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Summary

State estimation in networked systems

The research presented in this thesis concentrates on state estimation in net-
worked systems. State estimation refers to a method for computing the un-
known state vector of a dynamic process by combining sensor measurements
with predictions from a process model. The most well known method for state
estimation is the Kalman filter, which assumes a linear process model and
Gaussian noise distributions. The Kalman filter started as an essential part
of various space and military applications. Since then, many of its successful
implementations are found in the public domain as well. Motivated by this
success, additional estimation methods were designed, such as, the extended
Kalman filter, unscented Kalman filter and particle filter. These methods
deal with nonlinear process models and/or non-Gaussian noise distributions.

Up until now, there were no critical limitations in communication and
computational resources. The amount of sensor measurements and the mo-
del complexities have been sufficiently low to satisfy the requirements for a
centralized implementation of state estimation algorithms. This is changing
with a paradigm shift in system design towards networked systems, and “sen-
sor networks” in particular. Networked systems can maintain large amount
of sensors. However, they often lack communication and/or computational
resources that are required for processing the large quantity of produced
measurements according to a classical centralized implementation. To solve
this issue, novel state estimation strategies are presented for networked sys-
tems. In the first estimation approach, the amount of measurement samples
is reduced with event sampling to cope with communication channels that
have a limited capacity for exchanging data. In the second estimation ap-
proach, measurements are processed directly at the sensor in a distributed
state-estimator to deal with communication and computational limitations
of large-scale or ad-hoc networks. A brief motivation for studying these two
approaches is given, next.

Limitations in the amount of exchanged data from sensor to estimator
arise when a (wireless) network connection is used for transferring the data.
To reduce the amount of exchanged data, measurements are sampled at the
instants of an event on the sensor value, rather than synchronously in time.
However, this complicates the estimation problem considerably, as events oc-
cur unexpectedly. Therefore, the first estimation approach proposed in this
thesis focuses on stable estimation results for any type of event sampling
strategy. This means that a bounded error-covariance is attained by per-
forming an update on the estimation results not only at the instants of an
event, when a new measurement is available, but also synchronously in time
when no measurement is received. In the latter case, the update is based on
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the implicit property of event sampling that not receiving a new measure-
ment still gives information on the current sensor value. After a theoretical
study, the proposed event based state-estimator is further integrated with a
feedback control system to create a new type of event based controller. The
distinguishing property of this set-up, i.e., an event based estimator prior to
a time synchronous controller, is that stability of the controlled system is
decoupled from the event sampling strategy. To that extent, the results of
the event based state-estimator are interpreted by an integration procedure,
so that the employed controller can optimize disturbance rejection depending
on estimation errors.

Communication and computational limitations in sensor networks are ra-
ther different. These types of networked systems consist of a large amount of
so called “sensor nodes” that are spatially distributed to monitor large-area
processes. Typical design consideration for preventing that a networked sy-
stem is deployed with large amounts of wires, imply that sensor nodes are
battery powered and exchange data via a radio. The communication range
of nodes is often limited to save energy, while the raised computational li-
mitations are caused by the fact that a single node is not able to process all
measurements produced by the sensor network. Therefore, distributed solu-
tions for state estimation are being developed, in which each node typically
computes a local estimate of the state vector based on its own measurement
and on the data received from neighboring nodes. Some main drawbacks
of current solutions is their focus on minimizing the estimation error per
node individually and further, impose strict requirements on the shared data
which are likely to be violated by system changes present in sensor networks.
To solve these issues, the second estimation strategy proposed in this thesis
does not focus on the estimator per node individually but aims to establish
a cooperation in this network of estimators. Cooperation means that neigh-
boring nodes share data not only to synchronize their estimation results but,
more importantly, to reduce the (modeled) estimation error. In the proposed
set-up each node employs a state estimation method locally, e.g., the (uns-
cented) Kalman filter, to estimate the state based on its own measurement.
This estimation result is then shared with neighboring nodes as input to a
state fusion method, which computes a fused estimate of the state. A novel
fusion method is developed for merging two of these estimates, such that the
modeled estimation error (error-covariance) after fusion is reduced. A fulfill-
ment of this property guarantees that the estimation error of each node in the
network is in line with the smallest estimation error found across its nodes.
Furthermore, the proposed distributed estimation approach is assessed in a
comprehensive overview on distributed Kalman filtering. To that extent, the
widely scattered solutions on this topic that were proposed in various research
communities are assessed in two real-life inspired case studies.

The thesis concludes with the main contributions of the presented re-
search, followed by ideas for future investigation.
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Motto:

“Only those who will risk going too far can
possibly find out how far one can go.”

- T.S. Elliot
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Introduction

1.1 Web of information
1.2 Stochastic state

estimation

1.3 Challenges in
networked estimation

1.4 Outline of the thesis
1.5 Notation and definitions

A recent study done by Cisco revealed that in 2008 the number of things
connected to the Internet exceeded the population on earth. Moreover, this
number is likely to increase, due to the growing amount of devices with In-
ternet capabilities, such as televisions, smartphones and navigation systems.
An illustration of this study is depicted in Figure 1.1. Along that line, it is
worth noticing that Cisco and NASA initiated the research platform “Plane-
tary Skin” in 2009, which will use billions of networked sensors distributed on
land, in sea and in space to provide information on environmental changes.
Such extreme quantities are not only future trends. For example, in 2011
alone the Internet generated 4 million terabyte of unique information. It is
expected that this number will continue to increase, exponentially. Mankind
will never be able to understand all this information without help. There-
fore, novel algorithms are being developed to turn this excessive amount of
information into knowledge and wisdom.

number of people and number of 

things connected to the internet

2003 2010 2015 2020

50 billion

Source: http://blogs.cisco.com/news/the-internet-of-things-infographic/

Figure 1.1: Over the years, things other than people have been connected

to the Internet more frequently. Things, such as televisions, health monitors

for cows, telephones and radio stations.
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1.1 Web of information

The growing amount of information is generated by all kinds of information
sources, such as sensor measurements, camera recordings, e-mails and text
messages. They provide insight on surrounding processes that help us manage
our daily activities. For example, information about stock exchange, weather
conditions, traffic jams, pollution levels and energy consumptions. A key
element in this web of information is a communication network, as it enables
to share and manage large quantities of information sources. This thesis
focusses on sensor measurements as the information source. Sensors can
measure all kinds of (physical) variables, such as temperature, force, angle,
light, acceleration, speed, position and magnetism. They are used in almost
every electronic device that we know, from amplifiers to smartphones.

When sensors are connected to a communication network they create a so
called sensor network. A sensor network consists of sensor nodes in a particu-
lar network topology, as depicted in Figure 1.2. Each sensor node combines
multiple sensors, a central processing unit (CPU) and a data connection (wi-
red or wireless) on a circuit board. Some examples of sensor nodes are the
Tmote-Sky, G-node and Waspmote, though one might consider a smartphone
as a sensor node as well. Sensor networks have three attractive aspects for
system design: they require low maintenance, create “on-the-fly” (ad-hoc)
communication networks and can maintain large amounts of sensors.

mesh topology star topology sensor nodes

Figure 1.2: Some examples of commercially available sensor nodes, i.e.,

Tmote-Sky (top-left), G-node (bottom-left) and Waspmote (right), with two

possible network topologies to attain a certain communication strategy.

Nowadays, sensor nodes are commercially off-the-shelve products and
give system engineers new tools for acquiring measurements. Although they
make sensor measurements available in large quantities, solutions for proces-
sing these measurements automatically are hampered by limitations in the
available resources, such as energy, communication and computation.

Energy plays an important role in remotely located processes. Such pro-
cesses are typically observed by battery-powered sensor nodes that are not
easily accessible and thus should have a long lifetime. Some applications
even deploy sensor nodes in the asphalt of a road to monitor traffic, or in the
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forrest to collect information on habitats. See, for example, the applications
described in (Papp et al., 2009; Szewczyk et al., 2004) and recent surveys
on sensor networks in (Kahn et al., 1999; Akyildiz et al., 2002; Chong and
Kumar, 2003; Lewis, 2005). To limit energy consumption, one often aims to
minimize the usage of communication and computational resources in sen-
sor nodes. However, there are other reasons why these latter two resources
should be used wisely.

Limited communication mainly results from upper bounds on the net-
work capacity, as it was established in the Shannon-Hartley theorem for
communication channels presented in (Shannon and Weaver, 1949). It shows
that the environment in which nodes communicate influences the amount of
data that can be exchanged without errors. In addition, communication is
affected by package loss as well, which occurs when two different data pack-
ages jointly arrive at the same sensor node. Hence, a suitable strategy for
exchanging data is of importance to cope with the dynamic availability of
communication resources.

Computational demand is related to the algorithms performed in sen-
sor networks for processing the measurements. The established centralized
solutions, where measurements are processed by a single node, fail for large-
scale networks even when communication is not an issue: with an increasing
amount of sensor nodes the computational load of a centralized solution will
grow exponentially, up to a point that it is no longer feasible or highly in-
efficient. To that extent, non-centralized solutions are explored that aim to
make clever use of local CPUs that are already present in each node.

Limitations of the above resources are important design parameters when
setting up a sensor network, and networked systems in general. One aspect of
this design is related to the application goal of the networked system, which
further determines whether measurements are processed by, for example, a
state-estimation, classification or a control method. However, current so-
lutions that correspond to those methods do not account for the above li-
mitations in communication and computation. Yet, networked systems have
become an important part of our society. Therefore, new areas of research
were triggered, in which novel solutions for these established methods are
being developed. This thesis focusses on novel solutions for stochastic state
estimation in networked systems. As such, let us start by presenting the main
ideas of state estimation, next.

1.2 Stochastic state estimation

State estimation refers to a method for computing the unknown state vector
of a dynamic process by combining measurement samples with predictions
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from a process model. The state gives an instantaneous summary of the
process’ dynamical behavior. For example, the position and speed of a vehicle
or the temperature distribution within a room, as it is depicted in Figure 1.3.
To that extent, the process dynamics are represented in a so called state-space
model, which is a dedicated mathematical model that describes the behavior
of a process in time. The variables in this model are a state x ∈ R

n, control
action u ∈ R

l and measured quantity y ∈ R
m. As an example, let us present

the discrete-time state-space model that corresponds to a linear process, given
that measurements are sampled synchronously in time, i.e.,

x[k] = Ax[k-1] +Bu[k-1] + w[k-1],

y[k] = Cx[k] +Du[k] + v[k].
(1.1)

The time that corresponds to the k-th sample instant is denoted as tk = kτs,
for some sampling time τs ∈ R+. Further, the process dynamics are modeled
by A ∈ R

n×n and B ∈ R
l×n, whereas C ∈ R

m×n and D ∈ R
m×l characterize

the measurement. The remaining variables are process noise w ∈ R
n and

measurement noise v ∈ R
m. They model any undetermined behavior of the

process dynamics and the sensor value, respectively.

h
e
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te
r

20
o

22
o25

o

30
o

18
o

floor

w
a
ll

Figure 1.3: An example of the state vector representing an instantaneous

summary of the temperature distribution in a cross-section of a room.

The objective of state estimation is to reconstruct x[k] from the measure-
ment samples y[0],..., y[k-1], y[k] and a process model, e.g., the model in (1.1).
Typical for stochastic state estimation is that the variables w and v (and as
a result x) are considered as random vectors described with some probability
density function (PDF). A breakthrough in stochastic state estimation is the
Kalman filter, formally presented in (Kalman, 1960), in which w and v are
characterized by Gaussian PDFs, i.e.,

p(w[k]) = G(w[k], 0, Q) and p(v[k]) = G(v[k], 0, V ). (1.2)

The covariances Q ∈ R
n×n and V ∈ R

m×m are nowadays treated as design
parameters, though they were originally introduced to denote the covariance
of the process-noise and the measurement-noise, respectively. Further note
that a Gaussian distributed w and v in combination with the linear process
model of (1.1) implies that the state x is Gaussian distributed as well, i.e., it is
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characterized with a certain mean E[x] and covariance cov(x). The Kalman
filter computes an estimated value of this mean and covariance based on
the available measurements. These estimated values thus characterize the
following PDF, which is to be determined by the Kalman filter, or by any
stochastic state-estimator in general, i.e.,

p(x[k]|y[0], . . . , y[k-1], y[k]) := G(x[k], x̂[k], P [k]). (1.3)

The estimated mean is denoted as x̂ ∈ R
n, while P ∈ R

n×n is a model for the
estimation error cov(x− x̂). A common term for P is the error-covariance.

The Kalman filter computes an updated value for x̂[k] and P [k] at each
sample k in two steps, see also Figure 1.4. A prediction of x[k] is determi-
ned first by applying the process model (1.1) on the estimation results of
the previous sample instant, i.e., on x̂[k-1] and P [k-1]. The notation k− is
used to emphasize the predictive character of x̂[k−] and P [k−] as an estima-
ted value for E[x[k]] and cov(x[k] − x̂[k−]), respectively. This prediction is
then corrected with the current measurement y[k] in the second step to com-
pute the updated estimation results x̂[k] and P [k] of (1.3). Extension of the
Kalman filter to nonlinear processes and/or non-Gaussian distributions, e.g.
the unscented Kalman filter of (Julier and Uhlmann, 1997a) and the parti-
cle filter presented in (Ristic et al., 2004), follow the same prediction-update
scheme. Thorough evaluations of the Kalman filter are found in (Anderson
and Moore, 1979; Grewal and Andrews, 1993; Welch and Bishop, 1995).

x[k-] = Ax[k-1]+Bu[k-1],

P[k-] = AP[k-1]AT+Q.

K[k] = P[k-]CT(CP[k-]CT+V)-1,

x[k] = x[k-] + K[k](y[k] - Cx[k-]),
P[k] = (In-K[k]C)P[k-].

predict update

Figure 1.4: An illustration of the Kalman filtering algorithm.

The success of the Kalman filter is based on three aspects.

• Measurements are included iteratively.

• The estimation error is unbiased, i.e., limk→∞(x[k] − x̂[k]) = 0, and
attains the minimal tr(P [k]) for linear processes and Gaussian PDFs;

• The algorithm involves a limited set of (relatively simple) equations.

Among others, the Kalman filter is popular in navigation applications, for
example, in recent navigation systems used in vehicles.
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Example of Kalman filtering in navigation systems

On-board navigation systems measure the vehicle’s position in
noisy latitude and longitude coordinates using a GPS device. A
Kalman filter is used to reconstruct the vehicle’s position and
speed in the two dimensions. As such, the process model is
characterized by two times the double integrator, in which a ∈ R

2

denotes the unknown acceleration of the vehicle, i.e.,

x[k] =

(

1 τs 0 0
0 1 0 0
0 0 1 τs
0 0 0 1

)

x[k-1] +

( 1
2 τ

2
s 0

τs 0
0 1

2 τs
0 τs

)

a[k-1],

y[k] = ( 1 0 0 0
0 0 1 0 )x[k] + v[k].

Realistic values are a sampling time τs = 1 [s], a maximum acce-
leration a < 2 [m/s2] and a measurement noise v ranging 10 [m].
Further, the effects of an unknown acceleration a on the state x
are modeled as process noise w. To complete the process model
of (1.1), let u = 0. Based on these settings, while assuming that
vehicles drive on roads, the navigation system gives an estima-
ted position and speed of the vehicle. An illustrative impression
of such an estimated trajectory based on GPS measurements is
depicted in the street map of Figure 1.5. Notice that naviga-
tion without a Kalman filter is difficult, as the inaccurate GPS
measurements themselves result in an incorrect vehicle position.

GPS measurement

estimated trajectory Map data     2012 Googlec

Figure 1.5: An illustrative impression of the estimated trajectory that is

computed by a navigation system based on GPS measurements.

The Kalman filter, alike many other state estimators, is a centralized
method where new measurements are acquired synchronously in time. Ful-
filling these two requirements is unrealistic for networked systems, due to
limited communication and computational resources. Furthermore, the spa-
tial distribution of sensor nodes when deploying a sensor network introduces
additional challenges for state estimation, which are presented next.
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1.3 Challenges in networked estimation

Research in the field of sensor networks emphasized on creating ad-hoc and
mobile networks. An important outcome was the standardized connection
model for sensor nodes illustrated in Figure 1.6, which is similar to the OSI-
stack for connecting computers via the internet.

Physical layer

MAC layer

Network layer

Application 
framework

Customer
applications

IE
E

E

8
0

2
.1

5
.4

Z
ig

B
e

e

Transmission & reception on
the physical radio channel

Channel access,
relaibale data transport

Topology management, 
routing, security management

Application interface

End developer applications

Figure 1.6: A model for connecting nodes that employ ZigBee technology.

The connection model of Figure 1.6 indicates that state estimation is an
example of “customer applications”. This means that estimation data will
pass four different layers when it is exchanged from one node to another.
Especially the final “physical layer”, for which the required energy increases
exponentially with the physical distance between nodes, causes that exchan-
ging one bit consumes much more energy than processing one bit. Therefore,
it is often desired to reduce the amount of exchanged data at the costs of more
complex computations. Another consequence of the communication network
is that computational and sensing resources of the individual nodes are phy-
sically dislocated. Since both these resources are required for any estimation
method, the network topology has a vital impact on the applicability of any
novel state estimation solution. This aspect has led to two different types of
estimation approaches that each correspond to one of the fundamental net-
work topologies. A centralized estimation strategy for star topologies and a
distributed estimation strategy for mesh topologies, see also Figure 1.7. Each
strategy aims to solve the characteristic issues of the corresponding set-up.
Note that any other network topology can constructed as a combination of
star and mesh topologies.

1.3.1 Communication in centralized estimation

In centralized estimation strategies a single node acquires all measurement
samples produced in the sensor network for estimating the state vector.
The classical approach is to perform an estimation algorithm that receives
new measurement samples synchronously in time, such as the Kalman filter.
However, when measurements are exchanged via a communication network,
the amount of data that can be exchanged per second is limited. One way to
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star topology =>

centralized strategy

mesh toplogy =>

distributed strategy
CPU

sensor

estimated state  x
x

data connection

x

x
x

x

x

Figure 1.7: The two fundamental design strategies that are found in the lite-

rature on networked estimation. In a centralized strategy one node combines

all the measurements, whereas in a distributed approach local measurements

are already processed in the corresponding sensor node to estimate the state.

deal with this limited communication, is to reduce the size of data packages
by defining a quantization-level on the synchronously sampled measurements
and thereby, represent their value in fewer digits. See, for example, a wide
variety of quantized state-estimators in (Ribeiro et al., 2010). A drawback of
this approach is that data is still exchanged synchronously in time, imposing
package loss and the exchange of irrelevant measurement samples. Package
loss can be moderated via asynchronous sampling strategies, as it will reduce
the probability that packages are sent at equal time instants. Furthermore,
a collection of asynchronous strategies that evaluates the sensor value before
taking a measurement sample is known as event sampling.

The advantage of evaluating the sensor value for state estimation, is that
it gives additional knowledge on the sensor value at those instants that no new
measurement sample is received by the estimator. This inherent knowledge
can thus be used to improve estimation results, due to which fewer mea-
surements are required for achieving a similar performance. Event sampling
has the potential to provide such knowledge, as samples are not generated
synchronously in time but only when an a priori defined event occurs in the
sensor value. Some examples of event sampling, as depicted in Figure 1.8,
are Send-on-Delta (or Lebesque sampling) and Integral sampling, as proposed
in (Heemels et al., 1999; Åström and Bernhardsson, 2002; Miskowicz, 2006,
2007). Note that Send-on-Delta could be regarded as a particular quantiza-
tion strategy. Without going into a detailed explanation, it is worth to point
out that event sampling is already used in “networked control systems” to
design event based controllers, e.g., (Heemels et al., 1999; Xu and Hespanha,
2004; Imer and Basar, 2006; Henningsson et al., 2008; Dimarogonas and Jo-
hansson, 2009; Cogill, 2009; Lehmann and Lunze, 2010; Donkers, 2012). In
relation to event based control, (Tabuada, 2007; Heemels et al., 2008; Wang
and Lemmon, 2009) define an event sampling strategy such that stability of
the controlled system is guaranteed.
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Figure 1.8: Two examples of event sampling: Send-on-Delta, in which the

k-th event instant is triggered at tk = t such that |y(t) − y(tk-1)| ≥ ∆, and;

Integral sampling, in which the k-th event instant is triggered at tk = t such

that
∫ t

tk-1
|y(τ)− y(tk-1)|dτ ≥ ∆, for any k ∈ Z+ and some ∆ ∈ R+.

The term stability in the area of state estimation refers to a non-diverging
error-covariance, as it further implies a non-diverging estimation error. Some
first solutions for attaining stable estimation results with event sampling are
concentrated on when to send new measurements, for example, to minimize
estimation error as proposed in (Imer and Basar, 2005; M. Rabi and Baras,
2006; Cogill et al., 2007). Therein, an updated estimate of the state is compu-
ted when new measurements are received. However, it was already mentioned
that additional knowledge on the sensor value becomes available at instants
that no new measurement is sampled. The usage of this knowledge was con-
sidered by the estimator presented in (Nguyen and Suh, 2007), though the
method requires that Send-on-Delta is used to trigger the events. Moreover,
an asymptotic analysis to prove stability of the estimator is omitted.

Therefore, an open issue in centralized estimation is a stochastic state-
estimator suitable for any type of event sampling strategy. Beside this ge-
neralization, the main aspect of such an estimator are proven asymptotic
bounds on the error-covariance, i.e., stability. Stability is an issue in distri-
buted estimation as well, though it is not the only one.

1.3.2 Cooperation in distributed estimation

The distributed estimation strategy depicted in Figure 1.7 is often adopted
in large-scale, mobile or ad-hoc sensor networks. Circumstances in these type
of networked systems call for a communication set-up where nodes exchange
data with their neighboring nodes only, such as a mesh topology. This is done
for two reasons: to limit the energy consumption required for exchanging
data and to maintain a feasible communication set-up in the presence of
system changes1. Employing a centralized estimator in these type of systems
imposes significant communication requirements that are often impractical.
A realistic alternative are distributed state-estimators, as they seek for a

1Broken data connections; newly added nodes to a network during operation.
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more efficient use of resources in line with the network topology, i.e., each
node relies on its neighboring nodes for computing a local estimate. Further,
an inspiring solution for improving the robustness of distributed estimators
to system changes and unknown circumstances is found in a colony of ants.

A description of ants, as it is found in (Wikipedia, Ants), demonstrates
that their kind creates adaptive colonies that effectively respond to unknown
circumstances. In addition, ants are highly successful species: except for the
north-pole they inhabit every part of Earth and determine 15 − 25 % of its
terrestrial animal biomass. Among others, the success of ants is based on
their social organization, which consists of three main social rules:

• Division of labour;

• Communication between individuals;

• Cooperation, and thereby solving complex problems together.

Since ants are successful species, an interesting question is to what extent
distributed state estimation has already gained from these three social rules.

A recurring solution in distributed estimation along the first social rule is
that each node employs a state-estimator for processing local measurements,
e.g., the Kalman filter. As such, each node computes a local estimate of the
global state x. See the illustration of Figure 1.7 and the methods proposed
in (Speyer, 1979; Hashmipour et al., 1988; Durant-Whyte et al., 1990; Al-
riksson and Rantzer, 2006; Olfati-Saber, 2009). Some methods continue on
this line and estimate a part of the global state in each node, e.g., the soluti-
ons presented in (Hassan et al., 1978; Mutambara and H.F., 2000; Khan and
Moura, 2007). Nonetheless, most research focusses on estimating the global
state x in each node, as there are still open issues related to the other social
rules. For example, the second rule on communication, which concerns nodes
that are able to interpret the received measurements or estimates shared by
neighboring nodes. Current methods impose strict requirements to attain
this property, such as admitting linear measurements only or, defining the
communication topology on forehand. However, the main challenge is the
third social rule of cooperation. Existing solutions focus on optimizing the
local estimate per node individually. Instead, cooperation is an emerging
behavior, i.e., it arises from a network of state estimating nodes that interact
with each other. As such, any approach that solves the estimation problem
cooperatively should be designed from a network point of view rather than
from individual nodes. Some existing methods might be considered as a
cooperative approach, for example, the methods presented in (Alriksson and
Rantzer, 2006; Olfati-Saber, 2009), which synchronize the different local esti-
mates to attain a consensus throughout the network. However, the objective
of these consensus methods is still to minimize the estimation error per node
individually. Moreover, attaining a consensus is settling for a compromise,
i.e., a superficial interaction. Instead, cooperation means the will to assist
others, i.e., it involves a profound interaction with other nodes.
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Therefore, an open issue in distributed state estimation is a cooperative
approach, for which the term cooperative state estimation will be used. One
of the main challenges is to come up with a clear definition of this profound
interaction between nodes that characterizes their will to assist other nodes
(cooperation). To that extent, note that each node computes a local estimate
of the state. As a result, each node determines an error-covariance locally,
see Section 1.2, which is a model for the estimation error of the corresponding
local estimate. When nodes assist each other in estimating the state, infor-
mation from the local estimate of one node in the network will be noticeable
in the other nodes. The performance of a local estimate is often analyzed
by its error-covariance and thus cooperation should result in a property that
the error-covariance of one node will be noticeable in the error-covariance of
other nodes in the network. Therefore, a distributed state-estimator is said
to be cooperative, if the global covariance property is attained.

Property 1.3.1 Global covariance: the error-covariance of each node in the
network is a combination of all error-covariances found across its nodes.

The open issues in cooperative state estimation is to propose a characteriza-
tion of global covariance first, after which a distributed estimation strategy
should be designed that fulfills this property.

A practical issue in distributed state estimation is deciding which of the
available solutions is “most” suitable for a given sensor network application.
This issue arises from the fact that a large variety of theoretical and prac-
tical contributions are available. Moreover, proposed solutions are scattered
in literature, since many research communities are active on this area, such
as the control, multi-agent and fusion community. Each community comp-
lies on its own assumptions and arguments that are not clearly stated for
outsiders, making such decisions more difficult. Often, novel solutions in
distributed state estimation are proposed for linear processes with Gaussian
distributions, as it allows to focuss on assessing the distributed character of
the proposed solution. Therefore, many theoretical contributions to this area
of distributed Kalman filtering are found in the literature, see, for example,
(Durant-Whyte et al., 1990; Franken and Hupper, 2005; Alriksson and Rant-
zer, 2006; Olfati-Saber, 2007; Khan and Moura, 2007; Speranzon et al., 2008;
Sawo et al., 2008). Furthermore, some examples of practical implementati-
ons are available as well, e.g., (Regazzoni and Tesei, 1996; Vadigepalli and
Doyle, 2003; D’ Antona et al., 2006; Alriksson and Rantzer, 2007; Di Cairano
et al., 2007; Cortés, 2009; Papp et al., 2009). Several survey studies were
performed in (Felter, 1990; Hespanha et al., 2007; Ribeiro et al., 2010; Garin
and Schenato, 2011) but due to growing amount of distributed Kalman filters
these surveys could only address a selective area. Therefore, a comprehen-
sive overview with an in-depth comparison that supports design decisions for
employing a particular distributed Kalman filter is still missing.
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To summarize, the current challenges on state estimation in networked
systems addressed in this thesis are the following:

Problem 1.3.2 A centralized state-estimator that supports any event sam-
pling strategy and has stable estimation results.

Problem 1.3.3 A distributed state-estimator that attains the global cova-
riance property.

Problem 1.3.4 A comprehensive overview on distributed Kalman filters
that assists in choosing a suitable solution for a sensor network application.

1.4 Outline of the thesis

The above three problems are addressed according to the following outline.

Chapter 2, entitled event based state estimation, is based on the articles
(Sijs and Lazar, 2009, 2012a). The chapter addresses Problem 1.3.2: A cen-
tralized state-estimator that supports any event sampling strategy and has
stable estimation results. To support any event sampling strategy, a first
step is to rewrite the process model in (1.1) from a constant sampling time
τs into a model that is generalized for any sampling time τ ∈ R+. As such,
let t ∈ R+ and t-τ ∈ R+ denote the current and preceding sampling instants,
respectively. Then, this generalized discrete-time state-space model, yields

x(t) = A(τ)x(t-τ) +B(τ)u(t-τ) + w(t, τ),

y(t) = Cx(t) +Du(t) + v(t).
(1.4)

Basically, the above description could be perceived as a discretized version
of a continuous time state-space model ẋ = Acx+Bcu+ wc, where

A(τ) := eAcτ , B(τ) :=

∫ τ

0

eAcηdηBc and w(t, τ) :=

∫ τ

0

eAcηwc(t-η)dη.

Therein, Ac ∈ R
n×n and Bc ∈ R

n×l characterize the process dynamics of the
continuous model. Further, wc(t) ∈ R

n denotes the process-noise in conti-
nuous time, due to which p(w(t, τ)) = G(w(t, τ), 0, Q(τ)) of the discrete-time
state-space model in (1.4) has a covariance matrix Q(τ) ∈ R

n×n depending
on τ . Before is continued with the contribution of Chapter 2, let us point
out that A(τ), B(τ) and w(t, τ) are independent on the sampling instants.

Proposition 1.4.1 The model in (1.4) satisfies A(τ1+τ2) = A(τ1)A(τ2),
B(τ1+τ2) = A(τ1)B(τ2)A

⊤(τ1) + B(τ1) and w(τ1+τ2) = A(τ1)w(τ2)+w(τ1),
for any t, τ1, τ2∈R+.

