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ABSTRACT 

Within the marine atmospheric surface layer it is possible for a single camera to deduce passively the range to a point 
target. Although this range determination would appear impossible at first glance, such a measurement exploits the 
common occurrence of sub-refractive propagation conditions in the marine environment.  
A calculation of the range to an object utilizes a geometric optics determination of slight angular differences between 
two different ray trajectories to the object. This is most commonly done with the assumption of Euclidean or ‘free-space’ 
conditions. In this paper we utilize the phenomenon of inferior mirages to provide two different ray-paths to an imaging 
sensor. The primary assumption is that the environment containing the path from camera (or eye) to target is 
homogeneous (but not isotropic). 
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1. INTRODUCTION 
Modern surface Navy ships require dependable and predictable communications, surveillance, and tracking systems. 
These systems in turn require a capability to predict the electromagnetic propagation environment. In this paper we are 
concerned with models for infrared and visible propagation.  

Although the full atmospheric hemisphere surrounding the ship must be characterized, the most critical portion is the 100 
meter thick surface layer containing the ship and extending to the horizon. This determination of the propagation 
environment for surface ships can be a difficult problem. Extended horizontal propagation paths in the atmospheric 
surface layer encounter relatively dynamic refractivity conditions. These conditions have been investigated with a 
combination of model development and field experiments. This paper will describe the application of a geometrical 
optics model to analyze the near-surface maritime atmospheric propagation environment. 

2. MODELS FOR REFRACTIVE PROPAGATION 
There are two different models that we will use for characterizing the propagation environment: IRWarp1, and 
EOSTAR2. The primary computational tool for analysis of refractive effects in both of these models is a geometrical 
optics tool that computes a ray-trace calculation for a given refractive environment. The ray-trace data is utilized to 
generate detailed information about geometrical transformations induced by the propagation environment.  

The geometrical optics ray-trace method is initiated by a definition of the local refractivity field. We assume that within 
the marine atmospheric surface layer this field can be considered to be horizontally homogeneous. For optical and 
infrared frequencies, the primary determinant of the refractivity profile is the vertical temperature profile. 

    

2.1 The Vertical Temperature Profile 

The generation of a continuous vertical temperature profile is based upon a surface layer similarity theory developed by 
Monin and Obukhov. IRWarp uses the model formulation based upon bulk methods for calculating turbulence 
parameters described by Frederickson et al. [1]. The profile is defined in terms of the potential temperature θ  which is 

                                                 
1 IRWarp is an IDL widget that computes a geometrical optics ray-path. It is designed to model the near-surface marine 
atmospheric surface layer. 
2 EOSTAR (Electro-Optical Signal Transmission And Ranging) is an EO sensor performance model. It predicts the 
performance of imaging sensors in a maritime environment. 
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derived from the air temperature T  by zT dΓ+=θ where dΓ is the dry adiabatic lapse rate, and z  is height above the 
surface. Air temperature measurements are taken at the sea surface, and at a reference height. These sparse data are then 
used in a bulk model to generate a continuous vertical profile, and with a sea surface temperature given by 00 T=θ , the 

temperature )(zθ at a height z  above the water surface is given by:  
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Where θ0Z  is the roughness length for the temperature profile, *θ  is the potential temperature scaling parameter, and 

0θ  is the surface potential temperature. L  is the Monin-Obukhov length, and )( L
z

θΨ is a stability correction 

function. 

2.2 The Refractivity Gradient and Ray Curvature  

The optical path calculation for a ray propagating in the atmosphere requires a determination of the refractivity field. The 
near sea surface atmosphere is assumed to be horizontally homogeneous. The vertical structure is divided into layers, and 
for each layer a refractivity gradient can be determined. Our approach follows the work of Lehn [2].  

