this area is in Section II. Unfortunately, exist-
ing statistical aggregation work is not correlation aware:
all data points are automatically considered as inputs
for the aggregation mechanism, without consideration to
the nature of the data. Additionally, rare events (e.g. a
single sensor with different data) are not considered
statistically significant, whereas for WSN applications
a single sensor reading may well be important, e.g. only
one sensor is attached to a tree that is on fire. Discarding
the bulk of unimportant data (e.g. limiting data from the
large areas of a forest that are not on fire) whilst keeping
the useful information should be a focus for WSNs.
Location data is also vital for WSNs (“Which tree is on
fire?”), and when correlation awareness is considered,
we must also check where multiple data points were
measured in order to determine whether they can be
aggregated.

Given all of these problems, new approaches are
required. In this paper, we show the faults of existing
aggregation techniques, propose the use of phase space
representation to incorporate all data sources in a single
view, demonstrate novel aggregation techniques that se-
lectively merge phase space data such that information
loss is limited, and show this can be all achieved in a
fully-distributed manner on speed-, memory- and energy-
limited node hardware.

II. EXISTING WORK

Much work has already been done in both aggregation,
and in querying mechanisms for WSNs that indirectly
use aggregation techniques (e.g. SQL-like techniques -
like TinyDB [6], TAG [5] and STREAM [2]) for whole
network queries). Given that one of the major purposes
of statistical techniques is reducing large bodies of data
down to a limited set of more usable values, it seems an
obvious choice for aggregation techniques.

Averaging is a popular choice [5], [6] (partly because
of the Central Limit Theorem [10]), as this can reduce

any number of data points down to just an averaged
value plus a count of the elements merged (the count
is required to aid merging of multiple averages at later
nodes). This has several major advantages - it is fully
distributed; the end result is always very small (and
the same size) regardless of how many data points
were initially available; processing and space costs are
minimal; and an average value for a region is a common
example query to be asked of a sensor network. Overall,
it is a very easy (and common) question to answer,
and one that many aggregation protocols have optimised
towards.

The one question that these systems fail to ask is: is
the answer useful? Take the common example of “what’s
the average temperature on this floor?”, and using it as
part of a feedback loop to keep the temperature at 20
degrees celsius. Imagine that there are 5 sensors on a
floor of a building and the answer is 22 degrees. The
common assumption would be that most of the sensors
have a temperature of about 22 degrees, and so the
system would drop the temperature by 2 degrees. But
then a report comes in of a room at 18 degrees. What
actually happened is that 4 of the sensors were at 20
degrees, and the 5th sensor had been placed near the
output vents of a computer which rose the temperature
around that node to 30 degrees. The averaging algorithm,
without any correlation awareness, merged all the values
into a single value that says nothing about the actual
nature of the true temperature values, and thus too much
information was discarded.

There are in fact only two interesting scenarios for
averaging: a) all data values are approximately similar
(or at least vary around a common centre), in which case
a sampling of a subset of the nodes would get as good
an answer as averaging, but with less network traffic; or
b) data values vary widely (as in the example), resulting
in a result that bears no resemblance to the actual data.

Alternately, we could use the median of a set of values
instead. However, for an accurate median we need all
the original data points at a single point. Q-Digest [8]
attempted to reduce this problem by only transmitting
a subset of the candidate data values, and providing
a method to merge candidate sets together. This gave
a reasonable approximation to the median (as well as
other statistical values) while reducing packet rates, but
ran into the same problem as averaging: is the answer
useful? In the temperature example above, it would have
given us the 20 degree value (and probably also the 30
degree value depending on the level of merging). This is
an improvement over averaging, but in situations with a
larger number of nodes, rare events will still be discarded
in favour of lots of information about common events.

Also, Q-Digest gives us no location awareness; in the
temperature example, we would be unable to locate the
problematic sensor without using other techniques.

Other statistical techniques are mostly limited by their
requirements for needing most of the data to be merged
in one location, combined with the issue of merging
multiple subsets that have been previously merged. Fur-
ther work in this area could possibly reduce these two
problems, but we would still need to find a technique that
gives useful answers, and that is a much harder problem.

We conclude that a newer approach, focused on the
usefulness of the end result to the users of the applica-
tion, is required for an improved aggregation technique.
We also conclude that the major goal of aggregation
is a trade-off between information loss and packet data
rate reduction, and that any aggregation technique that
attempts to discard packets without considering what
level of information loss this will cause is fundamentally
flawed.