In the considered estimation set-up with event sampling, new measure-
ment samples are triggered when an a prior defined event occurs on the sensor
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value. As such, the main challenge for event based state estimation is to cope
with the fact that the instant of a next event is unknown. Nonetheless, it
is often desired that new estimation results are determined synchronously in
time rather than at the instants of an event. A typical solution is to perform
a prediction on the estimation results of the preceding event instant whe-
never a synchronous time instant occurs. However, since triggering a new
event depends on the sensor value, note that not receiving a new measure-
ment sample at these synchronous instants still induces some knowledge on
the sensor value. This knowledge will be used by the proposed event ba-
sed state estimator to curtail runaway estimation errors that are caused by
predictions and thereby, obtain stable estimation results. Stability is proven
in an asymptotical analysis of the error-covariance. Moreover, a mathema-
tical formulation of event sampling is presented, due to which the proposed
estimator is suitable for any event sampling strategy. An object tracking
example further demonstrates the applicability of the proposed estimator.

Chapter 3, entitled event based state estimation in a control loop, is ba-
sed on the articles (Marck and Sijs, 2010; Sijs et al., 2010a). The chapter
studies a control system, in which the estimation results of the event based
state-estimator proposed in Chapter 2 are used as input to a controller that
runs synchronously in time. The distinguishing property of this set-up is that
stability of the control system is decoupled from the event triggering crite-
ria. A first aspect that is addressed are the variations on estimation results
caused by current event sampling strategies, as they further induce variati-
ons on the control performance. This issue is solved by proposing a novel
event sampling strategy that determines the relevance of new measurements
for estimation. A second aspect is designing an integration procedure that
interprets the results of the event based estimator for the employed controller
(robust MPC). This robust MPC then allows an optimization of the distur-
bance rejection depending on estimation errors, which is demonstrated in an
illustrative control example for various event sampling strategies.

Chapter 4, entitled state-fusion with unknown correlations: Ellipsoidal
intersection, is based on the articles (Sijs et al., 2010b; Sijs and Lazar, 2012b).
The chapter presents novel research on state fusion, a topic that will be used
in the proceeding chapters on distributed estimation. It addresses a typical
problem of fusing two prior Gaussian estimates into a single fused estimate.
A challenge for the considered state fusion objective is that correlation of
the prior estimates is unknown. To solve this issue, the proposed solution
introduces a novel parametrization, so that a realistic value of the maximum
correlation can be characterized. This maximum correlation is then used to
fuse those parts of the prior estimates that are guaranteed to be independent,
i.e., they are based on unique information that is not available in any of the
other parts. Moreover, it results in a distinguishing property of the proposed
fusion method that the uncertainty after fusion is reduced.
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Chapter 5, entitled cooperative state estimation, is based on the arti-
cles (Sijs et al., 2011; Sijs and Lazar, 2011a,b). The chapter addresses Pro-
blem 1.3.3: A distributed state-estimator that attains the global covariance
property. The proposed cooperative state-estimator of this chapter makes
use of preliminary results presented in (Durant-Whyte et al., 1990). The-
rein, an alternative implementation of the Kalman filter was derived, which
is commonly known as the Information filter. This Information filter obtains
equivalent estimation results as the original implementation of the Kalman
filter illustrated in Figure 1.4 but with a different set of equations, i.e.,

x̂[k−] = Ax̂[k-1] +Bu[k-1],

P [k−] = AP [k-1]A⊤ +Q,

P [k] =
(

P−1[k−] + C⊤V −1C
)−1

,

x̂[k] = P [k]
(

P−1[k−]x̂[k−] + C⊤V −1
(

y[k]−Du[k]
))

.

(1.5)

Nodes employ the above Information filter to compute a local estimate of the
global state based on their own local measurement. However, the objective
is a distributed state-estimator that results in a cooperative emerging beha-
vior, which implies that the global covariance property should be satisfied.
To that extent, a characterization of Property 1.3.1 (global covariance) is pro-
posed first. It is then shown that this property will be fulfilled when nodes
share their local estimate with neighboring nodes, after which the state fusion
method of Chapter 4 is employed in each node to merge its local estimate ob-
tained by the Information filter with the estimates received from neighboring
nodes. Furthermore, stability of the proposed cooperative state-estimator
is analyzed by studying the asymptotic behavior of the error-covariance per
node. The chapter concludes with a demonstration of cooperative estima-
tion in two realistic case-studies, i.e., a platoon of intelligent vehicles (linear)
and tracking shockwaves on a highway (nonlinear). This latter extension of
the proposed cooperative estimation approach towards nonlinear processes is
supported by substituting the Information filter with a nonlinear estimator.

Chapter 6, entitled an overview of distributed Kalman filtering, is based
on the articles (Sijs et al., 2008; Sijs and Papp, 2012). The chapter addres-
ses Problem 1.3.4: A comprehensive overview of distributed Kalman filters
that assists in choosing a suitable solution for a sensor network application.
To that end, existing solutions on distributed Kalman filtering from various
research communities are studied. Their solutions are divided into four diffe-
rent types of distributed Kalman filtering approaches. The theoretical results
of these four approaches are compared in an asymptotic analysis by proposing
a unified description of the corresponding algorithms. Moreover, a critical
assessment is performed in two real-life inspired sensor networks to fulfill the
main objective: provide insight and argumentation for choosing a suitable
distributed Kalman filter when deploying a sensor network.
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1.5 Notation and definitions

In this section, some basic mathematical notation and standard definitions
are recalled that make the manuscript self-contained.

Sets and operations with sets

• R, R+, Z and Z+ denote the set of real numbers, nonnegative reals,
integers and non-negative integers, respectively;

• Z≥c and ZP , for some c ∈ R and P ⊂ R, denote the sets {n ∈ Z|n ≥ c}
and Z ∩ P, respectively;

• For two arbitrary sets P1 ⊆ R
n and P2 ⊆ R

n, P1 ∪ P2 denotes their
union, P1 ∩ P2 denotes their intersection, P1 \ P2 denotes their set
difference and P1 ⊆ P2 denotes “P1 is a subset of, or equal to P2”;

• For two arbitrary sets P1 ⊆ R
n and P2 ⊆ R

n, cP1 ⊕ P2 := {x+ y|x ∈
P1, y ∈ P2} denotes their Minkowski sum;

• For a set P ⊆ R
n, int(P) denotes the interior of P, ♯(P) denotes the

number of elements of P, cl(P) denotes the closure of P and Co(P)
denotes the convex hull of P;

• A polyhedron (or a polyhedral set) in R
n is a set obtained as the

intersection of a finite number of open and/or closed half-spaces;

• A piecewise polyhedral set is a set obtained as the union of a finite
number of polyhedral sets;

• For a given set P ⊂ R, minP ∈ P denotes the smallest value that
is found across all elements of P. Similarly, maxP ∈ P denotes the
largest value that is found across all elements of P;

• For two arbitrary sets P ⊂ R and S ⊆ R, such that P ⊂ S, inf P ∈ S
denotes the smallest value found across all elements of S that is larger
than each element in P. Similarly, supP∈S denotes the largest value
found across all elements of S that is smaller than each element in P;

• For a given vector µ ∈ R
n and positive definite matrix Σ ∈ R

n×n,
let Eµ,Σ := {x | (x− µ)

⊤
Σ−1 (x− µ) ≤ 1} denote the ellipsoidal sub-

level-set characterized by µ and Σ. See, also, Figure 1.9.

{x}1

{x}2

u
2
(  ) 1( 

 ) (x-  )T
u

-1(x-  ) <1u

Figure 1.9: An illustrative interpretation of the sub-level-set Eµ,Σ.
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Vectors, matrices and norms

• 0 denote either the zero number or a vector with all elements equal
to zero. Its dimension will be clear from the context. Similarly, 0n×m

denotes a n×m matrix with all elements equal to zero;

• In denotes an n× n identity matrix;

• For some matrices A1, ..., Aq, diagi∈Z[1,q]
(Ai) denotes a diagonal matrix

of appropriate dimensions with the matrices A1, ..., Aq on the diagonal;

• For some matrices A1, ..., Aq ∈ R
m×n, or vectors if m = 1, let us denote

coli∈Z[1,q]
(Ai) :=

(

A⊤
1 A⊤

2 · · · A⊤
q

)⊤
as an augmented matrix by

arranging A1, ..., Aq column-wise;

• For a real number a ∈ R, |a| denotes its absolute value, whereas for a
matrix A ∈ R

n×n, |A| denotes the determinant;

• The transpose, rank, trace and inverse (when it exists) of an arbitrary
matrix A are denoted as A⊤, rank(A), tr(A) and A−1, respectively,
while A−⊤ := (A⊤)−1;

• For a given A, {A}qr ∈ R denotes the element on the q-th row and
r-th column of A;

• The Hölder p-norm of a vector x ∈ R
n is defined as:

‖x‖p ,

{

({x1}p + . . .+ {xn}p)
1
p , p ∈ Z[1,∞)

maxi=1,...,n{xi}, p = ∞,

where {x}i, i = 1, . . . , n is the i-th component of x, ‖x‖2 is also cal-
led the Euclidean norm and ‖x‖∞ is also called the infinity (or the
maximum) norm. For brevity, let ‖ · ‖ denote an arbitrary p-norm;

• Given that A,B ∈ R
n×n are positive definite, denoted with A ≻ 0 and

B ≻ 0 (or A,B ≻ 0 in short), then A ≻ B denotes A− B ≻ 0. A � 0
denotes that A is positive semi-definite;

• For a positive definite and symmetric matrix A, A
1
2 denotes its Cho-

lesky factor, which satisfies (A
1
2 )⊤A

1
2 = A;

• For a square matrix A, λq(A), λmin(A) and λmax(A) denote the q-th,
smallest and largest eigenvalue of A, respectively;

• For a matrix A, σq(A), σmin(A) and σmax(A) denote the q-th and
smallest and largest singular value of A, respectively;

• For a signal x ∈ R
n, x(t) ∈ R

n denotes the value of x at the time-
instant t ∈ R+. In case x(t) is sampled in time, then x[k] := x(tk) and
x[0:k] := (x(t0), · · · , x(tk)), for some k ∈ Z+, where tk is defined as the
time at the k-th sampling instant2;

2Sample instants have different fonts to distinguish them from signals.
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• For a signal x ∈ R, ẋ := δx(t)
δt

and ẍ := δ2x(t)
δt2

;

• A transition-matrix A(t2-t1) ∈ R
n×m is defined to relate a vector

u(t1) ∈ R
m to a vector x(t2) ∈ R

n as follows: x(t2) = A(t2-t1)u(t1).

Functions and decompositions

• The probability on a certain event A is denoted as Pr(A);

• A random vector x ∈ R
n is characterized by its probability density

function (PDF), which is denoted as p(x). Further, a conditional PDF
of x given y ∈ R

q is denoted as p(x|y);
• For a random vector x ∈ R

n, E[x] and cov(x) denote the expectation
and covariance of x, respectively, where

E[x] :=

∫

Rn

xp(x)dx and cov(x) := E[xx⊤]− E[x]E[x⊤];

• The Gaussian function (Gaussian in short) of the vectors x, µ ∈ R
n

and the covariance matrix Σ ∈ R
n×n is defined as G(x, µ,Σ) : Rn×

R
n×R

n×n → R, i.e., G(x, µ,Σ) = 1√
(2π)n|Σ|

e−
1
2 (x−µ)⊤Σ−1(x−µ). If

p(x) = G(x, µ,Σ), then by definition E[x] = µ and cov(x) = Σ hold;

• Following the definition of the Delta-function given in (Solodovnikov,
1960), the element-wise Delta-function δ(x) of a vector x ∈ R

n is a
function which vanishes at all values of x except at x = 0, it is infinity
when x = 0 and, moreover,

∫

Rn δ(x)dx = 1;

• For a random vector x ∈ R
n and a bounded Borel set P ⊂ R

n, see, e.g.
(Aggoun and Elliot, 2004), the PDF ΠP(x) : Rn → {0, ̺}, in which
̺ ∈ R denotes the Lebesgue measure of P (Lebesgue, 1902), yields

ΠP(x) =

{

0 if x 6∈ P,

̺−1 if x ∈ P;

• For given A ∈ R
n×n with real eigenvectors, denoted as νq(A) ∈ R

n, and
eigenvalues, i.e., λq(A) ∈ R, for all q ∈ Z[1,n], the eigenvalue decomposi-
tion ofA, i.e., A = SDS−1, is obtained as S := (ν1(A) ν2(A) . . . νn(A))
and D := diagq∈Z[1,n]

(λq(A)).

Standard definitions

Definition 1.5.1 Let A ∈ R
n×n and C ∈ R

m×n be given. Then the pair
(A,C) is said to be observable, if rank (C⊤ (CA)⊤ ··· (CAn−1)⊤ )

⊤
= n.

Definition 1.5.2 Two random vectors x, y ∈ R
n are called independent if

cov(x, y) = 0n×n. Otherwise, they are correlated.
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To model the sensor network, consider an undirected, bounded, connected
graph G = (V, C), where V = {v1, · · · , vN} is the set of vertices, for some
N ∈ Z<∞, and C ⊆ (V × V) is the set of network connections (edges) with
(vi, vj) the edge from vi to vj (if (vi, vj) ∈ C, then (vj , vi) ∈ C). Further, let
N := Z[1,N ] denote the set of node indices, due to which vi represents node i.

Definition 1.5.3 Let r, s ∈ N and a finite, undirected graph G = (V, C) be
given. Then a graph path that starts at vr ∈ V and ends at vs ∈ V is a
sequence of vertices τr,s = {υ(1), · · · , υ(l)} ⊆ V, where (υ(j), υ(j+1)) ∈ C, for
all j ∈ Z[1,l−1], and υ(1) = vr, υ

(l) = vs. Furthermore, the length of the path
is L(τr,s) := l and L(τr,r) := 0.

Definition 1.5.4 Let r, s ∈ N and a finite, undirected graph G = (V, C) be
given. Then the graph distance of vr, vs ∈ V, denoted with d(vr, vs), is the
length of the shortest path between them, i.e., d(vr, vs) := minτr,s∈Tr,s

L(τr,s),
where Tr,s is the set of all graph paths from vr to vs.

For any i ∈ N , let Ni(q) := {j ∈ N|d(vi, vj) = q} denote the set of
node-indices corresponding to the q-th order neighbors of node i and let
Ni(0,1) := Ni(1) ∪ {i}.

Beside estimation, also some control is presented in this thesis. To that
extent, let us consider the following discrete-time process model, for some
non-linear function f : Rn × R

l → R
n and the k-th sample instant, i.e.,

x[k+1] := f(x[k], w[k]), (1.6)

Further, an introduced function ϕ : R+ → R+ belongs to class K if it is
continuous, strictly increasing and ϕ(0) = 0. A function β : R+ × R+ → R+

belongs to class KL if for each fixed k ∈ R+, β(·, k) ∈ K and for each fixed
s ∈ R+, β(s, ·) is decreasing and limk→∞ β(s, k) = 0. Then the following
definition of input-to-state stability (ISS) is employed.

Definition 1.5.5 Let X ∈ R
n with 0 ∈ int(X) andW ∈ R

m be given subsets.
Then, system (1.6) is called ISS in X for inputs in W, if a KL-function β(·, ·)
and a K-function γ(·) exist such that, for each x[0] ∈ X and w[k] ∈ W, for
all k ∈ Z+, it holds that all corresponding state trajectories of (1.6) satisfy
‖x[k]‖ ≤ β(‖x[0]‖, k) + γ(‖w[0:k]‖), ∀k ∈ Z≥1.

Furthermore, γ(·) is called the ISS gain of system (1.6).
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The next two chapters are concerned with event based sampling in a
centralized set-up, as it is illustrated in Figure 2.1. Such sampling strategies
do not exchange measurements synchronously in time but when an a priori
defined event occurs on the sensor value. For clarity of exposition, solutions
are presented by considering one sensor node connected to an estimator or
controller, instead of the multiple nodes depicted in Figure 2.1.

estimation
& control sensor nodes:

sample yi on events

before communication

y1 yN

Figure 2.1: A centralized set-up with event based sampling.

This chapter in particular proposes an event based state-estimator. The
main challenge of such an estimator, due to the fact that the instant of an
event is not known in advance, is to prevent a diverging estimation error by
exploiting the information from the event sampled measurements. To that
extent, a mathematical formulation of event sampling is introduced, which
supports a state-estimator with a hybrid update. At the instants of an event
the estimated state is updated using the measurement, while at synchronous
time instants the update is based on knowledge that the measured value
lies within a bounded set used to define the event. This bounded set and
hybrid update are key for proving asymptotic bounds on the error-covariance
(stability). An object tracking example further demonstrates applicability
of the proposed algorithm compared to alternative estimators and is further
used to discuss realistic solutions for coping with package loss.
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2.1 System description

Event based state estimation deals with the set-up depicted in Figure 2.1,
i.e., a sensor node exchanges measurements with a centralized state-estimator
via a (wireless) data connection. To limit communication requirements and
prevent package loss, measurements are exchanged at the instants of a pre-
defined event rather than synchronously in time, see also Section 1.3.1. The
other parts of the state estimation set-up have the following description.

Communication The sensor node employs an event sampling strategy to
obtain a measurement y ∈ R

m at the event instants te ∈ R+, where
e ∈ Z+ denotes the e-th event sample.

Process Let us consider the autonomous, linear process of (1.4), for some
sampling interval τ ∈ R>0 and u(t) = 0, i.e.,

x(t) = A(τ)x(t-τ) + w(t, τ), (2.1a)

y(t) = Cx(t) + v(t). (2.1b)

The state vector is denoted as x ∈ R
n and both the process-noise

w ∈ R
n and measurement-noise v ∈ R

m are characterized by Gaussian
PDFs, for some Q(τ) ∈ R

n×n and V ∈ R
m×m, i.e.,

p(w(t, τ)) := G(w(t, τ), 0, Q(τ)) and p(v(t)) := G(v(t), 0, V ).

The event measurements y are used to determine an estimate of x accor-
ding to a Gaussian PDF, i.e., characterized by some mean x̂[k] ∈ R

n and
error-covariance P [k] ∈ R

n×n. Usually, values for x̂[k] and P [k] are required
synchronously in time rather than at the instants of an events, e.g., as input
to a monitoring system or a time synchronous controller. To that extent, let
us define Te ⊂ R+ and Ts ⊂ R+ as the set of time instants that correspond
to all events and synchronous instants, respectively. If τs ∈ R+ denotes the
sampling time of Ts, then

Te := {te ∈ R
n | e ∈ Z+} and Ts := {sτs | s ∈ Z+}.

A definition of the event instants te is given in the next section. Notice that
it could happen that an event instant coincides with a synchronous instant.
Therefore Te ∩ Ts might be non-empty. Further, let T := Te ∪ Ts denote the
set of all sample instants, i.e., both event and synchronous ones.

The open issue for state estimation, as it is proposed in Problem 1.3.2,
is providing stable estimation results for any event sampling strategy. Such
an estimator allows the sensor node to adopt different event sampling stra-
tegies depending on, for example, the expected lifetime of its battery. More-
over, a computationally efficient algorithm of the event based state-estimator
(EBSE) is sought for, to attain an applicable solution. Before addressing rela-
ted work, let us recall that stability refers to a non-divergent error-covariance.
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Definition 2.1.1 The EBSE is said to the stable, if limk→∞ λq(P [k]) ≤ c
holds for all q ∈ Z[1,n] and some constant c < ∞.

The main challenge in event based estimation is that the instant of a
next event is unknown and could take a long time. Still, estimation results
are expected to become available synchronously in time. Existing solutions
related to asynchronous estimation perform a prediction of the state at these
synchronous time instants, as no measurement is received, see, e.g., (Mallick
et al., 2001). It was shown in (Sinopoli et al., 2004) that this would lead to
a diverging error-covariance P [k] for long inter-event time periods. However,
since triggering a new event depends on the sensor value, note that not recei-
ving a new measurement sample at the synchronous instants Ts still induces
some knowledge on y(t), for all t ∈ Ts. This knowledge can then be used
to perform an update on the estimated state at these synchronous instants
and thereby, curtail the runaway error-covariance. Although an existing so-
lution that employs this idea was proposed in (Nguyen and Suh, 2007), the
considered estimator is especially designed for the event sampling strategy
Send-on-Delta and scalar measurements y ∈ R. See Figure 1.8 for an illustra-
tion of Send-on-Delta. Moreover, the asymptotic analysis to prove stability
of the estimator is omitted.

Therefore, this chapter presents an EBSE, suitable for any type of event
sampling strategy, by starting with a generalized mathematical formulation
of sampling. Based on this formulation the EBSE is derived in three steps,
followed by an asymptotic analysis of its error-covariance P [k]. The EBSE
is then compared to alternative estimators, which reduce communication re-
quirements as well, in an illustrative example of object tracking.

2.2 A mathematical formulation of sampling

To present a mathematical description of (event) sampling, let us start with
some examples of sampling strategies. The one that is currently well known is
sampling synchronously in time, though more recently, asynchronous appro-
aches have emerged as an alternative to time-synchronous sampling. Event
based sampling is such an asynchronous approach, for which some examples
are Send-on-Delta and Integral sampling, as proposed in (Heemels et al.,
1999; Åström and Bernhardsson, 2002; Miskowicz, 2006, 2007), see Figure 1.8.
Both strategies assume scalar measurements and define that triggering the
next event sample e ∈ Z+ depends on |y(t) − y(te-1)| at the current time
t > te-1. An extension from scalar to vector measurements is found in (Don-
kers, 2012), which employs ||y(t) − y(te-1)||22 ≤ σ||y(t)||22 + ∆ to trigger the
next event, for some weight σ ∈ R+ and threshold ∆ ∈ R+.

The above examples indicate that triggering a sample e ∈ Z+ can be ba-
sed on time and measurement values. Therefore, the proposed mathematical
formulation of sampling starts by introducing the set H[e] ⊆ R

m+1 in the
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time-measurement-space as all allowable values that y(t) may take in bet-
ween te-1 and te. Further,

(

y(te-1)
te-1

)

∈ int(H[e]) will ensure that te > te-1, i.e.,
that two different events are not simultaneously triggered. Then, generating
the next event instant te, given te-1, yields

te := inf

{

t ∈ R+ | t > te-1 and

(

y(t)
t

)

6∈ H[e]

}

,

subject to,

(

y(te-1)
te-1

)

∈ int(H[e]).

(2.2)

Since H[e] is used to trigger the event instant te, note that H[e] should be
known at te-1, or at a previous time instant. Next, let us define H[e|t] ⊂ R

m

as a section of H[e] in the measurement-space for a fixed time t, i.e.,

H[e|t] :=
{

y ∈ R
m |

(

y
t

)

∈ H[e]

}

.

An example of H[e] and H[e|t] is depicted in Figure 2.2. The figure shows
that the following proposition can be derived for event sampling strategies,
for which similar results were obtained in (Lehmann and Lunze, 2010), i.e.,

Proposition 2.2.1 Let y(t) be sampled according to (2.2), for all e ∈ Z+.
Then y(t) ∈ H[e|t] holds for any time instant t ∈ [te-1, te).

Proposition 2.2.1 formalizes the inherent measurement knowledge of event
sampling. Moreover, it will be used by the developed EBSE, which will be
presented next, to perform an update not only at the instants of an event
but also synchronously in time when no new measurement is received.

te-1 t

H [e]

H [e|t]

time

{y}

{y}

te

2

1

Figure 2.2: An example of H[e] ⊆ R
3 in the time-measurement-space and a

corresponding subset H[e|t] defining a set in the measurement-space at time

t ≥ te-1, where {y}q denotes the q-th element of y ∈ R
2.
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Examples of sampling

• Sampling on time refers to strategies where H[e] is time de-
pendent. An example is sampling synchronously in time, i.e.,
Riemann sampling, for which H[e] = {

(

y
t

)

∈ R
m+1|t− te-1 < τs}

and some τs ∈ R+. As H[e] is unbounded in the measurement-
domain, y(t) can have any value in between two consecutive sam-
ple instants, i.e., H[e|t] = R

m.
• Sampling on sensor value refers to strategies where H[e] de-
pends on measured values. An example is Send-on-Delta, for
which H[e] =

{(

y
t

)

∈ R
m+1||y − y(te-1| < ∆

}

and some ∆ ∈ R>0

(see Figure 1.8). As H[e] is unbounded in the time-domain, it can
happen that no event will be triggered after some time te-1 ∈ R+.

2.3 An event based state-estimator

Let k ∈ Z+ be defined as the total amount of samples (event and synchronous)
until a current time t > tk with tk ∈ T. Further, let τk := tk−tk-1 denote the
corresponding sampling interval depending on k. Then the EBSE calculates
an estimate of x[k] := x(tk) based on the information that becomes available
from the implied measurements y[q] := y(tq), for all instants {tq ∈ T|tq ≤ tk}.
Note that depending on the type of sample instant, i.e., event or not, this
information is either the received measurement y(tq) in case tq is an event
instant, or it is the inherent knowledge that y(tq) is bounded by a particular
set H[e|tq] in case tq is not an event instant (see Proposition 2.2.1). To
exploit both types of measurement information in the EBSE, let us introduce
a (bounded) Borel set Y[q] ∈ R

m at each sample instant tq ∈ T, such that
y[q] ∈ Y[q] holds for all q ≤ k. Then, employing this concept for state
estimation, implies that the PDF computed by the EBSE, yields

p
(

x[k]
∣

∣ y[0]∈Y[0], y[1]∈Y[1], · · · , y[k]∈Y[k]
)

, ∀k ∈ Z+, (2.3)

Y[q] :=

{

H[e|tq] if tq 6∈ Te, {te-1, te ∈ Te|te-1 < tq < te},
{y(tq)} if tq ∈ Te.

∀q ∈ Z[0,k].

For brevity, the bounded values y[0] ∈ Y[0] until y[k] ∈ Y[k] are denoted
as Y[0:k], due to which (2.3) becomes p(x[k]

∣

∣Y[0:k]). Then Bayes’-rule, as
presented in (Mardia et al., 1979), further gives that the desired PDF satisfies

p
(

x[k]
∣

∣Y[0:k]
)

=
p
(

x[k]
∣

∣Y[0:k-1]
)

p(Y[k]
∣

∣x[k])
∫

Rn p
(

x[k]
∣

∣Y[0:k-1]
)

p(Y[k]
∣

∣x[k])dx[k]
. (2.4)

The prediction p
(

x[k]
∣

∣Y[0:k-1]
)

in (2.4) is obtained from the preceding esti-
mate according to the results of (Montgomery and Runger, 2007), i.e.,

p
(

x[k]
∣

∣Y[0:k-1]
)

=

∫

Rn

p(x[k]
∣

∣x[k-1])p
(

x[k-1]
∣

∣Y[0:k-1]
)

dx[k-1]. (2.5)
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In brief, the developed EBSE computes p(x[k]
∣

∣Y[0:k]) of (2.4) at each
sample instant tk ∈ T in three steps. Therein, a sum of Gaussians approach
is employed to limit processing demand of the EBSE.

1. Formulate the likelihood p(Y[k]
∣

∣x[k]) as a sum of N Gaussians;

2. Calculate the updated p(x[k]
∣

∣Y[0:k]) of (2.4) as a sum of N Gaussians;

3. Approximate the resulting p(x[k]
∣

∣Y[0:k]) as a single Gaussian.

Step 3 is crucial for attaining computational tractability and makes an asymp-
totic analysis of the EBSE possible, as it will be shown in Section 2.4. No-
netheless, let us start with a detailed derivation of each step in the next three
sections, which will make use of the following result.

Proposition 2.3.1 Let the Gaussians G(υ, Tz, Z) and G(z, µ,Σ) be given
for some z, µ ∈ R

n, υ ∈ R
m, Σ ∈ R

n×n, T ∈ R
m×n, Z ∈ R

m×m and let

Θ:=
(

Σ−1+T⊤Z−1T
)−1

, θ :=Θ(Σ−1µ+ T⊤Z−1υ). Then it holds that

∫

Rn

G (z, µ,Σ)G(υ, Tz, Z)dz = G(υ, Tµ, TΣT⊤ + Z) and (2.6)

G (z, µ,Σ)G(υ, Tz, Z) = G (z, θ,Θ)G(υ, Tµ, TΣT⊤ + Z). (2.7)

See (Gales and Airey, 2006) for a proof of the first claim above, which further
yields the second claim.

