
1

Enhanced spatial stability with Hilbert and
Moore treemaps

Susanne Tak, Andy Cockburn

Abstract—Treemaps are a well known and powerful space-filling visualisation method for displaying hierarchical data. Many alternative
treemap algorithms have been proposed, often with the aim being to optimise performance across several criteria, including spatial
stability to assist users in locating and monitoring items of interest. In this paper we demonstrate that spatial stability is not fully
captured by the commonly used ‘distance change’ metric, and we introduce a new ‘location drift’ metric to more fully capture spatial
stability. An empirical study examines the validity and usefulness of the location drift metric, showing that it explains some effects on
user performance that distance change does not. Next, we introduce ‘Hilbert’ and ‘Moore’ treemap algorithms, which are designed to
achieve high spatial stability. We assess their performance in comparison to other treemaps, showing that Hilbert and Moore treemaps
perform well across all stability metrics.

Index Terms—Treemap, space-filling curve, spatial stability.

F

1 INTRODUCTION

T REEMAPS are space-filling visualisations that use
rectangular regions to reveal the hierarchical struc-

ture and quantitative attributes of datasets [1], [2]. They
have been used in many application areas, including
the stock market [3], photo browsers (PhotoMesa) [4],
discussion forums [5], hierarchical data analysis [6], [7]
and visual decision making [8].

Many treemap algorithms have been proposed, offer-
ing different advantages in different contexts. Metrics
have also been proposed to assist comparison between
treemap algorithms. These metrics include aspect ratio
(whether treemap items are predominantly square or
long and thin), readability and continuity of the layout,
and measures of stability, including distance change and
distance change variance. Stability is particularly impor-
tant because it facilitates the development of expertise
through learning of item locations [9]: with experience,
users can quickly glance at the treemap to monitor
salient data items.

We demonstrate that stability is not fully captured by
the commonly used ‘distance change’ metric (e.g., [2],
[4], [9]). Treemaps with low distance change values can
sometimes be unstable, because items never ‘settle’ in a
particular area of the screen. To address this shortcoming
we introduce a new ‘location drift’ metric that better
encapsulates stability. We report results of an empirical
study that examines how the distance change and loca-
tion drift metrics influence actual user performance in
item retrieval.

We then introduce two new treemaps, based on

• S. Tak and A. Cockburn are with the Department of Computer Science
and Software Engineering, University of Canterbury, Private Bag 4800,
Christchurch 8140, New Zealand.
Contact e-mail: andy@cosc.canterbury.ac.nz

Hilbert and Moore space filling curves [10] (see Fig. 1),
and demonstrate that these treemaps perform well across
the full set of stability metrics.

Fig. 1. (a) Hilbert and (b) Moore curve, (c) Hilbert and (d)
Moore treemap (shading indicates item order).

The five specific contributions of the paper are:
• a mathematical formalisation of treemap metrics;
• introduction of the ‘location drift’ metric;
• an empirical study demonstrating that ‘location

drift’ is a useful metric for evaluating stability;
• introduction of Hilbert and Moore treemaps;
• a comparison of the Hilbert and Moore treemaps

and various other treemaps.

2 RELATED WORK

2.1 Treemap algorithms
Many treemap algorithms have been proposed since
their introduction [1]. The early ‘slice and dice’ algo-
rithm [11] (see Fig. 2a) recursively slices the available

Tak, S. & Cockburn, A. (2013). Enhanced Spatial Stability with Hilbert and Moore treemaps. IEEE Transactions on
Visualization and Computer Graphics, 19(1), 141-148.
doi:ieeecomputersociety.org/10.1109/TVCG.2012.108

2

space into parallel rectangles, but in doing so it is sus-
ceptible to producing unbalanced aspect ratios. Squari-
fied [12] (see Fig. 2b) and cluster algorithms [3] produce
more balanced aspect ratios.

Fig. 2. Treemap algorithms: (a) slice and dice, (b) squar-
ified, (c) spiral (shading indicates item order).

