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Summary

Moving target indication (MTI) using radar is of great interest in civil and military
applications. Its uses include airborne or space-borne surveillance of ground mov-
ing vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar
offers several advantages when compared to optical imaging, they include: day-and-
night, all-weather capability and a possibly greater potential in resolving moving ob-
jects in a stationary scene. Recent systems utilise single-channel radars to produce
fine-resolution images of stationary scenes by means of the synthetic aperture radar
(SAR) and multi-channel arrays to achieve the best possible separation of moving
objects from the stationary ones. This technology is currently employed in airborne
military and experimental systems such as SOSTAR-X (European), PAMIR (Ger-
many) and MCARM (USA). Also, the Canadian satellite RADARSAT-2 has a special
multi-channel mode for radar MTI.
The concept of multi-channel MTI alleviates the necessity for high-contrast in the
detection of moving objects in the scene and it is very sensitive to low velocities. Its
implementation is called space-time  adaptive  processing or STAP. STAP is capable of
detection of moving targets but it offers limited options for their imaging.
This thesis is a result of research jointly performed at the International Research
Centre for Telecommunications and Radar associated with Delft University of Tech-
nology (IRCTR) and the TNO Defense, Security and Safety in the Hague, the
Netherlands. The goal was to develop models suitable for general scenarios and
to study optimal, yet fast and efficient algorithms capable of processing data cre-
ated by these models. Theoretical results were to be verified experimentally. The
research was to answer several questions:
Are  there  any  benefits  in  combining  SAR and STAP? If the task at hand is to per-
form imaging of moving targets with resolution equal to the resolution of images of
stationary targets using SAR, a signal model fully general for the given geometry is
required. Inversions of such a model have been found, albeit for some cases only.
The approach is mainly suitable for generation of synthetic datasets for numerical
evaluation of SAR/MTI processing techniques, but also for the study of new, poten-
tially interesting applications such as MTI with ultra-wideband ground penetrating
radar.

vii



viii SUMMARY

Is it possible to find a fast yet optimal or near-optimal MTI algorithm? It is suggested
that if the channel calibration is done properly, averaging of signals from multiple
channels can be used to extract moving targets. Being a relatively inexpensive opera-
tion, averaging will yield considerable savings in the computational power necessary
to perform MTI. Although the real-time implementation of such an algorithm by
means of a high-pass filter was already proposed by other authors, it was not vali-
dated using real data.
How would such an algorithm perform when applied to measured data? A known STAP
algorithm and averaging were applied to two airborne datasets: one based on the
MCARM data, the other based on the SOSTAR-X data. It was concluded that a
simple channel mismatch model could be assumed. Contrary to the MCARM data,
the SOSTAR-X data contained severe channel mismatch. Nevertheless, at least one
MTI algorithm worked satisfactorily in both cases.
How  can  we  use  STAP in a new fashion? A way to detect victims buried in debris
during natural disasters or terrorist attacks is proposed. Several experiments with
ultra-wideband ground penetrating radar were carried out at the IRCTR. The re-
sults were in good agreement with predictions.

The main results obtained in this thesis can be summarised as follows:
Extended models for multi-channel SAR (MSAR) MTI. The thesis complements the
TNO’s expertise in single-channel SAR MTI algorithms. It builds on ideas put forth
in open literature and provides more general closed-form expressions for the MSAR
transfer function.
Heuristic investigations into error sources in real data. A simple model for airborne MTI
where so-called internal clutter motion and flight path deviations are neglected, and
the mismatch between channels is constant with time is tested on real data from
MCARM and SOSTAR-X projects. Although deterministic the STAP techniques
used in this thesis have already been applied to the MCARM data, no easy compari-
son to other published attempts was found. A detailed comparison is provided here.
This heuristic validation provided insights into interpretation of SOSTAR-X data.
Novel  application  of  STAP to  detection  of  buried  victims. A new idea to use STAP
for detection of moving objects buried underground or in debris is described. The
idea is based on the possibility of detecting a slight motion of the victims produced
by breathing. MSAR MTI processing provides fine spatial resolution due to the
synthetic aperture concept and slow motion detection capability due to STAP. An
alternative side-looking antenna configuration instead of the more traditional down-
looking configuration is used. First results with measured data are presented.



Samenvatting

Detectie van bewegende doelen (MTI) met behulp van radar is van groot belang
voor civiele en militaire toepassingen. Een belangrijke toepassing is het monitoren
van auto’s, treinen of schepen vanaf vliegtuigen of satellieten. Radar heeft belang-
rijke voordelen ten opzichte van optische sensoren: radar is dag en nacht inzetbaar,
radar is ook in slecht weer bruikbaar en radar is beter in het detecteren van be-
wegende doelen tegen een statische achtergrond. Huidige radarsystemen maken
gebruik van enkel-kanaals synthetische apertuur radar (SAR) technieken om hoge-
resolutie beelden van de achtergrond te verkrijgen en antennesystemen met meerdere
ontvangstkanalen om bewegende doelen te kunnen detecteren. Deze technieken
worden toegepast in militaire en experimentele radarsystemen zoals het Europese
SOSTAR-X systeem, het Duitse PAMIR systeem, het Amerikaanse MCARM sys-
teem en het Canadese RADARSAT-2 satelliet radar systeem.
Meer-kanaals MTI technieken maken het mogelijk om langzaam bewegende doe-
len te detecteren tegen een statische achtergrond. Deze technieken worden meestal
aangeduid als space-time  adaptive  processing technieken of kortweg STAP. STAP verge-
makkelijkt het detecteren van bewegende doelen, maar het biedt slechts beperkte
mogelijkheden om deze doelen ook af te beelden.
Dit proefschrift is het resultaat van onderzoek gedaan bij het International Research
Centre for Telecommunications and Radar (IRCTR) van de Technische Universiteit
in Delft in samenwerking met TNO Defensie en Veiligheid in Den Haag. Het doel
was algemeen geldige signaalmodellen en optimale, maar toch snelle en efficiënte
algoritmes te ontwikkelen die SAR en STAP technieken combineren. De theoreti-
sche resultaten zijn geverifieerd met behulp van gemeten radardata. Het onderzoek
beantwoordt de volgende vragen:
Heeft  een  combinatie  van  SAR en  STAP technieken  voordelen? Als het nodig is be-
wegende doelen met hoge (SAR) resolutie af te beelden, dan moet er een algemeen
geldig signaalmodel ontwikkeld worden voor de gegeven meetgeometrie. In de open
literatuur zijn inversiemethoden voor zulke modellen gevonden, maar slechts voor
enkele specifieke gevallen. Deze aanpak is met name bruikbaar om synthetische
radardata te genereren voor het analyseren van SAR/MTI technieken of voor het
onderzoeken van nieuwe, mogelijk interessante toepassingen zoals MTI met ultra-
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x SAMENVATTING

wideband grondradar.
Is het mogelijk om een snel maar optimaal of bijna optimaal MTI algoritme  te  vinden?
Als de ontvangstkanalen goed gekalibreerd zijn, kunnen bewegende doelen gede-
tecteerd worden door de signalen van alle kanalen te middelen. Deze techniek levert
een zeer efficiënt MTI algoritme op, omdat het kanaalgemiddelde snel te bereke-
nen is. Een dergelijk zeer snel algoritme bestaat dan ook al, maar het is nog niet
experimenteel geverifieerd.
Hoe  presteert  een  dergelijk  algoritme  als  het  op  experimentele  data  wordt  toegepast?
Een bekend STAP algoritme en het algoritme gebaseerd op het kanaalgemiddelde
zijn toegepast op twee experimentele datasets: MCARM data en SOSTAR-X data.
De resultaten tonen aan dat de afwijkingen tussen de ontvangstkanalen met een
simpel model beschreven kunnen worden, ondanks dat de kanaalafwijkingen in de
SOSTAR-X data erg groot zijn, in tegenstelling tot de MCARM data. De prestaties
van de MTI algoritmen zijn bevredigend voor beide datasets.
Wat  zijn  nieuwe, interessante  toepassingen  voor  STAP? Een nieuwe toepassing voor
STAP technieken is het detecteren van slachtoffers die bedolven zijn na bijvoor-
beeld een natuurramp of een terroristische aanval. Bij IRCTR zijn verschillende
experimenten uitgevoerd met ultrawideband grondradar om de mogelijkheden van
STAP voor deze nieuwe toepassing te onderzoeken. De experimentele resultaten
komen goed overeen met de theoretische modellen.

De belangrijkste resultaten van het onderzoek zijn:
Uitgebreide  signaalmodellen  voor  meer-kanaals  SAR (MSAR) MTI. Het proefschrift
vult TNO’s kennis inzake enkel-kanaals SAR MTI algoritmes aan. Het bouwt voort
op idee�n uit de open literatuur en beschrijft een algemene uitdrukking voor de
MSAR overdrachtsfunctie.
Heuristisch  onderzoek  van  de  foutbronnen  in  meetdata. Een  simpel  model  voor
MTI vanuit de lucht is getest met behulp van MCARM en SOSTAR-X meetdata.
Het model verwaarloost beweging van de achtergrond en eventuele afwijkingen van
een recht vliegpad en er is aangenomen dat de kanaalafwijkingen tijdsonafhankelijk
zijn. In de open literatuur zijn geen resultaten van STAP algoritmen gevonden die
gemakkelijk vergeleken kunnen worden met dit model. Een diepgaande vergelijk-
ing wordt daarom in dit proefschrift uitgewerkt. Dit heuristische onderzoek heeft
waardevolle inzichten opgeleverd wat betreft de interpretatie van SOSTAR-X data.
Een  nieuwe  toepassing  voor  STAP:  detectie  van  bedolven  slachtoffers. Het detecteren
van mensen die bedolven zijn, na bijvoorbeeld een aardbeving, is een nieuwe toepass-
ing voor STAP technieken. In dit geval is de detectie gebaseerd op de zeer kleine
ademhalingsbewegingen van een persoon. MSAR MTI is zeer bruikbaar voor deze
toepassing omdat het een hoge resolutie combineert met de mogelijkheid om minieme
bewegingen te detecteren. Voor deze toepassing wordt een zijwaarts gerichte an-
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tenne gebruikt in plaats van een naar beneden gerichte antenne zoals gebruikelijk
is bij grondradar. In het proefschrift worden de eerste resultaten verkregen met
experimentele data gepresenteerd.
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The art of  using troops is  this: When  ten  to  the  enemy’s  one, surround him; When  five
times his strength, attack him; If double his strength, divide  him.

Sun Tzu: The Art  of  War

At  least, he  consoled  himself, by the look of the antenna arrays it  was only old-fashioned
meter-wave-length stuff, so  it  couldn’t  be  very  interesting.

Arthur C. Clarke, Glide  Path



Chapter 1

Introduction

Radar (RAdio Detection And Ranging) has been used since its invention in 1904 in
numerous applications involving measurements of position and speed [41]. Its main
advantages are the capability to perform these measurements over long distances
even in darkness, or during adverse weather conditions such as fog. These capabil-
ities have been recently extended to ground penetrating [32] and through-the-wall
sensing radar [21].

Moving Target  Indication (MTI) radar is defined as a device capable of detecting
moving targets in presence of an interfering background (usually called clutter) [24].
The difference between target and clutter velocities is exploited for target detection.
Radar MTI is of great interest in civil and military applications; for instance, its uses
include airborne or space-borne surveillance of ground moving vehicles (cars, trains)
or ships at sea. Recent systems utilize multi-channel radars to achieve the best pos-
sible separation of moving objects from the stationary ones. The implementation
of multi-channel MTI in radar is called space-time  adaptive  processing, or STAP.

STAP is a field of study in signal processing concerned with the use of spatial
as well as temporal data in phased array antennas. Since phased array antennas are
structures of sensors arranged in space, each sensor recording data in time, the term
space-time processing is often used. The word ”adaptive” refers to the case when
array processing is based on parameters estimated from measured data. It is mostly
formulated as an optimisation problem [19].

Angular or ‘spatial’ resolution of any image-forming device has an empirical limit
called the Rayleigh criterion

θR ≈ λ

D
, (1.1)

where θR is an angle in radians, λ is the wavelength of the observed radiation and
D is the size of the aperture. If two point-like sources are separated by a smaller
angle than θR, they cannot be resolved. This relation suggests that to improve the
resolution by making θR smaller, the wavelength needs to decrease or the radar an-
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2 CHAPTER 1. INTRODUCTION

tenna aperture needs to increase. A synthetic  aperture  radar (SAR) can circumvent
the problem by utilising the relative motion between an observed object and the
image-forming device [40].

1.1 Key questions
This thesis is a result of research jointly performed at the International Research
Centre for Telecommunications and Radar (IRCTR) associated with Delft Univer-
sity of Technology and the TNO Defence, Security and Safety in the Hague, the
Netherlands. The research was motivated by the following, not yet answered ques-
tions:
Are there any benefits in combining SAR and STAP models? TNO has a long

track record in the design of radar systems with SAR and MTI capability. Due
to design constraints, the SAR and MTI modes are typically implemented
separately in airborne radar. Would it be advantageous to develop a model of a
single system that includes both modes?

Is it possible to find a fast yet optimal or near-optimal MTI algorithm?
Optimal STAP algorithms are reported to be very costly to implement [24,
Chapter 4]. What trade-offs are necessary to arrive at an optimal or near-
optimal yet practical MTI algorithm?

How would such an algorithm perform when applied to measured data?
Speed and efficiency come at the cost of simplified assumptions during mod-
eling. Which effects play a major role in the data acquisition and which can
be neglected?

How can we use STAP in a new fashion? STAP already has many applications
in various radar systems (see [24] for instance). Can a new application based
on the ongoing research at TNO or IRCTR be suggested?

1.2 Novelties in this thesis
Extended models for multi-channel SAR (MSAR) MTI :

This  thesis  complements  TNO’s  expertise  in  single-channel  SAR MTI algorithms.
Chapter 3 builds on ideas in [12] and  provides  more  general  closed-form  expres-
sions for the MSAR transfer function. Ender has shown in [11] that generalised
models could indeed bring improvements in terms of clutter suppression to
the multi-channel MTI. He suggests using radar in a SAR mode for each chan-
nel. His subsequent work [12] provides a description of the MSAR signals and
shows some ways to implement an optimal or near-optimal MTI algorithm.
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Heuristic investigations into error sources in real data:
Applications of MTI algorithms from Chapter 4 to Multi-Channel Airborne Radar
Measurement  (MCARM) [20]  and Stand-Off Surveillance  & Target  Acquisition
Radar (SOSTAR) [2]  data  are  shown. Results  with MCARM data presented
in Chapter 5 allow  for  detailed  comparisons  with  an  alternative  approach pub-
lished in [20]. Although deterministic techniques based on the singular value
decomposition have already been applied to the MCARM data in [15], no easy
comparison to other published attempts was found. The heuristic validation
presented in this thesis provided insights in the interpretation of MCARM
and SOSTAR data.

Novel application of STAP to detection of buried victims:
Section 5.1 describes a new idea to use STAP for detection of moving objects buried
underground  or  in  debris, during natural disasters, for  example. The idea is
based on the possibility of detecting a slight motion of the victims produced
by breathing. MSAR MTI processing provides high spatial resolution due to
the synthetic aperture concept and slow motion detection capability due to
STAP. An alternative side-looking antenna configuration instead of the more
traditional down-looking configuration is used. First results with measured
data are presented.

1.3 Organisation of this thesis
Several basic concepts and models are summarised in Chapter 2. The chapter re-
stricts the scope of this thesis.

Current models will cease to be valid when the ratio of the length of an antenna
array to the distance from the imaged area is larger than a certain limit. For this
case, extended models need to be considered. Chapter 3 considers several such
models and provides closed-form formulas for their inversion.

In Chapter 4, a unified look at the STAP processing from the deterministic
point of view is provided and an access to optimal, real-time-implementable solu-
tions for simplified cases is given. As already recognised by Ender in [12] using a
statistical approach, it is shown in the deterministic fashion that clutter can be de-
scribed by a rank one matrix.

Two datasets, one from MCARM and one from SOSTAR project, are used in
Chapter 5 to experimentally test the findings from Chapter 4. Since no airborne
data was available to test the general SAR-MTI model, a laboratory experiment with
a ground penetrating radar (GPR) was set up to produce a third dataset. This exper-
iment showed a new potential application of SAR-MTI processing in the detection
of human victims buried under rubble or earth during natural disasters.
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Chapter 6 concludes this work with answers to the key questions. Recommen-
dations for future work are given.



Chapter 2

Basic concepts

Traditionally, SAR and STAP encompass diverse approaches to modelling of the
problems at hand. The ideas fundamental to the rest of this thesis are summarised in
this section. Crucial terms are described here. First, one-dimensional echo imaging
will be introduced as a basic concept used here to model imaging radars. Imaging
is understood in this context as the ability to focus moving or stationary objects with
equal resolution. Next, the stationary phase approximation will be briefly described
as a mathematical tool to obtain a transfer function of a single or multi-channel
SAR. Subsection on range-velocity echo imaging restricts the problem treated in
this thesis. Finally, the mathematical technique of rank approximation of a matrix
by means of singular value decomposition is reviewed for the use in MTI.

2.1 One-dimensional echo imaging
The basic ranging principle can be formulated as one-dimensional echo imaging [35].
Suppose that Mi point targets are situated in the field of view of the radar. The
situation is shown in figure 2.1. The number Mi can be finite or infinite.