2.3.1 Step 1: likelihood formulation

This section gives a unified formula of the likelihood p(Y[k]
∣

∣x[k]) valid for all
instants tk ∈ T. To that extent, the measurement information y[k] ∈ Y[k] is
regarded as a quantized measurement. As such, the results of (Mahler, 2011),
in which quantized measurements are modeled as a the uniform distribution
p(y[k] ∈ Y[k]) for all y[k] ∈ Y[k], indicate that the likelihood corresponding
to this quantized measurement, yields

p(Y[k]
∣

∣x[k]) =

∫

Rm

p
(

y[k]
∣

∣x[k]
)

p (y[k] ∈ Y[k]) dy[k]. (2.8)

The first PDF in the above integral, i.e., p(y[k]
∣

∣x[k]), is directly obtained
from the process model of (2.1), i.e.,

p(y[k]
∣

∣x[k]) = G(y[k], Cx[k], V ). (2.9)

To find an expression for the second PDF, i.e., p(y[k] ∈ Y[k]), let us
assume that at tk-1 a total amount of e-1 events was triggered. Further,
recall that ΠP(y) is defined as a uniform distribution of y ∈ P, i.e., the
distribution has a constant value within the set P ⊂ R

m and zero outside P.
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Therefore, ΠY[k](y[k]) is the desired uniform distribution of p(y[k] ∈ Y[k]),
which can further be rewritten by substituting Y[k] of (2.3), as follows:

p (y[k] ∈ Y[k]) :=

{

ΠH[e|tk] (y[k]) if tk ∈ Ts\Te,

δ(y[k]− y(te)) if tk = te and te ∈ Te.
(2.10)

For brevity ΠH[e|tk] (y[k]) is denoted as ΠH (y[k]).
The PDFs of (2.9) and (2.10) facilitate in deriving a unified expression

of the likelihood p(Y[k]
∣

∣x[k]) valid for any sampling instant tk ∈ T. Let
us start this derivation for the case that tk ∈ Te is an event instant. Then,
substituting the corresponding PDFs of (2.9) and (2.10) into (2.8), gives that

p(Y[k]
∣

∣x[k]) = G(y(te), Cx[k], V ), if tk ∈ Te. (2.11)

In case tk ∈ Ts\Te is a synchronous instant, please note that the likelihood
p(Y[k]

∣

∣x[k]) is not necessarily Gaussian, as p
(

y[k] ∈ Y[k]
)

= ΠH (y[k]) is
a uniform distribution depending the event sampling strategy. To have a
unified likelihood expression, independent of the event sampling approach,
ΠH (y[k]) is approximated as a summation of N Gaussians, see (Sorenson
and Alspach, 1971) for more details. The mean of the q-th Gaussian in this
approximation is denoted as ŷq[k] ∈ R

m, for all q ∈ Z[1,N ], and is obtained by
equidistant sampling of H[e|tk]. This supports that each of the N Gaussians
has an equivalent covariance matrix, denoted with U [k] ∈ R

m×m, due to
which the approximation is in line with the following characterization:

p (y[k] ∈ Y[k]) ≈
N
∑

q=1

1

N
G(y[k], ŷq[k], U [k]), tk ∈ Ts\Te. (2.12)

Substituting the approximated p (y[k] ∈ Y[k]) of (2.12) and p(y[k]
∣

∣x[k]) of
(2.9) into (2.8), gives for a synchronous instant tk ∈ Ts \ Te that

p
(

Y[k]
∣

∣x[k]
)

≈
N
∑

i=1

1

N

∫

Rm

G (y[k], Cx[k], V )G (y[k], ŷq[k], U [k]) dy[k].

An explicit solution of such an integral was already obtained in Proposi-
tion 2.3.1. Hence, substituting z = y[k], µ = Cx[k], Σ = V , υ = ŷq[k],
T = Im and Z = U [k] into this proposition, while using the fact that
G(υ, Tz, Z) = G(Tz, υ, Z), induces the following likelihood at synchronous
time instants:

p
(

Y[k]
∣

∣x[k]
)

≈
N
∑

q=1

1

N
G (ŷq[k], Cx[k], V + U [k]) , ∀tk ∈ Ts\Te. (2.13)

A unified expression for the likelihood p(Y[k]
∣

∣x[k]) of (2.8) can thus be
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established as the combination of (2.11) and (2.13), i.e.,

p
(

Y[k]
∣

∣x[k]
)

≈
N
∑

q=1

1

N
G (ŷq[k], Cx[k], R[k]) , ∀tk ∈ T

where, R[k] := V + U [k].

(2.14)

At an event instant tk ∈ Te the EBSE receives a new measurement y(te) and
the variables of (2.14) become N = 1, ŷ1[k] = y(te) and U [k] = 0m×m. At a
synchronous instant tk ∈ Ts\Te the variables depend on the approximation
of ΠH (y[k]) and thus on the employed event sampling strategy. Let us first
present a small example of such an approximation for the event sampling
strategy Send-on-Delta. After that, the explanation of the EBSE is conti-
nued with step 2 based on the likelihood of (2.14).

Example of approximating ΠH(y[k]) for Send-on-Delta

Let us assume that the EBSE receives new measurements ac-
cording to the event sampling strategy Send-on-Delta. Then an
approximation of ΠH (y[k]) in (2.12) tk ∈ Ts\Te, which was esta-
blished for some N ∈ R>0 by trial-and-error, is given with

ŷq[k] = y(te-1)−
(N − 2(q − 1)− 1

2N

)

2∆, ∀q ∈ Z[1,N ] and

U [k] =

(

2∆

N

)2
(

0.25− 0.05e−
4(N−1)

15 − 0.08e−
4(N−1)

180

)

.

Figure 2.2 illustrates such an approximation of ΠH (y[k]) into
∑N

q=1
1
N
G(y[k], ŷq[k], U [k]) according to the above formulas.
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Figure 2.3: Illustration for approximating ΠH (y[k]) into a summation of

Gaussians, when Send-on-Delta is employed as event sampling strategy, i.e.,

H[e] := {y ∈ R||y − y(te-1)| < ∆}, for which y(te-1) = 0 and ∆ = 2.
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2.3.2 Step 2: state estimation

Step 2 of the EBSE first determines the product p(x[k]|Y[0:k-1])p(Y[k]|x[k]),
which is then used to establish the updated estimate p(x[k]|Y[0:k]) of (2.4).

The product p(x[k]|Y[0:k-1])p(Y[k]|x[k]) is a multiplication of the pre-
dicted PDF p(x[k]|Y[0:k-1]) with the likelihood computed by step 1 of the
EBSE in (2.14). As such, let us focus on finding a solution for the predic-
ted PDF p(x[k]|Y[0:k-1]). To that extent, recall that an expression of this
PDF was obtained in (2.5) as the integral of p(x[k]|x[k-1])p(x[k-1]

∣

∣Y[0:k-1])
over x[k-1]. This latter product is a multiplication of two new PDFs, for
which the first PDF p(x[k]|x[k-1]) directly results from the process model
in (2.1a), i.e., p(x[k]

∣

∣x[k-1]) = G
(

x[k], A(τk)x[k-1], Q(τk)
)

. The other PDF
in this latter product denotes the estimation results of the EBSE at tk-1,
i.e,p(x[k-1]

∣

∣Y[0:k-1]) = G(x[k-1], x̂[k-1], P [k-1]). Hence, substituting these
two Gaussian PDFs into the integral of (2.5), gives that

p(x[k]
∣

∣Y[0:k-1])

=

∫

Rn

G(x[k-1], x̂[k-1], P [k-1])G
(

x[k], A(τk)x[k-1], Q(τk)
)

dx[k-1].

An explicit solution for the above expression of the predicted PDF is obtained
by employing Proposition 2.3.1. Hence, substituting z = x[k-1], µ = x̂[k-1],
Σ = P [k-1], υ = x[k], T = A(τk) and Z = Q(τk) into this proposition, implies
that the predicted PDF, yields

p
(

x[k]
∣

∣Y[0:k-1]
)

= G(x[k], x̂[k−], P [k−]),

where x̂[k−] := A(τk)x̂[k-1],

P [k−] := A(τk)P [k-1]A⊤(τk) +Q(τk).

(2.15)

The notion k− emphasizes the predictive character of x̂[k−] and P [k−] as the
estimation results of x[k].

Now that both p
(

x[k]
∣

∣Y[0:k-1]
)

of (2.15) and p (Y[k]|x[k]) of (2.14) are
available, an expression of their product is derived, i.e.,

p
(

x[k]
∣

∣Y[0:k-1]
)

p
(

Y[k]
∣

∣x[k]
)

≈
N
∑

q=1

1

N
G
(

x[k], x̂[k−],P [k−]
)

G
(

ŷq[k], Cx[k],R[k]
)

.

The solution to a product of two Gaussians is presented in Proposition 2.3.1.
Hence, substituting z = x[k], µ = x̂[k−], Σ = P [k−], υ = ŷq[k], T = C and
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Z = R[k] into this proposition results in

p
(

x[k]
∣

∣Y[0:k-1]
)

p
(

Y[k]
∣

∣x[k]
)

≈
N
∑

q=1

1

N
ωq[k]G

(

x[k], θ̂q[k],Θ[k]
)

, (2.16a)

where Θ[k] :=
(

P−1[k−] + C⊤R−1[k]C
)−1

,

θ̂q[k] := Θ[k]
(

P−1[k−]x̂[k−] + C⊤R−1[k]ŷq[k]
)

,

ωq[k] := G
(

ŷq[k], Cx̂[k−], CP [k−]C⊤ +R[k]
)

.

(2.16b)

The above expressions of θ̂q[k] and Θ[k] are similar to the update formulas of
the Kalman filter in information form, as presented in (1.5). As such, each

individual G
(

x[k], θ̂q[k],Θ[k]
)

, for all q ∈ Z[1,N ], can be regarded as Gaussian
PDF that represents an updated estimate of x[k] based on the implied me-
asurement ŷq[k] ∈ Y[k]. Moreover, the product in (2.16a) of the predicted
PDF with the likelihood will be used next, to find the updated estimation
results of the EBSE, i.e., p(x[k]

∣

∣Y[0:k]) of (2.4). Note that this updated PDF
has the expression of (2.16a) in its nominator, while its denominator is the

integral of (2.16a) over x[k]. As this integral equals
∑N

q=1
1
N
ωq[k], the explicit

formula of p(x[k]
∣

∣Y[0:k]) computed by the EBSE, yields

p(x[k]
∣

∣Y[0:k]) ≈
N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]
G
(

x[k], θq[k],Θ[k]
)

. (2.17)

The PDF in (2.17) is a summation of N Gaussians that represents the up-
dated estimation results of the EBSE and thus completes step 2. The goal
of step 3 is to approximate this PDF into a single Gaussian and thereby,
prevent an exponential increase in the computational requirements of the
EBSE. If this step would not be done, and the number of Gaussians that de-
termine p(Y[k]

∣

∣x[k]) is denoted with N [k], then p(x[k]
∣

∣Y[0:k]) of (2.17) would
be described with

∏

q∈Z[1,k]
N [q] Gaussians.

2.3.3 Step 3: state approximation

Step 3 of the EBSE approximates p(x[k]
∣

∣Y[0:k]) of (2.17) from a summation

of N Gaussians into the single Gaussian p(x[k]
∣

∣Y[0:k]) ≈ G(x[k], x̂[k], P [k]),
where x̂[k] ∈ R

n and P [k] ∈ R
n×n. This is done, such that the mean and

error-covariance of the two PDFs are equivalent, for which the results of
(Kotecha and Djurić, 2003) are used.

The expressions of x̂[k] and P [k] that were obtained from this approxi-
mation are presented in the complete algorithm of the EBSE. Therein, the
formulation routine corresponding to step 1 is denoted as “Likelihood(·,·,·)”.
This routine establishes R[k] and ŷq[k], for all q ∈ Z[1,N ], that characterize
the sum of Gaussians as presented in (2.14). Also, notice that ωq[k] ∈ R+ is
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by definition a scalar weight.

Algorithm of the EBSE

Prediction

x̂[k−] = A(τk)x̂[k-1];

P [k−] = A(τk)P [k-1]A⊤(τk) +Q(τk);

Measurement update

(ŷ1[k], . . . , ŷN [k], R[k]) = Likelihood(H[e|tk], V ), (2.14);

Θ[k] =
(

P−1[k−] + C⊤R−1[k]C
)−1

;

for all q ∈ Z[1,N ], do:

θ̂q[k] = Θ[k]
(

P−1[k−]x̂[k−] + C⊤R−1[k]ŷq[k]
)

;

ωq[k] = G
(

ŷq[k], Cx̂[k−], CP [k−]C⊤ +R[k]
)

;

end

Approximation

x̂[k] =
N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]
θ̂q[k];

P [k] =

N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]

(

Θ[k] +
(

x̂[k]− θ̂q[k]
)(

x̂[k]− θ̂q[k]
)⊤)

.

The above EBSE algorithm supports any sampling strategies that is in
line with (2.2). Let us continue with stability analysis of the EBSE.

2.4 Asymptotic analysis

This section presents an asymptotic analysis of the error-covariance P [k], as
computed in the above EBSE algorithm, where P [∞] := limk→∞ P [k]. For
clarity of the analysis, some preliminary definitions are presented first.

2.4.1 Preliminaries

Let a(k) :=
{

a ∈ Z[0,k]|tk − tk-a ≤ τs and tk-a ∈ Ts

}

denote the number of
sample instants in between the current instant tk ∈ T and the first preceding
synchronous instant tk-a(k) ∈ Ts. Further, as the singular value σmax(Aτ ) and
eigenvalue λmax(Qτ ) are continuous in τ , let us define the constants

α(τs) := sup
τ∈[0,τs]

σmax(A(τ)), β(τs) := sup
τ∈[0,τs]

√

λmax(Q(τ)).
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Next, the vectors ŷ−[k] ∈ R
l and ŷ+[k] ∈ R

l are obtained via the extreme
elements within ŷq[k], for all q ∈ Z[1,N ], as follows:

{ŷ−[k]}r := min
∀q∈Z[1,N]

{ŷq[k]}r and {ŷ+[k]}r := max
∀q∈Z[1,N]

{ŷq[k]}r, ∀r ∈ Z[1,m].

Note that both ŷ−[k] and ŷ+[k] can be determined from the set H[e|tk] that
is already available, see also the illustration in Figure 2.4. Based on ŷ−[k]
and ŷ+[k], let the weight ς[k] ∈ R+ be defined as follows:

ς[k] :=

{

(ŷ−[k]− ŷ+[k])⊤(ŷ−[k]− ŷ+[k])λ−1
min(R[k]) + 1 if tk ∈ Ts \ Te

1 if tk ∈ Te.

Proposition 2.4.1 Let a bounded set H[e|tk] be given for all k ∈ Z+. Then,
there exist a matrix Rmax ∈ R

m×m and a weight ςmax ∈ R>0, such that
R[k]�Rmax and ς[k]≤ ςmax hold for all k ∈ Z+.

Proposition 2.4.1 follows from the fact that a boundedH[e|tk] allows ΠH(y[k])
to be approximated with a limited amount of N Gaussians and a bounded
U [k], i.e., Rmax existst. Furthermore, a bounded H[e|tk] ensures a bounded
Euclidean distance ‖ŷ−[k]− ŷ+[k]‖2, due to which there exists a ςmax ≥ ς[k].

H [e|tk]

y
-[k]

y
+[k]

yq[k]

Figure 2.4: An illustration of ŷ−[k] and ŷ+[k] for a particular H[e|tk].

2.4.2 Asymptotic analysis of the error-covariance

The asymptotic analysis makes use of two Riccati difference equations in
information form apart from the EBSE. The employed equations are:

• The update of P [k] according to the proposed EBSE;

• A weighted Riccati difference equation (wRDE), which performs an
update of its covariance matrix Σ[k] ∈ R

n×n at all synchronous instants
t[k] ∈ Ts by employing Rmax and ςmax (see Proposition 2.4.1). Since
tk-a(k) denotes the preceding synchronous instant, the update yields

Σ[k−] := A(τs)Σ[k-a(k)]A
⊤(τs) +Q(τs) and

Σ[k] := ςmax

(

Σ−1[k−] + C⊤R−1
maxC

)−1
, ∀tk ∈ Ts;

(2.18)
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• A hybrid Riccati difference equation (hRDE), which performs a similar
update as the wRDE at synchronous sample instants tk ∈ Ts, although
a prediction is employed at unique event instant tk ∈ Te\Ts. Hence, the
covariance matrix of the hRDE, denoted with Σ̄[k] ∈ R

n×n, is updated
as follows:

Σ̄[k−] := A(τk)Σ̄[k-1]A
⊤(τk) +Q(τk) and

Σ̄[k] :=

{

ςmax(Σ̄
−1[k−] + C⊤R−1

maxC)−1 if tk ∈ Ts,

Σ̄[k−] if tk ∈ Te \ Ts.

(2.19)

The asymptotic analysis proves that λmax(P [∞]) is bounded by starting with
three lemmas that relate P [k] of the EBSE to Σ[k] of the wRDE. The first
lemma provides a property of P [k].

Lemma 2.4.2 The proposed EBSE satisfies P [k] � ς[k]Θ[k], for all tk ∈ T.

See Appendix B.1 for the proof. In the next lemma, the EBSE is compared
with the hRDE. Both methods perform an update of the covariance, although
for the hRDE they are limited to synchronous sample instants. Moreover,
if the hRDE performs an update, its covariance is scaled according to ςmax

such that it “encloses” the one of the EBSE.

Lemma 2.4.3 Consider the proposed EBSE and the hRDE of (2.19) and
let P [0] = Σ̄[0]. Then, P [k] � Σ̄[k] holds for all tk ∈ T.

See Appendix B.2 for the proof. Notice that Lemma 2.4.3 is useful because
it relates P of the EBSE, which is an approximated covariance of a sum of
Gaussians, to the hRDE. However, the hRDE has a hybrid prediction-update
strategy. As such, determining an asymptotic bound on Σ̄[k] is a challenging
task. The wRDE on the other hand performs a constant update for which
determining an asymptotic bound is tackled. Therefore the third lemma
relates the hRDE with the wRDE.

Lemma 2.4.4 Consider the hRDE of (2.19) and the wRDE of (2.18). At
synchronous instants tk ∈ Ts it holds that λmax

(

Σ̄[k]
)

= λmax (Σ[k]), while

λmax

(

Σ̄[k]
)

≤ α2(τs)λmax (Σ[k-a(k)])+β2(τs) holds at the events tk ∈ Te \Ts.

See the Appendix B.3 for the proof. Although Lemma 2.4.3 guarantees that
P [k] � Σ̄[k] holds, Lemma 2.4.4 shows that Σ̄[k] is asymptotically bounded if
and only if limk→∞ Σ[k] exists. To that extent, the asymptotic properties of
the standard Riccati difference equation (RDE), as they were established in
(Chan et al., 1984), are employed. More specifically, the conditions were pre-
sented under which a solution of the discrete-time Algebraic Ricatti equation
exists. Since the standard RDE is similar to the wRDE when substituting
ςmax = 1, the asymptotic solution for the covariance matrix of the wRDE is
obtained mutatis mutandis from the results presented in (Chan et al., 1984).
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As such, let us define Ā :=
√
ςmaxA(τs)

(

In−ΦC⊤ (CΦC⊤ +Rmax

)−1
C
)

and
Φ := ςmaxA(τs)Σ[∞]A⊤(τs) +Q(τs), for some Σ[∞] ∈ R

n×n.

Proposition 2.4.5 Let (A(τs), C) be an observable pair. Then there exists
a stabilizing solution Σ[∞] := limk→∞ Σ[k] to the wRDE of (2.18) that is
unique and independent of Σ[0], if λq(Ā) ≤ 1 for all q ∈ Z[1,n].

Now, combining Lemma 2.4.3, Lemma 2.4.4 and Proposition 2.4.5, while
observing that α2(τs) ≥ 1 and β2(τs) ≥ 1, directly proves the upper bound
on all eigenvalues of P [k] of the EBSE.

Theorem 2.4.6 Let the premise of Proposition 2.4.1 and Proposition 2.4.5
be satisfied. Then the EBSE results in a stable estimate, i.e., λmax(P [∞]) ≤
α2(τs)λmax(Σ[∞]) + β2(τs) exists.

Notice that a simple, yet effective idea of updating the EBSE at its syn-
chronous time instants with a bounded measurement set turns out to be
sufficient for the derivation of an asymptotic bound on its error-covariance.
This desirable property is otherwise known to be very difficult to attain for
event based estimators in general. Most currently available analyses are limi-
ted to synchronous estimators, such as the Kalman filter, with an extension
to package loss in (Sinopoli et al., 2004). Furthermore, the developed re-
sults of this section trivially applies to the state-estimator that is proposed
in (Nguyen and Suh, 2007) as a particular case of the EBSE, i.e., the approxi-
mation of (2.14) is determined with N = 1 for all k ∈ Z+ and Send-on-Delta
is employed as the event sampling strategy. The theoretical analysis of the
proposed EBSE is verified in an illustrative example of object tracking.

2.5 Illustrative example

The effectiveness of the developed EBSE is illustrated in terms of estimation
error and computational tractability for a 1D object tracking system.

Process The considered model in line with (2.1) is a double integrator, i.e.,

x(t) =

(

1 τ
0 1

)

x(t-τ) +

(

1
2τ

2

τ

)

a(t− τ)

y(t) =
(

1 0
)

x(t) + v(t).

The state vector x(t) combines the object’s position and speed. Fur-
ther, a(t) denotes the object’s acceleration, while only the position
is measured in y(t). Acceleration is assumed unknown. Therefore,
the model of (2.1) is characterized with a process-noise w(t, τ) :=
(

1
2 τ

2

τ

)

a(t). As |a(t)| ≤ 0.5, for all t ∈ R+, a suitable covariance in line

with (Curry, 1970) is cov(a(t)) = 0.02 and thusQ(τ) =
(

1
2 τ

2

τ

)

0.02
(

1
2τ

2 τ
)

.
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The sampling time is τs = 0.1 seconds and the measurement-noise co-
variance is V = 0.1 · 10−3. The object’s true position, speed and
acceleration are depicted in Figure 2.5.
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Figure 2.5: The position, speed and acceleration of the tracked object.

Three different state-estimators are compared. The first two are the
proposed EBSE and the asynchronous Kalman filter (AKF) of (Mallick et al.,
2001). For those estimators, the sensor employs the event sampling strategy
Send-on-Delta to trigger y(te), i.e., H[e] =

{(

y
t

)

∈ R
m+1||y − y(te-1| < ∆

}

and ∆ = 0.1. Values of R[k] and ŷq[k] at a synchronous sample instant
tk ∈ Ts \ Te, for all q ∈ Z[1,N ], are computed by the EBSE according to the
approximation example of Send-on-Delta in Section 2.3.1 and N = 5. In
contrast to the EBSE, the AKF performs an update at the event instants
tk ∈ Te only, i.e., when a new measurement is received. At the remaining
synchronous instants tk ∈ Ts\Te, the AKF performs a prediction by applying
the formula of (2.15). Notice that the AKF can be viewed as an estimator
with intermittent observations, for which the analysis in (Sinopoli et al., 2004;
Mo and Sinopoli, 2008) already showed that its error-covariance will have a
diverging behavior. The third estimator is the time-synchronous quantized
Kalman filter (QKF) introduced in (Curry, 1970). The QKF performs the
Kalman filtering algorithm of Section 1.2 on quantized measurements of y(t),
for all t ∈ Ts, in which the quantization level is equal to 0.1. Quantization
of the measurement value reduces communication requirements as well and
can thus be considered as an alternative to the EBSE.

Figure 2.6 depicts the squared estimation error of the three estimators.
Therein, the EBSE and AKF computed their estimation results based on
9 event measurement samples, while the QKF received 80 quantized mea-
surement samples. The figure shows that the QKF estimates the object’s
position with the least error. However, its error in speed is worse compared
to the EBSE. Furthermore, the plot of the AKF clearly shows that prediction
of the state gives an exponential growth in estimation error when the time
between the event sample instants increases, e.g., t > 4 [s]. This behavior
is not present in the results of the EBSE that shows a converging behavior,
due to which the EBSE has stable estimation results.
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Figure 2.6: The squared estimation error of the two state elements for each

employed estimator, i.e.,
(

{x(tk)}1 − {x̂(tk)}1
)2

and
(

{x(tk)}2 − {x̂(tk)}2
)2
.

Another important aspect of the three estimators is their total amount of
required processing time. The EBSE algorithm indicates that its “measure-
ment update” employs the same set of equations as the corresponding part
of the Kalman filter, for each of the N Gaussians. Therefore, a rule of thumb
is that the EBSE will require N times the amount of processing time of a
Kalman filtering algorithm. Since the QKF performs such an algorithm, with
a particular model on the measurement-noise, the EBSE of this illustrative
example will roughly cost about N = 5 times more processing time than the
QKF. After running all three algorithms in Matlab on an Intelr Pentiumr

processor of 1.86 [GHz] with 504 [MB] of RAM the following performance re-
sults were obtained. The AKF estimated x[k], for all tk ∈ Te, and predicted
x[k], for all tk ∈ Ts \ Te, in a total time of 0.016 seconds, whereas the QKF
estimated x[k], for all tk ∈ Ts, in 0.022 seconds of processing time. The EBSE
required 0.094 seconds (≈5×0.022=0.11) to estimate x[k] for all tk ∈ T.

Therefore, although the EBSE requires most processing time, it is still
computationally comparable to the AKF and QKF. Furthermore, the EBSE
provides an estimation error similar to that of the QKF but with significantly
less data transmission. However, one cannot presume that event sampling
will always yield fewer measurement samples, as it depends on the application
at hand and the employed sampling strategy. Nonetheless, event sampling
is a more efficient approach for acquiring relevant measurements. Moreover,
the EBSE is currently the only stable estimator that is not specialized for
one event sampling strategy only.

2.6 A discussion on package loss

An issue for the considered set-up of the EBSE in Figure 2.1 is package loss,
which is a typical drawback for any data connection. One of the main con-
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sequences of package loss is that it may cause unstable estimation results,
as it was shown in an asymptotic analysis of the Kalman filter presented
in (Sinopoli et al., 2004). When a package is lost, the Kalman filter must
perform a prediction on its estimation results, as there is no measurement
value for updating the estimated state. Predictions lead to a diverging error
of the estimator, which was analyzed in (Sinopoli et al., 2004). The analysis
showed that there exists an upper bound on the probability of package loss,
after which the error-covariance of the Kalman filter will diverge and thus be
unstable. It is worth mentioning that the EBSE algorithm can still guarantee
stable estimation results in the presence of package loss, when a particular
event sampling strategy is employed. Such a strategy is presented in this
discussion, after which the object tracking example of the previous section is
employed to assess the estimation results.

The explanation of the proposed event sampling strategy starts with the
event triggering condition, as it was established in (2.2), i.e.,

te = inf

{

t ∈ R+ | t > te-1 and

(

y(t)
t

)

6∈ H[e]

}

,

given that
(

y(te-1)
te-1

)

∈ int(H[e]). The main idea of the proposed sampling stra-
tegy is to extend the Send-on-Delta approach towards multiple dimensions.
As such, let us define the triggering set H[e] := {

(

y
t

)

| ‖y − y[e-1]‖2 ≤ ∆},
due to which its corresponding section H[e|t] in the measurement-space at
any time t is a ball with radius ∆, centered at the previously sampled mea-
surement y[e-1], i.e., H[e|t] := {y ∈ R

m|‖y−y[e-1]‖2 ≤ ∆} for all t ∈ (te-1, te).
In addition, let us define that the sensor node not only exchanges y[e] but the
number e of the corresponding event as well. This number can then be used
by the EBSE for detecting when previously exchanged samples were lost

As an example, let us assume that the EBSE receives a new event sam-
pled measurement y[e], while the event received by the EBSE before te was
y[e-c], for some c ∈ Z+. As such, the c − 1 measurement samples prior to
te were not received by the EBSE, though at te the estimator will detect
that they were lost. This further implies that the estimated state at any
time-synchronous sample instant t ∈ (te-c, te) was updated by the EBSE with
an incorrect set H[e-c|t], as y(t) 6∈ H[e-c|t] but y(t) ∈ H[e-q|t], for some
q ∈ Z[1,c]. Nonetheless, since packages loss was detected, the EBSE can
correct this mistake. To that extent, note that the triggering sets which cor-
respond to the lost event instants satisfy H[e-q|t] ⊆ H̄[e-c|t], for all q ∈ Z[1,c]

and H̄[e-c|t] := {y ∈ R
m|‖y−y[e-c]‖2 ≤ c ·∆}, see also Figure 2.7. Therefore,

the “incorrect” estimation history after te-c can be re-calculated by using the
correct triggering set H̄[e-c|t], i.e., y(t) ∈ H̄[e-c|t] holds for all t ∈ (te-c, te).
The importance of this correction is that stable estimation results are then
attained, since the EBSE still performs a state update with a bounded set
H̄[e-c|t].
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te-c

te H [e]

{y}

{y}
2

1H [e-c]

H [e-q]

H [e-c]

Figure 2.7: A correction of the event triggering sets H[e-q], where
q ∈ Z[1,2], in case there are two event instants missed in between te-c
and te due to package loss, i.e., c = 3.

The next step in this discussion is to assess the above event sampling
strategy with the EBSE. To that extent, let us consider the object tracking
example of the previous section, for which the vehicle’s position, speed and
acceleration are presented in Figure 2.8.
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Figure 2.8: The position, speed and acceleration of the tracked object
in presence of package loss.

The simulation compares the estimation results of the EBSE with the
time-synchronous QKF introduced in Section 2.5. Both adopt a sampling
time of τs = 0.1 seconds. The estimators receive new measurement samples
from a sensor node with a 50% probability of package loss. To that extent,
the EBSE employs the above event sampling strategy, with ∆ = 0.1 meter,
along with the procedure to correct its estimation history when it detects
that packages were lost. Note that the QKF cannot perform a correction and
will thus predict its estimated state when a package is lost. Figure 2.9(a)
depicts the squared estimation error of both the EBSE and QKF, while the
trace of their corresponding error-covariance is shown in Figure 2.9(b). Before
analyzing the figures let us first point out that, since the vehicle drives 6[m]
in 20 seconds, the EBSE receives 60 measurement samples and the QKF
receives 200 quantized measurements. Further, Figure 2.9(a) indicates that
there is a bias on the QKF estimation error. This bias is mainly a result from
a bad estimate of the vehicle’s speed rather than a result of lost packages.
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Figure 2.9: Results of the EBSE and QKF with 50% package loss.

