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Abstract. The TNO Human Factors Search–2 image dataset consists
of: a set of 44 high-resolution digital color images of different complex
natural scenes, the ground truth corresponding to each of these scenes,
and the results of psychophysical experiments on each of these images.
The images in the Search–2 dataset are a subset of a larger set that has
been used in a visual search and detection experiment. Each scene
(image) contains a single military vehicle that serves as a search target.
The image dataset, an Excel file with the ground truth and observer data,
and an extensive report describing the dataset are available on CD-ROM
(requests by email to the first author). The dataset can be used to de-
velop and validate digital metrics that compute the visual distinctness
(contrast, conspicuity, or saliency) of targets in complex scenes, and
models of human visual search and detection. The dataset has already
been used in more than ten different studies in the literature, ranging
from studies evaluating target detectability metrics to eye movement
studies and attempts to model the human visual system. In addition to
this work, eight other articles in this special section address the
Search–2 dataset. © 2001 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1388608]
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1 Introduction

The TNO Human Factors Search–2 image dataset has bee
compiled to provide a set of data that can be used to ev
ate and validate digital metrics and early vision models t
compute the visual distinctness~conspicuity, saliency!of
targets in complex natural scenes, and models of the hu
visual search and detection capability. We give a conc
overview of the contents of this dataset. An extensive
scription is given elsewhere.1

1.1 Measuring Target Distinctness

Human observer experiments designed to quantify vis
target distinctness usually involve search and detec
tasks or contrast detection tasks.

Targets that are highly distinct are usually notic
quickly. In contrast, targets that are indistinct~hard to de-
tect, highly similar to their surroundings! usually yield
large search times. Visual search and detection tasks y
temporal measures that characterize visual target dist
ness, like the cumulative detection probability~i.e., the
fraction of all observers that detect the target after a gi
amount of search time!and the mean search time.

The concept of visual lobe or conspicuity area is
overall measure of target distinctness that captures all
tors contributing to the visual contrast of a target and
surroundings. It can operationally be defined as the per
eral area around the central fixation point from which s
cific target information can be extracted in a sing
glimpse.2–4
1760 Opt. Eng. 40(9) 1760–1767 (September 2001) 0091-3286/2001/
-

n

l

d
-

-

-

The size and shape of the conspicuity area have b
measured for a range of static targets in static scenes.2–8 It
is found that the conspicuity area is small if the target
embedded in a complex background~a surrounding with
high feature variability!or if the target is surrounded b
irregularly positioned nontargets of high similarity~a sur-
rounding with high spatial variability!. The conspicuity
area is large if the target stands out clearly from a hom
geneous background.

TNO Human Factors recently developed a simple a
efficient psychophysical procedure to quantify the visu
conspicuity of a target in a complex~natural! scene,9,10

which has been successfully applied to a range of pract
problems involving the optimization of target visibility.11

With this procedure visual conspicuity can quickly and e
ily be determined. Only a few~typically two or three!ob-
servers are needed to obtain sufficient accuracy. It has b
shown that conspicuity determines human target acquisi
performance in realistic and military relevant compl
scenerios.9 Also, conspicuity measured on photograph
slides agrees with conspicuity measured in the field.9,10

This implies that conspicuity can be used in combinat
with photosimulation studies to obtain estimates of hum
observer performance in the field.

1.2 Computing Target Distinctness

A range of different metrics have been proposed to comp
the visual distinctness of image subregions~target areas!
$15.00 © 2001 Society of Photo-Optical Instrumentation Engineers
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from digital imagery. Visual distinctness metrics can
used to compare and rank target detectability, and to qu
tify background or scene complexity.

Some metrics are based directly on the sampled lu
nance values, others involve some nonlinear or noninv
ible transformation on the pixel values. They may be co
puted locally over the target area and its immedi
surround, semilocally on distinct locations in the scene
globally over the entire scene.