While visualisation aesthetics are often key design
criteria, other factors can also be important, such as
maintaining the underlying data ordering, strong rep-
resentation of hierarchy, and spatial stability. Ordered
treemap layouts preserve the underlying data order, with
examples including slice and dice, pivot [9], strip [4],
and spiral layouts [2] (see Fig. 2c). Fig. 2 uses shading
to indicate item order; note that slice and dice (a) and
spiral (c) maintain order, but squarified (b) does not.
Many other designs have been proposed to meet the
requirements of specific application areas. For example,
Cushion treemaps [13] are designed to highlight hierar-
chical structure and Quantum treemaps [4] are designed
to accommodate items with a fixed size, such as photos.

By definition, treemaps have rectangular items: “[a
treemap is a] two-dimensional (2-d) space-filling ap-
proach in which each node is a rectangle whose area
is proportional to some attribute such as node size” [11,
p. 92]. However, this can lead to situations where the
aspect ratios of the items are unavoidably unbalanced,
as in the ‘extreme’ example when there are two items
with respective weights of 999 and 1 [14]. To resolve
this issue, some newly developed algorithms create a
layout with non-rectangular items. For example, Voronoi
treemaps [15] use arbitrary polygons rather than rect-
angles for visualising software metrics, and the Jigsaw
layout [14] uses the space-filling H-curve [16] to create
a treemap with non-rectangular puzzle-piece shaped
items (in our paper we use the space-filling Hilbert
and Moore curves [10]). Wattenberg [14] also provides a
mathematical analysis of the use of space-filling curves
for supporting space-filling visualisations. The use of
non-rectangular items, however, does not come without
its disadvantages. Wattenberg [14, p. 27] observes that
“[...] irregular puzzle-piece shapes certainly look odd,
and seem likely to make it more difficult to compare
areas and understand the tree topology [...]”.

2.2 Treemap metrics
Five metrics are commonly used (e.g., [2], [4], [9]) for
evaluating and comparing treemap algorithms: aspect

ratio, readability, continuity, distance change and dis-
tance change variance. To resolve ambiguity in their use,
we formally define them below.

Aspect ratio: The aspect ratio of an item is the ratio
of the longer dimension to the shorter one. Treemaps
with a high mean aspect ratio are undesirable, because
items are hard to recognise, select, and label, as well as
being visually unattractive. We note that previous work
suggests that the (perceptually) ideal mean aspect ratio is
not necessarily the minimum possible value (of 1), but
closer to 1.5 [17]. The mean aspect ratio of a treemap
layout ranges from 1 (treemaps with perfectly square
items) to very high (treemaps with many ‘stretched’
items) and is calculated using

1

n

n∑
i=1

max(
widthi
heighti

,
heighti
widthi

).

Readability: The readability [4] metric measures how
easy it is to visually scan a treemap in order (see shading
in Fig. 2). It is quantified by calculating the number of
times the “reader’s gaze” must change direction when
scanning a treemap in order. When all item centres of
consecutive items in the item ordering are assumed to be
connected by vectors, the number of angle changes be-
tween successive vectors that are greater than .1 radians
(about 6 degrees) can be counted (such an angle change
represents a change in the direction of the reader’s gaze).
The readability metric is in the range [0,1], with 0 sig-
nifying very poor readability and 1 maximal readability,
and defined by

1− |angle > .1 radians|
n

.

Continuity: Similar to readability, continuity [2] quan-
tifies how easy it is to visually scan a treemap in order.
Continuity is calculated by counting how many items
that are consecutive in the data ordering are adjacent in
the treemap:

|adjacent consecutive items|
n− 1

.

Distance change: Distance change quantifies item
movement when the underlying data is changed [4].
Distance change reflects the stability of the layout [2]
with lower values indicating a more stable layout. If an
item i in a treemap is defined as the rectangle (x, y, w, h),
with x, y the position of one of the corners and w and h
the width and the height, the distance change between
two positions can be calculated and then averaged for
all items, by using

1

n

n∑
i=1

√
(∆xi)2 + (∆yi)2 + (∆wi)2 + (∆hi)2.

Distance change variance: Distance change vari-
ance [2] complements the distance change metric; a
low mean distance change, but a high distance change
variance means a few items move a lot.

