
07F-SIW-009

Achieving a Level Playing Field in Distributed Simulations

J.J. Boomgaardt
K.J. de Kraker
R.M. Smelik

TNO Defense, Security and Safety
PO Box 96864

2509 JG The Hague,
The Netherlands

ABSTRACT: Remember those days of playing “Cowboys and Indians”? Then you probably also remember having an
argument over the outcome of a shooting incident. Some kid would shout: “You’re dead.”, while the assumed victim would
firmly acclaim: “No I’m not, you’ve missed me!”.
The same argument still happens today in distributed simulations, where individual federates draw conflicting conclusions
on the result of weapon engagements or the capabilities of sensors. While one federate assumes that an entity has been killed,
another federate still has that same entity alive and kicking. This occurs especially with legacy federates that do their kill
assessment internally. To resolve this issue and to achieve a level playing field, each federate should adhere to the simulation
agreements and should preferably use identical implementations. Although it is unlikely that all actual details of weapons,
sensor systems, etc. will ever become available for reasons of security, commercial or national interest, it is important that
an improved and, as a minimum, consistent behavior of these systems is achieved in the virtual theater.
This paper introduces the concept of independent handlers that enforce their conclusions upon joined federates. This con-
cept is not restricted to kill assessment, but can also handle the behavior of weapon systems and countermeasure systems.
The handlers provide a means to show how to manage security sensitive agreements such as weapon behavior and counter-
measures. In this way it helps to achieve a level playing field for all participants in one federation. The paper presents a
prototype that shows how to handle such interactions between simulation objects and discusses the ‘lessons learned’ and the
way ahead.

1 Introduction

Proper assessment and objective comparison of the perfor-
mance of teams and individual trainees requires a ’level
playing field’ for distributed simulations. Achieving a level
playing field implies that not only should all participants
follow the same agreements; identical participants also need
to show exactly the same behavior. A level playing field
turns out to be hard to achieve, especially when multiple
nations participate in the simulation. This finding was one
of the lessons learned in “First WAVE” 1 [4]. Besides the
fact that nations are reluctant to share classified informa-
tion, their implemented simulation models can still differ
significantly from each other, because:

• Detailed specifications of a weapon and sensor system
are often not provided by the manufacturer for good
reasons, such as the classification level of the specifi-
cation or a commercial interest;

1“First WAVE”: the first NATO wide area networked real-time simula-
tion of Combined Air Operations, involving seven nations.

• Objective specifications of real systems in real world
situations are not provided. The simulation models
have to be derived from experimental data from instru-
mented tests;

• The behavior specifications are largely based on expe-
rience of expert users (e.g. pilots, instructors);

• Models that have not been validated, either because the
validation process is too complex or because no real
data is available for validation of the model.

Even minor deviations in multiple implementations of the
same weapon / sensor systems will result in inconsistent be-
havior of these systems, causing outcomes to differ. Such
different outcomes in behavior imply that there is not a level
playing field. Nevertheless, it is important to achieve an
improved and, as a minimum, consistent behavior of these
systems in the virtual theater. Note also that these modeling
problems include both the behavior of friendly systems, as
well as systems of opposing forces.



Another finding of “First WAVE” was that when coupling
simulators, it would be very convenient when multiple secu-
rity levels are supported within the federation. In case of a
secret exercise, secret simulation models can be used, while
in an unclassified simulation only unclassified models are
allowed. We propose a solution for this using flexible plug-
in mechanism that sets each model in the federation to the
same selected security level.

In this paper we focus on federations build according to the
High Level Architecture (HLA) [2]. We present a practical
solution for the issues presented above, developed at TNO,
that follows the philosophy of HLA as a proper extension.

The remainder of this paper is structured as follows. Section
2 sums up several approaches for achieving a level play-
ing field and discusses pros and cons for each of these ap-
proaches. Section 3 describes our design, while Section 4
discusses the implementation of a prototype. Section 5 con-
cludes this paper and indicates areas in which further re-
search is to be done.