Based on the above figures, note that the estimation error of both the
EBSE as well as the QKF is bounded and that their main difference is il-
lustrated in Figure 2.9(b) of the error-covariance. This figure shows that
the error-covariance of the QKF is unbounded, which was expected from the
asymptotic analysis of the Kalman filter with package loss presented in (Mo
and Sinopoli, 2008). The error-covariance matrix of the EBSE on the other
hand, remains bounded even in situations with severe package loss (around
8[s] for the EBSE). As such, the EBSE establishes stable estimation results,
when the above proposed event sampling strategy is employed.

2.7 Conclusions

This chapter presented an event based state-estimator (EBSE) suitable for
any event sampling strategy. The distinguishing feature of the proposed
EBSE is that updated estimation results are computed at the two different
types of sample instants, i.e., at event instants, when a measurement value is
received, and at synchronous time instants, when no measurement is received.
In the latter, case the update is based on inherent knowledge that the mea-
sured value lies within a bounded set used to define the event. Furthermore,
a proof of an asymptotic bound on the largest (positive) eigenvalue of the
error-covariance was presented. Hence the EBSE is a stable estimator, even
in the situation that no new measurement is received anymore. This property
of the EBSE was demonstrated in an illustrative example, together with an
indication of its computational tractability and a discussion for coping with
missed measurement samples due to package loss. Flexibility of the EBSE
to utilize measurement samples from any type of event sample strategy was
attained via the proposed mathematical formulation of event sampling. This
analysis is continued in the next chapter, which addresses the applicability
of the EBSE for control.
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3

Event based state estimation in a control

loop

3.1 A feedback control set-up
3.2 Matched sampling
3.3 Event based

estimation with
control actions

3.4 Integration with a
robust MPC

3.5 Illustrative control example
3.6 Conclusions

The event based state-estimator (EBSE) obtained in the previous chapter
is a valuable step for exploiting the information of event sampled measure-
ments. Nonetheless, in realistic applications a state-estimator is often per-
formed prior to a control algorithm. Therefore, this chapter studies an event
based control set-up, in which the stable estimation results of the EBSE are
used as input to a time-synchronous control algorithm. Note that the EBSE
supports any event sampling strategy. Therefore, a similar property is ex-
pected for the proposed event based controller, which further implies that
stability of the feedback control system is decoupled from the event trigge-
ring criteria. Besides analyzing this expectation, the chapter presents a novel
event sampling strategy to obtain a more constant control performance. On
top of that, a stabilizing control algorithm is proposed by modifying an exis-
ting robust MPC approach, such that the disturbance rejection is optimized
depending on estimation errors. A justification of the design is given, along
with illustrative control examples for various event sampling strategies.

3.1 A feedback control set-up

Event based control has emerged recently as a viable alternative to classi-
cal, time-synchronous control, with many relevant applications in networked
systems. For networked systems that have a control objective, event based
control offers a straightforward solution to cope with the limitations in com-
munication. This is because event based control aims to reduce the exchange
of measurement data by employing an event sampling strategy. A recent over-
view of pros and cons of this control approach is found in (Åström, 2008).
The set-up for event based control, which is described next, is similar the
that of the event based state-estimator in Chapter 2.
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Communication The sensor node employs an event sampling strategy to
obtain a measurement y(t) ∈ R

m at the instants of an event. The e-th
event instant is denoted as te ∈ R+ and Te : ∪e∈Z+

{te} represents the
set of all event instants. Then, for a given set H[e] ⊂ R

m+1 in time-
measurement-space, the next event instant is characterized by te :=
inf
{

t ∈ R+ | t > te-1 and
(

y(t)
t

)

6∈ H[e]
}

. See (2.2) for more details.

Process Let us consider the controlled, linear process of (1.4), i.e.,

x(t) = A(τ)x(t-τ) +B(τ)u(t-τ) + w(t, τ), (3.1a)

y(t) = Cx(t) +Du(t) + v(t), (3.1b)

in which x ∈ R
n denotes the state vector. Both the process-noise

w ∈ R
n and measurement-noise v ∈ R

m are characterized by Gaussian
PDFs, for some Q(τ) ∈ R

n×n and V ∈ R
m×m, i.e.,

p(w(t, τ)) := G(w(t, τ), 0, Q(τ)) and p(v(t)) := G(v(t), 0, V ).

The goal is to control the process modeled in (3.1) from the event sam-
pled measurements y(te). Subsequent studies on control that are based on the
event sampling method “Send-on-Delta” were presented in (Brockett and Li-
berzon, 2000; Kofman and Braslavsky, 2006; Heemels et al., 2008; Hennings-
son et al., 2008; Dimarogonas and Johansson, 2009). The conclusion that
can be drawn from these works is that, when measurements are sent only at
event instants, it is difficult to guarantee (practical) stability of the control
system. The natural solution that emerged for solving this problem was to
include the controller in the event triggering process. Various alternatives are
presented in (Brockett and Liberzon, 2000; Tabuada, 2007; Wang and Lem-
mon, 2009; Lehmann and Lunze, 2009; Dimarogonas and Johansson, 2009)
and the references therein. The general procedure within this framework is
to define a specific criterion for triggering events as a function of the state
vector. This function can either be related to guarantee control stability, see,
e.g., (Wang and Lemmon, 2009), or to improve disturbance rejection, see,
e.g., (Lehmann and Lunze, 2009). One of the concerns regarding existing
event based controllers is the fact that they are designed for a specific type of
event sampling method or, that the sampling method is designed specifically
for the controller. This implies that both functionalities of the system, i.e.,
event sampling and control, depend heavily on each other and changing one
requires a re-design of the other to guarantee the same properties for the
control system. Furthermore, except for the recent controller presented in
(Donkers, 2012), existing solution on event based control assume that the
entire state is measured, i.e., y(t) = x(t) + v(t).

To obtain new insights for addressing the above concerns of existing event
based control methods, this chapter presents a feasibility study of a control
system that includes the event based state-estimator (EBSE) of Chapter 2.
A schematic set-up of such an event based controller is depicted in Figure 3.1,
for which the following control advantages are expected:
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Figure 3.1: Schematic set-up for integrating the EBSE in a feedback loop.

• The control set-up supports any event sampling strategy;

• Control stability is decoupled from the event triggering criteria, as the
EBSE already yields a bounded error-covariance;

• The EBSE enables an integration of event sampled measurements with
(the widely available) time-synchronous controllers.

Let us give a detailed description of Figure 3.1, before continuing with the
outline of this chapter. The sensor samples new measurements at the instant
of an event that are collected in the set Te = ∪e∈Z+

{te}, while the controller
runs synchronously in time, for which the set of synchronous sample instants
Ts := {sτs | s ∈ Z+} is introduced with τs ∈ R>0 as the sampling time. The
EBSE computes an estimate of the state x(tk) at both event and synchronous
instants tk ∈ T, where T := Te∪Ts. This estimate has a Gaussian distribution
and is thus characterized by some mean x̂(tk) ∈ R

n and error-covariance
P (tk) ∈ R

n×n. The two topics that complete the proposed event based
control set-up are the employed event sampling strategy and the integration
of the EBSE with a suitable control algorithm.

Let us start with an event sampling strategy. The illustrative case-study
presented in Section 2.5 indicates that the estimation error of the EBSE can
change rapidly when Send-on-Delta is employed for obtaining event sampled
measurements. Similar variations on the estimation results are likely to ap-
pear with other existing event sampling strategies. Therefore, a novel event
sampling method is proposed in the next section, which reduces these rapid
variations by sending relevant measurements that are matched to the EBSE.

The remaining sections address the integration of estimation and con-
trol. Firstly, the EBSE is extended, so that control actions can be included.
Secondly, the employed control algorithm is presented that involves a modi-
fication of the robust MPC of (Lazar and Heemels, 2008) into a controller
that can deal with estimation errors. Thirdly, an integration procedure is
developed, in which the error-covariance of the EBSE is transformed into a
deterministic measure of the estimation error. This measure can then be used
by the modified robust MPC for computing a stabilizing control action and
moreover, for optimizing disturbance rejections of the feedback loop.



50 Event based state estimation in a control loop

3.2 Matched sampling

This section presents the event sampling methodMatched sampling. The goal
of Matched sampling is to reduce variations on the estimation performance
by matching the relevance of y(t) to the estimation results. To that end, a
formal characterization of relevant measurements is proposed, next, followed
by the corresponding event triggering criterion. This is then used to analyze
stability of the EBSE with Matched sampling by studying the resulting set
H[e]. Furthermore, a comparison with Send-on-Delta demonstrates that the
EBSE yields a more constant estimation result in favor of Matched sampling.

3.2.1 Event triggering criteria

Matched sampling triggers a new event instant te = t if y(t) is “relevant”
for the estimator. To find a suitable characterization of a “relevant” y(t),
let us define y(t0:e-1) := {y(tq)|tq ∈ Te, tq < t} as all e-1 event sampled
measurements until time t. Further, let p

(

x(te-1)|y(t0:e-1)
)

denote the EBSE
result at te-1. Then, the sensor node determines the following PDFs:

• p
(

x(t)|y(t0:e-1), y(t)
)

represents the updated PDF of x at a current time
t > te-1 in case y(t) is shared with the state-estimator.

• p
(

x(t)|y(t0:e-1)
)

represents the predicted PDF of x at a current time
t > te-1 in case y(t) is not shared with the state-estimator.

In information theory, the relevance of an updated PDF compared to a pre-
dicted PDF is often determined via the Kullback-Leibler divergence.

The Kullback-Leibler divergence d(p1(x)||p2(x)) ∈ R+ of two
PDFs p1(x) and p2(x) is a non-symmetric measure for the dif-
ference of p2(x) relative to p1(x). Therein, p1(x) is considered to
be the true or updated PDF of a random vector x ∈ R

n, while
p2(x) is a model or prediction of p1(x). The divergence is also
known as the uncertainty reduction on x that is achieved if p1(x)
is replaced by p2(x). The definition of the Kullback-Leibler di-
vergence, as it is found in (Cover and Thomas, 1991), yields

d(p1(x)||p2(x)) :=
∫

Rn

p1(x) log
p1(x)

p2(x)
dx. (3.2)

An illustration of p1(x) log
p1(x)
p2(x)

, for three examples of p2(x), is

depicted in Figure 3.2. Although the Kullback-Leibler divergence
is often intuited as a metric or distance, it is not a true metric,
for example, as it is not symmetric. Also, it is not the same as
a divergence in calculus. For that reason the Kullback-Leibler
divergence was originally introduced in (Kullback and Leibler,
1951) as a directed divergence from one distribution to another.
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value of d(p1(x)||p2(x)) is equivalent to the integral of this function.

Note that, in line with the Kullback-Leibler divergence, the sensor node
computes both the updated PDF p

(

x(t)|y(t0:e-1), y(t)
)

and the predicted PDF

p
(

x(t)|y(t0:e-1)
)

. As such, the corresponding Kullback-Leibler divergence can
be regarded as a measure for the relevance of y(t), i.e., y(t) is more relevant
for the estimator when the value of this divergence increases. Therefore,
along the results of (Marck et al., 2008) for triggering new measurements in
event based classification, the event triggering criteria of Matched sampling is
a level-crossing criterion of the Kullback-Leibler divergence, for some ∆KL ∈
R+, i.e.,

te := inf
{

t ∈ R+ | t > te-1 and d
(

p1(x(t)) || p2(x(t))
)

> ∆KL

}

, (3.3a)

where p1(x(t)) := p
(

x(t)|y(t0:e-1), y(t)
)

,

p2(x(t)) := p
(

x(t)|y(t0:e-1)
)

.
(3.3b)

A characterization of p1(x(t)) and p2(x(t)) in (3.3b) is derived by assuming
that the sensor node has access to the estimation results of the EBSE at te-1,
i.e., p

(

x(te-1)|y(t0:e-1)
)

= G
(

x(te-1), x̂(te-1), P (te-1)
)

. This PDF is then used
by the sensor node to compute p1(x(t)) and p2(x(t)) according to the standard
asynchronous Kalman filter of (Mallick et al., 2001), for some τe := t-te-1, so
that the computational power required from a sensor node is limited,, i.e.,

p1(x(t)) := G
(

x(t), x̂1(t), P (t)
)

, p2(x(t)) := G
(

x(t), x̂2(t), P2(t)
)

, (3.4a)

where P2(t) := A(τe)P (te-1)A
⊤(τe) +Q(τe),

x̂2(t) := A(τe)x̂(te-1),

P1(t) :=
(

P−1
2 (t) + C⊤V −1C

)−1
,

x̂1(t) := P1(t)
(

P−1
2 (t)x̂2(t) + C⊤V −1y(t)

)

.

(3.4b)

The above expressions are a direct result from the fact that p2(x(t)) is a pre-
diction of p

(

x(te-1)|y(t0:e-1)
)

towards t>te-1 based on the process model (3.1),

while p1(x(t)) yields an update of p
(

x(te-1)|y(t0:e-1)
)

with the current mea-
surement y(t). The results of (Majda et al., 2002) on the Kullback-Leibler
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divergence of Gaussian PDFs further gives that d(p1(x)||p2(x)) of (3.2) can
be separated in a dispersion-term, denoted with α ∈ R, and signal-term, i.e.,

d(p1(x) || p2(x)) =α(t) +
1

2

(

x̂1(t)− x̂2(t)
)⊤

P−1
2 (t)

(

x̂1(t)− x̂2(t)
)

,

α(t) :=
1

2

(

log |P2(t)| |P1(t)|−1
+ tr

(

P−1
2 (t)P1(t)

)

− n
)

.

(3.5)

The variable n in (3.5) is the vector size of x. Note that α(t) depends on the
difference of the updated error-covariance P1(t) with the predicted P2(t).
Hence, the bigger this difference, the larger α(t) will be and the sooner
d(p1(x)||p2(x)) > ∆KL will trigger a new event. A similar reasoning holds
for the signal-term depending on the prediction error, i.e., larger values of
(

x̂1(t)-x̂2(t)
)⊤(

x̂1(t)-x̂2(t)
)

will trigger new events. This completes the event
triggering condition of Matched sampling. Next, let us asses the proposed
sampling strategy in combination with the EBSE of Chapter 2.

3.2.2 EBSE with Matched sampling

The EBSE performs an update at each sample instant t ∈ T (for brevity,
this paragraph will use t to denote the EBSE instants instead of tk). At
synchronous instants, this update is based on a bounded set H[e|t], such that
y(t) ∈ H[e|t], see Proposition 2.4.1. Otherwise, stability1 of the EBSE cannot
be guaranteed. Therefore, the analysis of Matched sampling in combination
with the EBSE focuses on a proof that H[e|t] is a bounded set. This proof is
given after deriving an expression of H[e|t] for Matched sampling.

A derivation of the set H[e|t] starts from d(p1(x) || p2(x)) of (3.5), as this
divergence characterizes the event triggering criterion of Matched sampling.
The derivation makes use of the following result, which is obtained from the
update equations of x̂1(t) in (3.4b), i.e.,

x̂1(t)− x̂2(t) = P1(t)
(

P−1
2 (t)x̂2(t) + C⊤V −1y(t)

)

− x̂2(t)

= P1(t)
(

C⊤V −1y(t)−
(

P−1
1 (t)− P−1

2 (t)
)

x̂2(t)
)

= P1(t)C
⊤V −1

(

y(t)− Cx̂2(t)
)

.

Substituting this result into the Kullback-Leibler divergence of (3.5), yields

d(p1(x) || p2(x)) = α(t) +
1

2

(

y(t)− Cx̂2(t)
)⊤

Υ(t)
(

y(t)− Cx̂2(t)
)

,

where Υ(t) := V −1CP1(t)P
−1
2 (t)P1(t)C

⊤V −1.
(3.6)

In the situation that no new measurement was received at time t, it must
hold that d(p1(x) || p2(x)) ≤ ∆KL, see (3.3), due to which

(

y(t)− Cx̂2(t)
)⊤

Υ(t)
(

y(t)− Cx̂2(t)
)

≤ 2
(

∆KL − α(t)
)

. (3.7)

1Stability of the EBSE means that λmax(P (t)) is asymptotically bounded.
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The inequality of (3.7) is similar to the characterization of a ellipsoidal sub-

level-set, i.e., Eµ,Σ := {y ∈ R
m | (y − µ)

⊤
Σ−1 (y − µ) ≤ 1}, for some µ ∈ R

m

and Σ ∈ R
m×m (see Section 1.5). Hence, even though y(t) is not available to

the EBSE, the inequality in (3.7) guarantees that y(t) ∈ H[e|t], when

H[e|t] := ECx̂2(t),Φ−1(t) and Φ(t) :=
1

2

(

∆KL − α(t)
)−1

Υ(t). (3.8)

Note that the EBSE can obtainH[e|t] of (3.8) via the values of x̂(te-1), P (te-1),
C and V . Only the threshold ∆KL must be shared by the sensor node.

Based on the availability of this threshold, let us analyze the stability of
the EBSE in combination with Matched sampling, which is guaranteed when
H[e|t] is bounded for all t ∈ T. The results of the next two lemmas prove this
property for Matched sampling, by observing that H[e|t] of (3.8) is bounded
for all t ∈ T, if Φ ≻ 0 holds for all t ∈ T. Or similarly,

• 0 < ∆KL − α(t) < ∞ holds for all t ∈ T and

• Υ(t) ≻ 0 holds for all q ∈ Z[1,n] and all t ∈ T.

Lemma 3.2.1 Let ∆KL ∈ R+ be given and let α(t) satisfy (3.5). Then,
0 < ∆KL − α(t) ≤ ∆KL + 1

2n holds for all t ∈ T.

Lemma 3.2.2 Let C ∈ R
m×n of (3.1) be such that rank(C) = m and let

Υ(t) satisfy (3.6). Then, Υ(t) ≻ 0 holds for all t ∈ T.

The proofs of Lemma 3.2.1 and Lemma 3.2.2 are found in Appendix C.1 and
Appendix C.2, respectively. Other conditions for attaining bounded eigen-
values of the error-covariance P (t) are not addressed here, since they do not
depend on the event sampling strategy. As such, the EBSE in combination
with Matched sampling satisfies the conditions for stable estimation results
from a sampling point of view. This aspect is demonstrated in the next illu-
strative example, after the following remark on the premise of Lemma 3.2.2.

Remark 3.2.3 Lemma 3.2.2 requires that rank(C) = m is met by the me-
asurement matrix C ∈ R

m×n. Not satisfying this condition means that mul-
tiple sensors are measuring the same q-th state-element {x}q. To circumvent
the issue that rank(C) 6= m, one can first fuse the independent measurements
via standard sensor fusion methods, see, e.g., (Bar-Shalom and Campo, 1986).
The resulting “measurement matrix” Cf ∈ R

mf×n that corresponds to the
fused measurement does satisfy rank(Cf ) = mf .

3.2.3 An illustrative comparison

The effectiveness of Matched sampling (MS) is compared to Send-on-Delta
(SoD) in the object tracking case-study of Section 2.5. Two simulations
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are analyzed, in which the sensor node either performs MS or SoD. The
triggering condition of MS is characterized by (3.3) and ∆KL = 1.5, while
SoD of Section 1.3.1 employs ∆ = 0.5. Details on the considered process
model are found in Section 2.5.

The EBSE performs an update on the estimation results at each sample
instant tk ∈ T. At the instants of an event tk ∈ Te, a new measurement is
received by the EBSE, while at the synchronous sample instants tk ∈ Ts \Te

no measurement is received and the EBSE performs an update based on the
fact that y(tk) ∈ H[e|tk]. To that extent, the EBSE determines an implied
measurement value ŷ1(tk) ∈ R

m with a certain covariance R(tk) ∈ R
m×m,

see also the EBSE algorithm presented in Section 2.3.3. Suitable values for
both sampling strategies are the following:

MS: ŷ1(tk) = Cx̂2(tk), R =
1

2
(∆KL − α(tk))Υ(tk) + V ;

SoD: ŷ1(tk) = y(te−1), R =
1

4
∆2 + V.

Figure 3.3 illustrates the event instants of the two different event sam-
pling strategies in the plot of the estimated position computed by the EBSE.
Notice that SoD triggered 54 event instants, which for MS were reduced to
38 instants. Among others, these numbers depend on process dynamics.
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Figure 3.3: The event sample instants and estimated positions of EBSE in

combination with Matched sampling (MS) and with Send-on-Delta (SoD).

The above figure further indicates that the main difference between MS
and SoD is when an event is triggered. For SoD most sample instants takes
place when the object has a high but constant speed. For MS most samples
takes place when the unknown acceleration is large, which is considered to be
of more relevance to the EBSE. Similar results are also noticed in Figure 3.4,
which depicts the modeled and true estimation error of the EBSE for both
MS and SoD, i.e. tr(P ) and (x− x̂)⊤(x− x̂), respectively.
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Send-on-Delta (SoD) on the modeled estimation error, i.e., tr(P ), and the

real estimation error, i.e., (x− x̂)⊤(x− x̂).

A first conclusion that can be drawn from Figure 3.4 is that, on average,
the estimation results are comparable for both sampling strategies. However,
the modeled and true estimation error with MS are more alike compared to
SoD. Also, the variations of tr(P ) and (x − x̂)⊤(x − x̂) differ. The results
with MS indicate that their values almost have a repetitive behavior, i.e.,
with little variations and a predictive character. For the EBSE combined
with SoD, the amplitude variations are more severe and shows a rapid im-
pulsive behavior mixed with steady periods. Hence, when MS is employed
as event sampling strategy, the EBSE shows less variation in its performance
measures, i.e., the estimation error and error-covariance. This without com-
prising on communication requirements by inducing more event instants.

The next step is to close the loop with a controller, for which the EBSE
of Chapter 2 is extended to include control actions.

3.3 Event based estimation with control acti-

ons

The event sampled measurements are exploited by the EBSE to compute an
estimate of x. However, the current control value u(tk) is additional infor-
mation that can be used by the EBSE as well. Since including u(tk) involves
a slight modification of the EBSE algorithm presented in Section 2.3.3, let
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us briefly address this extension. For clarity of expression, the notation of
Chapter 2 is adopted, i.e., x[k] is used to denote x(tk) and so on.

The extended EBSE algorithm is summarized below. Therein, the event
sampling strategy is used to formulate implied measurement information that
is represented by a “sensor value” ŷq[k] ∈ R

m, for all q ∈ Z[1,N ], and a cor-
responding “noise covariance” R[k] ∈ R

m×m via the Likelihood(·,·,·) routine.
Also, note that ωq[k] ∈ R+ is by definition a scalar weight.

Algorithm of the EBSE

Prediction

x̂[k−] = A(τk)x̂[k-1] +B(τk)u[k-1];

P [k−] = A(τk)P [k-1]A⊤(τk) +Q(τk);

Measurement update

(ŷ1[k], . . . , ŷN [k], R[k]) = Likelihood(H[e|tk], V ), (2.14);

Θ[k] =
(

P−1[k−] + C⊤R−1[k]C
)−1

;

for all q ∈ Z[1,N ], do:

θ̂q[k] = Θ[k]
(

P−1[k−]x̂[k−] + C⊤R−1[k](ŷq[k]−Du[k])
)

;

ωq[k] = G
(

ŷq[k]−Du[k], Cx̂[k−], CP [k−]C⊤ +R[k]
)

;

end

Approximation

x̂[k] =

N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]
θ̂q[k];

P [k] =

N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]

(

Θ[k] + (x̂[k]− θ̂q[k])(x̂[k]− θ̂q[k])
⊤).

The above EBSE algorithm is similar to the one of Chapter 2 added
with the terms B(τk)u[k-1] and Du[k]. Notice that these additional terms

are present in both θ̂q[k] and x̂[k]. As a result, the effect of the control

action u[k] cancels out in x̂[k] − θ̂q[k] and thus in the update of P [k] as
well. This further implies that stability of the EBSE with control actions
is obtained mutatis mutandis from the proof of Theorem 2.4.6, for which
α(τs) := supτ∈[0,τs] σmax(A(τ)) and β(τs) := supτ∈[0,τs]

√

λmax(Q(τ)).

Theorem 3.3.1 Let Assumption 2.4.1 and the premise of Proposition 2.4.5
be satisfied. Then the EBSE with control actions results in a stable estimate,
i.e., λmax(P [∞]) ≤ α2(τs)λmax(Σ[∞]) + β2(τs) holds and Σ[∞] exists.

The result of Theorem 3.3.1 guarantees that P [k] is asymptotically bounded.
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This property is used by the robust MPC to calculate a stabilizing control
action while tuning the disturbance rejection.

3.4 Integration with a robust MPC

The time-synchronous controller of the proposed event based control set-up of
Figure 3.1 will be based on the robust MPC approach presented in (Lazar and
Heemels, 2008). Originally, the approach was introduced to achieve input-to-
state stability (ISS) with respect to additive disturbances, see Definition 1.5.5.
In this section, the robust MPC is modified, so that its ISS-property holds for
estimation errors, instead. Moreover, the MPC algorithm offers a possibility
to enhance disturbance rejection in case the estimation error is small. This
is one of the main reasons to select this controller, as it can act during
operation on the time-varying estimation results of the EBSE. To that end,
an integration procedure is developed that exploits the error-covariance P (tk)
of the EBSE and turns it into a deterministic measure of the estimation
error. Further, an illustrative control example shows convincing results of
the proposed feedback set-up.

3.4.1 A robust MPC algorithm

The controller receives the estimates x̂(tk) and P (tk) at each synchronous in-
stant tk ∈ Ts, according to the specified sampling time τs. These variables are
used by the controller to determine a stabilizing control action u(tk) depen-
ding on the estimated state x̂(tk) and estimation error ̟(tk) := x̂(tk)-x(tk).
While estimators tend to track the current state x(tk), controllers aim to
optimize the next state x(tk+τs). As such, a typical representation of the
model in (3.1) for control purposes, yields

x(tk+τs) := Ax(tk) +Bu(x(tk) +̟(tk)), ∀tk ∈ Ts, (3.9)

where A := A(τs) and B := B(τs). As the robust MPC of (Lazar and
Heemels, 2008) is a deterministic controller, x, u and̟ are characterized by a
bounded region rather than a PDF. Hence, let us assume that x(tk) ∈ X ⊆ R

n,
x̂(tk) ∈ X, u(tk) ∈ U ⊆ R

l and ̟(tk) ∈ W(tk) ⊂ R
n, such that 0 ∈ int(X),

0 ∈ int(U) and 0 ∈ int(W(tk)), for all tk ∈ Ts. Furthermore, W(tk) is a
symmetric set, i.e., ̟ ∈ W implies that −̟ ∈ W.

The time-dependent set W(tk) is characterized by a known polytope (clo-
sed and bounded polyhedron) that defines the deterministic bounds of the
estimation error ̟(tk). An efficient procedure to determine W(tk) from P (tk)
is the topic of Section 3.4.2. Let us continue here by presenting the modified
robust MPC. For simplicity and clarity of exposition, the instant tk is omit-
ted throughout a part of this section, i.e. x̂, x, W, etc. will denote x̂(tk),
x(tk), W(tk) and so on. The goal is to design a control algorithm that finds
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a control action u(x̂) ∈ U, such that for all ̟ ∈ W the following holds

V (Ax+Bu(x̂))− V (x) + a‖x‖c − ϑ(‖̟‖) ≤ 0. (3.10)

Let us explain each element of the above inequality.

• ϑ : R+ → R+ is a continuous, strictly increasing function and ϑ(0) = 0.

• a‖x‖c, for some a, c ∈ R>0, is a power function of ‖x‖, i.e., a conti-
nuous, strictly increasing function on ‖x‖ ∈ R+ that is 0 if ‖x‖ = 0.

• V (·), in this entire section, is not the measurement-noise covariance. To
respect the notation in control theory V :Rn → R+ denotes a Lyapunov
function, satisfying a1‖x‖c ≤ V (x) ≤ a2‖x‖c for some a1, a2 ∈ R>0.

It was already proven in (Kellett and Teel, 2005) that satisfying (3.10),
for some Lyapunov function V (·), would guarantee ISS of the correspon-
ding closed-loop system (3.9). The ISS-property is derived by substituting
β(‖x[0]‖, k) = a−1

1 (2(1 − a−1
2 a)ka2)

−c‖x[0]‖ into Definition 1.5.5 of ISS to-
gether with the following ISS-gain:

γ(‖̟‖) = (2a)ca−1
1 a−c

2 (ϑ(‖̟‖))−c. (3.11)

The robust MPC proposed in (Lazar and Heemels, 2008) optimizes this ISS-
gain at each sample instant by minimization of ϑ(‖̟‖) and thereby, improves
the disturbance rejection of the feedback loop. In what follows, the results
of (Lazar and Heemels, 2008) are extended to estimation errors that act as a
disturbance on the input of the controller.