Local metrics or signal-to-noise ratios quantify the d
tinctness of a target in its immediate surroundings. T
general idea is that a target that is highly similar to its lo
background will be hard to see. Semilocal metrics are ba
on the calculation of likely fixation points for a huma
observer searching the scene for a target. The general
is that a target will be hard to find~will be inconspicuous!
if the inspection of the scene requires a large numbe
fixations. Fixation points are assumed to correspond to
cal extrema of variance of the graylevel distribution12

busyness~e.g., Ref. 13!; curvature of the edge map;14,15 or
symmetry of the graylevel distribution;16,17 or saliency,
which may be any combination of the output of generaliz
difference operators operating on length, orientation, c
trast, contour curvature, size, perimeter, and aver
graylevel.18–20

Global conspicuity metrics or signal-to-clutter ratio
take into account the overall structural composition of
scene. The general idea is that a target situated in a b
scene~a complex scene with a large amount of detail sim
lar to the target, or a scene with a high structural varia
ity! will be less conspicuous than the same target situate
a relatively empty scene~a scene with low variability!.

Current target acquisition models typically use first-
second-order statistical metrics to describe the scene in
mation content. First-order metrics are only a function
pixel intensities and contain no information about relat
pixel locations~spatial image structure!. Second-order met
rics do contain some spatial information, but it is very d
ficult to determine how much and whether it is relevant
human spatial vision.

Computational models of early human vision typica
process an input image through various spatial and tem
ral bandpass filters and compute first-order statistical pr
erties of the filtered images to compute a target distinctn
metric.21–24

Models of the human visual search and detection ca
bility that predict the detection probability for targets
complex ~natural! scenes as a function of time~e.g.,
Visdet,25 Oracle,26 and GTV27! typically require a large
number of input parameters. The most important appa
scene parameters are: the mean target luminance, mea
get background luminance, overall luminance level of
scene, local luminance contrast, angular size of the tar
and the amount of clutter in the scene.

In addition, some models require the display gam
function21 or the RGB-XYZ color coordinate transform.23

Most of the previously mentioned parameters are supp
for the images in the Search–2 dataset.1
-
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2 Search –2 Image Dataset

2.1 General Information

The TNO-TM Search–2 dataset contains a well docu
mented collection of high resolution digital images. Ea
image represents a military vehicle in a complex ru
background~Fig. 1~a!!. The exact position in the scene, th
viewing distance, and the orientation of each vehicle
given in a separate datasheet. Target mask~binary! images
are included~Fig. 1~c!!, so that each target can easily b
located~extracted!, and computations can be restricted
the visible parts of the target support~Fig. 1~b!!. Close-up
views of all targets are also provided~Fig. 2!. A digitized
Kodak color calibration slide allows the user to compu
the gamma correction and the XYZ-RGB transform. F
nally, human visual search time statistics and visual lo
measurements of the target are provided for each scen

2.2 Image Registration

The original images were taken during the distributed
teractive simulation, search, and target acquisition fide
~DISSTAF! field test, which was designed and organized
Night Vision and Electronic Sensors Directorate~NVESD!,
Fort Belvoir, Virginia, and which was held in May and Jun
1995 in Fort Hunter Liggett, Califonia. The scenes we
captured on Kodak 5045 EB 100 36324-mm color slides
using a Canon T70 camera equipped with a 300-mm le
This corresponds to a field of view of 6.9 deg horizontal
4.6 deg vertical.

A Kodak PCD Imaging Workstation 4220, equippe
with a Kodak Professional PCD Film Scanner 4045, is us
to digitize the slides in 64-Base Kodak PCD format onto
Kodak Digital Science Pro Photo CD Master Disc. Th
scanner digitizes 614434096 pixels over a 35-mm fram
of film, whose dimensions are 36324 mm (1.42
30.94 in). This translates to a scanning resolution of
proximately 4400 pixels/inch in both dimensions. The a
gular size of one~square! pixel is therefore approximately 4
sec of arc. The scene balance algorithm of the Kodak P
Imaging Workstation 4220 was turned off.