2 Alternative Approaches to Achieving Con-
sistent Behavior

A level playing field, i.e. consistent behavior of all sys-
tems/models across a federation, can be ensured in a num-
ber of ways. Here, we discuss five alternative approaches:

a Assign a human referee to perform all assessment duties.

b Implement the same set of generally accepted parame-
ters/behavior of weapons/sensor, by modifying all partic-
ipating systems.

c Define a generic architecture for simulation systems that
supports configurable models.

d Define a generic architecture for simulation systems that
supports pluggable models.

e Modify all participating systems in such a way that they
accept external conclusions from specialized handlers in
the federation.

These approaches require moderate to extensive modifica-
tion of existing federates, which in itself has several draw-
backs:

• A large number of systems and federates may need to
be modified;

• Legacy systems may only be capable to support part of
the required modifications.

We will discuss these five approaches in more detail, and de-
termine how well they solve our problem and list any new

drawbacks they introduce. Important criteria for compari-
son of approaches are to which extent the solution is guar-
anteed to result in a level playing field, the reusability of
the solution and the effort that is required to implement the
solution in existing federates.

A. Human Referee

A straightforward approach is to assign a ’human-in-the-
loop’ to perform the assessment of system interactions. This
means that, for example, after the aggressor has fired his
missile, a human field expert decides whether the target was
hit or successfully evaded the attack. He or she also resolves
damage and kill results manually in the simulation. There
are numerous disadvantages though:

• Moderate software modifications are required (to tem-
porally disable systems);

• Exercises are not repeatable;

• The approach is likely to result in performance and la-
tency issues in intensive scenarios, because it depends
on the reaction time of human referees;

• It does not scale well with the size of exercises. There
is only so much a human can cope with.

This solution is not preferred because we prefer an auto-
mated, objective and repeatable solution.

B. Modification of Participating Systems

A way to ensure identical behavior is to modify all partic-
ipating federates to implement a set of agreed parameters
and behaviors of weapon and sensor systems (e.g. missile
speeds, success rates of chaffs, sensor ranges, etc.). There
are some clear disadvantages to this approach:

• Extensive software modifications might be required to
enable such parameterization (dependent on the legacy
implementation);

• Since there is no centralized control over the weapon
or sensor system’s actual implementation, it is difficult
to test whether the simulators indeed have identical be-
havior.

All in all, this solution is not very cost-effective.

C. Configurable Models

Another approach is to define a generic architecture for (fu-
ture) simulation systems that support configurable models.
For simulators built upon this architecture, a configuration



can be created that matches the set of agreed parameters and
behaviors of weapon and sensor systems.

If each simulator correctly interprets the configuration, the
systems will behave identically. Such a configuration could
be developed by one participant in an exercise and be shared
among the others. However, this approach also requires
much effort:

• An open standard for configurable simulation systems
needs to be agreed upon;

• Extensive software modifications are required;

• Again, since there is no centralized control over the
weapon or sensor system’s actual implementation, it is
difficult to test whether two simulators with the same
configuration indeed show identical behavior (i.e. in-
terpret the configuration in exacty the same manner).

Although this solution obviously scores better on reusability
than approach B, it still requires a large effort for modifying
existing federates and is not guaranteed to work correctly.

D. Pluggable Models

Approach C is to make all relevant systems of federates
configurable, i.e. to allow configuration of the parameters
and behaviors of models. As an alternative for configurable
models, federates could support a model to be plugged in.
To enable this, a generic architecture for simulators with
pluggable models could be devised. One participant might
develop a set of pluggable models for an exercise (accord-
ing to the agreed settings) and distribute the plug-ins among
the other participants. This solution could result in a level
playing field, but still similar issues arise as for the config-
urable models solution:

• An open standard for simulation systems supporting
plug-ins needs to be agreed upon;

• Extensive software modifications are required to allow
models of systems to be external, dynamically linked,
models;

This solution scores good on reusability and is even more
likely to result in a truly level playing field, compared to
approaches B and C, but still requires a large effort for mod-
ifying existing federates.