Transmitter/Receiver

p(t)
-

�
@

-

Target’s Reflectivity

f1 f2 f3 fMis s s s
x1 x2 x3 xMi

x

Target’s Coordinates

Figure 2.1: System geometry for one-dimensional echo imaging

Transmitter located at x = 0 illuminates the targets by sending a time-dependent
signal p(t). In our case, the transmitted signal has a finite time duration, thus it will

5
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be called a pulsed signal. The receiver records echos from all targets in the field of
view. The recorded signal can be represented as a sum of all waves reflected from
the targets

s(t) ≡
Mi∑
i=1

fip(t− 2ti), (2.1)

where ti ≡ xi
c

and c is the speed of light. We would like to identify the targets from
the measurements of the signal s(t). The expression for signal s(t) can be rewritten
via the following time-domain convolution (linear model)

s(t) = p(t) ∗ f0(x), (2.2)

with

x ≡ ct

2
, (2.3)

where

f0(x) ≡
Mi∑
i=1

fiδ(x− xi), (2.4)

is a spatial domain signal composed of delta (Dirac) functions at the coordinates of
the targets in the imaging scene. The amplitude of f0(x) at x = xi is equal to target’s
reflectivity at that point.

The imaging problem is solved if we could retrieve f0(x) from s(t). For this
process, one has to reverse the system model convolution in (2.2) to recover f0(x)
from the observed signal. This operation is called source  deconvolution [35].

The inversion or deconvolution in one-dimensional echo imaging can be formu-
lated via taking the temporal Fourier transform of both sides of (2.2) that yields

S(ω) = P (ω)F0(kx), (2.5)

where kx is a linear function of ω

kx ≡
2ω

c
. (2.6)

Equation(2.5) is one of the corner stones of this thesis. To quote Soumekh in [35]:
[Equation (2.5) restricts] imaging problems examined [here] to linear system models, similar
to a multidimensional convolution, relating  the  target  information  to  the  observed  signal.
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The inverse or imaging problem is to seek a computationally manageable multidimensional
signal processing method to perform the source deconvolution. (end quote)

Indeed, one can write

F0(kx) =
S(ω)

P (ω)
, (2.7)

provided that P (ω) ̸= 0 for all ω. However, the condition necessary to perform
the division is not satisfied in our case due to the pulsed nature of p(t). In that
case, a procedure called Wiener filtering [22] is applicable. It can be shown that the
Wiener filter represents a least-square solution of an optimisation problem, where
the objective is to obtain an estimate of an original signal from its filtered version
corrupted by Gaussian noise, subject to a minimum error when compared to the
original [42]. Thus, one can assume a more complicated model

Ŝ(ω) = P (ω)F0(kx) +N(ω), (2.8)

whereN(ω) is a spectrum of a Gaussian noise signal. Equation (2.7) then becomes [42,
p. 547-549]

F0(kx) ≈
Ŝ(ω)P ∗(ω)

|P (ω)|2 + λreg
, (2.9)

where λreg is a properly chosen regularisation parameter and ∗ denotes complex
conjugation. Note that if λreg → 0, then equation 2.9 converges to equation 2.7. If
λreg → ∞, then equation 2.7 converges to a so-called matched filter:

F0(kx) ≈ Ŝ(ω)P ∗(ω) (2.10)

Formula 2.9 is fully applicable to the model (2.5) even without noise involved.
Parameter λreg can be seen as a regularisation parameter that assures validity of the
condition P (ω) ̸= 0 for all ω at the expense of accuracy of the solution. Its value
shifts the solution between two extremes: Wiener filter and matched filter.

If the spectrum of S(ω) occupies a narrow frequency band, it needs to to be
modulated by a harmonic signal exp(ȷωct) having a certain carrier angular frequency
ωc in order to be successfully radiated by an antenna. Prior to digital processing, the
received signal s(t) is converted back to baseband to reduce the necessary sampling
rate. In the case of ultra-wide band (UWB) radars, S(ω) occupies an extremely
wide frequency band centred around ωc = 0 and can be transmitted without any
modulation.

Figure 2.2 shows an example of a target function f0(x) = F−1{F0(kx)} produced
by one target and estimated by Wiener filtering (sharp spike) and matched filtering
(| sin(x)/x| shape). Even though this particular case was generated for a rectangular
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Wiener filter
matched filter

- x

6f0(x)

Figure 2.2: Impulse response of Wiener filter (dashed line) and matched filter (solid
line).

pulse shape, we note that the matched filter response will always exhibit side lobes
if P (ω) is band limited. The model assumed is the noiseless case as in (2.5).

The mapping of kx to ω is linear in (2.5). Generally, such mapping can be non-
linear. An interpolation is then used to map one domain into another. This enables
us to convert time domain shift variant systems into frequency domain shift invari-
ant systems. Such conversion allows the use of fast algorithms that exploit shift
invariance, for instance FFT. Furthermore, interpolation allows us to scale the de-
convolved output data: Often, the imaged area x ∈ [x − R1, x + R1] is larger than
the corresponding time interval t ∈ [t − tR2 , t + tR2 ] on which s(t) is measured
and vice versa (R1 and tR2 are arbitrary constants). In such cases, the resolution of
the measured signal is different from the resolution of the imaged area. Since we
know the mapping from kx to ω, we can calculate S(ω) from the measured signal
and interpolate it to required frequencies based on the area we expect to be imaged.
The pulse spectral response P (ω) is known and can be calculated at any frequency
ω. Artefacts due to insufficient sampling or due to interpolation may appear in the
resulting spectrum. A low-pass filter is used before the final Fourier transform to
regularise the solutions. In the spectral domain, the low-pass filter simply takes a
form of a fixed window function W (ω) that multiplies signal S(ω):

W (ω) =

{
1, if − Ω < ω ≤ Ω
0, elsewhere (2.11)

Thus, most of the algorithms used in this thesis for image reconstruction will follow
the scheme shown in figure 2.3, which is a variant of algorithms described in [37,
Section 5.6].
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Fourier
transform

F{ }
-

Inv. Fourier
transform
F−1{ }

�

Interpolation
ω ≡ f(kx)

-

Windowing
F0(kx)W (kx)

�

?

�

Matched
filtering

S(kx)P
∗(kx)

s(t) S(ω) S(kx)

f(x) F (kx) F0(kx)

Figure 2.3: One-dimensional echo imaging via matched filtering.

A radar echo will be attenuated depending on the distance it travels. This atten-
uation (free space loss) is expressed by the so-called radar equation [34]

Pr =
PtGaAeσ

(4π)2R4
max

, (2.12)

where Pt = transmitted power, Watts
Ga = antenna gain
Ae = antenna effective aperture, m2

σ = radar target cross section, m2

Pr = received power, Watts
The radar equation states, that the further the target, the weaker the echo due

to the distance. Since methods and algorithms described in this thesis extract infor-
mation from the phase of a signal rather than its amplitude, the  attenuation  due  to
distance  will be  ignored in  this  thesis.

2.2 Stationary phase approximation
Making use of relationships such as (2.5) requires knowledge of the spectral response
of the filter, P (ω) in our case. Sometimes, an exact formula cannot be found and
an approximate solution needs to be applied. The method of stationary phase is par-
ticularly suitable for waveforms encountered in radar. An excellent textbook [31]
by Papoulis includes an introduction to the method from the system engineering
point of view for one-dimensional problems. Derivations presented in this thesis
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were inspired by a solution to a two-dimensional problem given by Dingle in [9].
Borovikov [7] describes the method in a highly advanced, mathematically rigorous
fashion.

In mathematics, the stationary phase approximation is a basic principle of asymp-
totic analysis, applying to oscillatory integrals

I(k) =

∫
w(x)eȷkψ(x)dx (2.13)

taken over n-dimensional space Rn where the ȷ =
√
−1. Here ψ and w are real-

valued smooth functions. The role of w is to ensure convergence; that is,w is a test
function. The large real parameter k is considered in the limit as k → ∞.

The idea is that the argument of the integral in equation (2.13) is a rapidly os-
cillating function for large k. Integrals of such functions tend to vanish outside of
so-called stationary points. Thus, it makes sense to evaluate the argument of the in-
tegral at the stationary points only. These points are found as maxima, minima or
saddle points of a phase function ψ which is composed of arguments of the expo-
nential function in equation (2.13).

In order to illustrate the use of this method in this thesis, consider the following
example. Suppose a baseband chirp radar pulse

p(t) =

{
exp(jαct2), if 0 < t ≤ t2
0, elsewhere (2.14)

αc is the chirp rate. An exact spectral representation of this signal can be found.
Recall that the Fourier transform of a Gaussian function is also a Gaussian function.
This means that

F(t)

[
exp

(
− 1

2ρ2
t2
)]

= exp
(
−ρ

2

2
ω2

)
(2.15)

scaled by a constant. Using the Gaussian Fourier pair with

− 1

2ρ2
≡ ȷαc (2.16)

will yield [35]

P (ω) ≈

{
exp

(
− ȷ

4αc
ω2
)
, if ω ∈ [−Ω,Ω];

0, otherwise.
(2.17)

This is the formula for the phase of the chirp spectrum. For the sake of brevity,
the amplitude term is left out and the spectrum is simply truncated according to
Carson’s bandwidth rule. Now, we shall apply the stationary phase approximation.
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We wish to find an approximate solution to the integral that represents the Fourier
transform of the chirp

P (ω) =

∫ ∞

−∞
exp(ȷαct2) exp(−ȷωt)dt (2.18)

The phase of the integrand will have one extremum which can be found by equat-
ing its first derivative to zero

d
dtαct

2 − ωt = 0 (2.19)

We find that
t =

ω

2αc
(2.20)

at the stationary point. According to the stationary phase method, we can now
evaluate the integrand at this point only, that is, magnitude terms neglected,

P (ω) = exp(ȷαc
ω2

4α2
c

) exp(−ȷ ω
2

2αc
), (2.21)

and so
P (ω) = exp(−ȷ ω

2

4αc
) (2.22)

Clearly, the asymptotic solution converges to the exact solution – as expected. This
method has been an important tool in various fields of physics such as geometrical
optics [38] and it is also well established in radar systems analysis, particularly in
SAR [8].

2.3 Range-velocity echo imaging
We are going to define the multi-channel  airborne  radar  system capable of  range-
velocity imaging as a device for multi-dimensional imaging by means of electromag-
netic waves. This device will be in our case composed of an array of antennas that
transmit and receive radio pulses. Antennas are arranged on a line in space to form
a linear array. This array, placed on an aircraft, is aligned with axis u as shown in
figure 2.4 and moves on a straight line along the same axis. Axes u and y are parallel.

As shown in figure 2.4, the original space where the problem exists is five-dimensional,
that is three spatial and two velocity dimensions. However, we are going to restrict
the number of dimensions to be reckoned with. A radar phased array cannot mea-
sure height in a configuration where its sensors are aligned with the direction of its
motion. Hence, only two spatial dimensions will be taken into account. Namely,
it will be assumed that z = 0. In real radar measurements where z ̸= 0, targets’
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ground plane

slant  plane

u

z

x

y

Figure 2.4: Range-velocity echo imaging, complete problem geometry.

positions are projected into a so-called slant  range. This projection is illustrated by
figure 2.5: suppose two objects A and B, separated by a distance Dg on the ground.
Because viewed from an angle, the two points will appear to be at a distance Ds –
closer together than they actually are. Since the angle AEB is approximately 90 de-
grees, one can say that Dg in a slant range representation is

Ds ≈ Dg cos θ (2.23)

A’ B’ C’

A B C

E

Ds

θ E

Ds

Dg

A B

θ

i6× -

z

y x
ground plane

slant plane

Figure 2.5: Slant range projection.

Thus, the distance in slant range representation is always less or equal the dis-
tance in the corresponding ground range projection. As the depression angle θ gets
larger, Ds gets smaller for a given distance Dg. Thus the slant range representation
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compresses the terrain features at near range more than at far range. However, one
could note that from the image formation point of view, it does not matter which
domain is chosen; one can form a focused image mapped into the slant range and
convert it into the true ground range later.

Figure 2.6: Left: Table of Opticks, Cyclopaedia, detail, taken from [44]. Right:
Michelangelo  Buonarroti: Battle  of  Cascina, detail  of  middle  section, taken
from [43].

There are additional effects that occur due to the fact that the imaged terrain is
not flat (e.g. z ̸= 0). The two most important ones are shadowing and foreshortening.
Shadowing occurs when another object blocks the line-of-sight to an object to be
imaged. Such object then will not be illuminated and therefore lie in a shadow. In
figure 2.6, left, a single active source of radiation is represented by the sun. All
objects located between the points E and A having a smaller height than the one
marked by the line between the point E and the sun, will be shadowed by the largest
object in the scene (the church). Foreshortening occurs when an object of a certain
height is angled toward the viewer. One can then observe that an object appears
shorter than it actually is. The warrior in the centre of the right picture in figure 2.6
appears to be much shorter than the others due to the foreshortening. Neither of
these two effects can be mitigated in our geometry: in the first case, the object is
simply invisible to radar. In the second case, if information about height is missing,
the dimensions cannot be corrected for.

For the reasons mentioned in this subsection, only a two-dimensional problem
will be considered. It will be assumed that all targets, moving or stationary, lie in
a two-dimensional slant range plane (x, y), and that the radar array moves in the
direction of the y-axis.

If a target moves on a two-dimensional plane (x, y), its velocity vector will also
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have two components, (vx, vy). Thus the final solution space should span two spatial
and two velocity dimensions. However, there is one more restriction used in this
thesis. Only a three-dimensional domain (x, y, vx) will be reconstructed. It has been
shown many times [3,25,34] that the velocity vector component which is the easiest
to measure by imaging radar (such as SAR) is in the direction to or from the radar
sensor. In fact, it can be shown that imaging radar is much more sensitive to the vx
component than to the vy component [45]. vx is called radial or cross-track velocity
vector component. As a consequence, if a target’s velocity has a nonzero component
vy, it will be slightly smeared (de-focused) in the (x, y, vx) domain. We can observe
this smearing in examples from Chapter 3.

2.4 Multi-channel airborne MTI and the singular
value decomposition (SVD)

The singular value decomposition is a relatively new mathematical technique. Al-
though the concept has been known for some time, according to [29] as early as
1910, the first practical algorithm to actually compute it in an efficient way was pub-
lished by G. Golub and W. Kahan in 1965. Together with the Fast Fourier Transform
(FFT), the SVD is perhaps the most powerful and widely used tool in modern matrix
computation. Therefore, it should not be surprising that it found its way into the
field of airborne MTI as well. The SVD shall be briefly discussed in this section.
The purpose is to quantitatively show how it can be used in analysis of airborne
MTI radar data. For an exhaustive treatment of SVD, see reference [16].

Any real or complex matrix A, even a non square one, can be written as the
product of three matrices:

A = UΣV T (2.24)

The matrix U is orthogonal and has as many rows as A. The matrix V is or-
thogonal and has as many columns as A. The matrix Σ is the same size as A, but its
only nonzero elements are on the main diagonal (note that even a nonsquare matrix
has a main diagonal). The diagonal elements of Σ are the singular values λn, and the
columns of U and V are the left and right singular vectors uk and vk, respectively.

The rank of a matrix is the number of linearly independent rows, which is the
same as the number of linearly independent columns. The rank of a diagonal matrix
is clearly the number of nonzero diagonal elements. Orthogonal transforms by ma-
trices U and V preserve linear independence. Thus, the rank of any matrix is the
number of nonzero singular values.
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Let Ek denote the outer product of the k-th left and right singular vectors, that
is

Ek = ukv
T
k (2.25)

Then, A can be expressed as a sum of rank-1 matrices,

A =
n∑
k=1

λkEk (2.26)

If we order the singular values in descending order, λ1 > λ2 > · · · > λn, and
truncate the sum after r terms, the result is a rank-r approximation to the original
matrix. If this operation is done on a centred data matrix, that is, on a matrix with
a mean of each column subtracted from the entire column, it is known as principal
components analysis (PCA). PCA is usually described in terms of the eigenvalues and
eigenvectors of the covariance matrix, AAT, but the SVD approach sometimes has
better numerical properties [29].

Figure 2.7: Low-rank approximation of an MCARM data matrix: Left: full rank;
Middle: rank 1; Right: full rank with λ1 = 0.

To demonstrate the use of the SVD in this thesis, we analyse an example of a
data matrix from the MCARM database treated in detail in Section 5.2. The original
data matrix has a size 128-by-11. First, one SVD computation is performed. After
computing a low-rank approximation using formula (2.26), the resulting data matrix
is padded with zeros to the size 256-by-256 and the magnitude of its two-dimensional
spectrum is computed. Figure 2.7 shows the spectra for the case for full rank, rank 1
and full rank when λ1 is set to zero. What can be shown about this approach is that,
under certain conditions, rank 1 approximation of such data matrix will actually
correspond to all stationary targets’ echos present in the data. Subtracting rank 1
approximation from the full rank matrix will filter the stationary targets out leaving
only moving targets and noise in the data. It is easy to see from equation (2.26) that
this operation is equal to setting λ1 = 0 and computing (2.26).



By this  time most  of  the  people  had drifted off. They  didn’t  have  the  patience  to  watch
me  do  this, but the only way to solve such a thing is patience!

Richard P. Feynman, Surely, you’re  joking  Mr. Feynman!