2.3 Image Data

The nine military vehicles that serve as visual search targ
are listed in Table 1 and shown in Fig. 2~an extensive
description and detailed images of these vehicles are g
elsewhere28!.

The ground truth and observer data for each of the
images in the Searchq2 dataset includes the values of th
following parameters:

• the distance~in meters! between the target and th
location of the camera

• the aspect angle of the vehicle~in degrees!

• the coordinates of the target center~in pixels! in the
614434096 images

• the horizontal and vertical size of the visible~i.e., not
occluded! parts of the target~both in pixels and in
meters!

• the target area, defined as the number of pixels t
represent the visible part of the target
1761Optical Engineering, Vol. 40 No. 9, September 2001
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Fig. 1 (a) A full size (614434096) target scene, (b) a 5123512
subregion containing the target, as indicated by the white outlines in
(a), and (c) the corresponding subregion of the binary mask repre-
senting the visible parts of the target support.
1762 Optical Engineering, Vol. 40 No. 9, September 2001
• the mean luminance~in cd/m2! of, respectively, the
scene, the target, and the surround of the target. S
targets have clearly distinct bright and dark parts. F
these targets the mean luminance of the bright a
dark parts are given separately. Some targets are p
surrounded by grass and partly by trees. For these
gets the mean luminance of the grass and the m
luminance of the trees are given separately. The i
minance of the scene is also given~in lux!.

• the number of correct detections, the number of fa
responses, and the number of missed detections, f
total of 62 observers

Table 1 Targets occurring in the Search–2 images.

Type Description
Length

(m)
Width
(m)

Height
(m)

BMP-1 Russian armed personnel
carrier (APC)

6.74 2.94 1.94

BTR-70 Russian APC 7.54 2.80 2.13

HMMVV-Scout Jeep (general purpose
vehicle)

4.72 2.18 1.83

HMMVV-Tow Jeep with antitank weapon 4.72 2.18 1.83

M1A1 American main battle tank
(MBT)

7.92 3.65 2.96

M3-Bradley American APC 6.45 3.30 2.97

M60 American MBT 6.95 3.63 3.29

M113 American APC 4.86 2.69 2.20

T72 Russian MBT 6.91 3.46 2.19
Fig. 2 The nine military vehicles used as search targets (for an explanation of the abbreviations see Table 1).
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• the mean, geomean, and median search time, and
size of the visual lobe for detection and identificatio
respectively.

The visibility of the targets varies largely throughout t
entire stimulus set. This is mainly due to variations in t
structure of the local background, the viewing distance,
luminance distribution over the target support~shadows!,
the orientation of the targets, and the degree of occlusio
the targets by vegetation.

2.4 Target Close-Ups

Search and detection models that use learning meth
e.g., neural nets, to derive characteristic target classifica
features need to be trained on high resolute target repre
tations. The same holds for methods that depend on t
plate matching and correlational approaches. The dat
therefore includes three different close-up views of ea
target vehicle: a front view, an oblique front view, and
oblique rear view. These images can also be used to fa
iarize observers performing search and detection tasks
the scenes.

2.5 Target Masks

Some computational methods require a precise definitio
the target support. Other methods need a definition of
local background24 or the definition of a zone within which
background elements are able to interfere with tar
details.29 The image set therefore includes masks of
visible parts of the target support. A local background s
port can easily be constructed by dilating these masks w
an appropriate structuring element, e.g., by using the m
mum filter in Photoshop with a square structuring elemen30

and subtracting the original mask from the dilated ma
The size of the structuring element determines the size
area around the target support, which is considered as
local background.

2.6 Calibration Image

The information that is needed to compute the convers
of pixel values to display luminance and chromaticity v
ues is also supplied with the dataset.

An opaque slide was digitized to quantify the effect
the dark current of the Kodak PCD Film Scanner 2000
blank slide was also digitized to test the homogeneity of
digitizer and its maximum digital output value.