E. Handlers

This approach can be compared to approach A, however,
the human referee has now been replaced by computer pro-
grams, that we shall refer to as handlers. An interaction that

occurs between two or more entities is handled by one han-
dler. Note that a set of handlers does not have to be imple-
mented on one single, centralized server. A more scalable
and robust implementation is to have several independent
handlers that are distributed geographically. Each handler
will have a specific role, for example handling countermea-
sure interactions. As a result, each participating federate
will show consistent behavior, thereby ensuring a level play-
ing field. Still, this approach has one obvious drawback:

• Software modifications are required, to delegate sys-
tem behavior to a handler.

If only one handler is available to process multiple inter-
actions of the same type, this might have performance and
latency issues. However if the job is left to multiple dis-
tributed clones of the same handler a more scalable and ro-
bust solution can be achieved.

In our approach handlers use models that implement param-
eters and behaviors of the exercise and are responsible for
resolving interactions, according to these models.

Chosen Approach

We have chosen approach E which uses a set of handlers for
modeling the interactions. This approach guarantees auto-
mated and repeatable behavior and a level playing field.

3 Design of a Federation Using Handlers

We introduce a federation with two entities, an attacker and
a target, and their interactions (e.g. fire) during an engage-
ment, see Figure 1. In order to achieve a level playing
field, both entities must react in a consistent manner to these
occurring interactions. The “Playing Field” diagram illus-
trates a situation were interactions are handled individually
by both the attacker and the target. Thus two implemen-
tations, one of the attacker and one of the target, do indi-
vidually react to the same interaction. This leaves room
for behavioral deviation between the attacker and the target.
This is not acceptable in case of a level playing field. That’s
why, in the “Level Playing Field” diagram, a handler is in-
troduced. This handler takes over the interaction handling
of both entities and enforces its resulting conclusion on to
the both of them. Now both the attacker and the target are
handled in a consistent manner to the occurring interaction.

In our design we introduce a type of handler for each type
of interaction:

• A weapon handler for handling the interaction be-
tween a target and a weapon after it has been fired;



Figure 1: Introducing a handler.

• A countermeasure handler for handling the interaction
between a countermeasure and a weapon;

• A damage assessment handler for handling the inter-
action between a weapon detonation and a target.

As each handler has its own area of responsibility (e.g.
weapon behavior, damage assessment), the internal com-
plexity of such a handler is kept low compared to a solution
where one handler is to handle all responsibilities. One han-
dler is also a potential single point of failure.

Our handler design is illustrated with the following sce-
nario:

1. A jet fighter flies too close to enemy territory and is
detected by a hostile ground unit with air defense ca-
pabilities;

2. The ground unit attacks the jet fighter by launching a
heat-seeking missile that locks onto the fighter;

3. The fighter visually detect the heat-seeking missile and
takes countermeasures through evasive maneuvers and
launches flares;

4. The countermeasures prove unsuccessful and the mis-
sile remains locked on the target;

5. The missile detonates and destroys the fighter.

In this typical scenario, we distinguish three interactions
that must be handled by our handlers:

• The heat-seeking missile that is targeted at the fighter
shall be handled by the weapon handler. The weapon
handler has detailed knowledge of both the type of
heat-seeking missile and the type of fighter;

• The launching of the flares shall be handled by a coun-
termeasure handler. It also handles how countermea-
sures, such as flares, behave after launch;

• The detonation of the weapon shall be handled by
a damage assessment handler. The damage assess-
ment handler has detailed knowledge of the missile,
the fighter, the impact angle, etc.

Figure 2 illustrates the interactions between the handlers
and the entities according to the scenario. Only the essential
interactions are depicted.