A ray propagating through a medium with a gradient in refractive index will define a curved path. The refractive index 
n  is found:  

 
T
Pn )(1 λα+=   

 where 62 10)584.06.77()( −− ×+= λλα  and λ  is the wavelength in micrometers. Hence the refractive gradient is:  
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The hydrostatic equation gives  
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for density ρ  and gravitational acceleration g , and 310485.3 −×=β . Hence  
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The curvature κ of a ray is defined such that positive curvature means a ray is concave towards the earth:  
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ξ  is the angle between the ray and the normal to the local surface tangent plane. The radius of curvature r  is 

κ
1=r and this yields  
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where 0>r defines a ray that is concave down toward the earth.  

For a ray-trace calculation the atmosphere is divided into concentric shells of constant thickness and constant height. 
Within each shell or layer, a refractivity gradient is defined as a function of the temperature gradient. We take the 
temperature gradient within the layer to be constant as well, and therefore the radius of curvature for each layer is a 
constant.  

 

The ray-trace procedure proceeds by determining the entry height 0z  and entry angle 0φ  of a ray into a layer, where 0φ  

is the angle with the horizontal. The coordinate system is established to put the entry point at range 0=x and 
height 0zz = . The equation for the ray trajectory in this layer is  

 00
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The algorithm described above requires an assumption of piecewise horizontal homogeneity of the refractive field: the 
only gradients in refractive index occur in the vertical coordinate. The assumption of piecewise horizontal homogeneity 
means that the computation of the ray-trace can be confined to a vertical plane. In the remainder of this paper we will 
restrict further to an assumption of horizontal homogeneity. The analysis is performed in this two-dimensional plane and 
the coordinate system is defined with the origin at mean sea level so that the receiver location is specified by the 
coordinates );0( rz  and the transmitter is at );( tt zx . The local coordinate system is further transformed to bring the 
curved surface of mean sea level to a horizontal plane (a “flat earth” representation). Thus the x-axis in the two 
dimensional representation is the mean sea surface, and range information along the propagation path is measured in this 
coordinate. The z-axis represents the vertical offset from 0=z at mean sea level.  

3. SUB-REFRACTIVE MIRAGES ARE COMMON IN THE MARINE ENVIRONMENT 
Although some of the analysis presented in this paper applies to general atmospheric conditions, we will concentrate on 
the sub-refractive conditions. These conditions occur essentially when the air temperature at some small height above the 
surface is less than the sea temperature: ( 0<− seaair TT ). To get a rough idea of the probability of occurrence of 

0<− seaair TT , a survey of 8, 088, 855 shipboard measurements from the Ducting Climatology Survey over 273 

Marsden squares worldwide reveals that 0<− seaair TT for more than 89% of the samples. The remainder of this 
section develops a result for passive ranging given the existence of sub-refractive conditions.  

The ray-trace algorithm first defines the vertical profile as a set of discrete layers, each with a characteristic temperature 
and refractivity gradient. A characteristic radius of curvature is then assigned to each layer using eqn. (6) above. The 
conditions for a sub-refractive mirage require a surface temperature relatively warmer than the air temperature a short 
distance above the surface. Monin-Obukhov similarity theory can be applied to deduce the vertical temperature profile 
for this situation, since the Richardson number is negative and unstable conditions apply. The form of the vertical 
temperature gradient given by similarity theory is  
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where z  is the height above the surface. Thus dz
dT has a large negative value very near the surface and it increases 

toward zero as height increases.  

Considering a fixed value of λ and a constant air pressure, the pressure variations as a function of height can be 
neglected for the geometry of interest, ( 500 ≤≤ z meters), so eqn. (4) can be written  
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This shows that dz
dT is large and positive very near the surface, and that it decreases monotonically as z  increases.  

 

The vertical temperature profile defines a set of layers uσσ ...1  with 1σ denoting the layer nearest the surface. A 

temperature and a height are determined for each layer boundary, and associated with each layer iσ  is a vertical 

thickness iz∆ . Within each layer iσ there is an associated temperature gradient ( )
izi dz

dTT
σ∈

=∇ . From this we 

determine a refractivity gradient ( )
izi dz

dnN
σ∈

=∇ , and finally by the calculation in eqn. (6) an associated radius ir . 