Chapter 3

General Approach to
Multi-Channel MTI

This chapter outlines a solution to the multi-channel moving target imaging, indica-
tion and detection (MTI/MTD) by means of inverse systems approach. First, the
problem is presented in Section 3.1. Then, a general solution is given in Section 3.2
for the case of stationary targets. The separation scheme proposed in this section
is the most general one derived in the thesis. However, it is not the most practical
one, due to its computational cost. Section 3.3 attempts to find a spectral response
of moving targets in a fashion similar to the stationary case. The main idea to be
conveyed by this chapter is that the separation of moving targets from the station-
ary ones can be tackled by applying the solution derived for stationary targets on
a moving targets’ model – as illustrated in Section 3.4. This is achieved here by a
perfect knowledge of the problem geometry and parameters related to the radar
itself, such as the radar platform velocity and altitude, the radar carrier frequency
and the radar pulse repetition frequency. Spatial distributions of stationary or mov-
ing targets do not play a role in the problem formulation nor in its solution. This
alleviates the need for estimation of any statistical properties of the targets. Sec-
tion 3.5 introduces an approximated, yet accurate and practical algorithm based on
SAR processing. Finally, some numerical experiments are put forth by Section 3.6.

3.1 Problem formulation
Even though there is ongoing research to improve resolution of spectral estimators
for STAP, e.g. the Wiener filter described by equation (2.9), this improvement can-
not cross a certain limit, given by the level of noise present in the signal. When that
level is reached (even if only theoretically), increasing the antenna array size is a way
to improve the resolution further. Current STAP models consider so-called far-field

17
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diffraction. Namely, in these models, the following inequality holds

D2

Rλ
≪ 1, (3.1)

where D is the antenna array length, R =
√
X2

1 + Y 2
1 is the distance of the array

from the centre of the imaged area and λ is the wavelength of the transmitted signal.
In this chapter, close ranges where the phase of the wave impinging on an antenna
array is nonlinear are considered. At longer ranges, our approach is possible but it
offers little benefit. The near-field diffraction occurs when

D2

Rλ
≥ 1 (3.2)

Examples in this chapter consider the Fresnel number F = D2/(Rλ) in orders of
0.1 to 50. That means both cases of far-field and near-field diffraction are taken into
account.

The problem scenario is depicted in figure 3.1. A side-looking phased array of a
lengthD with its sensors aligned along the coordinate u is placed on an aircraft. The
aircraft is moving along the coordinate u, on a straight line, on an interval [−L,L]
which is centred at coordinates (x, y) = (X1, Y1). The radar footprint is binding a re-
gion to be imaged. The centre of this region is located at coordinates (x, y) = (0, 0).
Targets are located in the x, y plane, y coordinate is parallel to the u coordinate. If
some targets are moving, their velocity vector will be (vx, vy). It is assumed that
because radar impulses travel at the speed of light, a radar platform will move only
slightly during the acquisition of all the echos coming back as a response to each
pulse transmitted. As a result, this movement can be neglected and a so-called stop-
and-go approximation can be used; this approximation assumes the radar platform
to stop at a position um, to make a measurement, then to stop at a position um+1,
make another measurement and so forth.

Suppose the phased array measures a signal s(u, t, d), where t is time and u, d are
spatial coordinates. Further, suppose we wish to form a function g(x, y, vx) from
the measured signal s, where g contains points in coordinate system (x, y, vx). In
order to solve the problem by means of the Fourier transform, we need to find the
following inversion:

G(kx, ky, kvx) = exp [−ȷ(kxX1 + kyY1)]S(ku, ω, kd), (3.3)

where function S(ku, ω, kd) is the three-dimensional Fourier transform of a received
signal,G(kx, ky, kvx) is the three-dimensional Fourier transform of the target domain
g(x, y, vx) of points focused at coordinates (xi, yi, vxi). kx, ky, kvx are frequencies
corresponding to coordinates (x, y, vx), respectively. ω = 2πf is the angular fre-
quency, corresponding to time t, ku and kd are spatial frequencies corresponding to
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Figure 3.1: Imaging system geometry for airborne multi-channel MTI.
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spatial coordinates u and d. The exponential function shifts the imaged domain in
space; it is a form of a base-band conversion.

The reason why we are trying to obtain the result in this particular form is simple:
We want to take advantage of fast implementations of a convolution in the spectral
domain. To give an example, we consider a two-dimensional sampled (u, d) domain
of a size M ×N. Algorithms to numerically compute the two-dimensional Fourier
transform of this domain, such as an FFT, and its inverse have computational com-
plexity typically O(2NM [ln(N) + ln(M)]). The STAP algorithm used in this thesis
is based on singular value decomposition which requires O(MN2) multiplications,
where M ≥ N. A simple comparison is shown in table 3.1. The computational com-
plexity of SVD is compared to the one of two-dimensional FFT for values of M
and N written as powers of 2. When M ≈ N , the FFT needs less multiplications
than SVD for values above approximately 16. Even though the SVD is actually less
complex for some values of M and N , it should be noted that the SVD-based STAP
algorithms will only remove stationary targets. They will not provide focusing of
the moving targets.

Table 3.1: Computational complexity comparison. o – 2D-FFT less complex than
SVD, x – SVD less complex than 2D-FFT.M = 2q, N = 2q

′

q/q′ 1 2 3 4 5 6 7 8 9
1 x x x x x x x x x
2 x x x x x x x x x
3 x x x x x x x x x
4 x x x o o o o x x
5 x x x o o o o o o
6 x x x o o o o o o
7 x x x o o o o o o
8 x x x x o o o o o
9 x x x x o o o o o

In order to arrive at the relation given by equation (3.3), we need to obtain the
solution as a product of the spectrum of the signal at the input and a linear function
of space and velocity. In that case, the inverse Fourier transform of this product
will yield directly the data in the space and velocity coordinates at the output. A
mapping between (kx, ky, kvx) and (ku, ω, kd) needs to be defined in a form of some
coordinate transformation. This is a crucial step in a Fourier based inverse problem
formulation. Several of such transformations will be given in the following sections.
Due to high computational costs, it is desirable that the transformation be as simple
as possible with as low dimensionality as possible.
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3.2 Inverse problem solution for stationary targets
The model used is an extended version of the bi-static SAR model derived in [37,
Chapter 8]. The difference is in the treatment of the parameter d. In a bi-static
model, it is a constant, since the radar array is composed of two sensors only. In our
case, d is a variable. This variable is discrete due to a discrete number of sensors
in the array (and thus their discrete positions dn). Also the variable u should be
discrete due to the stop-and-go approximation. However, the only difference in the
spectral analysis is the periodicity of a discrete signal’s spectrum. As long as aliasing
is avoided a continuous model can be used.

Another simplification involves infinite aperture lengths L and D. That is, we
are going to suppose that the aircraft is carrying a phased array of an infinite length
and it travels from −∞ to ∞. Also all amplitude functions with the exception of
target reflectivity functions are suppressed, as they do not play a role in the image
formation. This approach greatly simplifies the mathematics of the problem with
the results still applicable to a discrete case. Naturally, finite dimensionsL andD are
used in numerical simulations. These prerequisites are consistent with the previous
work done in this field (e.g. reference [35]).

As a consequence, the spectra obtained for continuous phased arrays of infinite
dimensions will then become periodic and convolved with the Fourier transform of
the aperture functions. This influences the resolution of the solution, not its ability
to provide a correct inverse. Reference [35] provides a discussion of sampling and
finite aperture effects in great detail. Given the assumptions made above, a signal
recorded by the radar can be written as

s(u, t, d) =

∫∫ ∞

−∞
f(x, y) p

[
t− r(x, y, u, d)

c

]
dx dy, (3.4)

with r, the round trip distance given as

r(x, y, u, d) =
√

(x−X1)2 + (y − Y1 − u)2

+
√
(x−X1)2 + (y − Y1 − u+ d)2 (3.5)

f(x, y) is the target area’s reflectivity function. It is a slice of the three-dimensional
function g(x, y, vx) at vx = 0

f(x, y) ≡ g(x, y, 0) (3.6)

p(t) represents a radar pulse. In our case we shall simply consider a rectangular pulse

p(t) =

{
1, if 0 ≤ t < t0
0, otherwise. (3.7)
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The radar pulse travels a round trip distance r from a transmitter to a reflecting
point at coordinates (x, y) and back to a receiver, experiencing a delay r/c, where
c is the speed of light. Signal s(u, t, d) records contributions from all points of the
target area. Taking the temporal (fast-time) Fourier transform of both sides of (3.4)
yields

s(u, ω, d) = P (ω)

∫∫ ∞

−∞
f(x, y) exp [−ȷkr(x, y, u, d)] dx dy, (3.8)

where the wave number k = ω/c. Term P (ω) can be removed either by means
of Wiener filtering: s(u, ω, d)/P (ω), or by means of matched filtering: s(u, ω, d)
×P ∗(ω). This operation concentrates the energy from radar pulses in the range
direction, marking the instantaneous positions of the targets in this direction. The
normalised or range  compressed version of s(u, ω, d) is

s(u, ω, d) =

∫∫ ∞

−∞
f(x, y) exp [−ȷkr(x, y, u, d)] dx dy. (3.9)

As shown in Appendix A.1, the two-dimensional Fourier transform of both sides
with respect to u and d yields

S(ku, ω, kd) = exp (ȷX1kx + ȷkyY1)F (kx, ky) , (3.10)

where

kx ≡
√
k2 − (ku + kd)2 +

√
k2 − k2d,

ky ≡ ku. (3.11)

Finally, from (3.10), we obtain the following inversion given by equation (3.3)

G(kx, ky, kvx) = exp (−ȷX1kx − ȷkyY1)S(ku, ω, kd), (3.12)

where
F (kx, ky) = G(kx, ky, 0). (3.13)

Relation (3.11) dictates a rather complex interpolation from (k, ku, kd) domain to
(kx, ky) domain. It is shown in Section 3.5 that a much more practical inversion
scheme based on a SAR-like model inversion can be devised.

Since we defined f(x, y) as g(x, y, 0) we can write

f(x, y) = F−1
(kx,ky)

{F (kx, ky)}, (3.14)

meaning that to focus the two-dimensional stationary target domain using a three-
dimensional signal S(ku, ω, kd), we only need to take a slice of the resulting three-
dimensional spectrum at kd = 0 and perform the two-dimensional inverse Fourier
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transform. Thus, the shape of the function G(·) in kvx domain is irrelevant in this
case. However, we would like to use this inversion to focus a three-dimensional
domain g(x, y, vx) in presence of moving targets in the signal, since the inversion
given by equation 3.12 does not require any information about moving targets.

In order for this inversion to be useful for moving targets separation, we need to
show that G(kx, ky, kvx) has a finite extend in the vx domain for stationary targets.
We plot the so-called point spread function (PSF) of a single stationary target located
at the origin of the imaged area in figure 3.2

|g(X1, y, vx)| = |F−1
(kx,ky ,kvx)

{G(kx, ky, kvx)}| (3.15)

velocity [m/s]

azimuth [m]

0 3-3
-25

0

25

Figure 3.2: Point spread function of a stationary target located at (x, y) = (0, 0) me-
ters. Parameters: carrier angular frequency ωc = 2π109 rad/s. (X1, Y1) = (−1000, 0),
L = 30 and D = 120 meters. The (y, vx) domain was sampled with 256× 256 sam-
ples. The pixels are scaled to 256 shades of grey; white is zero, black is the maximum.

We see that the focused point representing a stationary target does indeed have
a finite extend in the velocity domain vx. The side-lobes extend diagonally from
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the centre instead of more usual perpendicular directions. This feature is common
to other multi-static radars, see for example three-dimensional imaging with two-
dimensional synthetic apertures in reference [37, Chapter 7]. The linear features
in top right and bottom left corners of figure 3.2 are due to partial aliasing of the
steeper diagonal line of side-lobes.

Point spread function indicates resolution of an imaging system and is, in fact,
the autocorrelation of the signal produced by a single target. To see this, consider
that for a single stationary target located at the origin of the imaged area, the spec-
trum of the signal recorded by radar is given as

S(ku, ω, kd) = exp
[
ȷX1

(√
k2 − (ku + kd)2 +

√
k2 − k2d

)
+ ȷkuY1

]
(3.16)

Using equations (3.12) and (3.11) we get

G(kx, ky, vx) = S(ku, ω, kd)S
∗(ku, ω, kd) (3.17)

In line with other authors, for instance [17, 24], we intend to use the (y, vx) domain
for moving targets separation. Thus, one can choose an arbitrary available range
slice, for instance x = X1. Focused targets (moving or stationary) present in this
range slice will occupy a frequency slice in the spectral domain corresponding to
the wave number k = kc, where kc = ωc/c. Hence,

G(kx, ky, vx) = S(ωc, ku, kd)S
∗(ωc, ku, kd), (3.18)

and
g(X1, y, vx) = s(2kcX1, u, d) ∗ ∗ s(2kcX1,−u,−d), (3.19)

where ∗∗ denotes the two-dimensional convolution in the (u, d) domain.

3.3 Inverse problem solution for moving targets
Consider a broadside target moving at a velocity (vx, vy). Analogically to the signal
model defined by equation (3.4), one can write [35, Chapter 5]

s(u, t, d) =

∫∫ ∞

−∞
f(x+ vau, y + vbu) p

[
t− r(x, y, u, d)

c

]
dx dy, (3.20)

where

va = vx/vr (3.21)
vb = vy/vr (3.22)
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with r, the round trip distance given as in equation (3.5). Here, f(x, y) represents
a moving target reflectivity function. It is difficult to evaluate the integral in equa-
tion (3.20) directly. However, it is possible to convert it to the previous case, where
only stationary targets were considered. One can define the following substitution

x+ vau = x′ (3.23)
y + vbu = y′ (3.24)

Then, one can rewrite the equation (3.20) in the following fashion

s(u, t, d) =

∫∫ ∞

−∞
f(x′, y′) p

[
t− r(x′, y′, u, d)

c

]
dx′ dy′, (3.25)

with

r(x′, y′, u, d) =
√

(x′ − vau−X1)2 + (y′ − vbu− u)2

+
√
(x′ − vau−X1)2 + (y′ − vbu− u+ d)2 (3.26)

This relation is analogical to the stationary target model and it shows that a moving
target can be modelled as a stationary target at a certain squint angle in transformed
coordinates.

In order to show how a moving target can be extracted and possibly focused using
the inversion derived in the previous section, a closed-form formula for a spectrum
of a moving target will be given in this section. The model of the signals coming
from moving targets located at coordinates (xi, yi) is given as [37, Chapter 8]

s(u, ω, d) =
∑
i

f(xi, yi)e
ȷψ(u,d) (3.27)

with the phase function

ψ(u, d) =

−k
√

(xi − vxiτ)2 + (yi − vyiτ − vrτ)2

−k
√

(xi − vxiτ)2 + (yi − vyiτ − vrτ + d)2,

(3.28)

where vxi, vyi are velocities of a moving target in x and y directions, respectively.
vr is the radar velocity, and u = vrτ. Variable τ is essentially a time variable, since
τ = u/vr. However, it was not taken into account when the signal in equation (3.25)
was transformed into the spectral domain. This is the principle of the stop-and-go
approximation: due to the fact that the radar pulse travels at the speed of light, the
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phase function ψ varies much slower with respect to τ than it does with respect to
k. Therefore, τ is considered constant while the Fourier transform of the signal in
equation (3.25) from t to k is taking place. Hence, t is also called the fast  time and τ
is called the slow time.

Note that we write the measured signal s(u, ω, d) as a sum of contributions from
discrete scatterers. Using the principle of superposition, one can first evaluate the
spectrum of each scatterer and then sum the individual spectra to obtain a signal in
the spectral domain. It is shown in Appendix A.2 that the spectral response of an
individual scatterer depends on its position and velocity vector. Thus one can write

S(ku, ω, kd) ≈
∑
i

f(xi, yi)

× exp

ȷ
−X

√
4k2 −

(
ku
α

)2

− ku
α
Y

− x

4k

(
2kvx
vr

− ku
α

− 2kd

)2
]}

, (3.29)

where:

X =
(vyi + vr)xi − vxiyi√
v2xi + (vyi + vr)2

Y =
vxixi + (vyi + vr)yi√
v2xi + (vyi + vr)2

(3.30)

α =

√
v2xi + (vyi + vr)2

vr

To focus a particular target with reflectivity f(xi, yi), one needs to know its speed
vector (vxi, vyi). This is not possible, of course, since it is actually the velocity vector
which is being estimated. One can also note that it is no longer possible to formu-
late the inversion in the same way as done in Section 3.2, since the domains (x, y)
and (X,Y ) are no longer the same. That is the reason why the double integral from
equation (3.9) was replaced by the sum in equation (3.27). The purpose of this section
was to provide a response of a moving target in the spectral domain. The following
section will investigate the idea to apply the inversion given by equation (3.12) for
stationary targets to moving targets’ model in order to separate them.
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3.4 Moving targets separation
In this section, it will be shown that a moving target will be displaced in the d domain
after the focusing scheme given by formula (3.12) is applied. Suppose a broadside case
(Y1 = 0) and a moving target at coordinates xi = X1 and yi with unit reflectivity,
that is g(X1, yi) = 1. In order to simplify the solution, an approximate version of
formula (3.12) will be used.