This scenario starts with an air defense ground unit that de-
tects a jet fighter and initiates a weapon’s fire. On this event
the weapon handler creates a missile object and takes over
control of the weapon targeting the jet fighter. The fighter
visually detects the threatening missile and takes counter-
measures through firing flares and taking evasive maneu-
vers. The countermeasure handler takes over and creates
flares object. In our scenario this does however not distract
the missile and it remains locked on the jet fighter as in-
tended. Then the missile detonates near the target. On det-
onation, the damage assessment handler evaluates whether
the missile has a successful hit or not. Next, the assessed
damage is computed and sent to the target. The target is re-
sponsible for executing its effects (e.g. damaged or, in this
case, destroyed). The other federates are informed of the
fighter’s destruction.

In Figure 3 is illustrated that each type of handler interfaces
via a set of HLA-RTI-interactions. The standard HLA-RTI
interactions that are defined in the RPR-FOM [3] are:

• WeaponFire;

• MunitionDetonation;

RPR-FOM extensions developed for the handler design are
the following:

• A DamageUpdate interaction is needed so a Damage
Assessment Handler can instruct an entity to assume
the commanded damage state (further processing the
effects of the damage is left to the entity). Damage
state values conform to RPR FOM. This interaction is
derived from the ActionRequestToObject interaction al-
ready defined in the RPR FOM.

• A TargetUpdate interaction is needed for weapons that
can receive updates of target data (position, speed, etc.)
or retargeting info in flight.

• A WeaponLoadUpdate interaction is needed in case a
weapon handler takes the responsibility of weapon se-
lection given the target platform. The Weapon Han-
dler must then inform the Attacking Platform which



Figure 2: Scenario example

weapon instance was created on its behalf and the
quantity remaining, in order to prevent that platforms
can launch more weapons than they carried at the
start. The WeaponLoadUpdate interaction is also used
in case a Countermeasure Handler takes a countermea-
sure on behalf of a Target Platform given a type of at-
tacking weapon.

4 Prototype of a Federation Using Handlers

The Modeling and Simulation group at TNO Defense, Se-
curity and Safety build a prototype interaction handler ac-
cording the design above. Legacy federates from previous
experiments were reused to shorten development time. For
the attacker federate we choose a computer generated force
(CGF) Stinger launcher and our target is a fighter plane
that is piloted from a cock pit mockup, see Figure 4. The
Stringer launcher is set to fire a missile automatically when-
ever the fighter is in range of its sensor. The pilot can take
evasive maneuvers and use flares but has no electronic coun-
termeasures at his disposal.

Figure 4: Prototype mockup impression.

We implemented a weapon handler that takes control of the
fired missile and a damage assessment handler that assesses
the damage on impact after detonation. The countermea-
sure handler was not yet implemented. However, this imple-
mentation would be similar the weapon handler. At project
start, the legacy versions of the Stinger launcher and the



Attacking 
Platform

<<create>>

Target 
Platform

Weapon
(inc. support 

systems if 
needed)

FlareChaff Radar 
Jamming 

ECM

Weapon
Handler

Damage 
Assessment 

Handler

Counter
measures
Handler

<<create>>

MunitionDetonation

WeaponFire,
TargetUpdate,

WeaponLoadUpdate

DamageUpdate

WeaponFire,
WeaponLoadUpdate

Figure 3: Handler design.

jet fighter each did their own damage assessment. Those
legacy versions were upgraded for our prototype to cope
with the DamageUpdate interaction from the damage assess-
ment handler. Figure 5 shows the layout of our prototype.
Each handler has been implemented as a separate federate,
while our fighter federate is a federate of federates.

The Handlers’ interfaces are implemented using HLA inter-
actions. This interface allows for platform independent and
distributed implementations of the handlers. Our prototype
was developed using the TNO RCI tool, see also [1]. The
RCI is TNO’s middleware layer solution for simulation in-
teroperability that also supports federates of federates using
a federate manager as a bridge. It is build on top of an RTI.
The RCI library supports rapid development by providing
all kinds of services that are independent from the FOM and
the RTI provider, while the RCI code generator takes care
of all the federate’s FOM dependent interface functionality.
This tool helped to shorten our prototype development time
and focus on the actual simulation models rather than the
lower level data exchange issues. The RCI supports both
Linux and Windows.