3

3 LOCATION DRIFT

As noted in the previous section, distance change is
commonly used to reflect the stability of a treemap.
Stability is particularly important when the treemap is
used to visualise dynamically updating data. In this sec-
tion we demonstrate that although the distance change
metric provides important insights into the stability of
the treemap, it does not describe instability caused by
‘drifting’ item positions. For example, consider the two
situations: one item flips between position A and B after
each update, while another item drifts from A to B to
C to D, constantly moving further away from its initial
position A. It is possible that the distance change of
these two items is identical at each update (if A-B = B-
C = C-D), but the high cumulative movement distance
of the latter item may detrimentally affect item retrieval
because the item never ‘settles’ in one area of the screen.

Fig. 3. Example of three positions of an item (A, B, and
C), the centre of gravity (CoG) and the distances between
the various positions and the centre of gravity.

We introduce the ‘location drift’ metric to overcome
this limitation. The underlying assumption motivating
‘location drift’ is that human performance in item re-
trieval is facilitated when items are located in a partic-
ular spatial region of the display, and hindered when
locations gradually drift. Location drift is calculated
by determining the ‘centre of gravity’ (CoG) of all the
locations an item has had across updates by averaging
all x- and all y-coordinates of the various item (centre)
positions (see Fig. 3). Next, the location drift of an item
is determined by calculating the distance between the
centre of gravity and the item at each update, and
averaging these distances. The mean location drift of
the treemap (with n items across m updates) is then
described by

1

n

n∑
i=1

1

m

m∑
j=1

||positioni,j , CoGi||.

Similar to distance change variance, location drift vari-
ance can also be calculated.

4 EMPIRICAL STUDY OF LOCATION DRIFT

This section presents an empirical validation of the
location drift metric, examining how various levels of

distance change and location drift affect user perfor-
mance. In particular, we examine whether layouts with
low distance change, but relatively high location drift
impair user performance, as we proposed in Section 3.

The study used five different layout conditions with
widely differing spatial properties resulting in substan-
tially different metric values for distance change and
location drift. The participants’ tasks involved repeat-
edly selecting items within the layout as quickly and
accurately as possible. All layouts consisted of 36 items
in an 6 × 6 matrix. The rationale for using a grid
layout, where all items are of equal size, rather than a
treemap layout is to (1) minimise the risk of confounds
introduced by different aspect ratios of different treemap
layouts and (2) to maximally isolate effects of distance
change and location drift.

4.1 Layouts
The five experimental layout conditions included two
control conditions representing the end points of spatial
stability: random, in which the location of every item was
randomly assigned prior to each selection trial and stable,
in which item locations were fixed. The random layout
has a high mean distance change (DC) of 525 and a high
mean location drift (LD) of 385, but both these values
are 0 for the stable layout.

Fig. 4. Layout updates for low distance change.

The other three conditions were as follows:
Low distance change: Prior to each selection trial, the
item locations changed according to one of the ‘rotation’
methods shown in Fig. 4 (randomly chosen). This layout
has relatively low distance change, but high location drift
(DC=171, LD=360).
Low location drift: All item locations within each quad-
rant (of nine items) were randomly assigned prior to
each selection trial (i.e., all items always stay in the
same quadrant, but within that quadrant their locations
change). This layout has low location drift, but medium
distance change (DC=250, LD=184).
Semi-random: All item locations were randomly as-
signed prior to each selection trial, with the caveat that
50% of items always stay in the same quadrant through-
out all the selection trials. This layout has medium loca-
tion drift and high distance change (DC=388, LD=284).

4.2 Design and procedure
The experimental interface consisted of a grid with 36
equal-sized squares, each containing a distinct coloured

4

icon (e.g., a symbol of a house, a music note or a star)
on the left side of the screen, and a cued target icon on
the right side. Participants were instructed to click on the
square containing the target as quickly and accurately as
possible. After each selection, the grid was temporarily
hidden from view and updated according to specifics
of the layout. Participants pressed a ‘next’ button in the
middle of the screen to proceed.