It is assumed that for slow speeds, one can have α ≈ 1. Should α be bigger than
one, we would get a mismatch between the terms X

√
4k2 − k2u and X1

√
4k2 − k2u

which would then not cancel completely. Nevertheless, it makes sense to investigate
slowly moving targets, as they are expected to be closest to the stationary ones.
Further, we can set vy = 0. For slow targets vr ≫ vx and so

X ≈ x− vx
vr
y, Y ≈ vx

vr
x+ y,

because vy only causes de-focusing [35]. Actually, it also changes the slope on which
a moving target signature appears for various vx, but it does not change the fact that
moving targets will be displaced.

Further assuming that kvxi/vr ≪ 2(ku + kd) we could formally write (see Ap-
pendix A.2.1)

G(kx, ky, kvx) = (3.31)

exp
{
ȷ

[
vxi
vr
yi
√
4k2 − k2u − ku

(
yi +

2X1vxi
vr

)
− kd

2X1vxi
vr

]}
,

where

kx ≡
√
4k2 − k2u

ky ≡ ku (3.32)
kvx ≡ kd

The three-dimensional inverse Fourier transform of the function G(kx, ky, kvx) will
yield a three-dimensional function g(x′i, yi, v′xi), where

x′i ≡ vxi
vr
yi

y′i ≡ −yi −
2X1vxi
vr

(3.33)

v′xi ≡ −2X1vxi
vr

The coordinate transform given by equation (3.33) shifts moving targets from their
real positions to the new ones which also depend on their velocities. This shift is
apparent in the simulation results in figure 3.7.
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Since our focusing algorithms assume

g(x, y, vx, vy) ≈ g(x, y, vx), (3.34)

velocity component vy will introduce an error that manifests itself by slight smearing
of the focused moving target signature. This smearing is apparent in some numerical
examples shown in Section 3.6.

3.5 SAR-based inversion technique
Albeit approximately, we attempted to show that an inversion scheme derived for
stationary targets will shift the moving targets along the third dimension: the veloc-
ity axis. Hence, one should succeed in extracting the moving targets from a station-
ary background. Note that our results do not depend on a particular distribution
of stationary or moving targets, but the inversion method presented so far requires
a complex 2-D interpolation scheme. This is very impractical due to the complex-
ity and computational cost of 2-D interpolators. Interestingly, similarities between
SAR phase functions and some terms in the phase functions derived above can be
observed. The following section will present an inversion scheme based on standard
SAR processing.

Recall the phase function from moving targets’ model in equation (3.28). By using
equation (A.34) in Appendix A.2

ψ(u, d) ≈ −2k

√
X2 +

(
Y − αu+

d

2

)2

+
kdvx
vr

− kd2

4x
(3.35)

the Fourier transform of exp[ȷψ(u, d)] with respect to u will give exp[ȷφ(ku, d)] with

φ(ku, d) ≈ −X

√
4k2 −

(
ku
α

)2

− ku
α

(
Y +

d

2

)
− kdvx

vr
− kd2

4x
, (3.36)

where X,Y and α are again given by linear transformations from expression (3.30).
At very low target velocities, α ≈ 1, some terms are approximated by√

4k2 −
(
ku
α

)2

≈
√

4k2 − k2u (3.37)

ku/α ≈ ku (3.38)

These terms appear also in the Fourier-based focusing for SAR. Setting vx, vy = 0
in equation (3.30) would yield

X = xi and Y = yi. (3.39)
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Therefore, if a moving target produces a signal s(u, ω, d) given by equation (3.27),
one could suggest the following focusing scheme

g(x′i, y
′
i, kv) = (3.40)

F−1
(ku,k)

F(d)

{
exp

[
ȷX1

√
4k2 − k2u + ȷ

(
Y1 +

d

2

)
ku

]
exp

(
ȷ
kd2

4x

)
S(ku, ω, d)

}
,

where kv = kva and va = vx/vr. Note that one does not get original coordinates
(xi, yi) of a moving target but a shifted and rotated set (x′i, y

′
i) where the shift and

rotation depend on the velocity vector. This result is consistent with the in-depth
analysis of moving targets in single-channel SAR images given in [37, Section 6.4].
A schematic depiction of the focusing scheme given by equation (3.40) is shown in
figure 3.3. The term exp[−ȷkd2/(4x)] can be identified as a phase correction term
which compensates for the phase differences due to nonplanar waves impinging on
the antenna array. It can be neglected in the far-field region where D2/(X1λ) ≪
1, with λ being the wavelength of the received waveform. The remaining phase
function in equation (3.40) translates coordinates from the measured domain into
the imaged domain.

F(u,t){ }

Fourier
transform

-

F−1
(ku,k)

F(d){ }�

×-

phase correction

×�

coordinate translation

�

?

6

exp
[
ȷX1

√
4k2 − k2u + ȷ

(
Y1 +

d
2

)
ku

]

exp
(
ȷkd

2

4x

)

s(u, t, d) S(ku, ω, d)

g(x′i, y
′
i, kv)

Figure 3.3: Schematic diagram of the SAR-based inversion.

We again test the usability of our approach by plotting the point spread func-
tion in figure 3.4. The directions in which the side-lobes extend are different when
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compared to the generalised inversion in figure 3.2. This can be attributed to the dif-
ferent inversion formula used to produce the plot. Although it is generally difficult
to to predict the behaviour of a multi-dimensional PSF, it is possible to obtain some
quantitative comparisons of our two different inversions. The following reasoning
was used: We are primarily interested in how well can two targets be discerned in
azimuth and velocity domains. We can try to obtain “marginal” distributions of the
PSFs in azimuth and velocity domains by adding all amplitudes in the two respec-
tive directions. What is obtained are projections that would appear if the PSFs were
viewed sidewise from azimuth or velocity directions.

Figure 3.5 shows such comparison between figures 3.2 and 3.4. Amplitudes in
each image are summed in velocity and azimuth directions and their absolute value
is taken. Azimuth profiles are shown on the left. The full line represents the gener-
alised inversion, the dashed line the SAR-based inversion. One can observe broader
main lobes in case of the generalised inversion. This is caused by a more complex
shape of the PSF. When the images of both PSFs in figures 3.2 and 3.4 are cut on the
main diagonal, the profiles are identical with the azimuth profile corresponding to
the SAR-based inversion. On the right hand side of figure 3.5, velocity profiles for
both PSFs are shown. One can see that they are practically identical.

A closer look at the two-dimensional plots of PSFs in figures 3.2 and 3.4 re-
veals that perhaps there are some fine details that would indicate the superiority
of the general inversion (the main lobe is narrower in the diagonal direction in fig-
ure 3.2, moving target appears to be less defocused in figure 3.7, top). However, given
the difficulties connected with the multi-dimensional interpolation required for the
general inversion, it would seem that the complexity of implementation outweighs
potential merits of the general solution.

In order to estimate va, knowledge of k is necessary. One can observe that the
x position of a target can be related to a particular wave number k; for instance, by
noting that kx ≈ 2k for 4k2 ≫ k2u. Thus, k could be estimated from (x′, y′) and va
could be calculated. However, such estimation is not currently accurate in practise,
due to a small number of channels typically used in MTI phased arrays. This touches
another important aspect of SAR MTI the so called blind-angle  problem [4,35] refer-
ring to the fact that in general, velocity and azimuth of a moving target are mutually
dependent in a single-sensor SAR data, which motivates the use of more sensors to
resolve this ambiguity. However, the sole aim of the investigation presented here is
to show the relation between SAR processing and multi-channel MTI and to estab-
lish the fact that moving targets will be displaced outside of the two-dimensional
(x, y) domain in the third dimension: vx. This fact can be used to separate moving
targets from stationary ones. Also, it is possible to split the velocity domain into
smaller parts for an easier velocity estimation.
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Figure 3.4: Point  spread  function  for  the  SAR-based  inversion. (X1, Y1) =
(−1000, 0) meters, carrier  angular  frequency ωc = 2π109 rad/s. L = 30 and
D = 120 meters. The (y, vx) domain was sampled with 256 × 256 samples. The
pixels are scaled to 256 shades of grey; white is zero, black is the maximum.
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Figure 3.5: Comparison of point spread functions from figures 3.2 and 3.4. Line plots
are formed by summing the values of the PSFs in azimuth and velocity directions
and taking the magnitude of these sums: (top) azimuth profile, (bottom) velocity
profile. Dashed line: SAR-based inversion. Full line: generalised inversion.
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3.6 Simulations
The purpose of this section is to build a confidence in theoretical results found and
stipulations made in this chapter. Inversions defined by equations (3.12) and (3.40)
will be numerically tested for the case of multiple stationary targets and one mov-
ing target. Inversion defined by equation (3.12) was proposed for moving targets
extraction in Section 3.2. However, due to its relative complexity, the subsequent
theoretical analysis in Section 3.4 only approximately confirmed the validity of this
inversion for moving targets separation. Numerical experiments testing the inver-
sion (3.12) on moving targets will be shown next.

The layout of the general scenario considered in this section is depicted in fig-
ure 3.6. The simulated phased array consists of N sensors that are spaced with a
distance ∆d = D/N. Each sensor takes M measurements along the u coordinate.
Thus, one can imagine that radar stops at positions um spaced ∆u = 2L/M apart,
and it records all the responses for a time interval ∆τ = ∆u/vr sampling it at a rate
of P samples per ∆τ.

Ten stationary targets (designated ”◦”) are aligned with the y axis at a distanceX1.
A moving target (designated ”•”) with a velocity vector vt is located in the middle of
this line. τ is sampled at much slower rate than t (∆τ is also called pulse  repetition
interval), τ is referred to as slow time and the sampled time variable t as fast  time. So,
withN sensors,M space, and P range acquisitions, one obtains a three-dimensional
array called datacube of a size M × N × P . Since this chapter was concerned with
normalised, that is range  compressed (range focused) signal models, our calculations
deal with the two-dimensional domain (d, u). We take a slice of the datacube at a
particular range, namely X1. That means we have taken a two-dimensional array
M ×N.

3.6.1 Example 1
The simulation parameters are given as follows

parameter ωc X1 L D M N vr vx vy
value 2π109 -1000 30 120 256 256 100 -1 5
units rad/s m m m – – m/s m/s m/s

Figure 3.7 shows results after the application of the inversion scheme for sta-
tionary targets to the data composed of stationary targets and a moving one. As
expected, stationary targets are located on a straight vertical line. Even though the
moving target is located on the broad side, we see it vertically shifted in Doppler
(azimuth) domain in the figures. This is caused by the transformation (3.33). This
transformation quantifies the shift for broad side moving targets processed by the
SAR-based inversion as equal in angular and Doppler frequency domains. Indeed,
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Figure 3.6: A schematic layout of the simulation scenario. Please note that D > L
in example 1.
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since the plots are made for equal number of samples in Doppler and angular fre-
quencies, the moving target is shifted along the main diagonal of the lower plot.
The velocity and azimuth axis were scaled to fit the imaged area and velocity range.
Similar behaviour can be observed in the upper plot, but the exact expression for
this shift could not be found. Also note that the moving target is slightly defocused
due to its along-track velocity component vy. However, the most important thing
to be observed here is that the moving target is shifted in the horizontal direction
and thus separable from the stationary targets in the angular (velocity) domain. Its
velocity component vx could be in principle extracted using this horizontal shift,
but this can be done more accurately in azimuth-range domain, once the moving
target is isolated.

Stationary and moving target models from equation (3.4) and from equation (3.27),
respectively, were used. High numbers of samples and large apertures are necessary
if inversions (3.12) and (3.40) are to be applied directly. This leads to rather imprac-
tical scenarios such as the one in this example. The following examples introduce
somewhat more realistic parameters with modified processing.

3.6.2 Example 2
The next example uses the following set of parameters:

parameter ωc X1 L D M N vr vx vy
value 2π109 -62.5 30 20 256 8 100 -1 5
units rad/s m m m – – m/s m/s m/s

In this case, the number of sensors N is relatively small to sufficiently sample the
rapidly fluctuating received signal in the spatial domain. This does not necessar-
ily imply insufficient sampling of the focused target domain. Nevertheless, the in-
version defined by equation (3.40) requires correct sampling also in the measured
domain and needed to be modified. We use two important components of Fourier-
based SAR processing: interpolation and spectral windowing. Note that afterS(ku, ω, d)
has been transformed into S(ku, ω, kd), the kd spectral domain corresponds to the
sampling of measured data. Since kd is essentially the Doppler domain, the moving
target will be located at a frequency proportional to 2kvx/vr. One can thus use in-
terpolation to relate d domain to d′ domain corresponding to expected velocity range.
One simply computes samples required to properly sample estimated velocity range
of interest and then uses interpolation to pick corresponding samples (if any) from
the measured data in d domain. A window function in the spectral domain kd is
applied to reduce the artefacts caused by rounding errors, aliasing and to generally
regularise the inversion. The simplest choice is a rectangular function; however,
other windows such as Hamming can also be applied.
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Figure 3.7: Full inversion according to Section 3.2 (top), SAR-based inversion accord-
ing to Section 3.5 (bottom).
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Thus, the modified focusing scheme can be formulated as follows

g(x′n, y
′
n, kv) = (3.41)

F−1
(ku,k)

F(d)

{
W (d) exp

[
ȷX1

√
4k2 − k2u + ȷ

(
Y1 +

d

2

)
ku

]
exp

(
ȷ
kd2

4x

)
S(ku, ω, d)

}
,

where

kv ≡ kd ≈ 2k
vx
vr

(3.42)

and

W (d) =

{
1, if d < |D′/2|
0, otherwise. (3.43)

Constant D′ denotes support [−D′/2, D′/2] that can be larger than the support
[−D/2, D/2] of the measured data domain d. From the Discrete Fourier Transform
equations, we find that

∆d′ =
πvr

2kvxmax
, (3.44)

where d′ is the re-sampled domain d and vxmax is the maximum expected target vx
velocity.

Figure 3.8 schematically shows the procedure. The resulting focused target do-
main is shown in figure 3.9. The moving target is still distinguishable. Strong influ-
ence by the windowing function is noticeable from the changed shape of the side
lobes as well as their elevated levels, which are now dictated by the shape of func-
tion W (d) rather than the original point spread function. This explains why the de-
focusing is not as significant as in the previous example. It is noticeable only in the
strength of the target signature when compared to the stationary ones. The mov-
ing target is only slightly shifted in azimuth, since the shift given by equation (3.33)
depends also on X1, which is now relatively small.
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Figure 3.8: Schematic depiction of the algorithm from example 2.
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Figure 3.9: Simulation result from example 2. Moving target is indicated by the
arrow.

3.6.3 Example 3
It can be deduced from the previous example and from the mathematical descrip-
tion itself that if the aperture length D is decreased even further, the phase mea-
sured along the dimension d will be almost linear and the term exp(ȷkd2/(4x)) will
not make any significant difference on the processing. The inversion algorithms pre-
sented in this paragraph, however, use a nonlinear phase behaviour to obtain better
resolution. If this advantage is lost, it makes no longer sense to apply the model
inversions presented here. Instead, an approximation can be assumed. Namely, the
Fresnel’s approximation of a planar wave impinging on an antenna array is applied
and the focused domain vx is obtained by directly mapping it into the kvx domain,
i.e.

vx ≡ kvx (3.45)

This example represents a case in which even a smaller antenna array is used. One is
not necessarily interested in a possibility to accurately visualise the moving targets
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in the velocity domain; the objective is simply to separate them.

velocity [m/s]

azimuth [m]

10.50 16.5-16.5
-200

0

99

200

HHHHY

Figure 3.10: Simulation result from example 3. Moving target is indicated by the
arrow.

The parameters of such a scenario could be as follows:

parameter ωc X1 L D M N vr vx vy
value 2π109 -1000 240 5 2048 8 100 10.5 5
units rad/s m m m – – m/s m/s m/s

Figure 3.10 shows results of the simulation. As expected, the resolution in the ve-
locity domain deteriorated due to the small size of the antenna array D. One can
anticipate that with a further decrease of D, the FFT-based spectral analysis will
not be sufficient for moving targets extraction. The next chapter will consider such
scenario and use the principal components analysis (PCA) as the main tool.
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This example links our approach to some practical radar systems currently in use.
In fact, experimental results from a real case study of the application to an ultra-
wideband radar for detection of human victims buried underground during natural
disasters will be provided in Chapter 5. Nevertheless, one should not expect such
a solution to resolve all issues connected with a SAR-MTI using small-size antenna
arrays. Namely, the blind angle ambiguity is an important problem [35, Chapter 5].
It is noted here that for a good resolution in the velocity domain, at least a suf-
ficient number of antenna elements to perform an FFT is essential to resolve all
ambiguities. This argument is a subject to ongoing research and its outcome largely
depends on current developments in radar hardware, which are beyond the scope of
this thesis.

3.7 Concluding remarks

Section 3.2 introduced a general inversion for stationary targets. Section 3.3 anal-
ysed an inversion for moving targets. However, only an approximate solution was
found when compared to the solution from the first section. This is due to a con-
siderably increased complexity of the inverse problem in case of moving targets. In
Section 3.4, we proceeded to approximately analyse an extraction of moving targets
from data containing stationary targets as well. That section showed how moving
targets could be extracted when inversion for stationary targets is applied to moving
targets data: the central idea of this chapter. Section 3.5 studied a relation of the
proposed inversion to SAR processing. Theoretical results were numerically veri-
fied in the previous section. It could be concluded that the generalised inversion is
interesting only from the theoretical point of view and the SAR-based inversion will
suffice for all practical purposes.