Finite dimensional problem

The first step of the robust MPC approach is to substitute the inequality
of (3.10), which should hold for an infinite number of values ̟ ∈ W, by an
inequality for a finite number of specific values that characterize W.

To that extent, let us denote ̟j , for all j ∈ Z[1,N ], as the vertices of
W ⊂ R

n, each having some optimization variable ςj ∈ R+. Further, let us
define the matrix W ∈ R

n×N and the row-vector ζ ∈ R
N as follows:

W :=
(

̟1 ̟2 · · · ̟N

)

and ζ :=
(

ς1 ς2 · · · ςN
)

. (3.12)

The set W ⊂ R
n is divided into M unique subsets Si ⊂ R

n called simplices,
for all i ∈ Z[1,M ], i.e., ∪i=Z[1,M]

{Si} = W and int(Si) ∩ int(Sr) = ∅ for
i 6= r. See also Figure 3.5 for a graphical illustration. Notice that each
simplex Si is equal to the convex hull of l particular vertices ̟j and the
origin, i.e., Si := Co{0, ̟q(i,1), · · · , ̟q(i,l)}, for some ̟q(i,r) ∈ {̟1, · · · , ̟N}
and r ∈ Z[1,l]. Further, let us introduce a unique “vertices selection” matrix
Ti ∈ R

N×n with a corresponding simplex Si = Co{0, ̟q(i,1), · · · , ̟q(i,l)} as
follows:

Ti :=
{

T ∈ R
N×n|Si,WT = (̟q(i,1), · · · , ̟q(i,l))

}

,

where, {T}qr ∈ {0, 1}, ∀q ∈ Z[1,N ], ∀r ∈ Z[1,n].
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Figure 3.5: An example of the set W with its corresponding vertices ̟j and

simplices Si, for all j ∈ Z[1,N ] and i ∈ Z[1,M ].

Note that the matrix WTi is invertible for all i ∈ Z[1,M ]. In case S3 of
Figure 3.5 is taken as an example, then S3 = Co{0, ̟q(3,1), ̟q(3,2)}, q(3, 1) =
2 and q(3, 2) = 3, due to which T3 = ( 0 1 0 0 0

0 0 1 0 0 )
⊤
.

The definitions ofW , ζ and Ti, for all i ∈ Z[1,M ], are used to derive a finite
number of inequalities that can be used as a substitute for (3.10). Although
this derivation assumes that x and x̂ are known, the dependency on x is
removed afterwards. Hence, consider the following finite set of inequalities,

V (Ax̂+Bu(x̂))− V (x) + a‖x‖c ≤ 0,

V (A(x̂−̟j)+Bu(x̂))− V (x) + a‖x‖c − ςj ≤ 0, ∀j ∈ Z[1,N ].
(3.13)

Assumption 3.4.1 V (·) is a continuous, convex Lyapunov function. This
includes quadratic functions, i.e., V (x) = x⊤Pvx with Pv ≻ 0, and functions
based on norms, i.e., V (x) = ‖Pvx‖ with Pv a full-column rank matrix.

Lemma 3.4.2 Let Assumption 3.4.1 be satisfied and let x̂ and x be given.
If there exist a u(x̂) and ̟j , for all j ∈ Z[1,N ], such that (3.13) holds, then
(3.10) holds for the same u(x̂), with ϑ(‖̟‖) := η‖̟‖ and

η := max
i=1,...,M

{‖ζTi(WTi)
−1‖}. (3.14)

The proof of this lemma is found in Section C.3.

To remove the dependency of (3.13) on x and thereby, formulate a fi-
nite dimensional optimization problem attaining closed-loop ISS, let us re-
institute the time notion of tk. Further, note that x(tk) ∈ {x̂(tk)} ⊕ W(tk)
holds and that x̂(tk) and W(tk) are available to the controller. Then, remo-
ving this dependency implies that V (x) and a‖x‖c of (3.13) are substituted
with variables that depend on x̂(tk) and W(tk). To that extent, let us define

Vmin(tk) := min
x∈{x̂(tk)}⊕W(tk)

V (x), (3.15)

amax(tk) := max
x∈{x̂(tk)}⊕W(tk)

a‖x‖c. (3.16)

Next, let us define a cost-function J : RN → R+, depending on ζ ∈ R
N , such

that it satisfies a3‖ζ‖c ≤ J(ζ) ≤ a4‖ζ‖c, for some a3, a4, c ∈ R>0. Hence,
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J(ζ) is in between two continuous, strictly increasing functions of ‖ζ‖. It
was mentioned at (3.11) that optimization of the ISS-gain for disturbance
rejection is attained by minimization of ϑ(‖̟‖). The results of Lemma 3.4.2
further imply that this is similar to minimizing ς1 · · · ςN of ζ via J(ζ). As
such, a finite dimensional optimization problem of the robust MPC, yields

u(tk) := argu∈U min J(ζ), ∀ςj ∈ R+ and ∀j ∈ Z[1,N ], (3.17a)

subject to

Az +Bu ∈ X, ∀z ∈ {x̂(tk)} ⊕W(tk), (3.17b)

V (Ax̂(tk) +Bu)− Vmin(tk) + amax(tk) ≤ 0, (3.17c)

V
(

A
(

x̂(tk)-̟j(tk)
)

+Bu
)

− Vmin(tk) + amax(tk)− ςj ≤ 0. (3.17d)

In the above formulation, (3.17a-b) characterize the optimization of the ISS-
gain for disturbance rejection. The inequalities (3.17c-d) are a substitute of
(3.13), and thus of (3.10), such that ISS with respect to the estimation error
̟(tk) is guaranteed from the available variables. A formal proof of ISS is
present next, for which the two sets U ⊂ R

l and X ⊂ R
n are defined as

U(x̂(tk)) := {u ∈ R
l|(3.17b-c-d) holds ∀ςj ∈ R+ and ∀j ∈ Z[1,N ]},

X (tk + τs) := {Ax(tk) +Bu | u ∈ U(x̂(tk))}.

Then u ∈ U(x̂(tk)) implies that u(tk) = u is a stabilizing control action
when solving (3.17), i.e., by neglecting the minimization problem of (3.17a).
Further, x(tk+τs) ∈ X (tk+τs) refers to the difference inclusion corresponding
to system (3.9) for each feasible control action within U(x̂(tk)).

Theorem 3.4.3 Let a Lyapunov function V , satisfying Assumption 3.4.1,
and a cost-function J be given. Further, let a bounded set W be defined,
such that W(tk) ⊆ W, for all tk, and suppose that (3.17) is feasible for all
x̂(tk) ∈ X⊕W and all tk. Then the difference inclusion x(tk+τs) ∈ X (tk+τs),
for all k ∈ Z+, is ISS in X for inputs in W.

The proof of this theorem is found in Section C.4. Notice that this theorem
evaluated the worst case scenario of ςj for proving ISS, which corresponds
to the worst case evaluation of the set W(tk), for all k ∈ Z+. Furthermore,
the proof was presented by taking all feasible control actions U(tk) into ac-
count while analyzing ISS. In reality, the proposed robust MPC provides the
freedom to select a control action u(tk) that optimizes the ISS-gain of the
closed-loop system by minimizing the variables of ζ via the cost-function J ,
i.e., (3.17a). A brief discussion on how to solve (3.17) is given next.

Implementation of robust MPC via linear programming

This section indicates certain ingredients that allow the implementation of
(3.17) via linear programming, for which our attention is restricted to Lya-
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punov functions that are defined by the infinity norm, i.e.,

V (x) = ‖Pvx‖∞, (3.18)

where Pv ∈ R
p×n is a full-column rank matrix. Note that (3.18) satisfies

the criteria of a Lyapunov function, i.e., a1‖x‖c ≤ V (x) ≤ a2‖x‖c, for a1 :=
σmin(Pv)√

p
, a2 := ‖Pv‖∞ and c = 1.

An implementation to compute amax(tk) of (3.16) is derived first, for
which a‖x‖c is assumed to be characterized by c = 1 and some a ∈ R>0.
Then, amax(tk) is directly obtained via the vertices of W(tk), i.e.,

amax(tk) := max
j∈Z[1,N]

(a‖x̂(tk) +̟j(tk)‖).

Based on the above definitions, let us continue with an implementation
of (3.17). Notice that it is sufficient to impose (3.17b) only for the vertices
of {x̂(tk)} ⊕ W(tk), i.e., for ∪j∈Z[1,N]

{̟j(tk) + x̂(tk)}. Further, Vmin and
amax are scalar-valued functions and ςj are scalar-gains, for all j ∈ Z[1,N ].
Hence, feasible computational requirements for solving (3.17) are attained by
rewriting (3.17c-d) into scalar inequalities. To that extent, let us use the fact
that satisfying ‖z‖∞ ≤ α, for some z ∈ R

n and α ∈ R+, is guaranteed if the
same inequality holds for the absolute value of each q-th element of z, i.e.,
±{z}q ≤ α. Applying this property to (3.17) implies that to satisfy (3.17c-d)
it is necessary and sufficient to require that

± {Pv(Ax̂(tk) +Bu(tk))}q − Vmin(tk) + amax(tk) ≤ 0,

± {Pv (A (x̂(tk)-̟j(tk)) +Bu(tk))}q − Vmin(tk) + amax(tk)− ςj ≤ 0,

for all q ∈ Z[1,p] and j ∈ Z[1,N ]. For the remaining part of (3.17), i.e., (3.17a),
let us choose an infinity-norm based cost function as well, i.e.,

J (x(tk), u, ζ) := ‖PJ (A(x̂(tk)-̟j(tk)) +Bu) ‖∞
+ ‖QJ (x̂(tk)-̟j(tk)) ‖∞ + ‖RJ‖∞ +

∑

j∈Z[1,N]

‖κjςj‖∞, (3.19)

for some suitable full-column rank matrices PJ , QJ and RJ and weights
κj ∈ R+. Then, minimization of the cost J as characterized in (3.17a), while
taking the implications of (3.17b-c-d) into account, results in

u(tk) := argu∈U min
(

ǫ1 + ǫ2 +
∑

j∈Z[1,N]

κjςj

)

, ∀ςj , ǫ1, ǫ2 ∈ R+, ∀j ∈ Z[1,N ],

subject to

A (x̂(tk) +̟j(tk)) +Bu ∈ X, ∀j ∈ Z[1,N ]

± {PJ (A(x̂(tk)-̟j1(tk)) +Bu)}q + ‖QJ (x̂(tk)-̟j2(tk)) ‖∞ ≤ ε1,

± {RJu}r ≤ ε2,
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for all (j1, j2) ∈ Z[1,N ] ×Z[1,N ]. Moreover, the latter two inequalities need to
be satisfied for each q-th row of PJ and r-th row of the matrix RJ . The only
thing left for implementing is to compute Vmin(tk). Using the same reasoning
as above, it can be shown that Vmin(tk) of (3.15) can be formulated as a linear
program. As such, implementation of the control problem (3.17) amounts to
solving 2 linear programs and calculating the maximum over a finite set of
real numbers, which can be performed efficiently.

3.4.2 Integration of the EBSE and robust MPC

The routine of the event based control set-up in Figure 3.1 that is still open, is
the integration procedure of the EBSE with the robust MPC. Note that x̂(tk)
computed by the EBSE can directly be used by the robust MPC. However, the
EBSE models an unbiased estimation error via the error-covariance P (tk) =
cov(̟(tk)), while the robust MPC requires a deterministic set ̟(tk) ∈ W(tk)
off all possible the estimation errors. Hence, integration of the EBSE and ro-
bust MPC involves a transformation of the stochastic representation p(̟(tk)) =
G(̟(tk), 0, P (tk)) into the deterministic ̟(tk) ∈ W(tk). Since all variables of
this section have the same instant tk, let us omit this time notation throug-
hout this section, i.e., G(̟(tk), 0, P (tk)) becomes G(̟, 0, P ).

The integration procedure consists of two step. A representation of
p(̟) = G(̟, 0, P ) in ellipsoidal sub-level-sets is derived first, after which
W is defined as an over-approximation of one of these ellipsoidal sets, such
that ̟ ∈ W has a high probability.

Step 1

The ellipsoidal sub-level-sets that correspond to the GaussianG(̟, 0, P ) were
already defined via E0,cP ⊂ R

n, for some c ∈ R+, as follows

E0,cP :=
{

̟ ∈ R
n
∣

∣

∣
̟⊤P−1̟ ≤ c

}

. (3.20)

Applying some statistics, one can calculate the probability Pr(·) that the
estimation error ̟ is within the set E0,cP . Examples of this probability are
Pr (̟ ∈ E0,1P ) ≈ 0.68, Pr (̟ ∈ E0,4P ) ≈ 0.95, and Pr (̟ ∈ E0,9P ) ≈ 0.997.

Step 2

The estimation error set W is defined as a polytopic over-approximation of
E0,cP , for a certain c ∈ R+. There is no optimal method to calculate W, as it
amounts to the ancient problem of “squaring the circle”. See for example the
results in (Alessio et al., 2007) and the references therein. Instead, a trade-off
is made between the size of W on the one hand, indicating the worst case
estimation error, and computational complexity of obtaining W on the other
hand. An illustrative example is depicted in Figure 3.6 of a tight and a fast
over-approximation, where E0,4P .
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Figure 3.6: Two over-approximations of E0,4P by W.

The goal of this chapter is to have the least computational complexity.
Therefore, an extension of the fast approximation to a cubic-set W with
length d ∈ R>0 is employed. This means that the vertices of W are explicitly
defined as all possible realizations on {̟j}q ∈ {−d, d}, for all q ∈ Z[1,n] and
j ∈ Z[1,N ]. The next result presents the transformation from the Gaussian
PDF p(̟) = G(̟, 0, P ) into the over-approximation W, i.e., E0,cP ⊆ W,
where c ∈ R+ is a design parameter to characterize estimation errors, i.e.,

W := {̟ | ‖̟‖∞ ≤ d} with d :=
√

cλmax(P ). (3.21)

Lemma 3.4.4 Let p(̟) = G(̟, 0, P ) be given for some P ∈ R
n×n and let

W satisfy (3.21). Then, for any c ∈ R+, it holds that E0,cP ⊂ W.

Proof: Let us consider E0,cP , which by definition yields ̟⊤P−1̟ ≤ c.
As such, λmin(P

−1)‖̟‖2∞ ≤ λmin(P
−1)‖̟‖22 ≤ ̟⊤P−1̟ ≤ c. This also

means that ‖̟‖∞ ≤
√

c(λmin(P−1))−1 holds. Then, applying the fact that

λmin(P
−1) = (λmax(P ))−1 gives that ‖̟‖∞ ≤

√

cλmax(P ) and thus ̟ ∈ W

is satisfied for all ̟ ∈ E0,cP , which completes the proof.

Lemma 3.4.4 indicates that the probability of ̟ ∈ W has a lower bound
at Pr (̟ ∈ W) ≥ Pr (̟ ∈ E0,cP ). Therefore, choosing c = 9 implies that
̟(tk) ∈ W(tk) has at least a probability of Pr (̟ ∈ E0,9P ) ≈ 0.997.

Remark 3.4.5 The hypothesis of Theorem 3.4.3, i.e., there exists a con-
stant W such that W(tk) ⊆ W holds for all tk, is satisfied. Let us explain this
statement. Note that Theorem 3.3.1 established the property of a bounded
error-covariance P (tk), for all tk ∈ T, due to which λmax(P (tk)) is also boun-
ded for all tk ∈ T. Then, by the definition of W(tk), it holds that W(tk) ⊆ W

for all tk and W :=
{

̟ ∈ R
n | ‖̟‖∞ ≤ suptk

√

cλmax(P (tk))
}

. ✷

This completes the overall design of the feedback loop, as it is depicted
in Figure 3.1. The only aspect that should be addressed carefully is that
the EBSE is a stochastic estimator, while the robust MPC algorithm is a
deterministic controller. As such, since P (tk) = cov(̟(tk)), one does not
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have a guarantee that ̟(tk) ∈ W(tk) and thus that the real state is bounded.
Instead, a deterministic set ̟(tk) ∈ W(tk) can only be given with a certain
probability. If ̟(tk) 6∈ W(tk), for some tk ∈ R+, inherent ISS is still attained
as long as x ∈ X, which is shown in the next control example.

3.5 Illustrative control example

The effectiveness of the developed EBSE and robust MPC set-up is demon-
strated in a 1D position control case study. To that end, two simulations are
analyzed, one in which the sensor node performs Matched sampling (MS) and
one where Send-on-Delta (SoD) is employed for sampling the measurements.

Communication Measurements are sampled according to one of the em-
ployed event sampling strategies. The triggering condition of MS in
(3.3) is based on the Kullback-Leibler divergence and ∆KL = 2.8, while
SoD of Section 1.3.1 employs a level-crossing criteria on |y(t)− y(te-1)|
with the threshold ∆ = 0.1. Notice that the control action u(t) is not
available to the sensor. Therefore, the value of the Kullback-Leibler
divergence d(p1(x)||p2(x)) is computed by the sensor node according to
(3.4) and Q(τe) =

(

0.5τ2
e

τe

)

0.1
(

0.5τ2e τe
)

. This latter covariance is lar-
ger than the one that corresponds to cov(w(t, τ)), which will be shown
next, as it should model the additional uncertainty that is caused by
an unknown control action u at the sensor node.

Process The process model is a controlled double integrator, i.e.,

x(t+ τ) =

(

1 τ
0 1

)

x(t) +

(

1
2τ

2

τ

)

u(t) + w(t, τ),

y(t) =
(

1 0
)

x(t) + v(t).

(3.22)

The state vector x(t) combines to the object’s position and speed, while
only the position is measured in y(t). The control input u(t) is defined
as the object’s acceleration and both the state and control inputs are
subject to the constraints x(t) ∈ X = [−5, 5] × [−5, 5] and u(t) ∈ U =
[−2, 2]. The process-noise and measurement-noise are characterized as
p(w(t, τ)) = G(w(t, τ), 0, 3τ · 10−6I2) and p(v(t) = G(v(t), 0, 1 · 10−4).
Further, the sampling time of the robust MPC is τs = 0.7 seconds.

The EBSE performs an update on the estimated state at each sample
instant tk ∈ T. At the instants of an event tk ∈ Te a new measurement is
received by the EBSE for the update. However, at the synchronous sample
instants tk ∈ Ts \ Te no measurement is received and the update is based
on the fact that y(tk) ∈ H[e|tk]. To that extent, the EBSE determines an
implied measurement value ŷ1 ∈ R

m with a certain covariance R ∈ R
m×m,

see also the EBSE algorithm presented in Section 3.3. Suitable values for



3.5. Illustrative control example 65

both sampling strategies are the following:

MS: ŷ1(tk) = Cx̂2(tk), R =
1

2
(∆KL − α(tk))Υ(tk) + V ;

SoD: ŷ1(tk) = y(te−1), R =
1

4
∆2 + V.

Next, let us design the parameters of the robust MPC. A technique of
(Lazar and Heemels, 2008) was used to compute the weight Pv ∈ R

2×2

of the Lyapunov function V (x) = ‖Pvx‖∞, for a‖x‖c := 0.01‖x‖, yielding
Pv =

(

2.7429 0.7121
0.1989 4.0173

)

. Following the integration procedure of Section 3.4.2,
the set W(tk) ⊂ R

2 will have 4 vertices. As such, the robust MPC covers
4 optimization variables ςj(tk), for all j ∈ Z[1,4], that each correspond to
a vertex ̟j of W(tk). The cost function J(x(tk), u(tk), ζ(tk)) of (3.19) is
characterized by PJ = 0.4I4, QJ = 0.2I2, RJ = 0.1 and Γj = 4, for all
j ∈ Z[1,4]. The resulting linear program has 11 optimization variables and
108 constraints. In this implementation, also Vmin(tk) of (3.15) is calculated
by solving a linear program with 3 optimization variables and 5 constraints.

The simulation scenario involves the system response in case x(t0) =
(

3
1

)

with the origin as reference. The initial state estimates of the EBSE are
chosen as x̂(t0) =

(

3.5
1.2

)

and P (t0) = I2. The evolution of the true state
is depicted in Figure 3.7, while Figure 3.8 presents the control action. Fi-
gure 3.9 illustrates the absolute estimation error per element, i.e., |{̟(tk)}1|
and |{̟(tk)}2|, versus the corresponding bound as modeled by the length of

the cubic set W(tk) characterized by Lemma 3.4.4, i.e., d = 3λ
1
2
max(P (tk)).
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Figure 3.7: Evolution of the true position, i.e., {x}1 and speed, i.e., {x}2.
During the simulation MS triggered 76 event instants and SoD triggered 71.

Their instants are denoted with the symbols “×” in the position plot

Similar as to the estimation case of Section 3.2.3, Figure 3.7 indicates
that MS triggers new event instants at a faster rate when the state shows
unexpected behavior. For SoD the number of events increases when state
values change fast, e.g., during the first 5 seconds. In both sampling strate-
gies the controlled state-dynamics are stable. Further, Figure 3.8 indicates
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Figure 3.8: Evolution of the the control input u(tk) for MS and SoD.

that the control actions with SoD have higher impulses. This means that,
as expected, the variations in the control performance with SoD are larger
compared to the relatively constant control performance with MS. A similar
observation is noticed in Figure 3.9 on the true and modeled estimation-error.
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Figure 3.9: Evolution of the true estimation error ̟(tk) compared to the

bounds that were derived from the error-covariance P (tk).

The estimation error, as depicted in Figure 3.9, indicates that most of the
sample instants satisfy w(tk) ∈ W(tk). Nonetheless, sometimes these bounds
are violated, i.e., w(tk) 6∈ W(tk), though the robust MPC still attains a stable
closed-loop system. This is due to the fact that x ∈ X is satisfied. The figure
also confirms that MS yields a more constant estimation performance of the
EBSE compared SoD. Especially at approximately 23, 33, 41, 49 and 60
seconds the error-covariance P (tk) with SoD has high values.

This illustrative example shows that the considered event based control
set-up, as it is depicted in Figure 2.1, is a viable alternative to existing control
solutions. Moreover, the proposed method does not impose requirements on
the employed event sampling strategy, nor on an ability of the set-up to
trigger new events. Instead, stability of the feedback loop for any event
sampling strategy is attained by introducing the EBSE.

3.6 Conclusions

This chapter discussed the integration of the event based state estimator
(EBSE) in a feedback loop. The resulting event based controller is suitable
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for any event sampling strategy and supports a time-synchronous control
algorithm based on an estimated value of the state. Furthermore, stability
the feedback control system is decoupled from the event triggering criteria,
as the EBSE guarantees a bounded error-covariance at each sample instant.
Based on this error-covariance, explicit polytopic bounds on the estimation
error could be established that were then used in a robust MPC algorithm. It
was proven that the resulting MPC controller achieves ISS to the estimation
error and, moreover, it optimizes the closed-loop trajectory-dependent ISS
gain. A justification of the proposed control set-up was given by addressing
several integration aspects of the stochastic EBSE and deterministic MPC.
A theoretical proof of closed-loop properties is a topic of future research,
although simulations with two different event sampling strategies provide
convincing and promising evidence of the potential of the proposed method.
Additional to the integration, a novel event sampling strategy was proposed
to obtain a more constant control performance by reducing variations on the
estimation error. This is done by exchanging only those measurements that
are of relevance to the EBSE, while still satisfying the conditions for attaining
a stable EBSE.



68 Event based state estimation in a control loop



4

State fusion with unknown correlations:

Ellipsoidal intersection

4.1 Fusion in sensor networks
4.2 The state fusion objective
4.3 Fusion strategy and

related work

4.4 Ellipsoidal intersection
4.5 Illustrative example
4.6 Conclusions

The next three chapters cover distributed state estimation. Therein, each
node i typically computes a local estimate of the global state x based on its
own measurement yi and on the data shared by neighboring nodes, see also
Figure 4.1. Similar as to the real state x, let this local estimate be introduced
as a random vector xi ∈ R

n that is characterized by a Gaussian distribution.

p(xi)

yimeasure

compute

Figure 4.1: A typical set-up for distributed state estimation, where each

node computes a local estimates of the global state.

This chapter in particular is concerned with a state fusion method for
nodes that share local estimates. More specifically, the problem focuses on
merging two prior estimates with an unknown correlation into a single fused
estimate. Existing solutions lead to a conservative fusion result, as chosen
parameterizations concentrate on the fusion formulas and deal with corre-
lations afterwards. Yet, some properties of their correlation can be derived
from the prior estimates beforehand. To that extent, a novel parametrization
of these prior estimates is proposed, so that an explicit characterization of
the correlation is obtained before deriving the fusion formulas. Then, maxi-
mizing correlation guarantees that the fusion result is based on independent
parts of the prior estimates and, simultaneously, addresses the fact that cor-
relation is unknown. A fusion example of the proposed method demonstrates
a reduction in the uncertainty after fusion compared to current alternatives.
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4.1 Fusion in sensor networks

Before continuing with the fusion objective, let us first point out the impor-
tance of state fusion in distributed estimation. Distributed solutions for state
estimation are beneficial in networked systems when a centralized implemen-
tation for processing the produced measurements is impractical. Mostly, this
is related to communication restriction of the network topology, or to the
required computational power of a centralized node. To solve this issue, the
estimation algorithm is distributed among the nodes, in line with the network
topology. Some examples are the distributed estimation algorithms propo-
sed in (Durant-Whyte et al., 1990; Franken and Hupper, 2005; Alriksson and
Rantzer, 2006; Olfati-Saber, 2007; Khan and Moura, 2007). Therein, each
node computes a local estimate of the global state, for example, by employing
the Kalman filter on local measurements. As a result, the sensor network has
as many local state estimates as there are nodes in the network. However,
it is unlikely that these estimation results will be equal, since each node has
access to a different set of local measurements. To that extent, neighboring
nodes can share local estimates as input to a state fusion method. Such a
method is able to synchronize and improve the estimation results by fusing
multiple local estimates into a single fused estimate. The advantage of fusion
over synchronization is that the resulting fused estimate remains consistent,
i.e., the error-covariance that corresponds to a local estimate is a correct
model of its estimation error.

Definition 4.1.1 Let xi, x ∈ R
n denote two random vectors, such that xi

represents an estimate of x that is characterized by the Gaussian PDF p(xi) =
G(xi, x̂i, Pi). Then, xi is said to be consistent if E[(x− xi)(x− xi)

⊤] � Pi.

Definition 4.1.2 Two random vectors u, v ∈ R
n are said to be independent

if they satisfy cov(u, v) = 0n×n. Otherwise, u and v are correlated.

For state fusion, it is important to observe that nodes share data, due
to which the local estimates throughout the network will be correlated. This
means that the state fusion method proposed in (Bar-Shalom and Campo,
1986) could be employed, as it merges two estimates given that their correla-
tion is available. However, assuming that the correlation of local estimates is
available is too restrictive for many large-scale or ad-hoc networked systems,
since it amounts to keeping track of all the estimates that are shared between
nodes. Therefore, this chapter presents a novel state fusion method, labe-
led as ellipsoidal intersection (EI), that can cope with unknown correlations.
To that extent, the fusion objective is formulated next, followed by related
works. After that, a derivation of the proposed fusion algorithm is presented,
which is then compared to a popular fusion alternative for demonstrating the
benefits of EI.
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4.2 The state fusion objective

Let us consider two random vectors xi, xj ∈ R
n, representing two prior esti-

mates of a state x ∈ R
n. Both estimates are characterized by a Gaussian

distribution, for some x̂i, x̂j ∈ R
n and Pi, Pj ∈ R

n×n, i.e.,

p(xi) = G(xi, x̂i, Pi) and p(xj) = G(xj , x̂j , Pj). (4.1)

The goal is to merge the prior estimates xi and xj into a single fused estimate
xf , when correlation is unknown. Similar as to the prior estimation, let the
fusion result be Gaussian distributed, for some x̂f ∈ R

n and Pf ∈ R
n×n, i.e.,

p(xf ) = G(xf , x̂f , Pf ). (4.2)

In case the correlation cov(xi, xj) is available and both estimate are unbiased
and consistent, then a fusion result that is commonly known as the Best
Linear Unbiased Estimate1 was derived in (Bar-Shalom and Campo, 1986).

Theorem 4.2.1 Let xi and xj of (4.1) represent two unbiased and consis-
tent estimates of x, for which Pij := cov(xi, xj) is given. Then, a fusion result
xf of xi and xj conform to (4.2) that is characterized by

Pf =Pi − (Pi − Pij)(Pi + Pj − Pij + P⊤
ij )

−1(Pi − P⊤
ij ) and

x̂f =x̂i + (Pi − Pij)(Pi + Pj − Pij + P⊤
ij )

−1(x̂j − x̂i),
(4.3)

is the consistent fused estimate with minimal tr(Pf ).

Since correlation is unknown, the fusion formulas in (4.3) cannot be used
and xf has to be determined via an alternative set of formulas. Irrespective
of this alternative expression, note that xf should meet an intuitive fusion
property: the estimation error of xf is at least equivalent or less than the
estimation error of xi and of xj , as prior information is merged. A charac-
terization of this property was presented in (Benaskeur, 2002), which uses
the notion that the covariance of a consistent estimate models its estimation
error.

Property 4.2.2 After fusion of the prior estimates xi and xj conform to
(4.1), the fused estimate xf conform to (4.2) is such that

Pf � Pi and Pf � Pj .