A Zipfian distribution of targets was used: one item
was cued 18 times, one 9 times, then (6, 5, 4, 3, 3, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1) for the others (α=1.0, R2=.97). The items
were cued in random order. The rationale for using a
Zipfian distribution is twofold. First, power distributions
(such as Zipfian distributions) appear widely in many
kinds of (natural) data, including biology, economics
and finance and computer science [18]. Second, Zipfian
distributions are often used for treemap evaluations [4],
[9].

The experiment used a within-subject design, with all
participants performing tasks in all layouts. The different
layouts were presented in random order. After comple-
tion of the series of tasks in each layout the icons that
had to be selected more than once in that layout were
deleted from the icon collection, such that they were
not re-used in following conditions. The experimental
interface was displayed on a monitor with 1280 × 1024
pixels resolution.

4.3 Participants

Thirty students, naı̈ve about the goal of the experiment,
participated (15 male, 15 female, 18-39 years old). Par-
ticipation lasted approximately 20 minutes.

4.4 Results and discussion

The selection times were analysed using a 5×3 RM-
ANOVA for factors layout and experience (low, medium
or high). The experience factor allows us to examine
how well the design supported formation and use of
spatial memory for item locations. It was determined
by assigning first-time item selections as low, 2rd–14th

selections as medium, and 15th–18th selections as high
experience. Any trial requiring more than one click to
select the target was deemed an error and was removed
from the analysis (∼ 1% of selections).

There were significant main effects for both layout
(F4,116=22, p<.001) and experience (F2,58=133, p<.001).
The stable layout was the fastest (1.4s), followed by low
location drift (1.7s), semi-random (1.9s), low distance change
(1.9s) and random (1.9s). Post hoc comparisons show
pairwise differences between all layouts and the stable
layout. Fig. 5 shows a significant layout × experience inter-
action (F8,232=13, p<.001), caused by relatively constant
performance across experience with the random, semi-
random and low distance change layouts in contrast to
improvement of user performance with the low location
drift and stable layouts.

Fig. 5. Experiment mean selection times including 95%
within-subjects confidence intervals for the five layouts by
experience.

Many treemap designs aim to maximise stability be-
cause it facilitates rapid acquisition of familiar targets. To
gain further insight into user performance with familiar
targets, we separately analysed data from the ‘high’
experience level. The results show a significant main
effect for layout (F4,116=15, p<.001). The stable layout was
fastest (0.9s), followed by low location drift (1.3s), semi-
random (1.6s), low distance change (1.7s), and random (1.9s).
Post hoc analysis (Bonferroni, α=.05) revealed that the
stable layout was faster than all others (all p’s <.001),
and that low location drift was faster than random (p<.01)
and low distance change (p<.05).

The finding that low location drift improves perfor-
mance compared to low distance change is interesting,
as low location drift has higher average distance change.
However, its location drift is lower, which explains its
better performance. When location drift is low, spatial
location learning is aided; it is easier to learn item
locations when they stay in the same area of the screen.

4.5 Results summary and discussion

The results show that a layout with low distance change,
but high location drift impairs user performance. This
demonstrates that location drift is a valuable metric for
the evaluation of treemaps and to accurately capture the
stability of a treemap layout location drift needs to be
taken into account.

It is important to note that this experiment had a
narrow objective: it aimed to understand the impact
of location drift on user performance. As is typical of
empirical work, this narrow objective raises validity con-
cerns stemming from the trade-off between internal and
external validity. In particular, our experimental context
concerns user performance with treemaps, and ideally
our results would readily generalise to any treemap de-
ployment. However, treemap deployments vary widely
in objective and presentation, complicating generalisa-
tion. Our experiment focussed on internal validity, facil-
itating rigor and replicability for our specific hypothesis;

5

but we stress that further work is needed to determine
the impact of location drift in real treemap applications
and in treemaps with imbalanced item aspect ratios.

5 HILBERT AND MOORE TREEMAPS

Hilbert and Moore treemaps are intended to perform
well across all measures of spatial stability, including
location drift, and also perform well on the other metrics.
Inspired by Wattenberg’s analysis of space-filling curves
for visualisations [14], we developed two new treemap
algorithms based on Hilbert and Moore space-filling
curves. The reason for using space-filling curves for
generating treemaps is that we believed that the ‘crum-
pled up’ nature of space-filling curves would achieve
low distance change and location drift, as it means
items stay in the same area while migrating to new
positions on the curve. However, unlike Wattenberg’s
work, our treemaps maintain the traditional rectangular
item shape.