A Kodak calibration slide is included to enable the es
mation of the display gamma function~from the grayscale
patches! and the RGB-XYZ transformation matrix~from
the color patches!. This slide was projected on the sam
screen that was used in the observer experiments. The~x,y!
chromaticity coordinates of the Kodak Color Contr
Patches and the luminance coordinate~Y; cd/m2! of the
Kodak grayscale patches, as measured from the image
jected onto the screen, are included in the dataset.

3 Search Experiment

The 44 digitized target scenes in the TNO Human Fac
Search–2 dataset are part of a larger set of images that h
been used as stimuli in a visual search and detection
periment. As a result, there are a number of measures a
able that characterize observer performance for each
e
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these images. The following sections briefly describe
experiment and its results. A detailed description is giv
elsewhere.9,31

3.1 Stimuli

The 256 images used in this experiment represent 44
ferent rural scenes and are captured at Fort Hunter Ligg
California. This set includes 144 images that contain
actly one military vehicle that serves as a search target
112 images without a target.

3.2 Apparatus

A Kodak Ektapro 7000 carousel slide projector, equipp
with a 90-mm lens, was used to project the slides ont
white screen. A second projector was used to create a br
boundary around the projected scene. A PC was use
control the stimulus presentation and record the obse
responses.

3.3 Procedure

This section presents a brief description of the experime
procedure. A detailed description of the experimental
sign is given elsewhere.9,31

3.3.1 General procedure

First the visual acuity of the subject was tested. Then
subject was shown three close-ups of each of the nine
gets~27 slides in total!: one front view and two side views
The presentation of the close-ups of the vehicles me
served to familiarize the subject with the outline of th
search targets. The subject was instructed not to memo
the targets or their characteristic details, since there is
need to classify the targets in the actual search experim
The intention of this instruction is to remind the subject th
the targets are man-made objects with straight and clear
edges and sharp corners, in contrast to natural obj
~rocks, bushes! that generally have jagged and fuzzy edg

After the presentation of the close-up views of the t
gets, a test run consisting of ten trials was performed
familiarize the subject with the visual search procedu
The observer was free to choose a search strategy, and
not requested to scan the image in a certain order or to
the search at a certain location.

A computer was used to control the order and durat
of the presentation of the stimuli and to register the
sponse times and the estimated target locations.

A search trial started with the presentation of a n
scene. The subject’s task was to search for a military
hicle in the image and to press the space bar of the c
puter keyboard immediately on detection of the target. T
temporal interval that elapsed between the onset of the
played scene and the moment the subject indicated tha
target had been found~by pressing the space bar! was reg-
istered and adopted as the search time. The displayed s
disappeared immediately after the subject responded, a
slide showing a 10310 rectangular grid with cells num
bered from 0 to 99 was displayed instead. The subject
then requested to indicate the perceived location of the
get by entering the number of the grid cell that covered
perceived target location. The total duration of the stimu
presentation was limited to 60 s. An auditory warning s
1763Optical Engineering, Vol. 40 No. 9, September 2001
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nal was presented 50 s after the onset of the presentati
no response has been registered during the preceding
sentation interval. In the remaining 10 s of the presenta
interval, the subject either selected the most likely tar
from a number of perceived candidate targets~i.e., anything
in the scene that to some degree resembles a target!, or
entered a ‘‘don’t know’’ response code. This procedu
serves to prevent the occurance of extremely long se
times, to reduce the number of ‘‘don’t know’’ response
and to increase the number of false alarms.

The analysis of false alarms is very important, since t
may indicate what features are used by human observe
detect the presence of a target.

The 256 slides were distributed over four carousels of
slides each. A Latin square design32 was used to control the
order in which the slides within each carousel and the c
ousels themselves were presented to the subjects. Th
done to minimize learning effects in the course of the
periment. The duration of a complete run was about t
hours.