III. PHASE SPACE DATA REPRESENTATION

In order to consider how to create a technique
that would combine correlation awareness with location
knowledge, we turned to phase space representations of
the data. Phase space [11] uses an abstract n-dimensional
space to represent all of the possible states of a system.
Each degree of freedom in the space represents a dif-
ferent data value. Our initial approach to this focused
on single sensor values, plus their associated location
data. We later realised that the same techniques could not
only be used to combine multiple sensor values, but to
also incorporate other data sources. In total, we identified
three possible sources of data:

• Raw sensor values (e.g. humidity or temperature)
• Internal node data sources (e.g. location data)
• Functions of other data sources (e.g. rate of change)

The state of a node at a particular instant in time can
be represented by a point in phase space defined by the
values of all of the sources of data being used. Most
applications would normally only be interested in a small
number of sensors, plus 2 dimensions for location data,
but the capability for extra data sources is automatically
available. Irregardless of what data is being used, the data
can still be represented only as an abstract concept of a
series of values without any knowledge of which of the
three categories the original data source was. Individual
axes may however specify certain source specific limits
on what can be done with data in that particular axis.

The basic data unit is that of a point in phase space,
but we also want to be able to merge data points into
larger regions also within the same phase space. A

2

region in phase space represents a range of values. A
region is defined by a set of numbers {min1, ...minn} and
{max1, ...maxn} for an n-dimensional space, and covers
all points of the form {v1, ...vn} such that ∀x,x ∈ N,1 ≤
x ≤ n,minx ≤ vx ≤ maxx. A point is defined as a zero-
sized region i.e. ∀x,x ∈ N,1 ≤ x ≤ n,minx = vx = maxx

IV. REGION MERGING

Aggregation can now be specified as merging of
multiple phase space regions into a different (generally
smaller) quantity of phase space regions. We also need
to note that some regions may not be mergeable, and
that any processing time spent attempting to merge
unmergeable regions is effectively wasted. Therefore,
one design aim is that if the merging fails, it should
fail as early as possible to reduce wasted effort.

Fig. 1. Greedy merging of two points

An initial greedy approach to merging would be
simply to merge any and all packets into a large region
that contains all of them. This approach has a number
of problems, as demonstrated in Figure 1. Specifically,
the approach is too greedy, and ends up describing
regions that not only contain the original points, but
also large areas that are not in the original data set,
and so can provide results that differ significantly from
the original data. Additionally, greedy merging of sensor
data will result in large ranges in the results e.g. for
the temperature example in Section II, we would get
the range “20-30 degrees”, losing significant amounts of
information. We do however still want to be as greedy as
we can in the merging algorithm, as a greedier algorithm
will result in being able to merge greater numbers of
regions into a single region. Therefore, in order to find
an algorithm that is greedy enough, but not too greedy,
we need to constrain how data points are merged, and
also decide if some points can in fact not be merged at
all. A particular set of data points are only mergeable if
all sources are mergeable for the particular points.

The constraints required for sensor data and for lo-
cation data differ in their requirements. For location
data, we want to be as greedy as we can, provided
that the end region does not cover areas that were not
implied by the original data. For sensor data, we have

Fig. 2. Location merging examples

more fixed constraints. For example, an application may
specify that an acceptable level of data loss from a
temperature sensor is 1 degree. In this case, if two
points are further apart than 1 degree in the temperature
dimension, then they cannot be merged. Conversely, if
they are no more than 1 degree apart, they can always be
merged. This contrasts with location data, where “close”
values may create over-sized regions whereas “distant”
points may not. See Figure 2 for examples of these two
cases. In the “distant” case we have nodes in all of the
corners of the created region, making the assumption that
the central region contains similar values a reasonable
inference. In the “close” example, we have no points
in the top-left and bottom-right areas, so merging these
points would infer much more without evidence to back
up the assumption. If, on the other hand, we had data
from nodes in the top-left and bottom-right areas, then
creating the “close” region would be much less likely to
cause problems. Another factor that makes this form of
estimate more reliable is the use of proper heuristics for
dealing with overlapping regions, which we will look at
in Section V-B.

A. Constraints

Given the two differing forms of constraint, we define
two classes of data source: statically and dynamically
limited. In general, these will correspond to sensor data
and location data respectively, but this may vary on a
per-application basis, and for the purposes of merging
we only need to know the class of a data source.