The Hilbert and Moore treemap algorithms are based
on two (similar) space-filling curves [10], shown in Fig. 1.
A space-filling curve is a self-similar continuous curve
which completely covers a N-dimensional space without
self-intersection. Examples of so-called level 0 and level
1 Hilbert curves are shown in Fig. 6. The level 0 curve
evolves to a level 1 curve by applying a standard set of
rules, as shown in Fig. 6. The level 1 curve comprises
four quadrants with level 0 curves, albeit some rotated
90 degrees and/or flipped. In each of these quadrants
the level 0 to 1 transition rules can be applied again to
create a level 2 Hilbert curve (see Fig. 1a), and so forth.

Fig. 6. Level 0 and 1 Hilbert and Moore curves.

The Moore curve is a variant of the Hilbert curve [10]
with a different level 0 to level 1 transition. This results
in a curve where the start and end are adjacent points
(rather than adjacent corners, as is the case for the Hilbert
curve). The level 0 to level 1 transition (see Fig. 6) creates
an H-shaped curve. Subsequent transitions are the same
as the Hilbert curve transitions. Fig. 1b shows a level 2
Moore curve.

To create a treemap based on the Hilbert and Moore
space-filling curves we recursively divide the (ordered)
data in four weighted quadrants, until each quadrant
contains four or fewer items. Next, these quadrants are
laid out on the screen. In the last step the actual items
are laid out, during which some aspect ratio optimising
is applied. We demonstrate the algorithm by using the
example shown in Table 1.
Step 1: Recursively divide by weighted quadrants.
We divide the data in four weighted quadrants that have

TABLE 1
Ten numbered items and their associated values and

quadrants

item # 1 2 3 4 5 6 7 8 9 10
value 5 5 2 8 3 2 2 3 6 10
quadrant A A A B B C C C C D

roughly equal weights, while the underlying ordering
of the data is maintained. This is recursively repeated
until each quadrant contains four or fewer items (i.e., if
a quadrant contains more than four items it is divided in
four quadrants again). For the example shown in Table 1,
this process generates four quadrants labelled A, B, C
and D with cumulative weights 12 (26%), 11 (24%), 13
(28%) and 10 (22%).
Step 2: Lay out the quadrants.
The quadrants created in Step 1 are sequentially laid out
on the screen following the directional rules dictated by
the Hilbert/Moore curve (see Fig. 7a), starting with the
highest level quadrants, and then the quadrants within
these quadrants (if applicable).

Fig. 7. Generation of a Hilbert treemap: (a) layout of the
quadrants, (b) layout of the items.

Step 3: Lay out the items.
When the actual items are laid out (not the quadrants),
aspect ratio optimising is applied by comparing several
candidate layouts if a quadrant contains three or four
items. These candidate layouts all maintain the under-
lying data order and place the first and the last item in
adjacent corners. When a quadrant contains three items,
the algorithm compares the aspect ratio of four layouts
shown in Fig. 8. When a quadrant contains four items,
three additional layouts are evaluated (see Fig. 9).1 The
layout with the lowest mean aspect ratio is used. The
layout is then placed such that the underlying ordering
of the whole treemap is maintained; the first item neigh-
bours the last item in the previous quadrant and the last
item neighbours the first item in the next quadrant. The
resulting treemap is shown in Fig. 7b. Figures 1c and d
show larger Hilbert and Moore treemaps.

1. There are more possible layout options than these seven, but
using more layout options than the current seven did not result in
a noticeable improvement of the aspect ratio of the layout.

6

Fig. 8. Four layout options when the quadrant has three
items: Snake, Most1, Most2 and Most3.

Fig. 9. Seven layout options when the quadrant has four
items: Snake, Most1, Most2, Most3, Most4, Horizontal-
Split and VerticalSplit.