3.3.2 Scene familiarity

Familiarity with a scene may affect search performan
since an observer may notice a change in the scene wit
actually distinguishing a target. To analyze this effect
observers were divided into two groups. One group w
only presented with the target images. For the other gro
the presentation of a target image was preceded by the
sentation of the corresponding empty scene. The em
scene was presented during 15 s. The time delay betw
the presentation of the empty scene and the presentatio
the target image was 3 s. For 8 of the 44 scenes, no em
scene was available. In this case a text slide containing
message ‘‘No empty scene’’ was presented for three s
onds prior to the target image presentation.

3.3.3 Edge effect

Observers tend to fixate on the center of an image.33 As a
result search times for targets near the edges of an im
can be up to 30% longer than search times for the sa
targets when they are close to the center of the image
dependent of the target distinctness.34 The image set used in
this experiment includes each scene either two or f
times ~28 scenes were captured with the target at four
ferent locations in the camera field of view, and 16 sce
with the target at two different locations, amounting to
total of 144 images!. The different images of the sam
scene correspond to different orientations of the optical a
of the camera, so that the target is at different locations
the field of view. Estimates of the previously mention
edge effect can therefore be obtained from the analysi
the corresponding observer data.

3.4 Subjects

A total of 64 civilian observers, aged between 18 and
years, participated in the experiment. Approximately half
these were women, the other half were men. All subje
have~corrected to! normal vision, with an acuity better tha
1.25 arcmin21.
1764 Optical Engineering, Vol. 40 No. 9, September 2001
if
e-

h

o

is

t

,
-

n
f

y

-

e

-

f

3.5 Viewing Conditions

Viewing was binocular. The experiments were performed
a dimly lit room. The images are captured on 36324-mm
slides using a 300-mm lens. This corresponds to a field
view of 6.9 deg horizontal by 4.6 deg vertical. The slid
were projected onto a screen area with a width of 1.65
and a height of 1.11 m. The distance between the lens of
projector and the screen was 4.13 m. The observer
seated at a distance of 1.3 m from the screen. At this vi
ing distance the projected image subtends 65 deg horizo
by 46 deg vertical. This corresponds to an enlargemen
the original scene by a factor of about 10.

A second projector was used to present a continuou
visible 13-deg-wide bright border around the projection
the search scenes. This bright border serves to reduce
variations in the adaptation level of the observers result
from large overall variations in brightness that occur b
tween successive slide presentations.

3.6 Results and Discussion

The basic data collected in this experiment are the detec
time and the correctness of the response~whether the true
or false target was detected!. The correctness of the re
sponse was determined by comparing the reported loca
of the target with its actual location~stored in file for each
target image!. These data are collected for each of the 1
target images, and for 64 observers, making a total of 9
responses. For each target image the mean, median,
geometric mean of the search time, are computed for
correct detections. In addition, the number of correct det
tions, the number of false detections, and the numbe
missed targets are given.

The time needed to detect a target depends on the p
tion of the target in the scene, the starting position of
eye, and the stategy that is used. As a result, temporal m
sures of visual search performance are highly variable
large number of repetitions is therefore required to obtai
reliable estimate of a search time measure, e.g., the m
search time. Each observer should view each scene
once~the search is obviously over once the target is foun!.
This means that a large number of observers are require
perform a search experiment.

Search performance is usually expressed as the cum
tive detection probability as a function of time, and a
proximated by35–41

Pd~ t !5
0 : t,t0

P`@12exp~2t2t0!/t# : t>t0
~1!

wherePd(t) is the fraction correct detections at timet, P`

is the probability of a correct response after an infin
amount of search time,t0 is the minimum time required to
respond, andt is a time constant.

As Eq. ~1! clearly shows, search times are not norma
distributed. Therefore, simple search time statistics may
correctly characterize observer performance. In most si
tions, search time is restricted andPd(t) need not approach
P` for targets that are hard to find. As a result, the mean
the observed search times may underestimate the
mean, i.e., the mean over the observation period may
less than the mean that would result if the search wen
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for an infinite amount of time. Other measures may the
fore be more suitable to characterize observer search
formance, such as the median, geometric mean, and u
and lower quartiles.