Statically limited data sources have the criteria that a
data point with a particular value from this source can be
merged with any other data point that is not further away
(difference between two values) than a specific value
e.g. a temperature source may say that the limit is 1
degree. This means that two temperatures that are more
than 1 degree apart will never be merged, thus giving a
guaranteed limit on the amount of information that will
be discarded.

Dynamically limited sources are more complicated,
and are merged as a set (i.e. all dynamic sources are

3

tested at the same time). They have the advantage that
they have no fixed limits as to which can be merged,
but instead have a series of criteria to guarantee that
the created region does not expand into regions that
are not suitably defined by the original regions used.
Complete details of the algorithm are in Appendix I, but
the method resolves working with the corner points of
all the regions involved, and not expanding a region in
a particular direction unless there are suitable points in
that direction to indicate that it is safe to expand in that
direction, in order to avoid overly greedy merging.

V. FOXTROT

Foxtrot takes the data representation and merging
concepts introduced in Sections III and IV, and builds
an aggregation protocol. In common with any other
aggregation protocol that wants to do in-network aggre-
gation, Foxtrot requires a source-to-sink routing protocol
that allows packets passing through a particular node to
be altered and/or dropped depending on the choices of
the aggregation protocol. In fact, the easiest way for
aggregation protocols to do this is is for the routing
protocol to not automatically forward incoming packets,
but to hand them to the aggregation protocol, which
then may later give (some) packets back to the routing
protocol for further forwarding.

A. In-network nodes

For all in-network nodes (i.e. all nodes aside from the
sink) Foxtrot takes data from the data sources provided
by the application, converts them into the phase space
data representation and then hands them off to the
underlying routing protocol for forwarding towards the
sink. If packets arrive at a node, then Foxtrot will attempt
to merge them together along with any other packets
currently stored at this node, and then hand over the
results to the routing protocol.

B. Sink node

Sink nodes, similarly to in-network nodes, receive
packets consisting of regions in the phase space for the
application. This data should then be handed over to the
application (which may well then give the data to the
sink-connected PC, store the data for future reference,
or any other action that the sink node wishes to do).
However, the format in which this data is provided to the
application brings up a number of issues. Applications
will probably have to be adapted to Foxtrot, but this
applies to most other aggregation protocols as well
(e.g. an application designed for raw data would have to

be changed to use averaged values correctly). The current
implementation provides the data in the standard Foxtrot
format i.e. a series of phase space regions. These can be
combined to provide a complete picture of the network
without much effort.

One issue that can come up is that it is possible
for the regions gathered by the sink node to overlap.
How an application wishes to deal with this problem
may well vary. The simplest options is to provide all
of the possibilities for overlapping nodes e.g. a node
may be marked as either being between 20 and 21
degrees celsius, or being 30-31 degrees celsius. Each
measurement comes from a separate region, but because
of the merging, it is unknown which answer is correct.
Foxtrot does guarantee that the correct value does not lie
outside the reported regions, but it is difficult to eliminate
the wrong option. A number of heuristics (“pick the
smallest box”, “lower values are more likely”, etc) have
been tested against various application scenarios, but
the best option will be application-specific. Alternately,
the ranges can be simply averaged. This will provide
less accurate values at the uncertain points, but the
values will represent a reasonable compromise between
the various choices. Notably, vs. conventional averaging,
Foxtrot does provide information about which nodes
have uncertain values, and which are certain, which may
also be of use in some applications.

C. Timing issues

The simplified protocol model detailed above does
not deal with the timing issues common to all in-
network aggregation protocols. The first major problem
is that periodic data measurement does not in general
result in synchronised data. For example, if a particular
application measures data every 10 minutes, and Node
A’s data can be aggregated with Node B’s data, we have
no guarantee that the two nodes will measure data at
the same time, and therefore there could be up to a
10 minute delay between the measurements from the
different nodes. This means that to allow aggregation,
a node will have to delay the forwarding onwards of
a packet for a much longer time than if the nodes are
synchronised.

In order to solve this problem, we implemented a
global time synchronisation algorithm related to the
Global Schedule Algorithm [4], giving us synchronised
cross-network timers and allowing all nodes to measure
values no more than 2-3ms apart. This also gives better
results for many scientific applications, as being able to
know that the sensor data represents a snapshot of the
monitored area over a short period of time is generally

4

more useful than a measurement spread over a larger
period, especially for cases where the source of the data
values is moving.

The second problem is how much a protocol should
delay before sending a packet onwards, and this has been
dealt with in some detail in earlier work ([1], [3], [9]).
At the moment, we are using values based on knowledge
of the routing for the whole network, with a delay value
based on the number of hops from the current node to
the highest hop-count child node in this part of the tree.