Therefore, the objective is to develop a fusion method that satisfies the above
property and establishes a fusion algorithm that has a low computational
complexity. Before a detailed derivation of EI is presented, let us state the
proposed fusion strategy in relation to existing work on state fusion, next.

1Linear denotes that xf is Gaussian and unbiased denotes E[x− xf ] = 0.
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4.3 Fusion strategy and related work

Current fusion methods that cope with unknown correlations define a para-
metrization of the fusion formulas, i.e., of x̂f and Pf , before they deal with
correlations. An early and still widely used parametrization was introduced
as covariance intersection (CI) in (Julier and Uhlmann, 1997b). In case the
fused estimate of CI is denoted as p(xf ) = G(xf , x̂

ci

f , P
ci

f ), then the corres-
ponding fusion formulas, for some ω ∈ R[0,1], yield

P ci

f :=
(

ωP−1
i + (1− ω)P−1

j

)−1
,

x̂ci

f := P ci

f

(

ωP−1
i x̂i + (1− ω)P−1

j x̂j

)

,
(4.4)

The popularity of CI led to various approaches for determining ω, see, e.g.,
(Hanebeck et al., 2001; Chen et al., 2002; Franken and Hupper, 2005). Howe-
ver, a fulfillment of Property 4.2.2 by CI, when Pi 6= Pj , is restricted to two
apparent cases: ω = 0 and Pj � Pi, or ω = 1 and Pi � Pj . For any other
case neither P ci

f � Pi nor P
ci

f � Pj holds, which is illustrated in Figure 4.2.
More recent studies showed that E0,Pf

⊆ E0,Pi
∩ E0,Pj

is sufficient to meet
Property 4.2.2. This set-relation was applied in (Benaskeur, 2002) to find
Pf . However, the expression of x̂f is derived by assuming independent xi

and xj , which is contradictory to the problem formulation. Another fusion
method along the same line was proposed in (Zhuo and Li, 2008). Therein, an
iterative algorithm from (Kurzhanskiy and Varaiya, 2006) is employed to de-
termine E0,Pf

as the largest ellipsoid contained in E0,Pi
∩E0,Pj

. While certain
aspects of the procedure of (Zhuo and Li, 2008) require further clarification,
the iterative nature of this solution already restricts its applicability.
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Figure 4.2: An example of P ci

f , for three values of ω, in terms of their sub-

level-sets E0,Pi
, E0,Pj

and E0,P ci

f
(solid lines). Notice that E0,P ci

f
6⊆ E0,Pi

∩E0,Pj

is a consequence of P textscci
if

6� Pi and P textscci
if

6� Pj , see also Figure 1.9.

Overall, the issues of existing fusion methods are a consequence of para-
meterizing xf and deal with correlations afterwards, e.g., CI in (4.4). Hence,
existing parameterizations account for a restricted representation of correla-
tion based on the fused estimate. Instead, the EI fusion method proposes a
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novel parametrization of the prior estimates, by which an explicit characteri-
zation of the unknown correlation is established first. This parametrization
involves the introduction of three new estimates that each represents an in-
dependent part of the prior estimates xi and xj . Algebraic fusion formulas
are then derived by merging these newly introduced independent estimates
according to the fusion result of Theorem 4.2.1. After that, the characte-
rization of cov(xi, xj) is used to find the maximum correlation and thereby,
guarantee that these new estimates are indeed independent. An upper bound
on this maximum is found along the inequalities that satisfy Property 4.2.2.

4.4 Ellipsoidal intersection

The explanation of EI as a state fusion method will make use of the next
result, which follows from Theorem 4.2.1. To that extent, let us intro-
duce Ω : Rn × R

n → R
n as a function of two independent random vectors

x1, x2 ∈ R
n that are Gaussian distributed, i.e., p(x1) = G(x1, x̂1, P1) and

p(x2) = G(x2, x̂2, P2), such that

Ω(x1, x2) := (P−1
1 + P−1

2 )−1
(

P−1
1 x1 + P−1

2 x2

)

. (4.5)

Corollary 4.4.1 Let x1 and x2 represent two unbiased and consistent esti-
mates of x that are independent. Then, x3 := Ω(x1, x2) is a Gaussian distri-
buted random vector characterized by

P3 :=
(

P−1
1 + P−1

2

)−1
, x̂3 := P3

(

P−1
1 x̂1 + P−1

2 x̂2

)

, (4.6)

such that x3 is the consistent fused estimate with minimal tr(P3).

The proof of Corollary 4.4.1 is presented in Appendix D.1. It is worth to
point out that this proof makes use of the results in Theorem 4.2.1, due to
which the fusion formulas in (4.6) attain the Best Linear Unbiased Estimate.

4.4.1 Characterization of the unknown correlation

This section derives an explicit characterization of the unknown correlation,
after which the EI fusion formulas are derived. Characterizing cov(xi, xj)
is based on a parametrization of the prior estimates. To that extent, let
us propose that each prior estimate xi and xj represents a fusion result
determined by the function Ω(·) and Corollary 4.4.1. Then, by introdu-
cing xij , xii, xjj ∈ R

n as Gaussian distributed random vectors, for some
γ, θi, θj ∈ R

n and Γ,Θi,Θj ∈ R
n×n, the proposed parametrization, yields

xi = Ω(xij ,xii) and xj = Ω(xij , xjj),

with p(xii) := G(xii, θi,Θi), p(xjj) := G(xjj , θj ,Θj),

p(xij) := G(xij , γ,Γ).

(4.7)

Fulfilling the premise of Corollary 4.4.1 further implies the following:
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Assumption 4.4.2 xii, xij and xjj are pair-wise independent.

Note that the proposed parametrization in (4.7) and Assumption 4.4.2 invol-
ves three newly introduced estimates xii, xij and xjj that each corresponds
to an independent part of the prior estimates xi and xj . A fulfillment of
Assumption 4.4.2 is the topic of Section 4.4.2, since this section continues
with a description of the correlation followed by the fusion formulas.

The explicit characterization of cov(xi, xj), for independent xii, xij and
xjj , is obtained by substituting xi and xj of (4.7) into cov(xi, xj), i.e.,

cov(xi, xj) : = E[xix
⊤
j ]− E[xi]E[x

⊤
j ]

= E
[

Pi(Γ
−1xij +Θ−1

i xii)(x
⊤
ij Γ

−1 + x⊤
jjΘ

−1
j )Pj

]

− Pi(Γ
−1γ +Θ−1

i θi)(γ
⊤Γ−1 + θ⊤j Θ

−1
j )Pj

= PiΓ
−1Pj .

(4.8)

Further, the fact that xii, xij and xjj are pair-wise independent, while
xi = Ω(xij , xii) and xj = Ω(xij , xjj), implies that fusion of xi and xj is now
equivalent to fusing xij , xii and xjj . Fusion of multiple prior estimate is
commonly conducted recursively and since xii, xij and xjj are independent,
they can be fused via the fusion function Ω(·) and Corollary 4.4.1.

Proposition 4.4.3 Let the prior estimates xi and xj of (4.1) be given, such
that they satisfy (4.7) and Assumption 4.4.2. Then, the fused estimate xf

of (4.2) is equivalent to xf = Ω
(

Ω(xij , xii), xjj

)

, or similarly

xf = Ω(xi, xjj),

where, Pf =
(

P−1
i +Θ−1

j

)−1
, x̂f = Pf

(

P−1
i x̂i +Θ−1

j θj
)

.
(4.9)

A derivation of the above proposition is found in Appendix D.2. Basically,
the fusion result of (4.9) indicates that the prior estimate xi is fused with the
independent part xjj of the other prior estimate xj . Note that the alternative
fusion formulas are thus obtained by substituting xj = Ω(xij , xjj), i.e., Θ

−1
j =

P−1
j − Γ−1 and Θ−1

j θj = P−1
j x̂j − Γ−1γ, into (4.9), due to which

Pf =
(

P−1
i + P−1

j − Γ−1
)−1

,

x̂f = Pf

(

P−1
i x̂i + P−1

j x̂j − Γ−1γ
)

.
(4.10)

The unknown variables Γ and γ of (4.10) correspond to the unknown correla-
tion cov(xi, xj). A characterization of cov(xi, xj) was derived in (4.8). This
characterization can thus be used to find explicit expressions of the mutual
covariance Γ and the mutual mean γ. The main objective when determining
Γ will be to attain Assumption 4.4.2, for which the correlation in (4.8) should
be maximized. Therefore, let us first explain what is meant with maximizing
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the correlation of prior estimates, before deriving an explicit formula of the
mutual covariance Γ.

Maximizing a correlation matrix

This intermezzo presents a method to find the “maximum” cor-
relation of the two prior estimates xi and xj . It makes use of an
alternative definition for correlation proposed in (Edwards, 1979).

Definition 4.4.4 Two random vectors xi, xj ∈ R
n are said to

be correlated if there exists a matrix H ∈ R
n×n and a Gaussian

distributed random vector y ∈ R
n, such that xi = Hxj + y holds

and xj is independent to y. Moreover, xi and xj are said to be
fully correlated when xi = Hxj , i.e., p(y) = G(y, 0, 0n×n.

The following characterization is derived from Definition 4.4.4:

Pi ≡ cov(xi) = cov(Hxj + y) = HPjH
⊤ + cov(y), (4.11)

Pij := cov(xi, xj) = cov(Hxj + y, xj) = HPj . (4.12)

Substituting (4.12) into (4.11), yields

Pi = PijP
−1
j P⊤

ij + cov(y). (4.13)

By (4.13), note that Pi � PijP
−1
j P⊤

ij holds when xi and xj are
correlated, as xi = Hxj+y and cov(y) ≻ 0, which turns into Pi =
PijP

−1
j P⊤

ij if xi and xj are fully correlated. Hence, maximizing the
correlation of xi and xj means to reduce the effect of y on xi and
thus to find the “smallest” matrix cov(y) = Pi − PijP

−1
j P⊤

ij ≻ 0.
Since, for any A,B � 0, we have that tr(A) ≤ tr(B) if A �
B (Fact 8.12.25 of (Bernstein, 2005)), the desired “maximum”
correlation Pmax

ij can be found as follows:

Pmax
ij : = arg min

Pij∈Rn×n
tr
(

Pi − PijP
−1
j P⊤

ij

)

,

subject to Pi � PijP
−1
j P⊤

ij .

Note that min tr
(

Pi − PijP
−1
j P⊤

ij

)

= max tr
(

PijP
−1
j P⊤

ij

)

. Fur-

ther, the fact that PijP
−1
j P⊤

ij � 0, implies that tr
(

PijP
−1
j P⊤

ij

)

=

log |PijP
−1
j P⊤

ij | = 2 log |Pij | − log |Pj |. As such, the above charac-
terization of Pmax

ij is equivalently found via

Pmax
ij : = arg max

Pij∈Rn×n
log |Pij |,

subject to Pi � PijP
−1
j P⊤

ij .
(4.14)
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4.4.2 An explicit formula of the mutual covariance

This section defines the mutual covariance Γ as the result of a minimization
problem. Then, an explicit solution to this problem is derived, which yields
a fusion result for Pf that meets Property 4.2.2.

The objective when determining the value of Γ is to attain Assump-
tion 4.4.2. Since xii and xij are already independent, as well as xjj and xij ,
note that an independent xii and xjj implies that any correlation of xi and xj

should be represented by xij only. A characterization that corresponds to such
a correlation was derived in (4.8) as cov(xi, xj) = PiΓ

−1Pj . Therefore, “maxi-
mizing” cov(xi, xj) of (4.8) fulfills the desired property that any (unknown)
correlation is solely described by xij , due to which xi and xjj in (4.9) are inde-
pendent. A solution for finding this maximum correlation is obtained with the
optimization problem of (4.14), i.e., substituting Pij = PiΓ

−1Pj . The condi-
tion of (4.14) then becomes Pi � ΓP−1

j Γ. However, note that xj = Ω(xij , xjj)

of (4.7), yields Θ−1
j = P−1

j − Γ−1 ≻ 0 and thus Γ � Pj . Similarly, Γ � Pi

must hold as well. A fulfillment of Γ � Pj and Γ � Pi automatically satisfies
Pi � ΓP−1

j Γ as well. Hence, Pi � ΓP−1
j Γ can be removed from the optimiza-

tion problem when Γ � Pj and Γ � Pi are included. In addition, it is worth to
point out that substituting Pij = PiΓ

−1Pj into max log |Pij | of (4.14) results
in max log |PiΓ

−1Pj | = min log |Γ|, as |PiΓ
−1Pj | = |Pi||Γ|−1|Pj | > 0. Hence,

Γ is obtained as the unique solution of a convex optimization problem, i.e.,

Γ := arg min
Υ∈Rn×n

log |Υ|,

subject to Υ � Pi, Υ � Pj .
(4.15)

It was shown in (Boyd and Vandenberghe, 2004) that the ellipsoid E0,Γ, i.e.,
characterized by Γ of (4.15), is the Löwner-John ellipsoid of E0,Pi

∪ E0,Pj
.

This means that E0,Γ is the smallest ellipsoid that contains E0,Pi
∪ E0,Pj

.
Figure 4.3 illustrates an example of such a Löwner-John ellipsoid E0,Γ that

corresponds to Pi =
(

2 −1
−1 1

)

and Pj =
(

1
3 0
0 2

)

.
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Figure 4.3: An illustration of E0,Γ calculated conform to (4.15).

An explicit solution of Γ that is equal to the result of (4.15) is provided
along the properties of the next two lemmas. The first property is that
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the optimization problem of (4.15) is invariant to linear transformations.
To that extent, let T ∈ R

n×n denote a nonsingular matrix, due to which
T−⊤ := (T⊤)−1 = (T−1)⊤, see Proposition 2.6.8 of (Bernstein, 2005). This
nonsingular transformation matrix T is then used to define the following
transformed covariances, i.e.,

P̂i = T−1PiT
−⊤ and P̂j = T−1PjT

−⊤, (4.16)

along with the optimization problem

Γ̂ := arg min
Υ̂∈Rn×n

log |Υ̂|,

subject to Υ̂ � P̂i, Υ̂ � P̂j .
(4.17)

Lemma 4.4.5 Let Pi, Pj ≻ 0 be given and let P̂i, P̂j , Γ̂ satisfy (4.16) and

(4.17), for some nonsingular T ∈ R
n×n. Then Γ = T Γ̂T⊤.

The second property is an explicit result of Γ for a diagonal Pi and Pj . To
that end, let the diagonal matrix DΓ ∈ R

n×n, for some diagonal Dj ∈ R
n×n,

be defined with the following diagonal elements:

{DΓ}qq := max{1, {Dj}qq}, ∀q ∈ Z[1,n]. (4.18)

Lemma 4.4.6 Let Pi = In and Pj = Dj , be given for some diagonal matrix
Dj ≻ 0. Then Γ = DΓ.

Lemma 4.4.5 and Lemma 4.4.6 are proven in Appendix D.3 and Appen-
dix D.4, respectively. They are instrumental in the proof of the next result,
which derives the desired algebraic expression of Γ that substitutes (4.15).
This is then followed by the proof that EI satisfies Property 4.2.2. To that
extent, let us introduce the diagonal matrices Di, Dj ∈ R

n×n and rotational
matrices Si, Sj ∈ R

n×n via the eigenvalue decompositions2

Pi = SiDiS
−1
i , D

− 1
2

i S−1
i PjSiD

− 1
2

i = SjDjS
−1
j , (4.19a)

and let T := SiD
1
2
i Sj . (4.19b)

Theorem 4.4.7 For any Pi, Pj ≻ 0, the optimal covariance Γ defined by
(4.15) is equal to TDΓT

⊤.

Theorem 4.4.7 is proven in Appendix D.5. The proof starts with a transfor-
mation of Pi, Pj and Γ according to (4.17) and (4.19b), i.e., P̂i = T−1PiT

−⊤,
P̂j = T−1PjT

−⊤ and Γ̂ = T−1ΓT−⊤. The transformed covariances P̂i and

P̂j then satisfy the premise of Lemma 4.4.6, due to which Γ̂ satisfies (4.18).

2A = SDS−1 denotes the eigenvalue decomposition of A ∈ R
n×n, where S and

D are characterized by the eigenvectors and eigenvalues of A, respectively.
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Theorem 4.4.8 Let xi and xj of (4.1) be fused according to (4.10). Then,
Pf � Pi and Pf � Pj .

Proof: Since Pi � Γ and Pj � Γ (see (4.15)), P−1
j � Γ−1 holds and thus

P−1
j −Γ−1 � 0. Adding P−1

i on both sides results in P−1
i +P−1

j −Γ−1 � P−1
i .

Equation (4.10) shows that the left hand side of this inequality is P−1
f , i.e.,

P−1
f � P−1

i and thus Pf � Pi. The property Pf � Pj is proven similarly.

Let us continue by deriving an explicit formula of the mutual mean γ.

4.4.3 An explicit formula for the mutual mean

The mutual mean γ is the expected value of the random vector xij . The
most essential criterion for γ is that the relation between the first moment
γ := E[xij ] and the second moment Γ := E(xijx

⊤
ij ) − γγ⊤ is maintained.

Otherwise, this first and second moment of xij have conflicting results, due
to which xij will not be a consistent estimate. Therefore, the derivation of γ
should be analogous to the steps for deriving Γ in the proof of Theorem 4.4.7
but then translated from the second into the first moment. This translation
is described in the next two steps.

1. Transformation The derivation of Γ in the proof of Theorem 4.4.7 star-
ted with the transformations P̂i = T−1PiT

−⊤, P̂j = T−1PjT
−⊤ and

Γ̂ = T−1ΓT−⊤. Similar transformations in the first moment, yield

µi := T−1x̂i, µj := T−1x̂j , µγ = T−1γ. (4.20)

2. Characterization These transformations resulted in P̂i = In, P̂j = Dj

and Γ̂ = DΓ, which after substitution in (4.18) gave the optimal so-
lution for Γ̂ via {Γ̂}qq = max{{P̂i}qq, {P̂j}qq}, for all q ∈ Z[1,n]. A
similar characterization in the first moment implies that the elements
of µγ are defined, for all q ∈ Z[1,n], as follows:

{µγ}q :=











{µi}q if {P̂j}qq < {P̂i}qq,
{µj}q if {P̂j}qq > {P̂i}qq,

0.5({µi}q + {µj}q) if {P̂j}qq = [P̂i]qq,

(4.21a)

with P̂i := In, P̂j := Dj and Γ̂ = DΓ. (4.21b)

The above matrix Dj is equal to the one that was obtained in (4.19a). Notice
that, by (4.20), the mutual mean can be calculated as γ = Tµγ . However,
{µγ}q is sensitive to numerical errors in the eigenvalue decompositions (or
singular value decompositions) that are necessary to determine T of (4.19b).
Especially, when {P̂i}qq ≈ {P̂j}qq, i.e., {Dj}qq ≈ 1. To solve this issue, let
us derive a numerically robust expression for γ = Tµγ by approximating µγ
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of (4.21). To that extent, consider a situation that {Dj}qq 6= 1 holds for all
q ∈ Z[1,n]. Then {µγ}q in (4.21) is equivalent to

{µγ}q =
(

({Dj}qq − {DΓ}qq) + (1− {DΓ}qq)
)−1× (4.22)

(

({Dj}qq − {DΓ}qq){µi}qq + (1− {DΓ}qq){µj}q
)

.

To prove that (4.22) is equivalent to (4.21a), one can substitute the two
cases when {Dj}qq 6= 1, while using {DΓ} = max{1, {Dj}} of (4.18), i.e.,
{DΓ}qq = 1, if {Dj}qq < 1, and {DΓ}qq = {Dj}qq, if {Dj}qq > 1, for all
q ∈ Z[1,n]. Furthermore, since all matrices are diagonal, one can rewrite
(4.22) as follows:

µγ =
(

(Dj −DΓ) + (In −DΓ)
)−1(

(Dj −DΓ)µi + (In −DΓ)µj

)

.

Next, let us take the third case of (4.21) into account as well, i.e., {µγ}q =
0.5({µi}q + {µj}q) if {Dj}qq ≈ 1. Then, by extending the above expression
of µγ , a suitable approximation, for some small scalar value ǫ ∈ R>0, yields

µγ ≈ (Wi +Wj)
−1(Wiµi +Wjµj), (4.23a)

Wi : = D−1
j −D−1

Γ + ςIn, Wj := In −D−1
Γ + ςIn, (4.23b)

ς : =

{

0 if |{Dj}qq − 1| ≥ 10ǫ, ∀q ∈ Z[1,n],

ǫ otherwise.
(4.23c)

Note that the diagonal matrices Dj and DΓ of (4.23) are inverted, whereas
this was not the case in prior expressions of µγ . The inversion does not
change the result of µγ but was done to simplify the derivation of an algebraic
formula for γ. Such a formula is now found by substituting µγ of (4.23a) into
γ = Tµγ , i.e., γ ≈ T (Wi +Wj)

−1(Wiµi +Wjµj). Using T−1T = In, this is
further rewritten into

γ ≈T (Wi +Wj)
−1T⊤T−⊤(WiT

−1Tµi +WjT
−1Tµj)

=(T−⊤WiT
−1 + T−⊤WjT

−1)−1×
(T−⊤WiT

−1Tµi + T−⊤WjT
−1Tµj).

(4.24)

Note that T−⊤WiT
−1=P−1

j −Γ−1+ςP−1
i and T−⊤WjT

−1=P−1
i −Γ−1+ςP−1

i ,
where ς is the approximation parameter defined in (4.23). When simplifying
these transformations into T−⊤WiT

−1 ≈ P−1
j −Γ−1+ςIn and T−⊤WjT

−1 ≈
P−1
i − Γ−1 + ςIn, while observing that x̂i = Tµi and x̂j = Tµj , the approxi-

mation of γ in (4.24) results in the following algebraic expression:

γ ≈
(

P−1
i + P−1

j − 2Γ−1 + 2ςIn
)−1×

(

(P−1
j − Γ−1 + ςIn)x̂i + (P−1

i − Γ−1 + ςIn)x̂j

)

.
(4.25)

Simulation further verify that the value of ǫ ∈ R>0 in (4.23c), which determi-
nes ς, has a negligible effect on the above approximation of the mutual mean.
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This completes the EI state fusion method. The basic fusion formulas
are given by (4.10), whereas the algebraic expressions for calculating Γ and
γ are given in Theorem 4.4.7 and (4.25), respectively. Hence, for Si, Di, Sj

and Dj as specified in (4.19a) and ς conform to (4.23c), the EI algorithm is
summarized as follows:

Algorithm of EI

Pf = (P−1
i + P−1

j − Γ−1)−1;

x̂f = Pf (P
−1
i x̂i + P−1

j x̂j − Γ−1γ);

where DΓ = diagq∈Z[1,n]

(

max{1, {Dj}qq}
)

;

Γ = SiD
1
2
i SjDΓS

−1
j D

1
2
i S

−1
i ;

γ =
(

P−1
i + P−1

j − 2Γ−1 + 2ςIn
)−1×

(

(P−1
j − Γ−1 + ςIn)x̂i + (P−1

i − Γ−1 + ςIn)x̂j

)

.

4.5 Illustrative example

This section focusses on a pure fusion example to study the results of EI in
relation to the alternative fusion method CI. A more elaborated case-study
to assess EI and CI in distributed state estimation applications is part of
the next chapter. In the considered fusion example the two prior estimates
xi and xj are characterized by x̂i = ( 0.51 ), Pi =

(

2.5 -1
-1 1.2

)

, x̂j = ( 21 ) and

Pj =
(

0.8 -0.5
-0.5 4

)

. Then, Figure 4.4 depicts the results of EI and CI.
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Figure 4.4: Two prior and fused estimates according to EI and CI.

The figure indicates that EI obtains a fused estimate with the smallest
uncertainty in every direction of the state-space defined by x, as the ellipsoid
Ex̂f ,Pf

is smaller in area than Ex̂ci

f
,P ci

f
. The result stems from the fact that
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EI, in contrast to CI, satisfies Property 4.2.2. This property formalizes the
intuition that estimation-error (uncertainty) after fusion should be reduced.

A second example, in which x̂i = ( -10 ), Pi = ( 1.5 -0.4
-0.4 0.5 ), x̂j = ( 0.50.5 ) and

Pj = ( 0.34 0.1
0.1 1 ), is depicted in Figure 4.5. Therein, the results of EI are

presented for three values of ǫ, which is a parameter to support a numerically
stable approximation of γ. Note that the fusion results are almost similar,
as the ellipsoidal sub-level-sets Ex̂f ,Pf

are on top of each other. As such, the
sub-optimality of an approximated mutual mean γ by ǫ is negligible.
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Figure 4.5: Two prior and fused estimates according to EI for three different

values of ǫ, i.e., 0.001, 0.01 and 0.1.

Remark 4.5.1 The correlation of xi and xj , in case of pair-wise indepen-
dent xii, xij and xjj , was derived in (4.8) as cov(xi, xj) = PiΓ

−1Pj . This
means that one can substitute Pij = PiΓ

−1Pj of the “best linear unbiased
estimate” (BLUE) in Theorem 4.2.1, where Γ has a value that corresponds to
Section 4.4.2. Simulations verify that such a BLUE fusion result is equal to
xf of EI. However, it should still be verified whether EI obtains a consistent
fusion result.

4.6 Conclusions

A novel state fusion method was proposed, labeled as ellipsoidal intersec-
tion, for fusing two Gaussian estimates of the same state with an unknown
correlation. The distinguishing feature of ellipsoidal intersection, compared
to alternative fusion methods, is an explicit characterization of the unknown
correlation a priori to the derivation of fusion formulas. This enables a fusion
method that is based on merging independent parts of the prior estimates
only. Besides enabling a fusion algorithm with a low computational com-
plexity, ellipsoidal intersection guarantees that the uncertainty after fusion is
reduced with respect to the prior estimates. A fusion example already demon-
strated the effectiveness of ellipsoidal intersection, though a more elaborated
comparison is made in the next chapter.
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5

Cooperative state estimation

5.1 System description
5.2 Cooperative Kalman

filters
5.3 Illustrative example

5.4 Nonlinear state
estimation

5.5 Conclusions

Distributed state estimation refers to a method for computing a local
estimate of the global state in each node of the networked system. Typi-
cally, current methods focus on optimizing the local estimation results per
node individually. However, since nodes interact with each other, the estima-
tion algorithm performed by each node will result in an emerging behavior
on the network level. Therefore, an alternative approach is to optimize the
estimation results from a network point of view via a desired emerging beha-
vior. This chapter introduces cooperation as the desired emerging behavior.
Cooperation is characterized by satisfying the global covariance property, for
which a novel distributed state-estimator is derived. In the proposed solu-
tion, nodes perform a state-estimator locally, such as the Kalman filter, to
process their measurement and obtain a local estimate. Neighboring nodes
then share their local estimate for state fusion. An asymptotic analysis of
the proposed solution not only studies the conditions for establishing stable
estimation results throughout the network but, simultaneously, proves that
global covariance is attained. In addition, the benefits of cooperation in esti-
mation are demonstrated in two illustrative case studies: a scalable platoon
of vehicles (linear) and tracking shockwaves on a highway (nonlinear).

5.1 System description

Distributed state estimation refers to a collection of estimation strategies
often used in large-scale or ad-hoc sensor networks. Each node of such a
network is equipped with a CPU, a sensor and a two-way radio, allowing
nodes to exchange data with neighboring nodes. Since the sensory data and
computational resources are (evenly) distributed among the nodes, distribu-
ted state-estimators assign a local estimation algorithm to each node in the
network. As such, nodes typically compute a local estimate of the global
state. A generalized set-up that corresponds to distributed state estimation
is illustrated in Figure 5.1, followed by a detailed description.
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legend

estimate x[k]

measure yi[k]

exchange data

Figure 5.1: A typical set-up for distributed estimation, where each node

computes a local estimate of the global state. The network topology causes

that computational and sensing resources are spatially distributed.

Communication The network consists of N sensor nodes and is modeled
as an undirected, connected graph G = (V, C), see Section 1.5. Each
node i ∈ N is identified with a unique number, where N := Z[1,N ].
Further, the set Ni(q) ⊆ N is defined as a collection of all nodes j ∈ N
that have a minimal graph-distance of q ∈ Z>0 to node i, see Defi-
nition 1.5.4. Hence, neighboring nodes j ∈ Ni(1) that exchange data
with node i have a graph-distance of 1. Note that a connected graph
implies ∪q∈Z+

{Ni(q)} = N , for all i ∈ N .

Process A node i ∈ N observes the perturbed, dynamical process of (1.1),
for some constant sampling time τs ∈ R>0 and u(t) = 0, i.e.,

x[k] = Ax[k-1] + w[k-1], (5.1a)

yi[k] = Cix[k] + vi[k]. (5.1b)

The state vector is denoted as x ∈ R
n, whereas yi ∈ R

mi corresponds
to the measurement of node i. Both the process-noise w ∈ R

n and
measurement-noise vi ∈ R

mi are characterized by Gaussian PDFs, for
some Q ∈ R

n×n and Vi ∈ R
mi×mi , i.e.,

p(w[k]) := G(w[k], 0, Q) and p(vi[k]) := G(vi[k], 0, Vi).