3.6.1 Scene familiarity

The analysis of the results shows no effect of scene fa
iarity on search performance. Therefore, in all furth
analyses, no distinction is made between target image
sentations with and without a preceding empty scene,
the data for all remaining 62 observers are combined.

3.6.2 Edge effect

The results show a strong effect of target location on av
age search time. Search times are lowest for target locat
near the center of the image, and up to 50% longer
targets that are positioned near the edges of the image.
result agrees with the finding that observers preferably p
form searches near the center of the display.33 However, for
the present experiment this hypothesis can not be verifi
since no eye movements were recorded. For the stim
set used in this experiment, the target positions are c
fully balanced over the display area~over different angular
distances from the center of the screen and over diffe
radial orientations!. As a result, the edge effect only con
tributes about 3% to the total standard error in the sea
time data. Since the total standard error in the search t
data for each individual target image is about 14%,
contribution of the edge effect is relatively small.

The 44 target images selected for the Search–2 dataset
correspond to the target locations that are closest to
center of the image. This is done to ensure that the ta
images are surrounded on all sides by a large fraction of
background, which is a prerequisite for some computatio
algorithms.

4 Visual Lobe Measurements

4.1 Concept

Target conspicuity is operationally defined as the maxim
distance between target and foveation, measured in
fronto-parallel plane through the target~i.e., in the plane
that is parallel to the image plane and at the same dista
from the observer as the target!, at which the target can stil
be visually resolved from its surroundings. This conspicu
measure has been shown to be9 independent of viewing
distance, consistent among observers, and meaningfu
the sense that it correlates with search time. The consp
ity distance is easy and quick to measure with only a f
observers, and can be used on familiar scenes.11

The conspicuity distance is closely related to the conc
of conspicuity area, which is operationally defined as
peripheral area around the central fixation point from wh
specific target information can be extracted in a sin
glimpse.2–4 The conspicuity area is small if the target
embedded in a complex background~a surround with high
feature variability! or if the target is surrounded by irregu
larly positioned nontargets of high similarity~a surround
with high spatial variability!. The conspicuity area is larg
if the target stands out clearly from a homogeneous ba
ground.
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4.2 Procedure

The conspicuity distance measurement procedure is as
lows. The slide representing the scene and the targe
projected continuously. First a moveable fixation dot is s
perimposed on the projected image by means of a la
pointer. This fixation dot is initially positioned at a larg
angular distance from the target location. Subjects are t
instructed to move the pointer slowly in the direction of t
target while fixating the laser dot projected on the scre
and to stop moving the pointer when the target first b
comes noticeable. The image is then replaced by the
jection of a reference grid with numbered cells, and t
position of the fixation dot relative to this grid is recorde
Since the position of the target is known, the distance fr
the target at which its visibility is first reported can then
computed. This distance is adopted as the character
spatial extent of the conspicuity area of the target.

A subject can use two different criteria to determi
whether the target is visible or not. The first criterion
whether there is anything at the location of the target t
contrasts with the local background in some way~color,
shape, texture, luminance, etc.!. This criterion yields a vi-
sual lobe for the detection of the target. The second cr
rion that can be used is whether the spatial structure at
location of the target really originates from the target~can
be discriminated as being the target!. This criterion yields a
visual lobe for the identification of the target.

Each lobe measurement is repeated at least three ti
Subjects are usually able to make a setting within o
minute.

4.3 Results

The detection lobes range between 0.73 and 3.58 deg.
identification lobes range between 0.06 and 2.66 deg.

5 Concluding Remarks

The Search–2 image dataset has already been used in
literature to establish the relation between visual consp
ity and search time,9–11 develop and validate computation
visual target distinctness metrics,42–47validate visual search
and detection models and metrics,48,49 and develop compu-
tational models of human visual attention.50–53

In the current special section, eight articles address
Search–2 dataset.54–61

The authors are currently involved in experiments
which the eye fixations of human observers searching
scenes will be recorded. These data will be made availa
in future updates of the dataset.
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