For sub-refractive conditions, uTTT ...21 >> , because of eqn. (8) and eqn. (9)  

 kNNN ∇>∇>∇ ...21  (10) 

 urrr ...21 <<  (11) 

 
Fig. 1. The vertical scale is in meters above the surface, while the horizontal scale is in kilometers downrange from the 

sensor which is at a height of 15 meters. The 6 horizontal dashed lines indicate constant surfaces of 2, 4, 6, 8, 10, and 
12 meters. The rays that appear to be reflecting from the x-axis are actually refracted. 

Since 0<dz
dni and 0<ir  for all the layers, all rays will be concave upward. The implication for a ray calculation in 

sub-refractive conditions is that the radius of curvature of a ray decreases as the height above the surface decreases.  
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In order to examine the intersection structure of the rays, we will be primarily concerned with rays for which the entry 
angle 00 <φ . These rays initially decrease in height as range increases. As fig. 1 indicates, we are interested in a fan of 

rays initiated at a single point );0( szS =  with a range of entry angles. Assume we have a fan of rays { }
mjj ,...,1=

ρ with 

each ray jρ emanating from the receiver location );0( rzR = . Each ray jρ has an initial entry angle )0(jφ  

(measured from the horizontal) and the ray ordering implies that 0)0(...)0(1 <<< mφφ . We also require of the fan of 

rays that there is a constant angular difference between successive rays: )0()0( 1−−= jj φφδφ .  

 
 

We now consider the lowest point on a ray jρ . Let { }jzxzz ρ∈= ),(:minˆ . There are two possible ray types: rays 
that decrease in height and have a single minimum and thence monotonically increase in height above the surface 
( 0ˆ >z ), and rays that continue to descend and terminate at the surface ( 0ˆ =z ). We consider only those rays for 
which 0ˆ >z , and label the point of minimum height of ray jρ  as )ˆ,ˆ( jjj zxv = . We require that the fan of rays be 

selected so that ray 0ρ terminates at the surface 0=z , and additionally we require that the full angle of the fan of rays 

is restricted such that all rays satisfy 1ˆˆ xx j > .  

Finally we assume that if two rays jρ and kρ intersect a level surface at height jz  at ( )jj zx , and 

( )kk zx , respectively, if 0<< kj φφ , then the minima ( )jj zx ˆ,ˆ and ( )kk zx ˆ,ˆ satisfy kj zz ˆˆ < . We make the following 
two assertions which will not be proved:  

Assertion 1 If the two rays jρ and kρ satisfy the above conditions, and in addition kj xx = , then there will be an 

intersection ),( TTkj zx=∩ ρρ with jT xx ˆ> .  

Assertion 2 Reciprocity: The ray is symmetric about the minimum point )ˆ,ˆ( jj zx . 

A ray with a more negative downward launch angle will necessarily enter a region for which the radius of curvature is 
smaller in magnitude (and negative, hence concave upwards). The reciprocity property organizes the fan of rays. For the 
fan { }

mjj ,...,1=
ρ and the associated set of minima { }

mjjv
,...,1=

 with )ˆ,ˆ( jjj zxv = , we have Rxxx ˆ...ˆˆ 21 <<<  

with mR ≤<0 . For Rj ,...,1= and mk ,...,1= we have Ø≠∩ kj ρρ . 
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This forces the existence of an intersection between rays, and the general conditions which imply the existence of a 
boundary envelope of ray intersections called a caustic. Furthermore, the intersection structure is ordered, so that the set 
of intersections kkk zx ρρ ∩= 111 ),( satisfies mxxx 11211 ... <<< . In the next section we will show how a 
coordinate transformation is induced by the intersection structure of the rays. 

4. USING MULTIPLE MIRAGE IMAGES TO FIND HEIGHT AND RANGE  
During sub-refractive mirage conditions, an imaging sensor will record two distinct images of a single point source. In 
previous studies it has been shown [6, 7] that the two images can be exploited to provide both height and range 
information. We will now show how the ray-trace procedure within IRWarp creates a coordinate transformation.  