6 METRIC-BASED TREEMAP COMPARISON

We used the metrics described in Sections 2.2 and 3
to compare the following treemaps: Hilbert and Moore,
slice and dice [11], squarified [12], strip [4], spiral, [2],
and the three variants of pivot algorithm (pivot by size,
pivot by middle and pivot by split size) [9].

Our method, detailed below, synthetically generates
a large sample of treemaps. Large samples of treemaps
are required to reduce the risks of random sampling
producing an unrealistically favourable result for any
particular treemap. The stability metrics are calculated
for dynamic updates and item additions, which simu-
lates changes to the underlying data. By simulating these
events we can determine how the spatial properties of
various treemaps respond.

6.1 Method
All metrics were calculated for treemaps with three
different numbers of items: 10, 30, and 50 items. They
were calculated for a square display (1:1 aspect ratio).

Three separate simulation batches were run, with each
batch containing 300 treemaps for each algorithm (100
with 10 items, 100 with 30 items, and 100 with 50 items).
The first batch was used to investigate how the spatial
properties of the different treemap algorithms respond
to dynamic updates. The second batch examined the same
issues in the presence of item addition.2 The third remain-
ing metrics batch examined aspect ratio, continuity, and
readability.

The items in each batch at each size were assigned
values according to a Zipfian distribution (α=1), then

2. We observed that the effect of item addition on layout stability is
the same as the effect of item deletion.

randomly ordered: for example, a ten item dataset might
be {9, 21, 32, 12, 6, 7, 64, 16, 8, 10}.
Dynamic Updates. Each of the 300 treemaps in the
dynamic update batch was analysed through a series of
100 data updates (a method previously used in [2],
[4]). At each update, the values in the treemap dataset
were modified by multiplying each item by ex, with x
randomly drawn from a normal distribution with mean
0 and standard deviation 0.05. The resultant state of the
treemap was then calculated by the treemap algorithm.
The stability metrics (distance change and location drift)
were calculated after every update.
Item Addition. For each of 300 treemaps in the item
addition batch the distance change and distance change
variance metrics were determined as follows. Having
established 300 initial treemap states using the same
procedure as dynamic updates, a single random item
was inserted into each treemap (random location in the
dataset and random size between the minimum and
maximum of the dataset). The new state of each treemap
was calculated by the treemap algorithm, and the metrics
were calculated.
Remaining Metrics. Aspect ratio, continuity and read-
ability were calculated by establishing 300 treemaps
using the same procedure as dynamic updates and item
addition, and the metric values calculated.

6.2 Results
6.2.1 Dynamic updates
Fig. 10 shows the results of the comparison of different
treemaps on the distance change and location drift met-
rics when data is updated.

The first row of Fig. 10 shows that the average distance
change of Hilbert and Moore is lower than squarified
and pivot by split size, but higher than slice and dice
and pivot by middle.

The second row of Fig. 10 shows that distance change
variance of Hilbert and Moore is lower than all other
treemaps except slice and dice. Also, the distance change
variance of Hilbert and Moore is similar to that of pivot
by middle, which has a lower value for the distance
change metric.

The third row of Fig. 10 shows that location drift of
Hilbert and Moore is lower than squarified, strip, spiral,
pivot by size and pivot by split size. Also, similar to
distance change, the location drift of Hilbert and Moore
is higher than slice and dice and pivot by middle.

Finally, the fourth row of Fig. 10 shows that location
drift variance of Hilbert and Moore is lower than all
other treemaps except slice and dice.

6.2.2 Item addition
Fig. 11 shows the results of the comparison of different
treemaps on the distance change metrics when an item
is added to the layout.

The first row of Fig. 11 shows that distance change of
Hilbert and Moore is lower than pivot by middle and

7

Fig. 10. Distance change and location drift metrics for
data updates. Error bars represent +/- 1 SE.

by split size, but higher than slice and dice and pivot by
size.

The second row of Fig. 11 shows that distance change
variance of Hilbert and Moore is lower than most
treemaps, but higher than slice and dice.