The models and algorithms discussed in this chapter make use of the fact that at
close ranges, the phase of the wave impinging on an antenna array ceases to be linear
or even quadratic. Current airborne MTI radars operate at much longer distances
and have much coarser spatial resolution then the models studied in this chapter.
For this reason, no advantage would be gained by applying the inversions presented
here. One can formulate a simplified model of the problem and seek a processing
algorithm that would require less computations at the expense of some loss of spatial
resolution. Nevertheless, it is desirable to keep a good sensitivity in velocity domain.
We have seen from numerical examples that such requirement will not be met in case
of small antenna arrays, unless other algorithm than the FFT is used. Next chapter
presents a suitable solution for practical airborne MTI radars by applying principal
component analysis to SAR-MTI.



There  were  no  fewer than four  radar screens,as well as a prominent vertical panel carry-
ing  three  large  meters. One was labeled ELEVATION, another AZIMUTH, the third
RANGE.  It  needed  no  great  intelligence  to  deduce  that  this  was  where  the  controller
sat, and  that  these  meters  told  him  what  was  happening  to  the  aircraft  he  was  talking
down.

Arthur C. Clarke, Glide  Path



Chapter 4

Special Approach to
Multi-Channel MTI

This chapter has several objectives: The first one is to study a simplified multi-
channel model for airborne SAR-MTI. Unlike in the general approach, the approx-
imate methods described in this chapter cope better with scenarios applicable to
current airborne MTI. Section 4.1 presents a relevant model. The next objective
is to show a relation of our model to a standard STAP model. This is attempted
in Section 4.2, where the relation of the simplified SAR-MTI model to current
STAP models is analytically established. In Section 4.3, the PCA-based method
of Kirsteins and Tufts [23] is used to extract moving targets even if there are not
enough sensors to focus them in velocity domain. First, a special case of well cali-
brated sensors is shown, which reduces to averaging in the angle domain. Then, the
PCA approach is discussed. It is shown that the problem of moving targets’ extrac-
tion can be de facto treated as a one-dimensional spectral filtering. The separation
is independent of a moving or stationary targets’ distribution. Thus, a covariance
estimation from measured data is not required. Some numerical experiments will
be carried out in Section 4.4.

4.1 Airborne MTI model

In Section 3.3, a response of a multi-channel SAR system to a moving or stationary
point target, was modeled by equations (3.27) and (3.28) as

s(k, u, d) = σ exp
[
−ȷk

√
κ2 + ζ2 − ȷk

√
κ2 + (ζ + d)2

]
, (4.1)

43
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where

κ = x− vxτ (4.2)
ζ = y − vyτ − vrτ (4.3)

and τ is related to u via τ = u/vr; vr, vx, vy are the velocities of the radar platform
and the target, respectively; x, y indicate target position; σ is the target reflectivity.
The index n is dropped for clarity.

Suppose a signal produced by a stationary, unit reflectivity point target located at
coordinates (X1, 0). By substituting these coordinates with reflectivity for x, y and σ
in equation (4.1) and applying derivations given in Appendix B one gets

s0(k, u, d) ≈ exp
[
−ȷ2k

√
X2

1 + u2 − ud+ d2/2

]
. (4.4)

X1 is the perpendicular distance to the center of the area to be imaged. We call s0
the reference  function. It is used to convert the function in equation (4.1) to a linear
function of coordinates and cross-track velocity. To achieve this, so-called digital
focusing [35, 37] will be applied

sc(k, u, d) = s(k, u, d)s0(k, u, d)
∗, (4.5)

where ∗ denotes complex conjugation. After evaluating this expression one gets

sc(k, u, d) ≈ σ exp
{
−2ȷk

[
x−X1 +

y

X1

(
d

2
− u

)
− uva

]}
. (4.6)

x, y are the spatial coordinates with the origin at the center of the area. va = vx/vr is
a ratio of the radial velocity to the velocity of radar platform. A detailed derivation
of this expression is given in Appendix B.

We have neglected vy here, since we have seen in Chapter 3 that along-track
velocity vy only introduces defocusing; not a shift in the velocity domain. Therefore,
a moving target with vx = 0 cannot be separated from clutter in this domain.

In contrast with the case of equation (4.1), the phase function in equation (4.6)
is linear with respect to x, y, and vx. This means that the three-dimensional Fourier
transform will now produce focused points in the domain of interest, that is (x, y, vx).
Thus, an approximate solution to the inversion of the model defined by equation (4.1)
is found.

It is useful to observe that for |αu| ≪ R

√
X2 + (Y − αu)2 ≈ R− αu sinϕ

R
, (4.7)
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where sinϕ = Y /R, R =
√
X2 + Y 2 and X, Y, α are defined as in equations (3.30).

This means that expression (4.1) will be already roughly linear with respect to u and d
for small synthetic apertures L compared to the distance X1 (basically, the approxi-
mation neglects quadratic terms u2 and d2 with respect to the rest of the terms under
the square root). In such case, the digital focusing using equation (4.5) will not be
necessary. This approximation is used later on to process MCARM and SOSTAR
data in Chapter (5).

The following paragraphs will deal with the design of efficient algorithms to
separate stationary and moving targets at various circumstances. At this point, we
shall define clutter as all stationary targets’ signatures present in MTI radar data. A
”clutter-rejecting algorithm” will, in this thesis, not only represent an algorithm ca-
pable of discarding such signatures, but rather in a broader sense a classifier capable
of a separation of stationary and moving targets into two classes.

It has been already mentioned in Chapter 3 that range compressed data are as-
sumed. Analysis provided there showed that, unlike stationary targets, moving tar-
gets will be shifted in the direction of the kd axis proportionally to their velocities.
Although the moving targets’ positions will also change in the direction of the k axis
or range, this change is difficult to be exploited because the (ku, k) domain is also
occupied by stationary targets. Hence, it makes sense to design a clutter-rejecting
algorithm in the (ku, kd) domain, thus working independently of the k domain. This
means, a two-dimensional model can be considered

s(u, d) ≈
Mi∑
i=1

σi exp [−ȷ ai(d/2− u) + ȷ biu] , (4.8)

where i ∈ N, σ ∈ C and a, b ∈ R. Formally, the model given by equation (4.8)
corresponds to equation (4.4) as follows: Constants 2k,X1 and the variable x have
been removed, since we are trying to design a clutter rejecting algorithm that is
independent of range. Thus, ai ≈ yi is an azimuth position of a target, bi = vai is its
relative speed. The objective is to divide this function into two functions sa and sb,
i.e.

s(u, d) = sa(u, d) + sb(u, d), (4.9)

such that

sa(u, d) =
K∑
k=1

σk exp [−ȷ ak(d/2− u)] (4.10)

sb(u, d) =
O∑
l=1

σl exp [−ȷ al(d/2− u) + ȷ blu] (4.11)

Mi = K +O k, l ∈ N. (4.12)
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We do not know the values of ai and bi. What we do know, however, is that in
the 2D spectral domain (ku, kd), function sa will produce peaks located on a straight
line (see equation (B.17) in Appendix B)

Sa(ku, kd) = 4π2σ(ku)δ(kd + ku/2), (4.13)

kd = −ku/2. (4.14)

The points on this line can be shifted in such a way that kd = 0. This shift will in
fact allow an application of one-dimensional MTI processing techniques. As shown
in Appendix B, we multiply the Fourier transformed signal given by equation (4.6)
sc(ku, d) by a function ss(ku, d) that aligns the individual SAR images

s(ku, d) = sc(ku, d)ss(ku, d), (4.15)

where
ss(ku, d) = exp(ȷ kud/2). (4.16)

This step is performed implicitly by a more general inversion algorithm introduced
in Chapter 3, equation (3.40). The inversion is in turn a form of a bi-static along-
track MTI algorithm presented in [36], generalized for multiple channels.

4.2 Connection to the traditional application
of STAP in airborne MTI

In this section, we will restrict ourselves to one particular application of STAP: air-
borne MTI. The purpose is not to compare clutter-rejecting algorithms proposed
here to the scores of methods proposed elsewhere. We will rather attempt to show
how the signal model commonly used as a starting point in [13, 17, 28] can be de-
rived from the model proposed here. We will do that by showing that the stan-
dard airborne MTI model for stationary targets formally corresponds to the two-
dimensional Fourier transform of the function sa defined by the equation (4.10).
Hence, the standard airborne MTI model can be considered as a special case of the
general model derived in Chapter 3. Further, the operation defined by equation (4.15)
will be presented here as an additional operation performed on the conventional air-
borne MTI STAP model. Again, the result of this operation yields an orthogonal
domain. This generally decreases the computational demands on the solution of any
inverse problem [14], including airborne MTI.

For example, authors of references [13,17,28] define a normalised signal returned
by a target as

u(n, l) = exp(ȷ2πωin) exp(ȷ2πθil), (4.17)
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where n, l are variables, ωi, θi are normalised Doppler frequency and a normalised
spatial frequency of a target i, respectively. Please note that this expression is anal-
ogous to equation (4.8) with

(n, l) ≡ (u, d) (4.18)

2πωi = −a/2 (4.19)
2πθi = a+ b. (4.20)

In fact, a discrete form of equation (4.17) is more often in use. In that case, variables
n, l became column vectors [1 . . . N−1]T, [1 . . . L−1]T, respectively (T denotes trans-
pose). Equation (4.17) then becomes

u = a⊗ b, (4.21)

with ⊗ being the Kronecker product, or simply

U = aTb, (4.22)

which is the notation favoured here. Further, an important relationship for station-
ary targets is defined as:

ωi = βθi (4.23)
Thus, for stationary targets, one can write

u(n, l) = exp [ȷ2πθi(βn+ l)] (4.24)

We can now calculate a spectral response of the standard model for targets lo-
cated at the same distance from the radar at all angles; the purpose is to show that
the result is analogous to equation (4.13) and thus the constant β can be evaluated.
Consider a continuous case of an infinite number of stationary targets located at all
possible angles θ

u(n, l) =

∫ ∞

∞
eȷ2πθ(βn+l)dθ (4.25)

Following the procedure in Appendix B.2, the two-dimensional Fourier transform
of this expression is

U(θ, ω) = 4π2δ(θ − ω/β), (4.26)
which again shows that stationary targets will be located at a “ridge” defined by the
relation ω = βθ.

Authors of [17, 25] refer to the (θ, ω) domain as the angle-Doppler domain. Since
one can relate the expression above to equation (4.13), the (ku, kd) domain is the
Doppler-angle domain. Therefore, using our notation the factor β can be defined
as

ku = βkd (4.27)
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From equation (4.14) it follows that β = −2. Even though our consideration implies
that the constant β assumes only one value, it is sometimes expressed as a variable
dependent on other parameters such as D or vr. In order to find such a relation, we
note that by using equation (4.16), one can construct the two-dimensional shifting
function ss(w1, w2) of a variable w1 defined within an interval [−πM/2, πM/2], a
variable w2 defined within an interval [−N,N ], and a constant

γ =
D

N4L
, (4.28)

so that
ss(w1, w2) = exp (ȷγw1w2). (4.29)

This function is identical to the function defined by equation (4.16). We have simply
scaled its argument such that γw1w2 = kud/2. Using D/N = ∆d, 2L = M∆u, and
∆u = vr∆τ , one can further express γ as

γ =
∆d

2vrTp
, (4.30)

where Tp is the pulse repetition interval,M is the number of azimuth samples and
N is the number of sensors. This is a reciprocal value of the constant β, as defined
in references [13,17,28]. One can now see that since the support of w1 can be chosen
arbitrarily ( [13, proposition 1]), many expressions for β can be found – as long as the
relation between supports of w1 and w2 is kept such that the relation kw2 = −kw1/2
is satisfied. Constants γ or β are only useful in cases where the ratio L/D is not
known and needs to be guessed. It is a simple process of trying to align the stationary
targets in vertical position in the (ku, kd) domain (see results with measured data in
Chapter 5) by substituting a suitable number for γ or β. This does not affect the
slope of the line of stationary targets, which is known and can be corrected for by
effectively setting β = 0.

4.3 Multi-channel SAR MTI
The dependency of ku = βkd means that a signature of any target, moving or sta-
tionary, will occupy a two-dimensional domain (ku, kd). This makes MTI difficult,
because one needs to identify the line of stationary targets first by means of some
two-dimensional spectral estimator and then detect moving targets placed off that
line. However, since the dependency is known as well as the fact that the station-
ary targets will be concentrated in one line (and therefore in one dimension) in the
(ku, kd) domain, one can shift the entire domain as depicted in figure 4.1 using equa-
tion (4.15). Dashed line depicts stationary targets together with a moving target
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focused in angle-Doppler domain of the original data. The stationary targets are
aligned on the main diagonal. The moving target is located off that diagonal. Tar-
gets shifted by the function ss are shapes filled in black. The following convention
for the shifted targets will be used in this section: the stationary targets are always
located on a horizontal line at frequency kd,0 which can in principle have a nonzero
value. In the ku domain, a kth stationary target will be located at frequency ku,k. An
lth moving target will be located at frequencies (kd,l, ku,l). We distinguish between
(kd,0, ku,k), the position of a stationary target, and (kd0 , kum), the discrete sample
pair in the angle-Doppler domain, since the number of stationary or moving targets
can be larger than the number of discrete frequencies at which the angle-Doppler
domain is sampled.

kdkd,0kd,l

ku = −2kd

ku,l

ku

ku,k

Figure 4.1: Schematic description of the shifting operation: The (ku, kd) domain
before and after applying function ss(ku, d).

After the shift, the model of a multi-channel SAR MTI signal can be expressed
in the form of ∑

k

Ak exp [−ȷ(uku,k + dkd,0)] = f(u) · h(d) (4.31)

where

f(u) =
∑
k

Ak exp (−ȷuku,k) (4.32)

h(d) = exp (−ȷdkd,0) (4.33)
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and
ku,k ∈ [−Ku, Ku], Ku = const.

Thus, axes ku, kd now represent target’s azimuth position a and velocity va indepen-
dently. Also, one can observe that for velocity estimation, only a one-dimensional
spectrum estimation is now needed.

The idea to use some transformation in order to simplify the MTI processing
is not new. A target velocity-dependent transform in the angle-Doppler domain
was proposed in reference [10], as well as in reference [27]. However, the transform
defined by equation (4.15) does not depend on target’s velocity as it does in the latter
work. We have seen that the relation described here is a consequence of the problem
geometry and it is, in this sense, optimal; there is not a better transform that would
reduce the problem dimensionality even further.

The claim of one-dimensional processing being possible is supported by the fact
that, after the data shift, the angle-Doppler domain data matrix is analogous to data
from stationary time-varying sources located at different angles (see reference [6],
for instance). The azimuth axis can now be treated as “time”. Clutter is located at the
zero angle, moving targets have nonzero bearings. Azimuth processing constitutes
“demodulation” or spectral estimation in the transformed “time” domain of a signal
received by each sensor. We can see from this analogy that the parameters of the
beamformer will not change in time – as long as the amplification of each antenna
sensor does not vary with time. The weights of the beamformer can be estimated
from data. Since the zero-angle is being separated, the beamformer will correspond
to a high-pass or a low-pass filter, depending on whether stationary or moving targets
are being suppressed. This idea was exploited in [10] for a practical design of such
a beamformer. However, we consider the mathematical approach presented here
slightly more direct.

4.3.1 Target separation using averaging
The sampled version of expression (4.31) can be decomposed into the column vector
f(u) and the row vector h(d). Hence,

S = fh (4.34)

Suppose we know S and kd,0 and we are trying to estimate Ai and ku,i. Equa-
tion (4.34) implies that

f̂ = Sh† (4.35)
f̂ is an estimate of f and † denotes pseudo inverse. This solution is called Wiener
filter. It is also called the least squares solution to an inverse problem by matrix
inversion [33, Chapter 9]. For vectors, we have

h† = h′/N, (4.36)
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where ′ denotes a conjugated transpose. N is the length of vector h. In the signal
processing literature, h′/N is called matched filter. Further, suppose that kd,0 = 0. In
that case, vector h equals [1 1 1 . . . ]. Clearly, f̂ can then be calculated as

f̂ =
1

N

∑
j

{S}i,j. (4.37)

This means simply a calculation of an average over columns of matrix S.
Now suppose that we have some other signals Sm with amplitudes Bl at un-

known frequencies (ku,l, kd,l) but kd,l ̸= kd,0 (see figure 4.1). These signals represent
moving targets and will be added to the signal from expression (4.34)

Z = S + Sm (4.38)

One can then estimate signals Sm as follows:

Ŝm = Z − 1

N
(Z · h′)h (4.39)

4.3.2 PCA-based target separation
As shown in Section 2.4, by computing the singular  value  decomposition (SVD) of
matrix Z, one obtains several singular values. Under certain conditions, their num-
ber indicates the number of moving objects plus the biggest singular value, respon-
sible for the entire clutter region. By removing the biggest singular value, clutter is
removed also. The restriction is that moving targets should be much weaker than
clutter. Similar algorithm has been studied before by authors of [23] and the trade-
off between the strength of clutter compared to moving targets is treated ibidem.
The general problem at hand is also called the principal components analysis, (PCA).
An excellent overview of PCA can be found in reference [39].

Recall expression (4.34). Note that the decomposition into two singular vectors
can be achieved by SVD. One can write that

S = UaΣaV
′
a , (4.40)

where

Ua =
[
exp (−ȷuku) 0 . . .