4.1 Using Isomets 

In fig. 1 a receiver has been positioned at a height of 15 meters, and the set of rays tracing the propagation path defines 
an envelope. The ray envelope has an intersection structure with a set of constant-height surfaces at heights of 2, 4, 6, 8, 
10, and 12 meters. A ray traced from the receiver intersects a given constant-height surface either once, twice, or not at 
all. The intersection structure of the constant-height surfaces with the ray-trace envelope induces a transformation.  

The result of this transformation is shown in fig. 2. We define an isomet surface as a surface of constant height, and we 
will use the term isomet to refer to the contour curves representing the intersection set between a constant-height surface 
and the ray-trace envelope shown in fig. 2. Each of the isomets in fig. 2 displays a similar form. The vertical axis shows 
angular displacement from the horizontal tangent plane at the sensor. The horizontal axis shows range.  

The graph of a single isomet can be interpreted by imagining a source confined to one of the isomet surfaces shown in 
fig. 1 Consider a source on the 12 meter isomet as it moves toward the sensor from the 25 km range. At 5.23≈ km, the 
source appears over the horizon as a single point which immediately splits into two images. As seen through an imaging 
sensor, for example, one image decreases in angular elevation, and the upper image increases in angular elevation as the 
source moves closer in range. This information is depicted in fig. 2 and corresponds to the outermost curve labelled “12 
m”. At 5.11≈ km, the lower image descends below 8.2 milliradians: in terms of the imaginary sensor, it has descended 
beneath the lowest edge of the sensor focal plane. The (now solitary) upper image continues to rise to the upper edge of 
the sensor field-of-view. 

Rxxx ˆ...2ˆ1̂ <<<
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Fig. 2. A series of isomets at the heights of 2, 4, 6, 8, 10, and 12 meters. For a given range value, each isomet defines either 

0, 1, or 2 corresponding elevation values. 

Within the last 6 km, the source is seen to rapidly move from near the top edge to disappear below the bottom edge. The 
shape of the 12 m isomet is characteristic of all the isomet contours for surfaces of height less than the sensor height. 
When the isomet surface height is greater than sensor height, an inbound upper image disappears across the upper 
boundary, and never re-crosses from top to bottom.  

The key to a deduction of height and range from angular elevation information is the utilization of those portions of an 
isomet for which two values of elevation correspond to a single range value. Thus for the 12-meter isomet, ranges 
between 11.5 km and 23.5 km correspond to two distinct elevation values. This indicates that it is possible to find a one-
to-one correspondence between a pair of elevation angles, and a height-range pair.  

The actual transformation from the (lower angle, upper angle) coordinate space to the (height, range) coordinate space is 
shown in fig. 3. When two images are detected by a sensor, the elevations of the lower and upper images can be plotted 
as a point in fig. 3, and the height and range of that point can be read from the inner coordinate system. To say it 
differently, the figure contains the transformation which takes two elevation measurements as input, and generates as 
output both height and range of the source or target. In terms of coordinate systems, the rectilinear lower elevation vs 
upper elevation coordinate system is transformed to the distorted, curvilinear height vs range coordinate system.  

Consider as an example an imaging sensor system with a telescope which detects a source in a sub-refractive mirage 
regime. The two elevations can be determined from the imaging frame: suppose )6.1,65.2(),( −−=upperlower φφ .The 
transformation displayed in fig. 3 shows the actual range and height can be read out from the transformed coordinate 
system yielding range 10≈ km, and height 6≈ m.  
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Fig. 3. The transformation that is implied by the data in fig. 2. The same information is shown here, but restricted to the 

portions of the isomets that are dual-valued. For example, the angular elevation pair )6.1,65.2(),( −−=upperlower φφ  

transforms to a range 10≈ km and a height 6≈ m 

4.2 Potential for Application 

As we noted above, sub-refractive conditions are quite common for the marine atmospheric surface layer. For our 
imaging geometry, these conditions cause mirages that appear at two different elevations. The usable range for the 
particular example presented here is from 9 km out to 18≈ km. Note that the range limits for effective range-finding are 
determined by the intensity of the sub-refractive conditions and by sea-surface roughness. As air-sea temperature 
difference seaair TT − becomes more negative, the range domain for which two images occur increases in extent by 
moving the point of first appearance of two images closer to the sensor. Conversely, as air-sea temperature difference 

seaair TT − becomes less negative and closer to zero, the range domain for which two images occur decreases in extent: 
the first appearance of two images occurs at a point further away from the sensor. A rough sea surface will occlude the 
lowest height rays which will also force the point of first appearance of mirages further away from the sensor. 