Most treemaps, including Hilbert and Moore, perform
relatively similar in terms of stability when data is
updated and when an item is added, but two layouts
exhibit very different behaviours across these situations.
The squarified treemap is quite unstable when the data
is updated, but stability is not severely affected when
an item is added. For the pivot by middle treemap the
reverse is true: it is very stable when the data is updated,
but not when an item is added.

Fig. 11. Distance change metrics for item addition. Error
bars represent +/- 1 SE.

TABLE 2
Stability scores and ranks for all treemaps. Lower scores

mean better stability.

Stability
Treemap Score Rank
Slice and Dice 0.00 1
Moore 0.33 2
Hilbert 0.35 3
Spiral 0.42 4
Pivot by Size 0.45 5
Pivot by Middle 0.56 6
Squarified 0.63 7
Strip 0.75 8
Pivot by Split Size 0.90 9

6.2.3 Stability score
In total, six stability metrics were calculated for each of
the three set sizes (see Figures 10 and 11). To determine
how well the different treemaps perform overall in terms
of stability a ‘stability score’ was calculated by linearly
normalising the range of each stability metric (scaling
values between 0 and 1) and averaging them for each
treemap. The stability scores for all treemaps are shown
in Table 2.

Table 2 shows that the Hilbert and Moore treemaps
have the best (i.e., lowest) stability scores after the slice
and dice treemap. The slice and dice treemap performs
particularly well on the various stability metrics because
it uses a simple linear order, and therefore does not suffer
from large changes in the layouts when the underlying
data is changed. However, the slice and dice treemap is
not an attractive option for ‘real life’ use because of the
very high aspect ratios of the items (see next section),
which makes items hard, or even impossible, to label
and select [9].

6.2.4 Remaining metrics
Fig. 12 shows the results of the comparison of different
treemaps on the three other common treemap metrics:
aspect ratio, continuity and readability.

The Hilbert and Moore algorithms create treemaps
with aspect ratios that are similar to most other treemap
algorithms. The top row of Fig. 12 shows that squarified
performs particularly well (mean aspect ratio 1.3) and
that slice and dice performs particularly poorly. All other
algorithms produced mean aspect ratios in the range 1.8
to 2.8.

The second row of Fig. 12 shows that the readability
of Hilbert and Moore treemaps is lower than slice and
dice, strip, and spiral, but similar to pivot layouts. The
low readability of the Hilbert and Moore treemaps stems
from the localised reorientation (‘crumpling’) of Hilbert
and Moore curves. However, this poor performance on
the readability metric might not be detrimental for user
performance because the layout is very stable. Stable
layouts, such as Hilbert and Moore treemaps, eliminate
the need to perform such a (slow) linear search as

8

Fig. 12. Aspect ratio, readability, and continuity metrics.
Error bars represent +/- 1 SE.

encapsulated by the readability metric, because users
learn where items are located.

The third row of Fig. 12 shows that Hilbert and Moore
treemaps have high continuity, as do slice and dice
and spiral algorithms. Readability and continuity metrics
both concern the ease with which a treemap visualisation
can be visually scanned, so the disparity of results for
Hilbert and Moore treemaps (poor for readability, best
for continuity) indicates how relatively subtle differences
in metric implication can have a substantial influence on
metric-based conclusions. This is due to the readability
metric being tailored for predominantly linear scanning,
while the continuity metric predominantly concerns lo-
calised scanning.

6.2.5 Results summary
The results of the simulations show that Hilbert and
Moore treemaps have the best overall performance in
terms of stability after the slice and dice treemap. This is
explained by the good stability of the Hilbert and Moore
treemaps both when data is updated and when an item
is added to the layout. Combined with their low aspect
ratio and good continuity this suggests that Hilbert
and Moore treemaps can be very useful in ‘real life’
applications, particularly those where layout stability is
important. We note that Hilbert and Moore treemaps are
very similar, not only visually (see Fig. 1), but also in
terms of their metrics.

7 CONCLUSION AND FUTURE WORK

We introduced a ‘location drift’ treemap metric and em-
pirically demonstrated that it can explain some effects on
user performance that are not captured by the commonly
used distance change metric. We also proposed Hilbert
and Moore treemaps, and demonstrated that they have
a low mean aspect ratio, maximal continuity, and good
stability both when the data changes and when the
number of items changes.