]
Σa = diag(λ1, 0 . . . )
Va =

[
exp (ȷdkd) 0 . . .

]
λ1 =

∑
k

Ak
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Similarly, one can decompose matrix Z as

Z = UbΣbV
′
b , (4.41)

where

Ub =
[
f1(u), . . . , fN(u)

]
Σb = diag(λ1, . . . , λN)
Vb =

[
h1(−d), . . . , hN(−d)

]
The decomposed matrices in equations (4.40) and (4.41) are only equal in case [23]

K∑
k=1

Ak ≫
N∑
n=2

λn (4.42)

while in general the following condition is satisfied

N∑
n=2

λn =
O∑
l=1

Bl. (4.43)

Meaning that in special cases, the condition holds

λn = Bl. (4.44)

Clutter rejection can be achieved by setting λ1 = 0 and recalculating matrix Z us-
ing equation (4.41), for example. There are many solutions to the singular value
decomposition of the matrix Z – the method is ambiguous. The reason is that SVD
performs a so-called orthogonalisation. This means it finds signals which are uncor-
related [39, Chapter 10], in stricter sense signal independence. A potentially more
powerful method would then be ICA – the independent  component  analysis [39]. In
spite of this, equation (4.42) implies that the amplitudes of clutter signals must be
significantly bigger than amplitudes of moving targets’ signals. This is precisely the
case of our interest, meaning that PCA will then provide satisfactory results.

Once the signal has been separated into components, one can set their corre-
sponding amplitudes (singular values in case of the PCA) to zero, thus removing
some parts of the data. One can use this technique to extract white noise from
the data, thus perform so-called de-noising. Consider figure 4.2. Unlike shifted data
(singular values depicted as •), unshifted data (singular values depicted as ◦) produce
mixtures of signals, with the result that clutter cannot be easily separated from mov-
ing objects. Also note that there is no clear distinction between noise and useful
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singular values
1 2 3 4 5 6 7 8 9 10

noise threshold
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Figure 4.2: A possible SVD decomposition of the data from figure 4.1.

signals in the unshifted domain (Gaussian noise theoretically exhibits a flat plateau,
as seen in the shifted case). It can be shown that singular values of a white (Gaus-
sian) noise matrix will have the same values, forming a horizontal line in the plot,
provided that the useful signal occupies only some smaller subspace [1]. Depending
on the signal-to-noise ratio (SNR), a threshold can be defined above this line and all
values below it are set to zero. Unlike the clutter rejection proposed above, this op-
eration depends on SNR. However, it can considerably improve data quality. One
can observe from figure 4.2 that a horizontal line representing noise is much harder
to be found in the case of unshifted data.

4.3.3 Channel mismatch
The angle-independent channel mismatch model described in reference [17, Sec-
tion 4.2.1] will be reviewed in this subsection. Instead of the original discrete for-
mulation, a continuous version will be used here.

In practice, every channel in the phased array will have slightly different gain
and phase shift given by the manufacturing tolerances or other construction-related
factors. We suppose that each channel n has a complex gain e(dn) slightly different
from a mean gain e(dn). These discrete gains can be considered as samples of a
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continuous function e(d), which is generally unknown. This function will modulate
function h(d)

sa(u, d) ≡ f(u)h(d)e(d) (4.45)

In such a case, the solution presented in subsection 4.3.1 will fail to perform correct
factorization for the unknown e(d). However, this is not true for PCA. Indeed, using
the same procedure as in the Appendix B.2, one can write

ŝa(ku, d) = 2πσ(ku)e(d) exp(−ȷ kud/2), (4.46)

and

Sc(ku, kd) = 2π

∞∫
−∞

σ(ku)e(d) exp(−ȷ kdd) dd, (4.47)

Sc(ku, kd) = 4π2σ(ku) (δ(kd) ∗ E(kd)) , (4.48)

Sc(ku, kd) = 4π2σ(ku)E(kd). (4.49)

E(kd) denotes the Fourier transform of e(d) and * denotes convolution. What is
known about the result r(d) = h(d) · e(d) is that it is still a function of d only and
therefore orthogonal to the function f(u). So, under the conditions discussed earlier,
one can still estimate functions f(u) and r(d) using SVD without really knowing
them in advance. Furthermore, since we know h(d), we could in principle estimate
e(d) – thus performing channel mismatch estimation using PCA.

4.4 Simulations
A three-dimensional data set has been created using the airborne MTI model given
by formula (4.1). The layout of the target area and overall geometry of the simulation
scenario are depicted in figure 4.3; Five stationary targets S1 to S5 (designated ”◦”)
are located at a distanceX1 = −10000 meters. Two moving targets M1 and M2 (des-
ignated ”•”) are located on the x axis. The diameter of the imaged area is 4 km which
means that the antenna beam width is about 22◦. The reflectivity of all stationary
targets was assumed to be equal to one. Moving targets were simulated for two cases
with different values of reflectivity: i) Moving targets shown in figures 4.4, 4.5 had
unit reflectivity. ii) Moving targets in figures 4.6 and 4.8 were simulated with a re-
flectivity ten times smaller than unity. The remaining parameters are summarised
in table 4.1.

The simulated data set is first focused using the digital focusing described by
equation (4.5). This operation converts three-dimensional complex chirps to com-
plex harmonics having frequencies proportional to positions and velocities of the
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Figure 4.3: A schematic  layout  of  the  simulation scenario. Stationary targets:
S1 to S5, moving targets: M1 and M2.
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targets. Thus, focused points can be obtained after the application of the three-
dimensional Fourier transform. However, as already shown in figure 4.1, digital fo-
cusing alone will not produce orthogonal domains; e.g. stationary targets will appear
to have some velocities in the angle-Doppler (velocity-azimuth) domain. To obtain
orthogonal domains corresponding to velocity, azimuth and range, it is necessary to
account for the fact that the imaged scene is being viewed by different antennas at
different angles. These angles can be compensated before or after digital focusing
using the equation (4.15).

Table 4.1: Simulation parameters, airborne scenario

parameter value description

X1 -10 km distance to the centre of imaged area
R1 2 km radius of the imaged area
L 10 m synthetic aperture length
D 5 m phased array length
M 64 number of azimuth samples
N 16 number of sensors
P 8 number of range samples
ωc 2π · 109 rad/s angular carrier frequency
vr 100 m/s radar velocity
vx1 -7 m/s velocity vector, x−component, moving target 1
vy1 5 m/s velocity vector, y−component, moving target 1
vx2 10 m/s velocity vector, x−component, moving target 2
vy2 0 m/s velocity vector, y−component, moving target 2

Figure 4.4 shows two plots representing magnitudes of the two-dimensional Fourier
transform applied on the data in (u, d) domain. The top of the figure depicts the
two-dimensional spectrum of the data after the digital focusing given by equation (4.5).
The bottom of the figure depicts the two-dimensional spectrum of the data after the
digital focusing and shifting using equations (4.5) and (4.15). Stationary and moving
targets are labeled according to the simulation scenario depicted in figure 4.3. One
can observe that in fact a two-dimensional filter is required to suppress the station-
ary targets in the case shown on top of figure 4.3 [17, 25, 28]. However, when the
shift is employed, the stationary targets do not have any velocity component and
therefore they are located on a vertical line as shown in the bottom of figure 4.4.
Only a one-dimensional filter is required in this case.
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Figure 4.4: Simulation results, magnitude of a 2D-spectrum, constant range slices:
(top) digital focusing applied to the data model, (bottom) digital focusing and shift
applied to the data model.
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Figure 4.5: Slices of data at zero velocity: (top) SAR image with moving targets
present, (bottom) SAR image of moving targets extracted using principal compo-
nents analysis.
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Figure 4.5 (top) shows a slice of the data cube representing a single-sensor focused
SAR image. Note that the moving targets are slow enough to be fully focused. Also,
their spectra are overlapping with the spectra of the stationary targets – it is the slice
of the shifted three-dimensional spectral domain that is shown in the figure. Hence,
the moving targets cannot be removed by single-channel based methods unless some
extra measures are taken, as in reference [8]. Figure 4.5 (bottom) shows the result of
PCA-based filtering. One can see that the moving targets are now extracted nearly
perfectly.

M1

M2

Figure 4.6: PCA with channel mismatch.

The channel mismatch influence is shown in figure 4.6. The simulation was set
up as follows: Each channel was given a random complex gain, that is

s(dn) = s(dn) +Nns(dn), (4.50)

where Nn was a random Gaussian complex number with zero mean and variance
equal to 10. As expected, the simulated channel mismatch changed the side lobe
pattern related to moving targets (e.g. compare to the bottom of figure 4.8 where
no channel mismatch was introduced), but it is interesting that for such a large mis-
match, the filtration ability of the PCA-based method was not affected. This prop-
erty was derived in paragraph 4.3.3 and it is generally known. The simulation results
are shown here merely for completeness.
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Figure 4.7: Focused azimuth-angle domain. Moving targets are ten times weaker
than the stationary ones. SAR-MTI data is contaminated by Gaussian noise with
zero mean and variance equal to 0.3.

The previous examples model the case where all targets have equal reflectivity.
The moving targets can be clearly identified in figure 4.4 even without any attempts
to remove the stationary clutter. FFT-based processing on data with a finite sup-
port produces side lobes that can mask weak targets. Using windows different than
the rectangular one prior to the FFT can reduce this effect. Nevertheless, should
a target be weaker than the resulting side lobes due to other targets, it will be ob-
scured. In current airborne scenarios, it is typical that the number of stationary
targets is very large, whereas the moving targets are rather sparse. It is very likely
that the side lobes due to high-energy clutter will obscure weaker moving targets
even if they travel at relatively high velocities. This situation is illustrated by fig-
ure 4.7. The simulation parameters are again given by table 4.1, the difference from
previous examples is that the moving targets are now ten times weaker than the sta-
tionary ones. Figure 4.7 shows their focused responses to be significantly weaker
than the side lobes due to the stationary targets.

In addition to decreasing the reflectivity of moving targets, noise modelled as
random Gaussian complex numbers Nm,n,p of zero mean and variance equal to 0.3
was added to the signal as follows:

s(um, dn, kp) = s(um, dn, kp) +Nm,n,p (4.51)
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Figure 4.8: PCA-based processing of SAR-MTI data contaminated by Gaussian
noise with zero mean and variance equal to 0.3: (top) the strongest singular value
removed, (bottom) all except the second singular value removed.
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This is not apparent in figure 4.7, since the noise floor is lower than the intensity
range of the image. We applied the PCA to every range slice p of the data cube by
means of decomposing the slice using the SVD, setting some of the singular values
to zero and recomputing the data slice as shown in subsection 4.3.2. The results are
shown in figure 4.8. The top figure shows clutter-free data after the largest singular
value was set to zero. The bottom figure shows recomputed data after all except
the second singular value were set to zero. This de-noising operation requires a reli-
able matrix rank estimation technique, which is a problem in its own right (see [23],
for instance). It can be observed that the clutter filtering capability is not affected
by noise. Additive noise reduces the visibility of the moving targets, but it is de-
coupled from the clutter signal and its distribution. This simplifies the problem of
moving target detection to the known problem of a single harmonic signal in noise.
This would be the lower limit. The upper limit is given by the constraint that mov-
ing targets must be weaker than clutter – a condition relatively common in real-life
problems.

4.5 Concluding remarks
Simplified multi-channel model for airborne SAR-MTI has been studied in Sec-
tion 4.1. We have seen that in the simplest case, focusing the airborne data in the
azimuth-Doppler domain by the model inversion requires a two-dimensional spec-
tral estimation applied directly to the data. In a more general case, a multiplication
with a two-dimensional chirp-like function followed by a two-dimensional spectral
estimation can be performed. This model is identical to the MSAR model treated in
reference [12] and obeys the detection bounds derived ibidem. Section 4.2 showed
a relation of our model to a standard STAP model. The known PCA-based algo-
rithm by Kirsteins and Tufts was used to extract moving targets even if there are
not enough sensors to focus them in velocity domain. A special case, when the av-
eraging in angle domain can be applied was discussed. It can be concluded that only
two sensors are necessary to perform averaging, or to obtain a rank-2 matrix, which
allows a separation between two classes: moving targets and stationary ones. How-
ever, the blind angle problem will still persist in that case. As already mentioned
in Chapter 2, SVD does not require the formation of a covariance matrix, which
is typically very expensive to be computed. The approach chosen here completely
circumvented such computation, saving a considerable amount of resources in the
process. SVD was applied to a matrix of a size N × M in this chapter. The cor-
responding computational load required is O(MN2), where M ≥ N. This can be
compared to the SVD of a covariance matrix M ×N , which would take O(M3N3)
multiplications. Nevertheless, if averaging is possible, only division by the number
of channels N is required, which can be implemented by means of a shift register
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in digital hardware. In this case, no multiplications are required to perform STAP.
Thus, averaging constitutes the simplest and the least expensive STAP algorithm
discussed in this thesis.



And therefore  in  the  whole  work it  is  perceived Who the  Maker  is.

Hildegard of Bingen, Liber Scivias, II, Vision 2

When  there  was  an  E,  I played on E. When there was a G, I played on G. And when
there  was  no  bow, I even played with a twig rubbed with rosin...

Dušan Holý (ed.), Mudrosloví primáše Jožky Kubíka



Chapter 5

Experiments

The experiments in Section 5.1 were inspired by recent attempts to use ultra-wideband
ground-penetrating radar (UWB GPR) in detection of buried victims and for through-
wall vision. We experimentally investigate a technique that aims at taking advantage
of fast and robust processing thanks to FFT-based algorithms and slow-speed detec-
tion capabilities due to STAP. A potential application of this technique would be for
instance detection of humans based on the motion of their bodies while breathing.

The multi-channel airborne radar measurement (MCARM) program [20] was
developed at the Air Force Research Laboratory, in Rome, New York. Within this
program, multi-channel clutter data were collected using an L-band phased array.
The MCARM database comprised pre-processed airborne radar datacubes. Each
acquisition data file consists of a single coherent processing interval. MCARM
data were collected during several Delmarva and East Coast fly-overs terminating
in Florida. Section 5.2 is describing some experiments done with the data.

In Europe, a legal entity has been established by Germany, France, Italy, Spain
and The Netherlands in order to develop a Stand-Off Surveillance & Target Acquisi-
tion Radar (SOSTAR) and execute a demonstration program (SOSTAR-X) [2]. The
system incorporates a next generation Imaging SAR/MTI Radar representing the
scalable state-of-the-art solution for ground surveillance. The SOSTAR-X demon-
strator is integrated into an airborne platform to demonstrate the feasibility of its
sophisticated sensor technology, alongside with near real-time processing and visu-
alisation functionality. MTI processing results using data recorded by SOSTAR-X
are presented in Section 5.3.

5.1 GPR data
Ultra-wideband (UWB) data from a ground penetrating radar (GPR) designed by
the International Research Centre for Telecommunication and Radar (IRCTR) [32]

65
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of the Delft University of Technology was acquired. It was used to demonstrate
the potential of our models and algorithms for the buried victims detection using
UWB GPR technology. A non-calibrated phased array of seven sensors was used in
the scanning system developed in the IRCTR’s lab. The first results with proposed
models even for this type of radar system will be presented in this section.

Table 5.1: GPR processing parameters

parameter value description

X1 -0.3 m distance to the center of imaged area
L 0.72 m synthetic aperture length
D 0.3 m phased array length
M 145 number of azimuth samples
N 7 number of sensors
P 100 number of range samples
ωc 0 rad/s angular carrier frequency
∆t 10−9/4096 fast time sampling rate

Parameters relevant to the processing are summarized in table 5.1. Note that
the perpendicular distance X1 from the array to objects was set to a value larger
than the actual distance. X1 was found experimentally during the processing to
center the area of focused objects and to compensate for spatial inaccuracies such
as transmitter located above the receivers rather than in-line with them.

Figure 5.1: GPR setup viewed from top (not to scale).
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Figure 5.1 schematically shows the actual setup. The geometry chosen is iden-
tical to the airborne moving target indicators (MTIs). A linear array of sensors is
placed on a line in the direction of the y axis and it is moved in this direction over
a certain distance. Each sensor records data in the same way a SAR sensor would.
A SAR image is produced by each sensor. Since the sensors do not share the same
viewpoint, stationary objects are shifted in azimuth over a certain amount, in each
image. This shift is known and can be corrected. After that, the Fourier transform
over all sensors is calculated. As a result, a three-dimensional data set is obtained
where x and y axes represent space and z axis represents velocity.

Processing algorithms described in this thesis are designed for homogeneous me-
dia. In the case of GPR, a different problem arises: in the simplest approximation,
a radar pulse travels first through free space (air) and then enters a different medium
(soil, concrete). This medium is most likely to have different electromagnetic prop-
erties (such as permittivity) than free space. Thus, refraction will occur. In free
space, the radar would see a surface target at its actual position. However, in sand
(figure 5.2), a target should appear to the radar at a position that is not real. Using
refraction, one would expect that in an UWB GPR experiment where a frequency-
domain SAR processing is used, objects on the surface will appear closer than objects
at the same vertical positions under the surface.

Figure 5.2: GPR setup viewed from a side (not to scale).