Notably, Foxtrot only requires a solution to the prob-
lem of how long to delay a packet. Our current solution
to the delay problem also requires a solution to the
synchronisation problem, but other solutions can also be
used with Foxtrot. Inaccurate answers will result in less
optimal results (because of later and/or less aggregation)
than correct ones, but Foxtrot will still work.

VI. RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (d

eg
re

es
)

Node Count

Average
Q-Digest

Foxtrot

Fig. 3. Scenario 1 (Spread)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (d

eg
re

es
)

Node Count

Average
Q-Digest

Foxtrot

Fig. 4. Scenario 2 (Sparse)

 0

 1

 2

 3

 4

 5

 6

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (d

eg
re

es
)

Node Count

Average
Q-Digest

Foxtrot

Fig. 5. Scenario 3 (Division)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (d

eg
re

es
)

Node Count

Average
Q-Digest

Foxtrot

Fig. 6. Scenario 4 (Random)

We tested Foxtrot in two ways; firstly in simulation
against averaging and Q-Digest, using a generic “smart”
routing protocol; and secondly as a TinyOS implementa-
tion both in TOSSIM and on our node hardware testbed.

Our two metrics of interest were information loss and
the number of transmitted packets. Information loss was
calculated as the average per-node difference between
the estimate provided to the sink node and the true data
value of a sensor at each node. In all cases we ran the
tests 20 times, and the data here is an average of all of
those results.

The simulations modelled a network of nodes with
temperature sensors, with a variety of different floating
point values for the temperature readings. All tests were
done in an area of 30m by 30m, with a 14m radio
range. Radio links were assumed to be bi-directional and
perfect. Q-Digest was run with the temperature values
placed into 0.1 degree “bins” (in order to generate the
integer values required by Q-Digest from our floating
point temperature data), and Foxtrot set the maximum

5

allowed temperature merging range to 1 degree. Our
“smart” routing protocol used flooding from the sink to
generate shortest-hop routes. Routing overhead packets
were ignored for the purposes of packet counts.

We tested four scenarios for the dispersal of the
temperature values:

1) Spread : Near-identical values, all nodes at values
between 30 and 31 degrees

2) Sparse: 4% (1 in 25 nodes) of the nodes at between
20 and 21 degrees, all others at 30 to 31 degrees.

3) Division: Nodes on the left hand side are between
20 and 21 degrees, and nodes on the right hand
side are between 30 and 31, with 50% of the total
number allocated to each group.

4) Random: Random spread, all nodes between 20
and 31 degrees

The Spread and Sparse scenarios (Figures 3 and 4),
are not particularly interesting, but do show that in
the situations where conventional techniques are able to
achieve low error values, Foxtrot is able to achieve iden-
tical performance. Q-Digest does quite badly because
it provides complete information for a series of values
between 30-31 that we end up having to average to get
an estimate for any given node because of the lack of
location data.

The Division scenarios (Figure 5) provides us with
more useful results - Foxtrot’s error values remain low,
but the error rates for averaging and Q-Digest have both
risen sharply. Similarly to Spread and Sparse, Q-Digest
provides two different series of values for the overall
network in this scenario, one at approximately 20 de-
grees, and a second at 30 degrees, reflecting an accurate
picture of the network. However, due to the complete
lack of location information, we are again forced to use
a weighted average of the two series to derive estimates
of the sensor data values, and so Q-Digest’s performance
is similar to averaging. The difference here is that both
averaging and Q-Digest give inaccurate results, but with
Q-Digest an end user would at least be aware of the
situation. With Foxtrot, we get two sets of values plus
location information, allowing accurate estimates of the
data values, and maintaining the low error rates shown
in the first two scenarios.

Foxtrot does not perform quite as well in the Random
scenario (Figure 6), but this is the least likely of the
scenarios to actually occur, given the correlation that
tends to exist within multiple nearby readings for most
physical values used by sensor nodes. Despite the low
likelihood of this scenario, Foxtrot is still able to get
much lower error values than other methods. In fact,
one of the major sources of Foxtrot error is due to
the ambiguity issues described in Section V-B. We use

averaging here to resolve ambiguities, and this gives us
higher errors than we might be able to achieve with more
highly tuned methods.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20 30 40 50 60 70 80 90 100

Tr
an

sm
itt

ed
 p

ac
ke

ts
/n

od
e

Node Count

Q-Digest/Average
No merging

Foxtrot (Spread scenario)
Foxtrot (Sparse scenario)