5. THE TRANSFER MAP  
An important application of the geometric optics approach is the calculation of the observable effects of refractive 
gradients. A fundamental problem is to predict the image of a source or target at a given range. This information is 
accessible through the calculation of a transfer map within the EOSTAR and IRWarp models and we will describe this 
calculation along with some of its applications.  

A bundle of rays is defined at a common point at the receiver to span the vertical extent of the sensor field-of-view (fig. 
1). Each ray refractρ  is generated within the vertical plane containing the transmitter and receiver starting from the 

receiver location at )z(0; r . Launch angles refractφ are defined with respect to the ray based at )x(0; r parallel to the x 
axis. If the source point is visible (at infrared frequency) to the receiver, we can be certain that a fan of rays defined for 

launch angles 22 refract
πφπ <≤− will include rays that intercept the source. In practice, the computational angular 

extent of the fan of rays is further constrained since rays launched with a sharp downward angle will intercept the x-axis 
(earth surface) before the source range is achieved, or rays with a sharp upward launch angle will remain too high when 
extended to the source range. In our ray-trace procedure, there are rays ½refract initiated at )z(0; r which intersect the 

Earth's surface (the x-axis) at a range tx x < . These rays are terminated in the procedure: there are no reflections at 
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Earth-surface. There exists a ray launch angle minφ with 22 min
πφπ <≤− which is the smallest angle resulting in a 

ray which will intersect the vertical plane.  

There are three important elements that are a result of the occurrence of sub-refractive mirages:  

1. the existence of a second distinct image of a source point;  

2. the orientation (erect vs. inverted) of the image;  

3. the local magnification in the image.  

All of this information is encoded within a functional dependence of elevation angles at a selected range: 
)( refractgeom φφ .The transfer map relationship is a map from the geometric `atmosphere-free’ angular position ( geomφ ) to 

the refractive `apparent’ angular position ( refractφ ). The transfer map is dependent upon the receiver height rz at 

range 0 x = , and it is defined for a vertical plane at the range point tx x = . It is determined by finding all rays 

refractρ originating at the receiver location )z(0; r which intersect a vertical plane at range tx x = .  

  

Fig. 4. The transfer map is a transformation from the geometric (or atmosphere-free) actual angular position geomφ to the 

refractive apparent angular position refractφ . This map is calculated for the ray-trace shown in fig. 1 at a range of 24 

km. The dotted-line of geomrefract φφ = indicates an identity transformation (the atmosphere-free case). 

A transfer map for the ray-trace in fig. 1 is shown in fig. 4. The discrete points represent a continuous curve, and the 
point of infinite derivative on this curve corresponds to the caustic point in the ray-trace envelope. The three important 
features noted at the beginning of the section can all be determined from this map. The magnification d of the image is 
determined by  

 
geom
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d
d

φ
φ
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and the orientation of the image (erect or inverted) is given by the sign of
geom

refract
φ

φ
d

d .  
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The point at which the graph of the transfer map (fig. 4) has infinite slope corresponds to the caustic point, and this point 
can also be located on the ray-trace in fig. 1 as the lowest height for all rays intersecting the vertical line at the 24 km 
range. 

