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Abstract— The design of multi-layer Frequency Selective Sur-
faces often requires characterising the behaviour of the structure
in wide frequency and angle ranges. Moreover, a fine tuning
of the design leads to a large parameter space and results
in a long computational time. To address this problem, an
efficient parameterisation and interpolation technique has been
implemented within the Multimode Equivalent Network ap-
proach based on the Integral Equation formulation, a technique
developed for the analysis of multi-layer periodic structures. The
paper describes this technique and shows for a test case consisting
of an array integrated with an FSS how the calculation time can
be drastically reduced.

I. INTRODUCTION

A Frequency Selective Surface (FSS) is an array of period-

ically arranged metallic patches or apertures cut on a metallic

plate, designed to obtain a certain filtering behaviour with

respect to the frequency and/or the angle of incidence of the

impinging electromagnetic wave. FSS performances are char-

acterised in terms of reflection and transmission coefficient,

calculated by forcing the appropriate boundary condition at

each element and solving the corresponding integral equation.

For a multi-layer structure, consisting of several FSSs sand-

wiched between dielectric layers, the scattering problem can

be addressed either by solving the corresponding system of

coupled integral equations or by resorting to an equivalent

microwave network representation of each layer and then

cascading all the networks to derive a global representation

of the whole structure. Because of its modularity, the latter

approach is particularly convenient as basis for the design. In

particular, the Multimode Equivalent Network approach based

on the Integral Equation formulation (IEMEN) [1] allows

analysing multi-layer FSSs integrated with waveguide phased

arrays taking also into account feeding and filtering elements

inside the array. Usually, the equivalent networks have as

many input and output ports as the number of modes used

to represent the fields at the transition. To reduce computa-

tional time and to avoid stability problems [2], the IEMEN

method resorts to an equivalent network (represented by an

impedance/admittance matrix) in terms of only accessible

modes. They are the modes (propagating or evanescent) used

in the representation of the field at the FSS transition that

also contribute to the interaction with adjacent FSS transitions.

The scattering problem is formulated in terms of an integral

equation with reduced kernel and multiple forcing terms, one

for each accessible modes [3]. The equation is solved by the

Method of Moments with a Galerkin formulation.

The IEMEN approach has been successfully applied to

the design of several FSSs. Requirements set on the FSS

performances usually need the evaluation of reflection and

transmission coefficients for different scan-angle and scan-

plane configurations in the given operating frequency range. A

first design phase, based for example on the use of equivalent

circuits [1], usually results in the identification of the appro-

priate FSS element type and multi-layer configuration. A fine

tuning on the element size and on the thickness of the dielectric

layers is required in order to optimise the performances of

the structure with respect to the requirements. Hence, a large

number of simulations needs to be carried out, which makes

this phase very time consuming.

In general, an efficient design should be based on a in-

teractive procedure. For this purpose, a parametrisation and

interpolation technique has been implemented which greatly

reduces the calculation time. In Sec. II the technique is

outlined and in Section III it is applied to a first test case

consisting of a waveguide phased array cascaded to a dipole

FSS. More complex test cases, including a multi-layer FSS,

will be described in the oral presentation. Conclusions are

drawn in Sec. IV.

II. PARAMETRIC AND INTERPOLATION TECHNIQUES

The most time-consuming step in the IEMEN approach is

the discretisation of the integral equations that describe the

radiating structures, i.e., patches and slots, in the FSS. The

computation of the corresponding moment matrices require

the evaluation of a spectral sum for each matrix component.

The next steps in the approach, i.e., solving the moment

matrix systems of the radiating structures, the construction of
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the mode matrices (impedance/admittance) of all layers and

radiating structures, and the cascading of these matrices, take

much less computation time. Hence, in order to accelerate

the analysis of FSSs by the IEMEN approach, we need

in particular to accelerate the computation of the moment

matrices.

Given a large parameter space of frequency f , scan angles φ

and θ, and shape parameters p1, . . . , pN for a radiating struc-

ture, we can reduce the number of moment-matrix evaluations

by the application of parametric and interpolation techniques.