Foxtrot (Division scenario)
Foxtrot (Random scenario)

Fig. 7. Packet counts

The trade off is that Foxtrot requires more packets to
be sent, as it is not necessarily able to always merge
all data, which is shown in Figure 7. This graph shows
average packets sent per node, in order so we can
more easily see trends in the data. Firstly, Q-Digest and
average both have exactly the same packet rate - 1 packet
per node, as they merge everything. Foxtrot’s packet rate
varies substantially depending on the scenario, because
the amount of unmergeable data in the network varies.
For the Random scenario, the packet rate is fairly similar
to the values for no merging, with only a reduction of
~7%. For scenarios 1-3 (Spread, Sparse, Division), the
packet rate reduction is more substantial, with an average
of a 23% reduction in overall packet transmissions.

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50 60 70 80 90 100

%
 p

ac
ke

t r
at

e
re

du
ct

io
n

Node Count

Foxtrot (Spread scenario)
Foxtrot (Sparse scenario)

Foxtrot (Division scenario)
Foxtrot (Random scenario)

Fig. 8. Reduction in packets for sink neighbours

Different packet transmissions are not all the same in
a real-world sensor network, and spreading packet load

6

over the entire network as opposed to having most of
the load near to the sink will also help to save power
used by those transmissions due to to less contention and
reduced idle listening time. Figure 8 shows the reduction
in the number of transmitted packets vs. non-aggregated
scenarios for nodes within one hop of the sink node. In
Spread, Sparse and Division, we achieved an average
reduction of 34% (with values up to 54% for some
scenarios). Notably, Spread and Sparse get exactly the
same results as each other for this test. The Random
scenario had a 8.8% reduction.

To test that Foxtrot would work with actual node
hardware, as opposed to just in simulation environ-
ments, we also implemented Foxtrot for TinyOS. We
used Guesswork [7] to provide routing, but any other
reliable sink-to-source routing algorithm would be a
viable candidate. The resulting program for our mica2
derived nodes added up to a total of 44222 bytes of
ROM. Getting exact values for the Foxtrot modules on
their own is difficult, but the simple test program for the
routing protocol takes up 38330 bytes in total, so a size
for Foxtrot in the region of 6Kbytes is not unreasonable,
and as that would be only 4.6% of the total program
space of 128Kbytes, we can conclude that Foxtrot will
not cause too many problems for application designers
in terms of finding enough space on their nodes. Results
from TOSSIM indicate that the TinyOS implementation
behaves similarly to our earlier simulation data, and early
testing with on node hardware indicate that this still
holds true for when run on real hardware.

VII. CONCLUSIONS

We have shown here that existing aggregation tech-
niques are much more lossy than earlier estimates may
have thought, and that the error rates from these proto-
cols may vary widely over the lifetime of a network. To
combat these problems, we proposed Foxtrot, a limited
information loss aggregation protocol. Foxtrot aggre-
gates sensor data without significant information loss,
and without losing location information. This increase
in information comes at a cost in additional packet
transmissions vs. more lossy aggregation protocols, but
the resulting information is much more reliable due to
continuously lower error rates.

Foxtrot points the way towards a new generation of
sensor software, where application users will hopefully
be willing to use aggregation techniques. Currently,
many scientific application users have been cautious
about the use of aggregation protocols, given the pos-
sibility of information loss. Techniques like Foxtrot,
with its focus on information loss reduction within

application-specific boundaries, may well help to per-
suade future projects to use aggregation without fearing
the loss of experimental data.

A. Future Work

Foxtrot is a first generation attempt at limited informa-
tion loss aggregation, and more research is required on
the topic of creating aggregation protocols with similar
aims to the ideas discussed in this paper.

Foxtrot could also be expanded in a number of ways.
The dynamic sources merging algorithm is relatively
conservative, and further exploration of the trade-off
between accuracy and greediness for merging may find
better candidates. Our use of phase space regions could
also be expanded to cover other polytopes, which would
allow the specifying of larger regions with less of the
greediness issues.

The notion of correlation (whether multiple regions
are mergeable) within Foxtrot could also be used with
some routing protocols to provide additional optimisa-
tions, specifically when a locally held region is entirely
enclosed by a region transmitted by another node. In this
case, it is possible to discard the local region as trans-
mitting it would not change the end results, thus further
reducing required packet transmission rates. Correlation
could also be used to “hint” to the routing protocol that
sending a packet via a particular node would result in
packet merging (and therefore reduced overall packets
needed to be sent) and so this would be a good choice
for the next hop node.