 

6. THE REFRACTIVE PROPAGATION FACTOR 
An application of the transfer map calculation is the determination of a "geometric” gain, which is a change in signal 
intensity due entirely to the nature of the refractive field between target and sensor [3]. The propagation factor F  is 
defined as the ratio between the actual field amplitude at a selected field point and the corresponding field amplitude at 
that point in free-space propagation conditions. The field intensity at the receiver is given in terms of the field amplitude 
propagation factor F by  
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where the summation is over all values 22 refract
πφπ <≤− for which rays terminate at ( )tt yx , .The propagation 

factor is defined for piecewise horizontally homogeneous environments, and it is dependent only on the spatial locations 
of the source point and receiver point in space. It is therefore necessary mathematically for the definition to include the 
full ¼-radian fan of rays for refractφ to ensure that all rays from a source are accounted for at the receiver. Therefore at the 

upper and lower summation limits, 2refractgeom
πφφ −== and 2refractgeom

πφφ == since it is only the vertical rays 

that are certain to be undeviated in a piecewise horizontally homogeneous propagation environment. In practice, the field 
of view of a sensor will generally be considerably less than p radians.  

A fan of rays that has been calculated for a given refractive profile can be used to deduce the refractive modifications to 
the observed source intensity. We use a term that is borrowed from radio-frequency propagation models, and call this 
multiplicative term the refractive propagation factor. The word “refractive” is appended to indicate that changes in field 
amplitude due to refractive effects are included, but not changes due to any reflection of the propagating beam. The 
refractive propagation factor is a function of both the receiver location and the transmitter location. The receiver is 
located by definition at zero range, so the propagation factor is a function of three parameters: receiver height rz , 

transmitter height tz , and range rx .  

Given the receiver height rz , a two-dimensional field of values for 2F is determined. At a range of ≈ 5km the refractive 

propagation factor is 12 ≈F , because the field magnification is nearly neutral (see fig. 1). After a longer propagation 
path, a sub-refractive mirage develops, and a second image of the transmitter becomes visible. The combined intensities 
from the two images result in a signal intensity greater than the freespace value. This is indicated by fig. 5 which shows a 
calculation of the gain-height function at a range of 24 km. The ray-trace foundation for this calculation can be seen in 
fig. 1 where a vertical dotted line indicates the vertical plane at a range of 24 km. In these conditions a sub-refractive 
mirage is visible. The plot indicates that a transmitter at a height of 11 m will not be visible, while a transmitter at 13 m 
will be detected with a strongly amplified signal.  
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Fig. 5. Gain as a function of height at a range of ˜ 24km. Note the large increase in gain at ≈ 13 m height. Below 12 m there 

is zero signal. 

The height-gain curve implies that 12 >F for 13>z m, and as height decreases from 30 m, 2F increases. As height is 
reduced to ≈ 13 m, 2F continues to increase and becomes divergent at 5.12≈cz . This is because of the source point 
approach to a singularity at the caustic at a range of 24 m. This can be verified by reference to fig. 1 for which the caustic 
point is at the intersection of the lowest point of the ray envelope and the vertical line at range 24 km. There are methods 
for resolving the singularities at the caustic [4, 5] but these methods are not used here. 

7. CONCLUSIONS 
We have described the geometric optics approach to the problem of characterizing sources or targets at long range within 
the marine atmospheric surface layer. In this environment, sub-refractive conditions are common and depending upon 
the sensor-target geometry, inferior mirages of the target can occur at the sensor. The elevation angle of the two images 
can be used to deduce height and range data for the target. An atmospheric surface layer for which the air-sea 
temperature difference is negative exhibits a crucial feature: the rays form a local coordinate system starting at some 
point downrange. The logarithmic temperature profile ensures that lower elevation rays are detected to intersect upper 
elevation rays.  

The existence of a locally non-degenerate coordinate system implies that in some region of range-height space there 
exists a one-to-one correspondence with an upper elevation-lower elevation pair that is unique to that point.  

A second consequence of the calculation within the geometric optics approach is the capability to compute a geometric 
gain induced by the refractivity field. This refractive propagation factor is a necessary first-order component in a 
complete model for near-surface horizontal path infrared or optical transmission. The refractive effects are shown in the 
example to be substantial determinants of the received signal intensity. The refractive propagation factor is a 
multiplicative quantity derived entirely from the local refractivity field and the geometry of the complete propagation 
system.  

The ray method also provides a useful framework for the calculation of other path-dependent signal metrics such as 
molecular and aerosol extinction, scintillation and the refractive index structure function. 
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