A practical issue that required our attention was the fact that

RCI Mock-Up

Prototype Layout

RCI

Fighter Fighter 

(Target)(Target)
Flight 

Dynamics

RCI

RCI Visual

Damage

Assessment

Handler

FOM

Federate
Manager

RTI

RCI
Avionics

Counter

Measure

Handler

RTI

RTI

Weapon
Handler

RTI

Stinger

(Attacker)

Figure 5: Federation layout.

whenever two or more models within the same handler need
to publish or subscribe to the same classes, a conflict was
created because a class or interaction can only be subscribed
or published by a federate only once. We solved this by al-
lowing the prototype to publish and subscribe at startup to



all classes and interactions that the models inside the han-
dler would need. This allows for each model instance to
handle publication of instance data itself.

To increase performance, we have chosen a multi-threaded
solution updating model instances in parallel. It is slightly
more complex but it offers better performance on multi-core
computers because the overall workload is distributed.

5 Conclusions and Further Work

In real-time simulations, such as “First WAVE” [4], it is re-
quired to have a ‘level playing field’. In order to achieve a
level playing field it is not advised to have more than one
implementation active for the same shared federation wide
effect, action and/or decision. This paper presents a basic
architectural design and a prototype to resolve this issue by
introducing handlers that interface via HLA-RTI middle-
ware interactions in order to enforce the handler’s results
on other federates.

The prototype was build at TNO Defense, Security and
Safety, The Hague and operates successfully. The proto-
type involves a man-in-the-loop jet fighter simulator and a
stringer computer generated force that fires a missile with
the intention of destroying the target. We implemented a
weapon handler that takes control of the fired missile and a
damage assessment handler that assesses the damage on im-
pact after detonation. The result calculated by the handlers
are interpreted by the other federates.

The prototype showed a predictable and consistent behavior
for every simulation run. For the prototype development we
reused software from previous experiments and we found
the adaptations of the legacy federates rather straight for-
ward. We experienced no noticeable degradation of perfor-
mance compared to the legacy implementation. Another ad-
vantage of this approach is that maintaining a federation is
easy because only one implementation needs to be adapted
within the federation.

Future work might involve developing more handlers, such
as a handler for processing counter measures and model-
ing sensor systems. These extensions fit in our approach.
Another important issue is an implementation that does not
suffer from being a single point of failure. Future imple-
mentations should allow redundant instances of the same
handlers deployed on multiple machines. Together with a
mechanism that allows another handler to take over after a
handler federate resigns should prove more robust. In case
of HLA, ownership management is a potential candidate for
implementing this feature.

References

[1] Marco Brasse, Wim Huiskamp, Olaf Stroosma, A Compo-
nent Architecture for Federate Development, Simulation In-
teroperability Workshop, Fall 1999 (99F-SIW-025).

[2] IEEE Std 1516.2-2000, IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA), Object
Model Template (OMT) Specification, March 2001.

[3] RPR FOM, SISO-STD-001.1-1999: Real-time Platform
Reference Federation Object Model (RPR FOM 1.0) and
succeeding versions.

[4] First WAVE, Mission Training via Distributed Simulation
and First WAVE: Final Report (RTO-TR-SAS-034, 2007).

Author biographies

J.J. BOOMGAARDT, MSc, is a senior research engineer
at TNO Defense, Security & Safety in The Hague, The
Netherlands. He has an extensive background in simula-
tion and systems engineering. He has worked for 6 years as
a simulation engineer and a systems architect. His current
work involves architectural modeling of coalition missile
defense architectures, collaborative decision making and
concept development on NEC.

K.J. DE KRAKER, PhD, is Senior Scientist, Modeling
and Simulation, at TNO Defense, Security & Safety in The
Hague, The Netherlands.

R.M. SMELIK, MSc, is a junior researcher at TNO De-
fense, Security & Safety in The Hague, The Netherlands.
He is currently involved in the research program dealing
with the automatic creation of imaginary worlds.