Therefore, the first experiment was set up to confirm that the two-layer media
model is suitable for our needs. The refraction due to the boundary causes a buried
object to appear at a virtual position, but the signature stays focused. Figure 5.3
shows two focused objects from the scenario depicted in figure 5.2. One reflective
plate was placed on the surface of a sand pit, the other was placed about 10 cm below
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the surface. One can observe that the shape of the focused signature is nearly the
same in both cases. The only difference is the position. One can thus deduce that
the focusing properties of a free-space based SAR-MTI processing algorithm will
not be affected by the different media in our experiment.

Figure 5.3: GPR processed data: surface and buried targets.

The second experiment was aimed at detection of a slowly moving target in sta-
tionary background. At the time of the experiment, it was difficult to carry such
campaign out with a moving object actually buried in the sand. However, since it
was confirmed that results after processing will not depend on whether the object
is underground or not, surface measurements were performed. Three metallic discs
were placed on the surface of the sand and a small metallic object of a comparable
radio cross section was slowly pulled on a cotton thread during the data acquisi-
tion, as shown in figure 5.1. To have an easy comparison, a baseline measurement
of the background without any targets in the scene was done first. Then, station-
ary targets were placed on the sand and the measurement was repeated. Then, the
moving target was slowly towed across the sand. We were only interested in how
well the moving target could be separated from the three stationary ones. The re-
maining background due to surface reflection and edges of the sand pit was removed
by subtracting the baseline measurement from the data with stationary and moving
objects. Two raw datasets were created:

1. stationary and moving targets measured with background subtracted,
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2. stationary and moving targets measured with background and stationary tar-
gets subtracted

The first dataset was processed by using the algorithm described by example 2 in
Chapter 3. Since the sensors were not calibrated, PCA was applied before the Fourier
transform in the d domain (the sensors). The second dataset was processed by the
same algorithm, only without PCA, to focus onto the moving object under the same
conditions in order to make comparisons. Since all stationary targets and back-
ground were removed from the dataset number 2 in the best possible way, this re-
sult serves as a measure of how well the PCA worked in the first case. Slices of
the processed data cube are shown in figure 5.4. They are taken at zero velocity, so
the domain shown is the spatial (x, y) azimuth-range domain – or in other words,
it shows a SAR image. Note that due to a poor velocity resolution given by the
small number of antennas, the moving target signature will be visible also in the
zero-velocity slice. This slice is chosen allowing to evaluate how well the station-
ary objects were suppressed. The top of figure 5.4 shows all targets including the
moving one processed without stationary targets removal. The middle of figure 5.4
shows a moving target extracted using the PCA method. This can be compared to
the bottom of figure 5.4 where the moving target is extracted via subtraction.

One can observe a very good match between the ideal result (figure 5.4, bottom)
and the estimated one (figure 5.4, middle). Some weak remains of stationary targets
are still visible after PCA extraction. Note that averaging was not possible due to a
severe channel mismatch.

Our processing methods were designed to be robust enough to cope with a rel-
atively large error margin. Various locations of the transmit antenna with respect
to the receive array were tested. Even if the transmitter was actually some 25 cm
from the array with a length of 30 cm, a basic SAR processing assuming collocated
transmitter and receivers was used. The sensitivity to the relative positions of the
transmitter and receiving array was found to be low. For a system with a range reso-
lution of about 15 cm, this is to be expected. Also, different transmit antennas were
tested, namely Vivaldi and loop antennas. The difference was found only in gain,
which affects the brightness of the SAR images.
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Figure 5.4: GPR processed  data: (top) stationary  and  moving  targets; (mid-
dle) a moving target extracted using PCA; (bottom) a moving target extracted using
subtraction.
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5.2 MCARM data

The data from the MCARM database [20] were used to carry out some validations.
Due to their low resolution the following approximation was used [20,46]:

f(x, y, vx) = Fu,d {s(t, u, d)} (5.1)

This means the model described by equation (4.6) applies. The data were treated
as a three-dimensional array, with a size as given by table 5.2. The array is arranged
in two rows of sensors that are placed vertically on top of each other. The provided
MCARM data is organised in several files according to different flights and different
acquisition regimes. In this section, results obtained from the upper half of the
sensor array of the data set from file re050146 are presented. The Fourier transform
was calculated using the FFT and the d domain was zero padded up to 256 points,
so the resulting data cube is of a size M = 256, N = 256 for P = 630 range samples.
Note that unlike most authors dealing with these data, only lower or upper part of
the sensor array was used in this thesis, hence N = 11 before zero-padding.

Table 5.2: MCARM processing parameters, file re050146, upper half of the sensor
array.

parameter value description

PRF 1984 Hz pulse repetition frequency
∆d 4.3 in sensor spacing
M 128 number of azimuth samples
N 11 number of sensors
P 630 number of range samples
ωc 2π · 1.25 · 109 rad/s angular carrier frequency
vr 413 ft/s radar velocity
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Figure 5.5: Channel mismatch: (top) magnitude, (bottom) phase.
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5.2.1 Studies of channel mismatch
As explained in subsection 4.3.2, an estimate of the complex channel mismatch func-
tion e(d) can be obtained from the first column of matrix V . Magnitude and phase
of this function are depicted in figure 5.5. The thin lines represent every 10th range
line p in the data. The thick solid line represents an average over all range lines,
the dashed lines depict the standard deviation also calculated from all range lines.
Comparison of these results with figure 3 in [20] reveals that the PCA based method
implicitly performs a so-called global calibration. One can observe a similar trend in
all lines in the phase plot. This supports the initial assumption of a range (time)
independent function e. The situation is different in the magnitude plot. However,
this result will still satisfy the requirement of orthogonality, since the randomness
of magnitude will be averaged out in the final processing step (see subsection 4.3.1).
This range-variant magnitude of function e is almost certainly due to noise.

5.2.2 Moving Target Detection and Indication
In figure 5.6 (top) the magnitude of the two-dimensional Fourier transform of the
range slice p = 386 is  displayed. The marked target is moving target M4. The
target is identified as moving because it is visibly offset from a line running diag-
onally, which represents stationary targets. Figure 5.6 (bottom) depicts the same
situation, after the shifting function ss was applied. To obtain the top picture from
the bottom one in figure 5.6, a factor γ = 0.0736 was used. This particular value of
γ gives maximum clutter suppression in the measured data. Using PRF = 1984 Hz,
vr = 413 ft/s, and ∆d = 4.3 in obtained from data description in table 5.2, factor γ is
calculated to be 0.0795. The difference between the values of γ obtained experimen-
tally and by calculation is approximately equal to 7.4%. It is probably caused by the
difference between the nominal values of the acquisition parameters and the actual
ones. Applying the calculated γ to the data causes a perceptible but not significant
change in the clutter suppression.

Figure 5.7 (top) shows the case when clutter is stronger than the moving target
M4, which would not be detected in a single-channel SAR image by simple thresh-
olding. Target M4 was located at range p = 386 in the examined MCARM data set.
The included results of PCA but especially the results of figure 5.7 (bottom) reveal
a very good performance of the simple algorithm from subsection 4.3.1 based on
taking the average of the data from multiple channels after the alignment by using
function ss and subtracting this average from each channel’s data. This example
would also suggest that MTI based on averaging would not fail on this particular
dataset due to a calibration error, which seems to be contrary to the statements
in [20]. Since the phases and gains of each channel were calculated earlier and there-
fore they are known, some idea can be gained on what constitutes a “well calibrated”
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Figure 5.6: Top: Data in the angle-Doppler domain. Bottom: Data in the angle-
Doppler domain, shifted.
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Figure 5.7: Weak moving target in clutter: (top) stationary targets and moving targets
extracted using PCA, (bottom) moving targets extracted using PCA and using the
algorithm from subsection 4.3.1.
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multi-channel airborne radar data set. Hence, the following statement can be made:
The  MCARM dataset re050146 exhibits a relatively low channel mismatch.
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Figure 5.8: SVD analysis, range 386.

Figure 5.8 shows singular values of the range slice p = 386 before and after the
shift, respectively. A significant change of higher singular values due to the shift can
be observed. In this particular case, most of what is called ”subspace leakage” in
STAP literature [17, 18] seems to have deterministic origin and it can be removed.

Authors [15, 20,46] chose a slice of the datacube at range p = 450 due to a sim-
ulated moving object present there. Figure 5.9 displays our results. They are nearly
identical with the results of previous authors, yet they are obtained by much simpler
and faster means. Figure 5.9 (top) shows that a good separation between stationary
(S1 to S4) and moving (M1 to M3) targets is provided. Figure 5.9 (bottom) shows a
comparison between the MTI algorithm based on averaging over the data from mul-
tiple channels and PCA-based MTI. Nevertheless, it is obvious from the data that
any reasonable MTI method will perform well, since moving targets are stronger
than the stationary ones at this particular range. This is clearly demonstrated on
various results shown in reference [20].



5.2. MCARM DATA 77

B
B

Figure 5.9: Strong moving targets in clutter. Top: MTI processing versus SAR pro-
cessing. Bottom: PCA versus averaging.
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B

Figure 5.10: Shortcomings of PCA.

It was mentioned in subsection 4.3.2 that the PCA-based MTI method will fail
in case the clutter is weaker than the reflections from moving targets. This is il-
lustrated in figure 5.10. It shows that in case of PCA, performed on an one range
slice only, the strongest target M3 will be suppressed while the stationary targets
S1 to S4 will remain unaffected. A simple remedy to this problem is taking more
range slices into account and stacking them one on top of another. A dashed line
in the same figure shows the result after stacking of 20 adjacent range slices around
p = 450. However, this might not be a desirable solution, since it increases the com-
putational complexity. One could rather conclude that a different signal separation
algorithm, such as ICA should then be sought.

5.3 SOSTAR data
This section presents data from an early SOSTAR system test flight. Although
nearly all information about this data set was classified, results with the MCARM
data and GPR data MTI processing provided necessary confidence and validation



5.3. SOSTAR DATA 79

of the MTI algorithms. Again, the approximation

f(x, y, vx) = Fu,d {s(t, u, d)} (5.2)

was used. This made the knowledge on L,D, ωc or PRF irrelevant. We set D = 1
and estimated the factor γ = 0.0449 for the best clutter suppression. The original
range-compressed data consisted of an array of M × N × P = 128 × 3 × 91 az-
imuth, channel and range samples. The data was shifted in angle-Doppler domain
using the function ss and zero-padded up to 256 samples in the azimuth direction.
To extract the moving targets, MTI algorithms based on PCA and on averaging
were applied to the data set. The two-dimensional Fourier transform was calculated
for each range slice p. In this way, three new data sets were obtained: i) a data set
where only function ss, zero-padding and the Fourier transform was applied; ii) a
data set where PCA was applied prior to the Fourier transform to remove clutter;
iii) a data set where the algorithm based on averaging over the channels was applied
prior to the Fourier transform. Each of these new data sets represents focused data
in azimuth, angle and range domain. Since N = 3, there will be virtually no differ-
ence between focused data from any channel. We chose a slice forN = 2 from each
dataset. The slice from the first data set would represent a SAR image with moving
targets present, the slices from remaining data sets should represent SAR images
with stationary targets (clutter) removed.

Figure 5.11 shows SAR images of moving targets and clutter (top), and moving
targets extracted by PCA (bottom). Clutter is represented by the horizontal band
in the middle of the top picture. Originally, the SOSTAR data presented in this
section were acquired for a purpose different than the multi-channel airborne MTI.
For this reason, the measurement was set up in such a way that all moving targets
are found outside of the clutter band. These moving targets can be clearly identified
in the SAR image even without any MTI processing. A simulated target signature
M2 was inserted inside the clutter band to model the scenario where weak moving
targets are masked by clutter. We note that blind data processing was employed, so no
prior knowledge related to clutter or moving targets was used. The only assumption
considered was a straight flight path. The bottom picture shows the results after
clutter suppression using PCA. The SAR image reveals a number of signatures pos-
sibly representing moving targets. Two moving targets located in range bin p = 10
are identified: M1 is a real moving target, M2 is the simulated one.

As in the case of the MCARM data processing, the MTI algorithm from sub-
section 4.3.1 based on averaging of the data over multiple channels was tested on the
SOSTAR data set. The objective was to see whether this simple algorithm would
produce useful results in this case. Figure 5.12 shows first 20 range bins of SAR im-
ages obtained from the three different data sets discussed earlier. The SAR images
on the left and in the middle are details of the images from figure 5.11. The picture
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�	

��

M1

M2

Figure 5.11: SOSTAR SAR images each consisting of 256 azimuth (vertical) × 91
range (horizontal) bins: (top) clutter and moving targets present; (bottom) presumed
moving targets extracted using PCA. Moving target M2 is simulated.
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M1

M2

Figure 5.12: Detail  of  SOSTAR SAR images: (left) clutter  and moving targets
present; (middle) moving targets extracted using PCA; (right) results after the aver-
age over the channels was subtracted from the shifted data.

on the right shows results after the MTI algorithm based on averaging was used.
One can see that this algorithm has left clutter practically unchanged. In the light
of the results from the previous section, this is most likely caused by the channel
mismatch. The two moving targets from figure 5.11 (bottom) are highlighted in the
middle picture: Target signature M1 finds itself outside the clutter band – as well as
many other similar signatures in the picture.

Figures 5.11 and 5.12 give a good overview of the overall performance of the MTI
algorithms. Clutter suppression can be assessed for all range slices at once and any
features such as moving targets are immediately visible in the SAR images. How-
ever, it is not easy to see by what amount exactly was clutter reduced, for instance.
Figures 5.13 and 5.14 provide such information. They show line plots of range bin 10
obtained from SAR images in figure 5.12. Thus, this imaginary line runs vertically
exactly in the middle of each SAR image. Target M2 is fully masked by clutter in
the top and bottom pictures of figure 5.13, whereas it is visible in the top picture in
figure 5.14. We note that should target M2 not be present, clutter would be further
suppressed to a level of about -10 dB in figure 5.14 (bottom). Since the original level
of clutter is about 2.5 dB higher than the level of target M1 in figure 5.13 (top), the
total clutter suppression was approximately 12.5 dB in this case.
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M1

M1

Figure 5.13: SOSTAR data line plots: (top) range bin 10, clutter + targets; (bot-
tom) range bin 10, results after the average over the channels was subtracted from
the shifted data.
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Figure 5.14: SOSTAR data  line  plots: (top) range bin 10, PCA applied; (bot-
tom) range bin 10, synthetic target M2 not inserted, PCA applied.
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5.4 Concluding remarks
We have experimentally shown that it is possible to treat subsurface UWB GPR
imaging problems using the geometrical optics’ point of view, which makes free-
space based SAR algorithms suitable for use in GPR processing. Further, we have
succeeded in detection of a slowly moving object in a scene where stationary moving
objects were strongly present. Connecting these two findings establishes an exper-
imental basis for further experiments in detection and imaging of objects moving
under rubble, for example after an earthquake.

MCARM dataset was analyzed and results were compared to those found in lit-
erature. A good match was found. The PCA-based MTI algorithm was compared to
averaging. Since the results were nearly identical, it was confirmed that averaging is
a good approach to MTI in a well calibrated radar. The same MTI processing algo-
rithms were tested on SOSTAR data. Although many data sets of SOSTAR-X were
well calibrated, this particular one exhibits 3 uncalibrated sensors. Hence, averaging
did not produce satisfactory results. When a PCA was applied, clutter was reduced
significantly. Since PCA is known to work well only when the angle-independent
channel mismatch model is assumed [17, Chapter 4], it could be concluded that this
model is valid for SOSTAR data. MCARM and SOSTAR represent narrow-band
radars. There are often concerns whether the same channel mismatch model can
be applied to wide-band radars as well. The results with IRCTR’s UWB GPR con-
firmed this possibility.

In this thesis, it is assumed that the path on which the radar travels is linear. This
information is used in processing to expect clutter to be a rank-1 matrix. Naturally,
such assumption is never entirely valid in practice, due to various external factors:
wind, speed variations, etc. However, if the intended path was linear, it seems likely
that the radar indeed travelled on a straight trajectory at least for a short period of
time. For example, the entire MCARM dataset was recorded in M/PRF ≈ 65 ms
and the radar travelled about vrM/PRF ≈ 89 meters within this time interval (see
table 5.2). 65 ms seems a very short time for a radar platform travelling at 413 ft/s to
deviate significantly from a straight line. Validity of the straight trajectory assump-
tion is supported by the analysis of singular values in Section 5.2.



Chapter 6

Conclusions and Future Work

What  now? It  was  a  vicious  circle. If  you  succeed  with  one  dream, you  come  back  to
square  one  and  it’s  not  long  before  you’re  conjuring  up  another, slightly  harder, a  bit
more ambitious  –  a  bit  more dangerous.

Joe Simpson, Touching the Void

In this chapter, final conclusions are drawn. We start by providing answers to the
key questions defined in the introduction. Then, we proceed to give some recom-
mendations for future work. The main objective of this thesis was to answer four
key questions:

Are there any benefits in combining SAR and STAP? In Chapter 3, we put
forth an extended approach to modeling of multi-channel SAR moving tar-
get indicators. The main idea was to derive an inversion algorithm that would
produce images of moving targets with resolution equal to the resolution of
images of stationary targets using SAR. Indeed, such inversions have been
found, albeit for some cases only. The signal model proposed in Chapter 3 is
fully general for the given geometry. However, it is shown on numerical exam-
ples that its inversion is practically useful only for very short distances where
the plane-wave approximation is no longer valid. Nevertheless, this is an area
not yet thoroughly explored by other researchers. The approach discussed in
Chapter 3 is therefore mainly suitable for generation of synthetic datasets for
numerical evaluation of SAR/MTI processing techniques, but also for a study
of new, potentially interesting applications such as MTI with ultra-wideband
ground penetrating radar.