Such techniques can also be applied on the level of the mode

matrices of the radiating structures or even on the level of the

mode matrix of the complete FSS. This seems very appealing

from a computational point of view, since it reduces not

only the number of moment-matrix evaluations, but also the

number of mode matrix evaluations and the number of cascade

operations. On the other hand, application of such techniques

to the moment matrices of the radiating structures allows for

a greater geometrical flexibility. By removing basis functions

from the moment matrices, we can straightforwardly alter the

geometry of the radiating structures. Such an operation is

impossible with interpolated mode matrices. Given the low

computational time of the mode matrices and the cascade

operations, we choose to apply parametric and interpolation

techniques to the moment matrices of the radiating structures.

We explain the parametric techniques in more detail. Let

the moment-matrix equation be given by

Z(f, θ, φ, p1, . . . , pN )I(f, θ, φ, p1, . . . , pN ) =

= V (f, θ, φ, p1, . . . , pN ), (1)

where all parameters have prescribed ranges. We cast

the matrix and the right-hand side (RHS) of this equa-

tion in a row vector, [Z, V ], by putting first the

(transposed) columns of Z one after the other and,

next, the (transposed) RHS. To any parameter point

(f, θ, φ, p1, . . . , pN ) in the specified ranges corresponds a row

vector [Z(f, θ, φ, p1, . . . , pN ), V (f, θ, φ, p1, . . . , pN )]. Let S

be the space of all row vectors. Then, the problem of

generating rapidly the moment matrix Z and the RHS V

for any parameter point (f, θ, φ, p1, . . . , pN ) in the specified

ranges is equivalent to generating rapidly any vector in S. To

accomplish this task, we employ the following strategy.

We first construct a basis for S in a gradual way. To this end,

we select an initial set of paramter points, typically 5 points,

for which we generate the corresponding vectors [Z, V ] by

full-wave computations, as described above. On the obtained

set of vectors, we perform a singular-value analysis. Next, we

extend the set of parameter points, typically by 5 points, and

generate the vectors [Z, V ] for the added points. Subsequently,

we perform a singular-value analysis on the extended set of

vectors [Z, V ]. By comparing both singular-value analyses, we

determine whether the amount of vectors is sufficient to span

S. We repeat the process of extending the set of parameter

points until the amount of vectors is sufficient. These vectors

represent a basis for S: [Zm, Vm], m = 1, . . . ,M .

After construction of the basis, we determine the subspaces

of the space of parameter points in which the Green’s kernel

of the radiating structure is differentiable. Only if the kernel

is differentiable, interpolation of the casted moment matrix

and RHS [Z, V ] will make sense. The subspaces are called

differentiability zones. At each zone boundary a specific

mode turns into propagation. In each differentiability zone,

we compute expansion coefficients αm that describe the row

vector [Z, V ] in terms of the basis elements [Zm, Vm] inside

the zone,

[

Z(f, θ, φ, p1, . . . , pN ), V (f, θ, φ, p1, . . . , pN )
]

≈

≈

M
∑

m=1

αm(f, θ, φ, p1, . . . , pN )[Zm, Vm] . (2)

The computation of these coefficients is carried out by means

of Kriging interpolation over a gradually extended set of

parameter points (f, θ, φ, p1, . . . , pN ) in the zone. For each

considered set, the Kriging results are compared with results

obtained by reduced order model techniques applied to the

minimum norm problem associated to (2). The extension of

the set stops once a required level of accuracy of the expansion

coefficients αm is achieved.

The described strategy is called the parametric computation.

After this computation, the moment matrix and the RHS for

any parameter point in the specified parameter ranges can be

rapidly evaluated by simply interpolating the expansion coef-

ficients αm and by calculating the sum (2). This evaluation,

which we call post processing, is much faster than the full-

wave computation. Hence, it offers a rapid ’walk’ through

the parameter space and, therewith, it opens the door for the

optimization of FSS designs in a much more efficient way

than by full-wave computations.

With respect to the parametric computation itself, we note

that only in the construction of the basis, full-wave com-

putations of the complete moment matrices are required. In

general, the number of matrices M in the basis is much lower

than the number of parameter points in which one would like

to evaluate the scattering parameters of the FSS. Moreover, the

reduced order model techniques and the Kriging interpolation

are much less computationally expensive than the computation

of all moment matrices.