Results of the empirical experiments (which used ab-
stract tasks) and of the metric-based theoretical analyses
suggest that Hilbert and Moore treemaps should be
considered by designers seeking a spatially stable visual-
isation. However, further work is needed in broadening
their performance analysis in ‘real life’ applications.
Future work could also focus on comparing the various
treemap algorithms for hierarchical data sets, as some
metrics will differ for such data sets.

REFERENCES
[1] B. Johnson and B. Shneiderman, “Tree-Maps: a space-filling ap-

proach to the visualization of hierarchical information structures,”
in Proc. VIS ’91. IEEE, 1991, pp. 284–291.

[2] Y. Tu and H. Shen, “Visualizing changes of hierarchical data using
treemaps,” in IEEE Trans. on Visualization and Computer Graphics,
2007, pp. 1286–1293.

[3] M. Wattenberg, “Visualizing the stock market,” in Proc. CHI ’99
extended abstracts. ACM, 1999, pp. 188–189.

[4] B. B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered
and quantum treemaps: making effective use of 2D space to
display hierarchies,” ACM Trans. Graph., vol. 21, no. 4, pp. 833–
854, 2002.

[5] B. Engdahl, M. Köksal, and G. Marsden, “Using treemaps to
visualize threaded discussion forums on PDAs,” in Proc. CHI ’05
extended abstracts. ACM, 2005, pp. 1355–1358.

[6] K. Shi, P. Irani, and B. Li, “An evaluation of content browsing
techniques for hierarchical space-filling visualizations,” in Proc.
InfoVis ’05. IEEE, 2005, pp. 81–88.

[7] J. Stasko, “An evaluation of space-filling information visualiza-
tions for depicting hierarchical structures,” Int. J. Hum.-Comput.
Stud., vol. 53, no. 5, pp. 663–694, 2000.

[8] T. Asahi, D. Turo, and B. Shneiderman, “Visual decision-making:
using treemaps for the analytic hierarchy process,” in Proc. CHI
’95. ACM, 1995, pp. 405–406.

[9] B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,”
in Proc. InfoVis ’01, 2001, pp. 73–78.

[10] H. Sagan, Space-Filling Curves. Springer, 1994.
[11] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-

filling approach,” ACM Trans. Graph., vol. 11, no. 1, pp. 92–99,
1992.

[12] M. Bruls, K. Huizing, and J. v. Wijk, “Squarified treemaps,” in
Proc. Joint Eurographics and IEEE. IEEE, 2000, pp. 33–42.

[13] J. J. Van Wijk and H. van de Wetering, “Cushion treemaps:
Visualization of hierarchical information,” in Proc. InfoVis ’99.
IEEE, 1999, pp. 73–78.

[14] M. Wattenberg, “A note on space-filling visualizations and space-
filling curves,” in Proc. InfoVis ’05. IEEE, 2005, pp. 24–29.

[15] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps for
the visualization of software metrics,” in Proc. SoftVis ’05. ACM,
2005, pp. 165–172.

[16] R. Niedermeier, K. Reinhardt, and P. Sanders, “Towards optimal
locality in mesh-indexings,” in Proc. Symp. Fundamentals of Com-
putation Theory. Springer-Verlag, 1997, pp. 364–375.

[17] N. Kong, J. Heer, and M. Agrawala, “Perceptual guidelines for
creating rectangular treemaps,” IEEE Trans. on Visualization and
Computer Graphics, vol. 16, pp. 990–998, 2010.

[18] M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s
law,” Contemporary Physics, vol. 46, no. 5, pp. 323–351, 2005.

9

Susanne Tak Susanne Tak is a researcher inter-
ested in human-computer interaction, cognitive
psychology, human problem solving and data
visualisation. She completed her PhD at the
Department of Computer Science and Software
Engineering of the University of Canterbury,
Christchurch, New Zealand in December 2011.

Andy Cockburn Andy Cockburn is a computer
scientist with interests in understanding and
modelling human performance with interactive
systems. He is a full professor in the Department
of Computer Science and Software Engineering
of the University of Canterbury, Christchurch,
New Zealand.