Is it possible to find a fast yet optimal or near-optimal MTI algorithm?
Chapter 4 presents a simplified signal model more suitable for current multi-
channel airborne MTI radars. A known STAP approach based on PCA is
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applied to it. Two special cases are studied: i) the narrowband case of an angle-
independent channel mismatch and ii) no channel mismatch present. It is
shown that in the case of no mismatch, the clutter rejection reduces to simple
averaging. Having to apply PCA on an angle-Doppler matrix is always a more
complex task then obtaining a simple column (row) mean of the same matrix.
Thus it is suggested that if the channel calibration is done properly, it will yield
considerable savings in the computational power necessary to perform MTI.
A real-time implementation of such an algorithm by means of a high-pass filter
was already proposed by other authors.

How would such an algorithm perform when applied to measured data?
A PCA-based algorithm and averaging was applied to two airborne datasets:
i) one based on the MCARM data, ii) the other based on the SOSTAR-X data.
Results with MCARM data produced by both methods were compared to
other published results and they match well. Moreover, the results produced
by PCA were nearly identical to the results produced by averaging. Thus,
it was concluded that the narrowband angle-independent channel mismatch
model could be assumed and that the MCARM dataset channel calibration
was sufficient. Similar comparison was done for the SOSTAR-X dataset. Con-
trary to the MCARM data, the SOSTAR-X data contained a severe channel
mismatch. This was asserted after it was found that PCA produced expected
results.

How can we use STAP in a new fashion? A way to detect victims buried in de-
bris during natural disasters or terrorist attacks is proposed in Chapter 5. Sev-
eral experiments with ultra-wideband ground penetrating radar were carried
out at the International Research Centre for Telecommunications and Radar
of Delft University of Technology in the Netherlands. The models and multi-
channel SAR/MTI processing methods developed in Chapter 3 were applied
to the acquired data. Since the sensors were not calibrated, the PCA method
was used. Although this method assumes a narrow band channel mismatch
model, the results were in good agreement with predictions.

6.1 Recommendations
Every research work leaves several open questions. Some of the questions this work
has possibly generated will be addressed in this section.

The number of available sensors. It is always desirable to keep the number of
sensors to a minimum, mainly due to the costs. However, it can be shown
that it is difficult to find the position and velocity of a moving target with an
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insufficient number of sensors to determine the angle of arrival. This diffi-
culty is caused by the blind angle problem [5, 35]. It is therefore very likely
that when imaging SAR MTI radar is considered, a higher number of sen-
sors – antenna elements (Klemm considers 1000 elements as a realistic num-
ber, see [24, Chapter 4]) needs to be taken into account. In such case, FFT-
based processing becomes a viable option. To improve velocity resolution of
FFT-based processing, a form of active beam steering was suggested [36]. A
practical device utilizing this technique has not yet been reported in the open
literature.

Sensor calibration. One of the useful properties of STAP algorithms (also used
here) is the fact that they can – to some extent – cope with channel mismatch.
Nevertheless, it was shown in this thesis that such capability comes at a price
of increased processing complexity. We have shown that at least for one ex-
perimental radar system treated here, i.e. MCARM, a sufficient calibration
was achieved. With the growing popularity of radars based on the MIMO
principle, some of which require good channel calibration [21, 26], channel
mismatch is expected to become less of an issue in the future. It is therefore
recommended to focus further efforts on handling the increased data flow
connected with a multichannel SAR imaging device.

Clutter separation. STAP is defined as a linear problem [17, 24]. The final for-
mulation of the problem in Chapter 4 allows not only the application of PCA,
but also independent component analysis (ICA) [39]. ICA generalizes PCA
for non-Gaussian noise sources. Since radar clutter is made of reflections from
natural or man-made objects, it is possibly non-stationary or even chaotic.
Signal separation techniques for non-Gaussian and chaotic signals exist [22].
Their application in STAP could be suggested.





Appendix A

Solutions to Certain Integrals
Using the Method of Stationary
Phase

A.1 Stationary targets
We wish to evaluate the following integral

S(ku, kd) =

∫∫ ∞

−∞
exp [−ȷkr(u, d)] exp [−ȷ(kuu+ kdd)] du dd, (A.1)

where

r(u, d) = √
x2 + (y − u)2

+
√
x2 + (y − u+ d)2. (A.2)

First, a more suitable expression of the phase function will be written. By substitu-
tion v = u− d/2 one gets

S(ku, kd) =

∫∫ ∞

−∞
eȷψ(v,d) dv dd, (A.3)

where

ψ(v, d) = −k
√
x2 + (y − v − d/2)2

−k
√
x2 + (y − v + d/2)2

−ku(v + d/2)− kdd. (A.4)
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If we denote values of the phase function at the stationary points as ψl(vl, dl), then
the value of the integral in equation (A.1) will be constant and can be calculated as
follows

S(ku, kd) =
∑
l

e−ȷψl(vl,dl). (A.5)

In our case, the phase function is hyperbolic and will have one extremum. This
means there will be only one stationary point. Partial derivatives of the phase func-
tion will be solved to find this point

∂ψ

∂v
= 0,

∂ψ

∂d
= 0. (A.6)

This gives
ku = k sinϕ1 + k sinϕ2 (A.7)

2kd + ku = k sinϕ1 − k sinϕ2, (A.8)
with

sinϕ1 =
y − v − d/2√

x2 + (y − v − d/2)2
(A.9)

sinϕ2 =
y − v + d/2√

x2 + (y − v + d/2)2
. (A.10)

Expressions that depend on v and d were obtained. However, the phase function
needs to be constant with respect to v, d. To achieve this, ψ will be expressed as
ψ(ku, kd). Using the fact that sin2 ϕ = 1− cos2 ϕ and with

cosϕ1 =
x√

x2 + (y − v − d/2)2
(A.11)

cosϕ2 =
x√

x2 + (y − v + d/2)2
, (A.12)

equations (A.7) to (A.12) yield√
x2 + (y − v − d/2)2 =

kx√
k2 − (ku + kd)2

(A.13)

√
x2 + (y − v + d/2)2 =

kx√
k2 − k2d

(A.14)

and also

d = −x

(
ku + kd√

k2 − (ku + kd)2
+

kd√
k2 − k2d

)
(A.15)

v = y − x

2

(
ku − kd√

k2 − (ku + kd)2
− kd√

k2 − k2d

)
. (A.16)
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Finally, substituting previous expressions back into equation (A.4), one obtains

φ(ku, kd) = −x
(√

k2 − (ku + kd)2 +
√
k2 − k2d

)
− kuy. (A.17)

Thus, the asymptotic solution of the double integral in equation (A.1) is

S(ku, kd) = e
−ȷx

(√
k2−(ku+kd)2+

√
k2−k2d

)
−ȷkuy. (A.18)

A.1.1 Derivation of expression (3.10)
Using the result (A.1), the convolutional integral (3.9)

s(u, ω, d) =

∫∫ ∞

−∞
f(x, y) exp [−ȷkr(x, y, u, d)] dx dy, (A.19)

where
x = x−X1 and y = y − Y1, (A.20)

can be evaluated as follows. We can write that

exp [−ȷkr(x, y, u, d)] =

∫∫ ∞

−∞
dku dkd

exp
[
−ȷ(x−X1)

(√
k2 − (ku + kd)2 +

√
k2 − k2d

)]
exp [−ȷku(y − Y1) + ȷ(kuu+ kdd)] . (A.21)

Inserting (A.21) into (A.19), one finds

s(u, ω, d) =∫∫ ∞

−∞
exp

[
ȷX1

(√
k2 − (ku + kd)2 +

√
k2 − k2d

)
+ ȷkuY1

]
exp [ȷ(kuu+ kdd)]{∫∫ ∞

−∞
f(x, y) exp

[
−ȷx

(√
k2 − (ku + kd)2 +

√
k2 − k2d

)
− ȷkuy

]
dx dy

}
dku dkd. (A.22)

The expression in curly brackets is a two-dimensional Fourier integral. One can also
write that

s(u, ω, d) =∫∫ ∞

−∞
exp

[
ȷX1

(√
k2 − (ku + kd)2 +

√
k2 − k2d

)
+ ȷkuY1

]
exp [ȷ(kuu+ kdd)]

F

(√
k2 − (ku + kd)2 +

√
k2 − k2d, ku

)
dku dkd. (A.23)
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The two-dimensional Fourier transform of both sides with respect to u and d gives

S(ku, ω, kd) =

exp
[
ȷX1

(√
k2 − (ku + kd)2 +

√
k2 − k2d

)
+ ȷkuY1

]
F

(√
k2 − (ku + kd)2 +

√
k2 − k2d, ku

)
, (A.24)

which is the result in equation (3.10).

A.2 Moving targets
We wish to evaluate integral

S(ku, kd) =

∫∫ ∞

−∞
eȷψ(u,d) du dd, (A.25)

where

ψ(u, d) =

−k
√
(x− vxτ)2 + (y − vyτ − vrτ)2

−k
√
(x− vxτ)2 + (y − vyτ − vrτ + d)2

−kuu− kdd. (A.26)

To simplify expression (A.26), substitute a dummy variable

ξ = τ(vy + vr)− d/2.

That gives

ψ(u, d) =

−k

√√√√(x− vx
ξ + d

2

vy + vr

)2

+

(
y − ξ +

d

2

)2

−k

√√√√(x− vx
ξ + d

2

vy + vr

)2

+

(
y − ξ − d

2

)2

−kuu− kdd. (A.27)



A.2. MOVING TARGETS 93

Expression (A.27) is now in a more suitable form for simplification. To obtain an
even easier solution, formula (A.27) will be further approximated as

ψ(u, d) ≈

−2k

√√√√(x− vx
ξ + d

2

vy + vr

)2

+ (y − ξ)2 +

(
d

2

)2

−kuu− kdd, (A.28)

using the approximation√
a2 + (b+ c)2 +

√
a2 + (b− c)2 ≈ 2

√
a2 + b2 + c2,

provided that
2bc≪ a2 + b2 + c2.

Setting τ back one obtains

ψ(u, d) ≈

−2k

√
(x− vxτ)2 +

(
y − τ(vy + vr) +

d

2

)2

+

(
d

2

)2

−kuu− kdd, (A.29)

which then becomes

ψ(u, d) ≈

−2k

√
X2 +

(
Y − αu+

d

2

)2

+
d2

4
− vxxd

vy + vr

−kuu− kdd, (A.30)

where

X =
(vy + vr)x− vxy√
v2x + (vy + vr)2

(A.31)

Y =
vxx+ (vy + vr)y√
v2x + (vy + vr)2

(A.32)

α =

√
v2x + (vy + vr)2

vr
. (A.33)
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Using the Taylor series, expression (A.30) can be approximated as

ψ(u, d) ≈

−2k

√
X2 +

(
Y − αu+

d

2

)2

+
kdvx
vr

− kd2

4x

−kuu− kdd. (A.34)

Phase function in equation (A.34) will be dealt with in the same manner as in the
case of equation (A.4). First, stationary points have to be found via

∂ψ

∂u
= 0,

∂ψ

∂d
= 0. (A.35)

Evaluating this set of partial differential equations yields

ku
α

= 2k sinϕ (A.36)

0 = −k sinϕ+
kvx
vr

− kd

2x
− kd, (A.37)

with

sinϕ =
Y − αu+ d/2√

X2 + (Y − αu+ d/2)2
(A.38)

cosϕ =
X√

X2 + (Y − αu+ d/2)2
(A.39)

2kX√
4k2 −

(
ku
α

)2 =
√
X2 + (Y − αu+ d/2)2. (A.40)

Substituting expressions (A.36) to (A.40) into equation (A.34) will finally provide the
result

φ(ku, kd) ≈

−X

√
4k2 −

(
ku
α

)2

− ku
α
Y

− x

4k

(
2kvx
vr

− ku
α

− 2kd

)2

(A.41)

So, the spectrum of a moving target will be given by

S(ku, kd) = eȷφ(ku,kd). (A.42)
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Please note that by setting vx = 0, vy = 0 and replacing the square root with its
so-called Fresnel approximation

√
a2 + b2 ≈ a+

b2

2a
,

provided that
a≫ b

one gets

φ(ku, kd) = −2kx+
x

2k

[
(ku + kd)

2 + k2d
]
,

which is the spectral phase function of a stationary target if expression (A.4) is eval-
uated using the same approximation.

A.2.1 Derivation of the equation (3.31)

We will use equation (A.41) and obtain

exp
[
−ȷX1

(√
k2 − (ku + kd)2 +

√
k2 − k2d

)]
≈

exp
[
−ȷ
(
X1

√
4k2 − k2u −

X1

4k
(−ku − 2kd)

2

)]
(A.43)

In that case a spectral response of the moving target will be

S(ku, ω, kd) = exp
{
ȷ
[
−X

√
4k2 − k2u − kuY

+
X1

4k

(
2kvxi
vr

− ku − 2kd

)2
]}

(A.44)

Inserting expressions (A.43) and (A.44) into (3.12) gives

exp
[
−ȷ
(
X1

√
4k2 − k2u −

X1

4k
(−ku − 2kd)

2

)]
S(ku, ω, kd) = (A.45)

exp
{
ȷ

[
vxi
vr
yi
√

4k2 − k2u − ku(
vxi
vr
X1 + yi) +

X1vxi
vr

(
kvxi
vr

− ku − 2kd

)]}





Appendix B

Approximations for Certain Phase
Functions

B.1 Derivation of equation (4.4)
In order to simplify expression (4.1), we introduce the substitution

ζ = b+ c (B.1)
ζ + d = b− c. (B.2)

Square roots in formula (4.1) can then be rewritten into the form√
κ2 + (b+ c)2 +

√
κ2 + (b− c)2.

This can be approximated by

2
√
κ2 + b2 + c2,

provided that
κ2 + b2 + c2 ≫ 2b2c2 − κ2(b2 + c2).

Thus, after substituting for b and c, expression (4.1) becomes

s(k, u, d) ≈ σ exp [−ȷ2k

·
√
κ2 + (ζ + d/2)2 + d2/4

]
.

(B.3)

Further, assuming that x2 ≫ (vxx/vr)
2 + 2vxxy, we can write

s(k, u, d) ≈ σ exp [−ȷ2k

·
√
x2 + (y − u+ vax)2 + (y − u)d+ d2/2

]
,

(B.4)
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where va = vx/vr. Suppose a signal produced by a stationary, unit reflectivity point
target located at coordinates (X1, 0) equals

s0(k, u, d) ≈ exp [−ȷ2k

·
√
X2

1 + u2 − ud+ d2/2

]
.

(B.5)

The compressed signal will then be
sc(k, u, d) = s(k, u, d)s0(k, u, d)

∗, (B.6)
where ∗ denotes complex conjugation. To further simplify both expressions (B.4)
and (B.5), the so-called Fresnel approximation will be employed√

x2 + y2 ≈ x+
y2

2x
. (B.7)

This will yield
s(k, u, d) ≈ σ exp [−2ȷ kx

−ȷ k (y − u+ vax)
2 + (y − u)d+ d2/2

X1

]
.

(B.8)

The same approximation is used to evaluate expression (B.5). Finally, the result is
obtained

sc(k, u, d) ≈ σ exp {−2ȷk

·
[
x−X1 +

y

X1

(
d

2
− u

)
− uva

]
−ȷϕ} ,

(B.9)

where
ϕ = k

(y + vax)
2

X1

. (B.10)

Note that ϕ can be split into two parts. One part is constant with u and d and
independent of x. This part does not influence positions of targets after focusing
and can be neglected on these grounds. The other part is dependent on x, but due
to va ≪ 1, it can be also neglected.

B.2 Finding the Fourier transform of function sa(u, d)
Suppose a more general case when σ is a continuous amplitude function instead of
a discrete one. Then,

sa(u, d) =

∞∫
−∞

σ(a)e−ȷ a(d/2−u)da. (B.11)
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The Fourier transform sa(u, d) with respect to u will be [30]

ŝa(ku, d) =

∞∫
−∞

sa(u, d)e
−ȷ kuu du, (B.12)

ŝa(ku, d) =

∞∫
−∞

σ(a)

· e−ȷ ad/2F(u) {eȷ au} da,

(B.13)

ŝa(ku, d) = 2π

∞∫
−∞

σ(a)

· e−ȷ ad/2δ(a− ku) da,

(B.14)

ŝa(ku, d) = 2πσ(ku)e
−ȷ kud/2. (B.15)

The Fourier transform of ŝa(ku, d) with respect to d will be

Sa(ku, kd) = 2π

∞∫
−∞

σ(ku)

· e−ȷ kud/2e−ȷ kdd dd

(B.16)

Sa(ku, kd) = 4π2σ(ku)δ(kd + ku/2). (B.17)

Since Dirac delta δ(x) has a value other than zero only at x = 0, Sa(ku, kd) will
exhibit peaks at a line kd = −ku/2.

The Fourier transform of ŝa(ku, d) exp(−ȷ kud/2) with respect to d gives

F(d) {2πσ(ku)} = 4π2σ(ku)δ(kd). (B.18)

This function is a line of points located at (ku, kd = 0).
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