The goal of the sensor network is to compute a local estimate xi ∈ R
n of the

global state x in each node i. Since the process model is linear and both noises
are Gaussian distributed, it is appropriate to assume that the random variable
xi[k] is Gaussian distributed as well, i.e., p(xi[k]) := G(xi[k], x̂i[k], Pi[k]) for
some mean x̂i[k] ∈ R

n and error-covariance Pi[k] ∈ R
n×n.

The challenges for state estimation in sensor networks are twofold. Not
only should the employed estimation strategy exploit the large amount of
local measurements but, in addition, it is desired that the corresponding im-
plementation is robust to the evidential changes that will be present in such
networks. Distributed state estimation has the potential to handle these chal-
lenges, though there are still some drawbacks on methods currently available.
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These drawbacks mainly arise from the fact that their starting point is op-
timizing the local estimation results per node individually. As such, strict
requirements are necessary to guarantee that each node receives all the infor-
mation as specified during the design. Since these requirements are likely to
be violated by system changes, an alternative approach is to solve the esti-
mation problem from a network point of view, rather than from individual
nodes. In that case, the set-up depicted in Figure 5.1 is regarded as a network
of state estimating nodes that, due to the interaction between neighboring
nodes, will emerge with a particular behavior. Hence, an alternative appro-
ach for improving robustness to system changes is formulating an appropriate
behavior that should emerge from the local estimation algorithms performed
in each node. To that extent, this chapter proposes a cooperative behavior,
i.e., the state estimating nodes have the will to assist other nodes.

Let us further explain the objective of this chapter, which is to design
a distributed state-estimator that emerges with a cooperative behavior. A
description of such behavior for state estimation was given as a solution of
Problem 1.3.3: A distributed state-estimator that attains the global covari-
ance property. Therein, global covariance states that the error-covariance
of each node in the network is a combination of all error-covariances found
across its nodes, see Property 1.3.1. However, a corresponding characte-
rization of this property is yet to be given. To that extent, recall that
each node computes a local estimate of xi according to the Gaussian PDF
p(xi[k]) = G(xi[k], x̂i[k], Pi[k]). Further, let us introduce χi,j : R

n×n → R
n×n

as a mapping function for covariance matrices, such that the resulting mapped
covariance matrix of χi,j(·) has bounded eigenvalues if the original covariance
matrix is bounded as well. Then, a distributed state-estimator that attains
the global covariance property satisfies the following inequality,

Pi[k] � χi,j(Pj [k-c]), ∀i, j ∈ N and c ∈ Z≥0. (5.2)

Basically, global covariance implies that the local estimation results of node i
are improved by previously obtained estimation results from another node j.
Hence, any other node j assists node i in computing a local estimate of xi.

The above characterization of cooperative estimation is applied for ob-
serving the linear process model (5.1), in the next section on cooperative
Kalman filters (CKFs). A justification of its design is given first, along with
the results of currently available solutions, followed by a derivation of the cor-
responding local estimation algorithm performed in each node. After that,
an asymptotic analysis gives the conditions for an asymptotically bounded
Pi[k] and further proves the global covariance property. This property is also
demonstrated in an illustrative example of tracking the leading vehicle in a
scalable platoon of “intelligent” vehicles. Additionally, an extension to non-
linear processes is studied, which includes the possibility to have different
types of estimators among the nodes for processing their local measurement.
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As such, nodes with different computational complexities are supported in
the same network. This improves the applicability of the proposed estima-
tion approach in real-life sensor networks. An application example of tracking
shockwaves on a highway demonstrates that such a heterogenous, cooperative
state-estimator is feasible.

5.2 Cooperative Kalman filters

Before a justification of the proposed CKFs is given, let us start with a
summary of the overall solution. The idea of CKFs stems from the three
social laws that are followed by ants, see Section 1.3.2. These laws emerge
into a cooperative behavior of ants and enables the colony to cope with a
wide variety of unknown changes in their environment. Therefore, the local
estimation algorithm of a node in CKFs is based on the same three social
laws, i.e.,

• Division of labour is met by performing a local Kalman filter (KF) per
node i for computing x̂i[k] and Pi[k] based on yi[k];

• Communication between individuals is defined by exchanging the local
estimate xi[k] with the neighboring nodes j ∈ Ni(1);

• Cooperation implies that nodes fuse their local estimates xi with the
ones received from neighboring nodes.

local Kalman 

filter

local state

fusion

xi

xjxi f

yi Send to 

nodes j  Ni(1)

Received from

nodes j  Ni(1) 

Figure 5.2: Schematic set-up of the local estimation algorithm performed

by a single node i in a network of cooperative Kalman filters.

Figure 5.2 schematically depicts the local estimation algorithm, for a
node i, that is in line with the above three laws of CKFs. In this set-up,
the measurement yi[k] is used by a local KF to determine the local estimate
xi[k], i.e., p(xi[k]) = G(xi[k], x̂i[k], Pi[k]). Nodes then exchange the result of
their local KF with each other, due to which node i receives the Gaussian
PDF of xj [k], for all j ∈ Ni(1). These received estimates are then merged
with xi[k] in a state fusion method, e.g., ellipsoidal intersection of Chapter 4.
The resulting fused estimate is denoted with xif [k] and follows p(xif [k]) :=
G(xif [k], x̂if [k], Pif [k]), for some x̂if [k] ∈ R

n and Pif [k] ∈ R
n×n.
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5.2.1 Justification of the design

A justification of CKFs is given according to the three social laws of ant co-
lonies. In addition, the currently available solutions on distributed Kalman
filtering will be taken into account at each social law. For clarity of expres-
sion, the time index k is omitted throughout this section.

Division of labour: The burden of merging N local measurements is di-
vided among the nodes by pre-processing yi at node i. For state estimation
it makes sense that such pre-processing involves the computation of a lo-
cal estimate xi by a local KF. In fact, this solution is repeatedly used in
non-centralized Kalman filtering for the last 30 years. See, for example, the
proposed methods of (Hassan et al., 1978; Speyer, 1979; Hashmipour et al.,
1988; Durant-Whyte et al., 1990; Roy et al., 1991; Mutambara and H.F.,
2000; Khan and Moura, 2007; Olfati-Saber, 2009). Some methods also merge
neighboring measurements in the local KF of node i to improve its estimation
results even further, i.e., yj for all j ∈ Ni(1). However, note that this solution
is is not in line with a division of labour, as the each local measurement yi is
similarly processed by multiple nodes. An additional drawback of exchanging
measurement is related to communication.

Communication between individuals: The variables that a node i can
share with neighboring nodes are yi and xi. Communication implies that the
receiving nodes must be able to understand the exchanged variables. In case
node i exchanges measurements, then this means that also yi = Cix + vi of
the local process model in (5.1) must be shared with node j ∈ Ni(1). Even
though exchanging Ci and Vi apart from yi might be feasible, it imposes strict
requirements on the interaction of nodes, especially for extensions where the
local measurement is modeled with a nonlinear function. Moreover, these
strict requirements are likely to be violated by system changes, due to which
one cannot guarantee that other nodes j 6= i have the necessary information
available for processing yi. The alternative of exchanging local estimates is
still possible. In particular, as there exist several methods that can merge
xi and xj without requiring any additional information other than p(xi) and
p(xj), i.e., not even their correlation. Hence, exchanging local estimates suits
an approach for communication between individuals and thus for cooperation.

Cooperation: A cooperative behavior of nodes, for the purpose of state
estimation, was formulated as a distributed state-estimator that satisfies the
global covariance property. To that extent, nodes exchange local estimates,
as exchanging yi will not result in a fulfilment of this property, see, e.g.,
(Durant-Whyte et al., 1990). Local estimates can be combined by synchroni-
zation and fusion strategies. Examples of synchronization strategies within
distributed estimation are found in (Xiao et al., 2005; Olfati-Saber, 2009).
The idea emerged from synchronizing the different internal clocks of net-
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worked systems. Similarly, the local means x̂i, for all i ∈ N , can also be
synchronized, as they all represent an estimated value of the same state x.
However, synchronization of the local means induces a synchronization of
the local estimation errors as well, rather than a reduction. For example,
nodes with accurate sensor readings will still obtain erroneous estimates as
a result of synchronization methods, when other nodes in the network have
inaccurate sensor readings. Or worse, if one not in the network has un-
stable estimation results, then other nodes will mimic this behavior when
synchronization is employed. The alternative approach of fusion takes the lo-
cal error-covariances Pi and Pj explicitly into account when merging xi and
xj . As such, fusion methods can neglect the inaccurate parts of xi and xj

and thereby, ensure that the uncertainty after fusion is reduced. Figure 5.3
illustrates such a reduction by comparing the results of fusion and synchro-
nization. Based on this analysis, the proposed CKFs approach performs a
state fusion method to merge the received estimates from neighboring nodes
with the local estimate.
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Figure 5.3: A comparison of fusion and synchronization for two Gaussian

estimates xi and xj . The PDF after fusion via ellipsoidal intersection of

Chapter 4 is denoted as p(xif ) = G(xif , x̂if , Pif ). The PDF after synchroni-

zation via the common averaging-formula Pis = Pi and x̂is = ωx̂i+(1−ω)x̂j

with ω = 0.1 is denoted as p(xis) = G(xis , x̂is , Pis). Note that PDFs are

represented as ellipsoidal sub-level-set, i.e., G(x, µ,Σ) → Eµ,Σ.. A graphical

characterization of such a sub-level-set is found in Figure 1.9, though let us

point out that a larger covariance Σ implies a larger area-size of Eµ,Σ.

5.2.2 Implementation of CKFs

Before the CKF set-up of Figure 5.2 is summarized into an algorithm, a
choice on the employed state fusion method must be made. As mentioned
in the previous section, fusion of two arbitrary estimates xi and xj into a
fused estimate xif should be based on p(xi) and p(xj) only. This means that
the correlation of xi and xj , i.e., cov(xi, xj), is not available. Otherwise, the
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sensor network should keep track of shared estimates between any two nodes,
which imposes the impractical requirement of global communication.

A detailed overview of fusion methods that deal with unknown correla-
tions is presented in Section 4.3. It was mentioned that a popular fusion
method is covariance intersection (Julier and Uhlmann, 1997b), for which
some extensions are found in (Hanebeck et al., 2001; Niehsen, 2002; Franken
and Hupper, 2005; Julier, 2009; Wang and Li, 2009). However, a funda-
mental issue with the covariance intersection approach is that both x̂if and
Pif are parameterized before correlation is treated. As such, any effects of
the unknown correlation are mapped on the restricted parametrization of
xif , which introduces conservatism in the fusion results. A less conserva-
tive fusion method is ellipsoidal intersection (EI) of Chapter 4. EI proposes
a parametrization of the prior estimates xi and xj to establish an explicit
characterization of correlations, before deriving the fusion formulas. As a
result, correlation can be maximized, due to which EI is able to merge the
estimate xi with an independent part of xj into a single fused estimate. The
parametrization of EI was introduced via a mutual covariance Γ ∈ R

n×n

and a mutual mean γ ∈ R
n. An algebraic expression of these variables, for

Si, Di, Sj , Dj ∈ R
n×n as specified in (4.19a) and ς ∈ R>0 conform to (4.23c),

are given in the following fusion formulas of EI, which compute xif as a fused
estimate of the two prior estimates xi and xj :

Pif = (P−1
i + P−1

j − Γ−1)−1;

x̂if = Pif (P
−1
i x̂i + P−1

j x̂j − Γ−1γ);
(5.3a)

where DΓ = diagq∈Z[1,n]

(

max
{

1, {Dj}qq
})

; (5.3b)

Γ = SiD
1
2
i SjDΓS

−1
j D

1
2
i S

−1
i ; (5.3c)

γ =
(

P−1
i + P−1

j − 2Γ−1 + 2ςIn
)−1×

(

(P−1
j − Γ−1 + ςIn)x̂i + (P−1

i − Γ−1 + ςIn)x̂j

)

.
(5.3d)

An important property of EI, that will be instrumental in the asymptotic
analysis of CKFs, is a reduction of the uncertainty after fusion. A proof of
this property is found in Chapter 4.

Proposition 5.2.1 Let the two prior estimates xi and xj be given. Then
Pif � Pi and Pif � Pj hold for their fused estimate xif according to EI.

Now, all aspects of the CKFs approach have been addressed and the lo-
cal estimation algorithm performed by a node i is presented, next. To that
extent, note that Figure 5.2 illustrates a schematic implementation of the
CKFs algorithm, i.e., a local KF followed by a local state fusion according to
EI. Fusion of xi[k] with multiple estimates is commonly conducted recursi-
vely. This means that xi[k] is merged with the first received xj [k], after which
their fusion result is further merged with the local estimate that is received
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next, and so on. For clarity of exposition, let the initial local estimate at the
k-th sample instant be denoted as xi(0) := xi[k]. Then this recursive beha-
vior implies that xi(l) is defined as the fusion result of xi(l−1) and the l-th
received local estimate xj [k], which will be denoted as xj(l), for all l ∈ Z[1,L]

and L := ♯Ni(1). The final estimate, obtained after fusion of all neighboring
estimates xj [k] with xi[k], is thus xif [k] := xi(L). Hence, a summary of the
CKF algorithm at node i, where the local KF is expressed in the information
form of (1.5), yields

The cooperative Kalman filter at node i

Step 1: Kalman filter (information form of (1.5))

Pi[k
−] = APif [k-1]A

⊤ +Q;

Pi[k] =
(

P−1
i [k−] + C⊤

i V −1
i Ci

)−1
;

x̂i[k] = Pi[k]
(

P−1
i [k−](Ax̂if [k-1]) + C⊤

i R−1
i yi[k]

)

;

Step 2: state fusion (EI)

x̂i(0) = x̂i[k], Pi(0) = Pi[k];

for l = 1, . . . , L, do:

x̂j(l) = x̂j [k], Pj(l) = Pj [k], j(l) ∈ Ni(1);

Γ(l) = MutualCovariance(Pi(l−1), Pj(l)), i.e., (5.3c);

γ(l) = MutualMean(Pi(l−1), Pj(l),Γ(l), x̂i(l−1), x̂j(l)), i.e., (??);

Pi(l) =
(

P−1
i(l−1) + P−1

j(l) − Γ−1
(l)

)−1
;

x̂i(l) = Pi(l)

(

P−1
i(l−1)x̂i(l−1) + P−1

j(l)x̂j(l) − Γ−1
(l) γ(l)

)

;

end

x̂if [k] = x̂i(L), Pif [k] = Pi(L).

The notation k− is used to emphasize predicted estimates from updated
ones. Next, the emergent behavior CKFs is studied in asymptotic analysis.

5.2.3 Asymptotic analysis

This section proves that a connected1 network of state estimating nodes ful-
fills the global covariance property, when the CKFs approach is employed.
Moreover, realistic conditions are derived under which Pif [k] is asymptoti-
cally bounded by another covariance matrix. To that extent, let us introduce
the covariance matrix Σi[k] ∈ R

n×n, for each node i ∈ N , with a Ricatti
difference equation (RDE) and Σi[-1] = Pif [-1]. In line with other update
formulas, let us express the RDE for updating Σi in an equivalent information

1Connected means that a graph path between any two nodes i, j ∈ N exists.
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form, i.e.,

Σi[k] =
(

(AΣi[k-1]A
⊤ +Q)−1 + C⊤

i V −1
i Ci

)−1
, ∀k ∈ Z+, ∀i ∈ N . (5.4)

The asymptotic properties of the RDE were presented in (Chan et al., 1984).

Proposition 5.2.2 Let (A,Ci) be an observable pair and let λq(Ai) ≤ 1
hold, for all q ∈ Z[1,n]. Then, Σi[∞] := limk→∞ Σi[k] is a stabilizing solution
of the RDE in (5.4) that is unique and independent of Σi[-1].

Definition 5.2.3 The set Nrde ⊆ N is defined as the collection of all nodes
i ∈ N that satisfy the hypothesis of Proposition 5.2.2.

The theoretical analysis of the CKF starts with two properties of the
error-covariances Pif and Pi, for which Ni(0,1) := {i} ∪ Ni(1). The first
property considers a node i ∈ N and its direct neighboring nodes.

Lemma 5.2.4 Let each node i employ the CKF. Then, Pif [k] � Pj [k] and

Pi[k+1] � APj [k]A
⊤ +Q hold for all j ∈ Ni(0,1) and k ∈ Z+.

Lemma 5.2.4 is proven in Appendix E.1. Notice that this lemma indicates
that the received error-covariances of node i are bounded by their neighboring
error-covariances as well. If, for example, node j ∈ Ni(2) is a direct neighbor
of a certain node h ∈ Ni(1), i.e., j ∈ Nh(1), then Lemma 5.2.4 establishes

that Ph[k] � APj [k-1]A
⊤ + Q. Moreover, since node h is a direct neighbor

of node i, the same lemma also gives that Pif [k] � Ph[k]. Hence, although
node j ∈ Ni(2) is not a direct neighbor of node i, there exists a bound on
Pif [k] that depends on Pj [k-1]. In the second property, this reasoning is
extended to show that Pif [k] is bounded by a prediction of Pj [k-c] to the k-th
sample instant for any node j ∈ Ni(c+1). Therein, c ∈ Z≥1 is such that the
graph-distance between nodes i and j is equal to c+1.

Lemma 5.2.5 Let each node i employ the CKF. Then, it holds that Pif [k]�
AcPj [k-c](A

c)⊤ +
∑c-1

q=0 A
qQ(Aq)⊤, for all k ∈ Z≥c, j ∈ Ni(c+1) and c ∈ Z≥1.

Lemma 5.2.5 is proven in Appendix E.2. When this lemma is combined with
Lemma 5.2.4, they prove that the error-covariance of node i, i.e., Pif [k], is a
combination of the error-covariances found across all nodes in the network.
As such, the CKFs approach is a distributed state-estimator that attains the
global covariance property. More precisely, Pif [k] � χi,j(Pj [k-c]) is satisfied
for all i, j ∈ N , in case the mapping function χi,j(·) is characterized as follows:

χi,j(Pj [k]) :=

{

Pj [k] if j ∈ Ni(0,1), k ∈ Z+,

AcPj [k-c](A
c)⊤ +

∑c-1
q=0 A

qQ(Aq)⊤ if j ∈ Ni(c+1), k ∈ Z≥c.

Next, let us continue with a derivation of the asymptotic bounds on
Pif [k], by relating Pif [k] of the CKF to Σi[k] of the RDE.
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Lemma 5.2.6 Let each node i employ the CKF. Then, Pi[k] � Σi[k] holds
for all k ∈ Z+ and Pi[−1] = Σi[−1], where Σi[k] satisfies the RDE in (5.4).

Lemma 5.2.6 is proven in Appendix E.3. The analysis continues by employing
the above mapping function χi,j(·) to introduce Σ̄i,j [k] := χi,j(Σj [k-c]), for
all j ∈ N and c ∈ Z≥1, i.e.,

Σ̄i,j [k] =

{

Σj [k] if j ∈ Ni(0,1), k ∈ Z+,

AcΣj [k-c](A
c)⊤ +

∑c-1
q=0 A

qQ(Aq)⊤ if j ∈ Ni(c+1), k ∈ Z≥c.

The asymptotic value Σ̄i,j [∞] follows the above formula if Σj [∞] exists, i.e.,
for every node j ∈ Nrde. Now, the main result of this asymptotic analysis
is presented, i.e., Pif [∞] := limk→∞ Pif [k] of the CKFs approach is bounded
under realistic conditions.

Theorem 5.2.7 Let each node i employ the CKF and let Nrde 6= ∅. Then,
Pif [∞] exists and satisfies Pif [∞] � Σ̄i,j [∞], for all j ∈ Nrde.

The proof of Theorem 5.2.7 is presented in Appendix E.4. This theorem
further implies that the asymptotic bounds on Pif [∞] exists for all the nodes
i ∈ N , given that Nrde is non-empty, i.e., there exists at least one node
that has a stable local estimation result. Similar aspects are shown in an
illustrative example, next.

5.3 Illustrative example

In this example, the estimation error of the proposed CKFs is compared to
alternative distributed Kalman filtering algorithms. The benchmark appli-
cation is a platoon of four “intelligent” vehicles equipped with a cooperative
adaptive cruise controller, see, for example, (van Arem et al., 2006). The
main reason for choosing this application is because each vehicle should ob-
tain an estimate of the longitudinal position and speed of the leading vehicle
in that platoon. As such, the state x is defined as this longitudinal posi-
tion and speed of vehicle 1. The example considers estimation and does not
present any control, due to which the following set-up is considered:

Communication Each vehicle communicates with its front and rear vehicle.
Hence, the graph-model G(V, C) of this network is characterized by
V := {v1, v2, v3, v4} and C := {(vi, vj)||i− j| = 1}, for all i, j ∈ Z[1,4].

Process The process model is the double integrator with τs = 0.1, i.e.,

x[k] =

(

1 0.1
0 1

)

x[k-1] +

(

0.005
0.1

)

a[k-1],

where the acceleration is specified as a[k] = 0.1+3 sin(0.02k). Since ac-
celeration is unknown to the estimator, the process-noise is modeled as
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w[k] =
(

0.005
0.1

)

a[k] with a corresponding covariance Q = 10−3 ( 0.1 2.5
2.5 50 ),

while the initial state is x[−1] =
(

10
15

)

. Further, to have a realistic
scenario, each vehicle measures its own position and speed and the
distance to the vehicle in front. Due to this dispersion of the sensors,
only vehicles 1 and 2 have local measurements related to x, i.e.,

y1[k] =

(

1 0
0 1

)

x[k] + v1[k], p(v1[k]) = G (v1[k], 0, 0.05I2) ,

y2[k] = (1 0)x[k] + v2[k], p(v2[k]) = G(v2[k], 0, 0.5).

Vehicles 3 and 4 have no sensors that depend on the state. As such,
their y3 and y4 are modeled via C3 = C4 = (0 0) and V −1

3 = V −1
4 = 0.

The platoon initially consists of three vehicles. After 5 seconds the fourth
vehicle enters the platoon from the rear. Each vehicle in the platoon performs
a local estimation algorithm that is in line with a certain distributed Kal-
man filter. Three different methods are compared that start with equivalent
estimates, i.e., x̂i[−1] =

(

10
15

)

and Pi[−1] =
(

10 0
0 10

)

, for all i ∈ Z[1,4]:

• The proposed CKFs;

• The cooperative covariance intersection KFs (CCIKFs), which is si-
milar to the CKFs only that state fusion is performed according to
covariance intersection of (Julier and Uhlmann, 1997b) instead of EI;

• The distributed consensus information filter (DCIF) presented in (Olfati-
Saber, 2009). The DCIF employs a local KF in each node i on yj , for
all j ∈ Ni(0,1), followed by a synchronization step on the local mean
x̂i[k] with the neighboring means x̂j [k], for all j ∈ Ni(1).
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Figure 5.4: A comparison of the state estimation error of vehicles 2 and

3 for the distributed Kalman filtering methods DCIF, CCIKFs and CKFs.

After t = 5 seconds a fourth vehicle joins the platoon of three vehicles.



94 Cooperative state estimation

The estimation-error of vehicles 2 and 3 is depicted in Figure 5.4. Notice
that CKFs clearly outperform CCIKFs in both vehicles, as the error with
CCIKFs is twice as large. This is mainly a result of the employed fusion
method covariance intersection in CCIKFs, which computes a conservative
fusion result that is a convex combination of the local and neighboring esti-
mates. More precisely, since vehicles 3 and 4 have no measurements related
to the state, the estimation results computed by their local KF has large
errors. The convex combination procedure of covariance intersection then
causes that these erroneous estimates affect the estimation results of vehicles
1 and 2 as well. Instead, CKFs employs EI as a state fusion method, due
to which the global covariance property is attained. This means that the
erroneous estimates x3 and x4 do not affect the results of vehicles 1 and 2 for
CKFs, as EI detects their “inaccuracies” via P3 and P4. Further, note that
the estimation error of x2 is lower than the error of x3 for both the CKFS
and CCIKFs. This can be explained by the communication topology, which
introduces an additional communication step for vehicle 3 compared to vehi-
cle 2 upon receiving information from y1. Let us continue with analyzing the
results of the third estimator. Figure 5.4 indicates that the DCIF yields an
unstable estimate when vehicle 4 is added to the platoon. To explain such
behavior, let us point out that a requirement of the DCIF is that the local
state estimate xi in each vehicle i should be observable based on its local and
neighboring measurements ∪j∈Ni(1)

{yj}. This requirement is not satisfied in
the considered set-up, as vehicle 4 does not receive any measurement related
to x. Hence, the estimation error in the fourth vehicle diverges, which is then
emulated by the other vehicles in the platoon due to the synchronization ap-
proach of the DCIF. Therefore, the CKFs outperforms both the CCIKFs and
the DCIF in this illustrative example.

A more detailed comparison of distributed Kalman filtering algorithms
is studied in Chapter 6. This chapter continues with nonlinear processes.

5.4 Nonlinear state estimation

Currently existing methods of distributed state estimation perform the same
estimation algorithm in each node locally. For example, in CKFs each node
employs a local KF before fusion. However, note that the proposed coopera-
tive approach is not restricted to a network where nodes perform the KF for
processing their local measurement. The only requirement, imposed by the
fusion method EI, is that the local estimate xi is characterized by a Gaus-
sian PDF, for all i ∈ N . Hence, it is irrelevant whether this Gaussian was
computed by a KF, or by nonlinear state estimation methods, such as the
extended KF and the unscented KF. The set-up of a node’s local estimation
algorithm that corresponds to this generalization of CKFs, i.e., where the lo-
cal measurement is processed by any local state estimator that has Gaussian
estimation results, is depicted in Figure 5.5.
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Figure 5.5: Schematic set-up of the local estimation algorithm performed

by a single node i in a network of cooperative state-estimators.

Therefore, this section studies the feasibility of cooperative extended KFs
and cooperative unscented KFs. Therein, each node employs the CKF of
Section 5.2 and replaces the part that corresponds to the local KF with either
an extended or unscented KF. In addition, a mixture of local state-estimators
among the nodes is investigated. In those types of distributed estimators,
some nodes perform the extended KF for processing their local measurement,
while others employ the unscented KF. This heterogeneous distributed state
estimator not only allows different computational requirements per node in
the network. Also, new nodes that employ a different (novel) estimator for
computing xi[k] and/or processing yi[k] can be added to an existing network
during operation, without a re-design of the active nodes in the network. A
generalized description of cooperative state estimation is given next, after
rewriting the model of (5.1) to accommodate nonlinear processes.

Process The process model, for some sampling time τs ∈ R>0, yields

x[k] = f(x[k-1], w[k-1]), (5.5a)

yi[k] = hi(x[k]) + vi[k]. (5.5b)

The function f : Rn × R
n → R

n describes the (non)linear state dyna-
mics, while hi : R

n → R
mi defines a (non)linear mapping of x to yi.

All other aspects of the system description, i.e., communication and
Gaussian PDFs for w[k-1] and vi[k], are similar as to Section 5.1.

5.4.1 Cooperative state estimation

In cooperative state estimation all the nodes perform a generalization of the
CKF algorithm, as it is illustrated in the schematic set-up of Figure 5.5. This
generalization implies that x̂i[k] and Pi[k] are calculated via either a local KF,
an extended KF or an unscented KF. A brief account on the latter two state
estimation methods is given first, before continuing with the case-study of
tracking shockwave on a highway.
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Extended Kalman filter

Similar as to the KF of Section 1.2, the extended KF first performs a pre-
diction of x followed by an update. The predicted mean x̂i[k

−] is computed
via the nonlinear process model. However, to predict the error-covariance
Pi[k

−], nonlinear dynamics are linearized around the previously estimated
working point x[k-1] = x̂i[k-1] and w[k-1] = 0. This linearization is characte-
rized by Jacobian matrices of f and hi in (5.5), i.e., Fi[k] := ∇xf(x̂i[k-1], 0),
Ei[k] := ∇wf(x̂i[k-1], 0) and Hi[k] := ∇xgi(x̂i[k-1]). To summarize, the ex-
tended KF employs the following set of equations to calculate x̂i[k] and Pi[k]:

x̂i[k
−] = f(x̂if [k-1], 0),

Pi[k
−] = Fi[k]Pif [k-1]F

⊤
i [k] + Ei[k]QE⊤

i [k],

Ki[k] = Pi[k
−]H⊤

i [k]
(

Hi[k]Pi[k
−]H⊤

i [k] + Vi

)−1
,

x̂i[k] = x̂i[k
−] +Ki[k] (yi[k]− hi(x̂i[k])) ,

Pi[k] = (I −Ki[k]Hi[k])Pi[k
−].

(5.6)

Although the extended KF enjoys low computational power, its estimation
error depends on the support to linearize the process model of (5.5). When
estimation results of the extended KF are not satisfactory, one can employ
an unscented KF.

Unscented Kalman filter

The unscented KF calculates x̂i[k] and Pi[k] by applying the nonlinear model
of (5.5) on various values of x and w at k-1, also known as sigma-values.
These values are selected from an augmented vector µ := ( x

w ) at k-1. The
corresponding mean µ̂i ∈ R

2n and covariance Ui ∈ R
2n×2n of µ at node i

follow from p(xif [k-1]) and p(w[k-1]), i.e.,

µ̂i[k-1] =

(

x̂if [k-1]
0

)

, Ui[k-1] =

(

Pif [k-1] 0
0 Q

)

.