III. TEST CASES

The parametrisation technique described in Sec. II has been

applied to a dipole FSS cascaded to a waveguide phased array.

The unit-cell geometry is illustrated in Fig. 1.

The waveguides have transverse dimensions 12 mm × 6 mm

and are filled with dielectric material of permittivity εr =
3.38. The FSS dipoles have length L = 6 mm and width W =

1 mm. They are arranged on a rectangular lattice of dimensions

15 mm × 10 mm, on a slab of foam of dielectric constant

εr = 1.03 and thickness 15 mm. The waveguide is excited

by the TE10 mode. Because of the large distance between

FSS and array, one accessible mode (the fundamental Floquet

mode) was sufficient to perform the analysis using the IEMEN
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Fig. 1. Unit cell geometry of the test case: dipole FSS cascaded to a
waveguide phased array.

TABLE I

PARAMETER VALUES FOR PARAMETRIC COMPUTATION.

Parameters Lower bound Upper bound

Frequency f 8 GHz 12 GHz

Scan angle θ 0
o

30
o

Scan angle φ 10
o

10
o

Dipole size L × W 6 mm × 1 mm 9 mm × 1.5 mm

approach. The equivalent electric currents on the dipole were

discretised in terms of 24 piece wise linear functions, resulting

in a 24 × 24 moment matrix and a 24 × 1 RHS. Consequently,

[Z, V ] is a row vector with 24 × 24 + 24 × 1 = 600 elements.

The parameters considered for this example are frequency,

scan angles and dipole size. Table I shows the parameter values

for the parametric computation. Note that length and width of

the dipole are changed simultaneously. The CPU time needed

for the parametric computation is 51 min. The CPU time of the

post processing is only 0.15 sec per parameter point, while the

CPU time of a full-wave computation is 148 sec per parameter

point. Although the parametric computation seems expensive,

only 21 full-wave computations can be carried out in 51 min.

On the contrary, having performed the parametric computation,

the post processing in any parameter point in the ranges of

Table I requires only 0.15 sec, which is a factor 1000 less

than the cost of a full-wave computation.

Fig. 2 shows the relative difference in S11 between the post-

processing and the full-wave results, both for the smallest

dipole size and for the largest dipole size. For the smallest

dipole size, the differences are smaller than -30 dB for all fre-

quencies and elevation angles. For the largest dipole size, the

differences are smaller than -20 dB, except at 12 GHz, where

the difference is around -10 dB. These higher differences are

explained by the presence of a resonance at 11.6 GHz. To

investigate the accuracy of the interpolation in more detail, we

ran an additional post processing for the scan angles θ = 10◦

and θ = 20◦, and for 41 frequency points instead of 11. Fig. 3

shows the S11 obtained by full-wave computation and by

parametrisation and post processing. Even near the resonance,
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Fig. 2. Relative difference in S11 between the full-wave and the post-
processing results obtained using the data set in Table I. (a): First shape
parameter point (L = 6 mm, W = 1 mm). (b): Second shape parameter point
(L = 9 mm, W = 1.5 mm).

the accuracy of the interpolation is remarkable.

IV. CONCLUSIONS

The fine tuning of a multi-layer FSS design requires as-

sessing the FSS performances for variations of some key

parameters (e.g. FSS dimensions and/or separation between

consecutive layers) in the operating frequency range and for

all given angle configurations. Consequently, a large amount

of simulations has to be carried out, which results in high

computational times. In this paper an efficient parameterisation

and interpolation technique for the acceleration of FSS simula-

tions is outlined. The technique has been applied to a software

tool based on the IEMEN approach and allows for a drastic

reduction of the total computational time. The application of

the technique is illustrated by a test case consisting of an FSS

cascaded with a waveguide phased array. Other test cases,
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including a multi-layer FSS, will be shown during the oral

presentation.
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Fig. 3. S11 of the structure of Fig 1: comparison between the full-wave
results and the post-processing results obtained using the data set in Table I,
considering the shape parameter point L = 9 mm, W = 1.5 mm, for (a) scan
angle θ = 10

o and (b) scan angle θ = 20
o.
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