REFERENCES

[1] ABDELZAHER, T., HE, T., AND STANKOVIC, J. Feedback
control of data aggregation in sensor networks. In Conference
on Decision and Control (2004).

[2] BABU, S., AND WIDOM, J. Continuous queries over data
streams. SIGMOD Rec. 30, 3 (2001), 109–120.

[3] KRISHNAMACHARI, B., ESTRIN, D., AND WICKER, S. B. The
impact of data aggregation in wireless sensor networks. In
ICDCSW ’02: 22nd International Conference on Distributed
Computing Systems (Washington, DC, USA, 2002), IEEE Com-
puter Society, pp. 575–578.

[4] LI, Y., YE, W., AND HEIDEMANN, J. Energy and latency
control in low duty cycle MAC protocols. In Proceedings of
the IEEE Wireless Communications and Networking Conference
(New Orleans, LA, USA, March 2005).

[5] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND
HONG, W. TAG: a tiny aggregation service for ad-hoc sensor
networks. SIGOPS Oper. Syst. Rev. 36, SI (2002), 131–146.

[6] MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M.,
AND HONG, W. TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans. Database Syst. 30, 1
(2005), 122–173.

[7] PARKER, T., AND LANGENDOEN, K. Guesswork: Robust
Routing in an Uncertain World. In 2nd IEEE International
Conference on Mobile Ad-hoc and Sensor Systems (Nov. 2005).

7

[8] SHRIVASTAVA, N., BURAGOHAIN, C., AGRAWAL, D., AND
SURI, S. Medians and beyond: new aggregation techniques
for sensor networks. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor
systems (New York, NY, USA, 2004), ACM Press, pp. 239–
249.

[9] SOLIS, I., AND OBRACZKA, K. The impact of timing in data
aggregation for sensor networks. In In Proc. of the IEEE Inter-
national Conference on Communications (ICC), 2004 (2004).

[10] WIKIPEDIA. Central limit theorem — Wikipedia, The Free
Encyclopedia, 2006. [Online; accessed 6-December-2006].

[11] WIKIPEDIA. Phase space — Wikipedia, The Free Encyclope-
dia, 2006. [Online; accessed 6-December-2006].

APPENDIX I
DYNAMICALLY LIMITED SOURCES MERGING

Fig. 9. Dynamically limited sources merging example in 2-D

To merge a set of regions defined by dynamically
limited sources (see also Figure 9):

1) Define a initial zero-sized box in the centre of all
the original regions, called Ψ.

2) Λ = set of all corners of the regions.
3) For each dynamically limited source α, perform

steps a to e twice, firstly for the positive direc-
tion, and secondly for the negative direction. The
current direction is specified as ϒ.

a) The set of test directions is defined as as the
cartesian product A1× . . .×An, such that Aβ =

{Apos,Aneg} (positive and negative) for all of
the dynamic sources Aβ and β 6= α.

b) Initialise a result variable ∆ to the maximum
possible value of α if ϒ is positive, otherwise
to the minimum possible value.

c) For each test direction Aβ, check if there ex-
ists a point in Λ that satisfies each direction in
Aβ for Ψ. For example, given a test direction
{xpos}, the point must have an x co-ordinate
greater than or equal to the largest x co-
ordinate of Ψ. Similarly, for {xneg}, the point
would need to have an x co-ordinate smaller
than or equal to the smallest x co-ordinate of
Ψ. If we have one or more points that satisfy

this criterion; then if ϒ is positive, set ∆ to
the minimum of all of their α values, else set
∆ to the maximum of all of their α values.

d) If we were unable to find one of the test
values in step c), quit as these regions are
not mergeable.

e) If ϒ is positive, set the maximum α value for
Ψ to ∆, else set the minimum α value for Ψ
to ∆.

4) If we have completed step 3 without quitting, then
Ψ is a merged form of the original regions.

5) For each original region, check it against Ψ. If
Ψ completely covers the original region, we can
discard the original region. Alternately, Ψ may
partially cover the original region. If Ψ completely
covers the original region on every dynamically
limited source aside from one, remove the part of
the original region that is within Ψ. Otherwise, we
cannot do anything with the original region.

6) If we were unable to completely cover any regions
in step 5, then we have generated an extra region,
and so the original regions were not mergeable.
Otherwise, return the revised set of regions, in-
cluding Ψ.

8