Based on the above variables, a total of M := 4n + 1 different sigma-values
of µ[k-1] are selected, which are denoted as µ̂i,q[k-1] ∈ R

2n for all q ∈ Z[1,M ].
To that extent, let µ̃i,r ∈ R

n+m be defined as a scaled version of the r-th

eigenvector of Ui[k-1], i.e., µ̃i,r :=
√

λr(Ui[k-1]) ·νr(Ui[k-1]) for all r ∈ Z[1,2n].
Then the sigma-values µ̂i,q[k-1], for all q ∈ Z[1,M ] and some c ∈ R>0, yields

µ̂i,q[k-1] :=











µ̂i[k-1] + cµ̃i,q if q ∈ Z[1,2n],

µ̂i[k-1]− cµ̃i,q−2n if q ∈ Z[2n+1,M−1],

µ̂i[k-1] if q = M.

(5.7)

The process model of (5.5) is performed on each of the above sigma-values
to obtain predictions of x[k] and yi[k], i.e.,

x̂i,q[k
−] := f (µ̂i,q[k-1]) and ŷi,q[k

−] := hi

(

x̂i,q[k
−]
)

, ∀q ∈ Z[1,M ].
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Then, with a similar notation of [k−] and [k] to denote predicted and updated
estimates, respectively, and for some collection of weights ωq ∈ R>0, the
unscented KF can be summarized as follows:

x̂i[k] = x̂i[k
−] + Si[k] (Ri[k] + Vi)

−1
(yi[k]− ŷi[k

−]),

Pi[k] = Pi[k
−]− Si[k] (Ri[k] + Vi)S

⊤
i [k].

Where, x̂i[k
−] =

M
∑

q=1

ωqx̂i,q[k
−], ŷi[k

−] =
M
∑

q=1

ωq ŷi,q[k
−],

Pi[k
−] =

M
∑

q=1

ωq

(

x̂i,q[k
−]− x̂i[k

−]
) (

x̂i,q[k
−]− x̂i[k

−]
)⊤

,

Ri[k] =

M
∑

q=1

ωq

(

ŷi,q[k
−]− ŷi[k

−]
) (

ŷi,q[k
−]− ŷi[k

−]
)⊤

,

Si[k] =
M
∑

q=1

ωq

(

x̂i,q[k
−]− x̂i[k

−]
) (

ŷi,q[k
−]− ŷi[k

−]
)⊤

.

(5.8)

The design parameters c ∈ R>0 of (5.7) and ωq ∈ R>0 of (5.8) are commonly
chosen as follows: c =

√
n+m+ α, ωM = α

n+m+α
and ωq = 1

2(n+m+α) , for

all q ∈ Z[1,M−1] and some α ∈ R+.

Estimating x of nonlinear processes via an unscented KF typically redu-
ces estimation error, when compared to an extended KF, at the cost of high
computational requirements. Therefore, a trade-off must be made between
accuracy and computational complexity, to decide which estimator is em-
ployed by a node i for processing the local measurement yi (and thus compu-
ting the local estimate xi). A benchmark application of tracking shockwaves
on a highway is investigated to analyze different aspects in this trade-off.

5.4.2 Benchmark application of tracking shockwaves

The traffic shockwave is a spatial-temporal phenomenon typically emerging
from high density traffic. It is characterized by an increase in vehicle density
and a decrease in vehicle speed. Shockwaves “travel” along the highway up-
stream, i.e., in opposite direction to the traffic, and are regularly the source
of a forthcoming traffic jam. The case-study is to initiate a shockwave first,
after which the goal is to track this (simulated) shockwave using aggregated
measurements of speed and density at certain road segments. To that extent,
consider a stretch of a one-lane road that is divided into 20 segments of each
L = 0.5 [km], as depicted in Figure 5.6.
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Figure 5.6: Illustration of the set-up for simulating shockwaves, i.e, the road,

vehicles, segments, sensor nodes and the average vehicle density. The length

of each segment has a different scale for illustration purposes.

Communication The network consists of 5 nodes that are spatially distri-
buted along the highway. Node 1 is located at road segment 1, node 2
at segment 5, node 3 at segment 10, node 4 at segment 15 and node 5 at
road segment 20. Each node exchanges data with its direct neighbors,
i.e., N1 = {2}, N2 = {1, 3}, N3 = {2, 4}, N4 = {3, 5} and N5 = {4}.

Process The process model of a traffic shockwave was presented in (Hegyi
et al., 2005). Therein, sl ∈ R and ρl ∈ R denote the average speed in
[km/h] and density in [vehicles/km] of the l-th road segment, respecti-
vely. The model characterizes sl and ρl as a nonlinear function of the
same variables at segment l − 1 and l + 1, i.e.,

ρl[k+1] =ρl[k] +
τs
L

(

ρl−1[k]sl−1[k]− ρl[k]sl[k]
)

,

sl[k+1] =sl[k] +
τs
ς

(

vfreee
− 1

α

(

ρl[k]
ρcrit

)α

− sl[k]
)

+
τs
L
sl[k]

(

sl−1[k]− sn[k]
)

− ητs
ςL

ρl+1[k]− ρl[k]

ρl[k] + κ
.

The following parameters are used in the above process model:

η = 191 - speed relaxation term [km2/h];
ς = 0.0039 - time constant of the speed relaxation term [h];
κ = 254 - speed anticipation term [vehicles/km];
ρcrit = 33.0 - maximum density on the lane [vehicles/km];
α = 5.61 - parameter for the non-compliance of drivers to speed limits;
vfree = 89.9 - free-flow speed of the lane [km/h];
τs =

10
3600 - sampling time [h].

Figure 5.7 depicts the resulting density profile of the simulated shock-
wave. The wave starts at road segment 20 with an increased vehicle
density, after which it travels towards road segment 1 in approxima-
tely 35 minutes. The state-vector is defined as x := (s1 · · · sl ρ1 · · · ρl)⊤.
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Notice that the above process model requires ρ0[k], ρ21[k] and s0[k]. As
nodes do not have these values available for estimation, they are mo-
deled as process noise with a mean that is copied from the estimated
speed and density of their neighboring segment, i.e.,

p(ρ0[k]) := G(ρ0[k], ρ̂1[k], 40), p(s0[k]) := G(s0[k], ŝ1[k], 40),

p(ρ21[k]) := G(ρ21[k], ρ̂20[k], 40).

The variables ρ̂1[k], ŝ1[k] and ρ̂20[k] in the above PDFs denote the
means of ρ1[k], ρ20[k] and s1[k], respectively, as estimated in the corres-
ponding node. Further, each sensor node measures the average speed
and density of their corresponding segment, i.e.,

yi[k] =

(

ρqi [k]
sqi [k]

)

+ vi[k] and qi :=

{

1 if i = 1,

5(i− 1) if i ∈ Z[2,5].

Three configurations of cooperative state estimation are employed to re-
cover the average density at all segments based on the available measure-
ments. In each configuration node i performs a modified version of the CKF
algorithm in Section 5.2.2 by replacing the local KF.

• The cooperative extended KF (CEKF) substitutes the local KF of the
CKF algorithm with an extended KF in all nodes i ∈ Z[1,5].

• The cooperative unscented KF (CUKF) substitutes the local KF of the
CKF algorithm with an unscented KF in all node i ∈ Z[1,5].

• The heterogenous cooperative state-estimator (HCSE) substitutes the
local KF of the CKF algorithm with an extended KF in nodes 2 and
4, while nodes 1, 3 and 5 employ an unscented KF as substitute.

All nodes start with equivalent estimates, i.e., sl[-1] = 85 and ρl[-1] = 30, for
all l ∈ Z[1,20]. Figure 5.7 shows the real and estimated density profile ρ in
time along the stretch of road, as it is computed by node 3. The estimation
results at other nodes are similar to node 3 and therefore omitted.

Figure 5.7 indicates that the CEKF is not able to reconstruct the shockwave
properly. The employed linearization of CEKF on the process model gives
approximation errors that are probably too high for tracking the shockwave
smoothly, as the estimated wave damps shortly after it was measured. Re-
sults of HCSE show that this improper tracking of the CEKF can be solved
by replacing the extended KF at nodes 1, 3 and 5 with an unscented KF.
Already after the first 5 minutes HCSE has similar results as the CUKF. Fur-
ther, note all three set-ups enjoy the global covariance property, since node 3
at road segment 10 is able to track the shockwave already from the moment
that the wave is firstly measured at node 5. This proves that node 3 exploits
the local information of node 5, even though they do not communicate.
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Figure 5.7: The real vehicle density of all 20 segments in time and their

estimated values at node 3 according to the CEKF, CUKF and HCSE.

Beside nonlinear process models, another objective for proposing HCSE
was to allow different computational requirements per node in the network.
In this benchmark, nodes that employed an extended KF had an average
computational time of 5 [ms] per sample instant, which increased up to 20 [ms]
for nodes that performed an unscented KF algorithm. Hence, the HCSE has
estimation errors that are comparable to the CUKF, while allowing a decrease
in computational requirements for some nodes. This improves applicability
of the proposed distributed state-estimator in sensor networks.

5.5 Conclusions

The concept of cooperative estimation was presented, suitable for sensor net-
works that are subject to system changes. To that extent, two novel distri-
buted state-estimators (DSEs) were proposed, in which each node performs
two steps iteratively, i.e., it runs a particular state-estimator to process its
measurements, followed by state fusion method to merge the resulting local
estimate with the estimates received from the neighboring nodes. The dis-
tinguishing feature of the proposed DSEs is that the estimation problem was
solved from a network point of view, so that the network of state estimating
nodes emerges into a cooperative estimator. This cooperative approach was
assessed for observing linear processes first, resulting in cooperative Kalman
filters. It was proven that this DSE attains the global covariance property
and has asymptotic bounds on the error-covariance of each local estimate.
The advantages of this developed DSE with respect to alternative distribu-
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ted Kalman filtering algorithms was demonstrated in a benchmark example
of a scalable platoon of vehicles. Additionally, nonlinear process models were
investigated in an illustrative application scenario of tracking shockwaves on
a highway. The analysis of this second DSE showed that having a mixture
of state-estimators across the nodes could relax computational requirements
of some nodes, without inducing a significant effect on estimation results in
the network. As such, practical implementations of the proposed DSEs are
feasible, even for sensor networks in harsh environments with many system
changes.
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An overview of distributed Kalman filtering
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The established state-estimator for a linear process with Gaussian noise
distributions is the Kalman filter. Classical implementations of its algorithm
achieve optimal estimation results when measurements are acquired centrally.
However, as sensors are more often deployed in a sensor network, with limita-
tions in communication and computational resources, a centralized approach
of the Kalman filter becomes infeasible. To solve this issue, distributed solu-
tions are being developed in many different research communities. Keeping
track of these solutions is an excessive task, since they are widely scattered
throughout the literature. Therefore, this chapter presents a comprehensive
survey on distributed Kalman filters found across these communities. Their
theoretical results are compared in asymptotic analyses according to a uni-
fied description. Moreover, a critical assessment is performed in two real-life
inspired case studies to fulfill the main objective: provide insight and argu-
mentation for choosing a suitable distributed Kalman filter when deploying
a sensor network.

6.1 System description

Distributed Kalman filtering (DKF) refers to a collection of estimation stra-
tegies often used in large-scale or ad-hoc sensor networks for observing linear
processes. Each node of such a network is equipped with a CPU, a sensor and
a two-way radio, allowing nodes to exchange data with neighboring nodes.
Since the sensory data and computational resources are (evenly) distributed
among the nodes, DKF solutions assign a local estimation algorithm to each
node in the network. As such, nodes typically compute a local estimate of
the global state. A generalized set-up that corresponds to distributed state
estimation is illustrated in Figure 6.1, followed by a detailed description.
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legend

estimate x[k]

measure yi[k]

exchange data

Figure 6.1: A typical set-up for distributed Kalman filtering, where each

node computes a local estimate of the global state. The network topology

causes that computational and sensing resources are spatially distributed.

Communication The network consists of N sensor nodes and is modeled
as an undirected, connected graph G = (V, C), see Section 1.5. Each
node i ∈ N is identified with a unique number, where N := Z[1,N ].
Further, the set Ni(q) ⊆ N is defined as a collection of all nodes j ∈ N
that have a minimal graph-distance of q ∈ Z>0 to node i, see Defi-
nition 1.5.4. Hence, neighboring nodes j ∈ Ni(1) that exchange data
with node i have a graph-distance of 1. Note that a connected graph
implies ∪q∈Z+

{Ni(q)} = N , for all i ∈ N .

Process A node i ∈ N observes the perturbed, dynamical process of (1.1),
for some constant sampling time τs ∈ R>0 and u(t) = 0, i.e.,

x[k] = Ax[k-1] + w[k-1], (6.1a)

yi[k] = Cix[k] + vi[k]. (6.1b)

The state vector is denoted as x ∈ R
n, whereas yi ∈ R

mi corresponds
to the measurement of node i. Both the process-noise w ∈ R

n and
measurement-noise vi ∈ R

mi are characterized by Gaussian PDFs, for
some Q ∈ R

n×n and Vi ∈ R
mi×mi , i.e.,

p(w[k]) := G(w[k], 0, Q) and p(v[k]) := G(vi[k], 0, Vi).

The goal of the sensor network is to compute a local estimate xi ∈ R
n of the

global state x in each node i. Since the process model is linear and both noises
are Gaussian distributed, it is appropriate to assume that the random variable
xi[k] is Gaussian distributed as well, i.e., p(xi[k]) := G(xi[k], x̂i[k], Pi[k]) for
some mean x̂i[k] ∈ R

n and error-covariance Pi[k] ∈ R
n×n.

The main challenge for state estimation in sensor networks is to exploit
the large amount of local measurements. In addition, some applications desire
that the corresponding implementation is robust to changes present in the
network. Numerous solutions on DKF have been (are still being) developed
to address these challenges, mostly for observing linear processes, such as
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the one presented in (1.1). Their development is based on some early non-
centralized KFs for a network that supports global communication, see, e.g.,
(Speyer, 1979; Hassan et al., 1978; Hashmipour et al., 1988; Roy et al., 1991).
The glimpse of DKF solutions presented in Section 1.3.2 showed that their
popularity in various research communities led to a wide variety of solutions
scattered throughout the literature. Several overviews on DKF are presented
in (Felter, 1990; Hespanha et al., 2007; Sijs et al., 2008; Ribeiro et al., 2010;
Garin and Schenato, 2011). However, they could only address a selective
area of DKF, due to the growing amount of developed methodologies in
various research communities. Moreover, each community complies on its
own assumptions and arguments that are not clearly stated for outsiders.

Therefore, this chapter presents a solution to Problem 1.3.4: A com-
prehensive overview on distributed Kalman filters that assists in choosing a
suitable solution for a sensor network application. The presentation distin-
guishes four types of DKF strategies. Each strategy is a combination of the
following two design options:

• Exchanging local measurements or local estimates;

• Synchronize or fuse the exchanged estimation variables;

The overview addresses characteristic solutions that were developed in the
control, fusion and multi-agent communities, along these four types of DKF
approaches. Within each approach, popular solutions are assessed on their
theoretical and practical capabilities, for which a common notation is em-
ployed to present their local estimation algorithms. The theoretical assess-
ment involves an analysis under which conditions the corresponding DKF
solution is stable, i.e., Pi[∞] := limk→∞ Pi[k] has bounded eigenvalues. After
that, a practical evaluation is performed in two real-life inspired application
examples, i.e., object tracking and environmental monitoring. A discussion
on recent extensions in DKF completes the overview. Nonetheless, before
the four DKF approaches are presented, let us start with the main contribu-
tions on synchronization and fusion methods, next. These two methods are
frequently used to operate on the data exchanged between nodes.

6.2 Synchronization versus fusion

Synchronization and fusion methods typically consider a similar network to
the one depicted in Figure 6.1, with the difference that each node i has a
parameter θi ∈ R

n that represents a local version of some global parameter
θ ∈ R

n. See, also, the corresponding set-up illustrated in figure 6.2. Note
that, for clarity of the proposed methods, synchronization as well as fusion
do not consider time-varying signals, such as the process’ state. Nonetheless,
similar as to DKF, they define that nodes share their local parameter with
neighboring nodes to improve the overall results of these local parameters
θi as an estimate of the global θ, for all i ∈ N . Synchronization has the
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goal to achieve a consensus, while its fusion alternative has the objective to
reduce uncertainty. As both will return in many DKF strategies, let us give a
brief account on each of them. To that extent, let θi denote a random vector
that is represented with a Gaussian distribution, i.e., p(θi) = G(θi, θ̂i,Θi),

for some suitable θ̂i and Θi.

p(0i) p(0j)

p(0...) p(0...)

p(0...)
0j

0i

0i

0j

0j

node i node j

Figure 6.2: A network suitable for synchronization and fusion methods,

where nodes exchange and improve their local parameters, e.g., θi of node i.

6.2.1 Synchronization

Synchronization methods aim to reduce conflicting results between the local
parameters θi, for all i ∈ N . Such an objective makes sense, as each θi
is a local representative of the same global θ. Many distributed algorithms
for synchronization (averaging or consensus) were proposed to diminish the

difference of the means θ̂i − θ̂j , for any two i, j ∈ N . See, for example,
(Jadbabaie et al., 2003; Xiao and Boyd, 2004; Xiao et al., 2005; Tahbaz Salehi
and Jadbabaie, 2010). Their general idea is to perform L ∈ Z>0 weighted
averaging cycles in each node i on the local and neighboring parameters,
i.e., on θ̂i and θ̂j for all j ∈ Ni(1). To that extent, let θ̂is ∈ R

n denote the
synchronized parameter-mean of node i after L averaging cycles. Further,
let Wii,Wij ∈ R

n×n, for all j ∈ Ni(1), denote some weighting matrices.
Then, synchronization methods perform the following recursive averaging
cycle L times at each node i, for all l ∈ Z[1,L] and θi(0) := θi, i.e.,

θ̂i(l+1)=Wiiθ̂i(l)+
∑

j∈Ni(1)

Wij θ̂j(l) and Wii := In −
∑

j∈Ni(1)

Wij , (6.2)

Notice that the last cycle obtains the synchronized result, i.e., θ̂is := θ̂i(L).
Most research on synchronization concentrates on developing suitable

values for the weights Wij (and Wii). Some examples of scalar weights were
proposed in (Jadbabaie et al., 2003; Xiao et al., 2005), where di := ♯Ni(1) is
the number of neighbors and ǫ < min{d1, . . . , dN}, i.e.,
Nearest neighboring weights Wij := (1 + di)

−1
, ∀j ∈ Ni(1);

Maximum degree weights Wij := (1 + ǫ)
−1

, ∀j ∈ Ni(1);

Metropolis weights Wij := (1 + max{di, dj})−1
, ∀j ∈ Ni(1).
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Each of these weights corresponds to a particular synchronization ob-
jective, though an important property of many methods is to preserve the
average. Conditions to attain this property for the averaging cycles of (6.2)
were established in (Xiao et al., 2005) with scalar weights Wij ∈ R. To
that extent, let 1 ∈ R

N and 11 ∈ R
N×N be conform to {1}q := 1 and

{11}qr := 1, for all q, r ∈ N . Further, U ∈ R
N×N is defined via the elements

{U}qr = Wqr, for all {q, r ∈ N|Wqr exists}, while {U}qr = 0 otherwise.

Theorem 6.2.1 Let each node i perform the synchronization step of (6.2),
for some θi ∈ R

n×n, and let 1⊤U = 1
⊤, U1 = 1 and |λq(U−N−1 ·11⊤)| < 1,

for all q ∈ Z[1,N ]. Then limL→∞ θ̂i(L) = N−1
∑

j∈N θ̂j holds for all i ∈ N .

A proof of this theorem is presented in (Xiao et al., 2005), while similar
results are found in (Jadbabaie et al., 2003) as well. Therein, it was shown
that synchronization with nearest neighboring weights does not preserve the
average but that θ̂is depends on the network topology. The maximum degree
weights and metropolis weights do satisfy the average value as a consensus.
However, note that maximum degree weights require global information to
establish ǫ in every node, which reduces its applicability in sensor networks.

6.2.2 Fusion

Fusion methods aim to reduce the uncertainty on the local parameters θi,
for all i ∈ N . To that extent, they typically propose a fusion function
Ω : R

n×n × R
n×n → R

n×n that merges two parameters θi and θj into
a new fused parameter θif ∈ R

n. Since all local parameters are characterized
by a Gaussian distribution, let us assume that the fused random vector θif is

Gaussian distributed as well, i.e., p(θif ) := G(θif , θ̂if ,Θif ) for some suitable

mean θ̂if and covariance Θif . Further, let us point out that fusion of more
than two estimates is commonly conducted recursively. This means that θi
is merged with the first received θj , after which their fusion result is further
merged with the local parameter that is received next, and so on. Nonethe-
less, this section presents some novel fusion functions for merging two local
parameters θi and θj .

A first important fusion function Ω(·, ·) was presented in (Speyer, 1979;
Bar-Shalom and Campo, 1986), when correlations are known.

Corollary 6.2.2 Let θif denote any linear fusion result of the two local
parameters θi and θj and let Θij := cov(θi, θj). Then, the fusion function
θif = Ω(θi, θj), characterized by

Θif =Θi − (Θi −Θij)(Θi +Θj −Θij +Θ⊤
ij )

−1(Θi −Θ⊤
ij ) and

θ̂if =θ̂i + (Θi −Θij)(Θi +Θj −Θij +Θ⊤
ij )

−1(θ̂j − θ̂i),

establishes the unbiased fusion result with minimal tr(Θif ). In addition,

Θif =
(

Θ−1
i +Θ−1

j

)−1
and θ̂if = Θif

(

Θ−1
i θ̂i +Θ−1

j θ̂j
)

, for Θij = 0n×n.
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A drawback of the above fusion function is that the correlation cov(θi, θj)
should be available, which could induce impractical requirements for sensor
networks. To solve the issue, alternative fusion methods were recently propo-
sed that can cope with unknown correlations. Perhaps the most popular me-
thod was introduced as covariance intersection (CI) in (Julier and Uhlmann,
1997b). The fusion function of CI, which is denoted as θif = Ωci(θi, θj), is
characterized by a weighted averaging of the local parameters θi and θj , for
some weight ω ∈ R[0,1], i.e.,

Θif :=
(

ωΘ−1
i + (1− ω)Θ−1

j

)−1
, θ̂if := Θif

(

ωΘ−1
i θ̂i + (1− ω)Θ−1

j θ̂j
)

,

The popularity of CI led to various approaches for determining ω, see, e.g.,
(Hanebeck et al., 2001; Niehsen, 2002; Franken and Hupper, 2005). Some
examples, are ω = tr(Pj)(tr(Pj)+ tr(Pi))

−1 and the Kullback-Leibler1 inspi-
red weight ω = d(pi||pj)(d(pi||pj) + d(pj ||pi))−1. Note the similarity of CI to
synchronization of 6.2, which also holds the drawback of CI: a reduction in
uncertainty after fusion is not attained, i.e., Θif 6�Θi and Θif 6�Θj .

The fusion method ellipsoidal intersection (EI) of Chapter 4 does satisfy
Θif � Θi and Θif � Θj . The distinguishing feature of EI is an explicit
characterization of unknown correlation, so that the fusion formulas are based
on the independent parts of θi and θj that are to be fused. In line with
the proposed characterization of unknown correlations, a summary of EI
starts by introducing the mutual covariance Γ ∈ R

n×n and mutual mean
γ ∈ R

n. Further, let Di, Dj ∈ R
n×n and Si, Sj ∈ R

n denote two diagonal and
rotation matrices, respectively, obtained by the eigenvalue decompositions

Θi = SiDiS
−1
i and D

− 1
2

i S−1
i ΘjSiD

− 1
2

i =SjDjS
−1
j . Then the fusion function

of EI, denoted as θif = Ωei(θi, θj), for some for some ς∈ R+, yields

Θif =
(

Θ−1
i +Θ−1

j − Γ−1
)−1

, (6.3a)

θ̂if = Θif

(

Θ−1
i θ̂i +Θ−1

j θ̂j − Γ−1γ
)

, (6.3b)

where, Γ = SiD
1
2
i SjDΓS

−1
j D

1
2
i S

−1
i ,

DΓ = diagq∈Z[1,n]

(

max
{

1, {Dj}qq
})

,

γ = (Wi +Wj)
−1(Wiθ̂i +Wj θ̂j),

Wi = Θj − Γ + ςIn, Wj = Θi − Γ + ςIn.

(6.3c)

The value of ς allows for a numerically robust computation of the mutual
mean γ. A suitable value, yields ς = 0 if |1 − {Dj}qq| > 10ǫ holds for all
q ∈ Z[1,n], while ς = ǫ otherwise, for some approximation parameter ǫ ∈ R>0

More details on this fusion method are found in Chapter 4. Here, let us
continue with a brief comparison of synchronization versus fusion.

1The Kullback-Leibler divergence d( · || · ) was introduced in Section 3.2.1.
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Based on their formulas, the main difference between synchronization
and fusion is the incorporation of the local covariance Θi, which models the
uncertainty (error) on the local parameter θi as an estimate of θ. In addi-
tion, let us recall the illustrative comparison of synchronization and fusion
presented in Chapter 5. Figure 6.3 depicts this comparison, which is obtai-
ned when θi and θj are either synchronized or fused with each other. The

result of synchronization, i.e., p(θis) = G(θis , θ̂is ,Θis), is computed accor-
ding to one averaging cycle of (6.2) with L = 1 and Wij = 0.1. Note that,

in line with standard synchronization methods, only the means θ̂i and θ̂i are
synchronized and that Θis = Θi. The fusion alternative employs the EI for-

mulas of (6.3) to compute p(θif ) = G(θif , θ̂if ,Θif ). Let us emphasize that
Figure 6.3 is not included to decide which method is better. It is merely an
example to illustrate the goal of synchronization (reduce conflicting results)
with respect to the goal of fusion (reduce uncertainty), as they will re-appear
in the theoretical assessment of the survey that is presented next.
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Figure 6.3: A comparison of synchronization versus fusion. Note that PDFs

are represented as ellipsoidal sub-level-set, i.e., G(θ, µ,Σ) → Eµ,Σ. A graphi-

cal characterization of such a sub-level-set is found in Figure 1.9, though let

us point out that a larger covariance Σ implies a larger area-size of Eµ,Σ

6.3 Exchanging measurements

The first two DKF approaches of this overview consider the exchange of local
measurements. As such, each node i receives the local measurement yj of
its neighboring nodes j ∈ Ni(1), which can then be fused (approach 1) or
synchronized (approach 2). Notice that yi and yj , for any two i, j ∈ N ,
may have a different representations, i.e., Ci is not necessarily equal to Cj .
Hence, one cannot fuse nor synchronize yi and yj instantaneously, as they
could correspond to different elements of x. To solve this issue, each local
measurement yi[k] = Cix[k] + vi[k] is transformed into its information form,
which is characterized by the information state zi ∈ R

n and information
covariance Zi ∈ R

n×n, i.e.,

zi[k] := C⊤
i V −1

i yi[k] and Zi[k] := C⊤
i V −1

i Ci, ∀i ∈ N , k ∈ Z+. (6.4)
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The main reason that the term “information” is used, for denoting zi and
Zi, is because the same transformation was introduced in the Information
filter of (1.5). This Information filter has equivalent estimation results as the
Kalman filter but is less complex in the presence of many measurements. For
that reason, the Information filter and thereby, the information form of yi, is
a favorable approach for estimation in sensor networks.

6.3.1 Approach 1: fusion of measurements

Existing solutions that are in line with the first DKF approach perform fu-
sion on the exchanged measurements, for which it is typically assumed that
local measurements are independent, i.e., cov(yi, yj) = 0n×n for all i, j ∈ N .
These measurements can be shared in their normal form or in their informa-
tion form. The information form of zi and Zi is chosen here, as it imposes
fewer requirements and simplifies the fusion formulas. In addition, note that
the correlation is available for fusion as well, due to which the fusion for-
mulas presented in Corollary 6.2.2 can be employed. However, it was shown
in (Durant-Whyte et al., 1990) that these optimal fusion formulas can be
rewritten into a simple addition, when the information form is used, i.e.,
zif [k] = zi[k] + zj [k] and Zif [k] = Zi[k] + Zj [k]. As fusion of more than
two variables is commonly conducted recursively, the fused measurement at
node i obtained after merging zi[k] and Zi[k] with the measurement informa-
tion received from neighboring nodes, i.e., zj [k] and Zj [k] for all j ∈ Ni(1),
yields

zif [k] := zi[k] +
∑

j∈Ni(1)

zj [k] and Zif [k] := Zi +
∑

j∈Ni(1)

Zj [k]. (6.5)

Note that the above fused measurement is still in the information form. The-
refore, it can directly be used as input to an Information filter at node i for
computing a local estimate of the state, as depicted in Figure 6.4.

Information

filter

zi, Zi Send to 

nodes j  Ni(1)

Received from

nodes j  Ni(1) 

yi

zj, Zj

Information 

form

zi  , Zi  f fxi,Pi 

Figure 6.4: Schematic set-up of a local estimation algorithm performed by

a node i that typically corresponds to a DKF approach where local measure-

ments from neighboring nodes j ∈ Ni(1) are fused before being exploited by

an Information filter for computing the local estimation results x̂i and Pi.

The DKF solution of Figure 6.4 was proposed in (Durant-Whyte et al.,
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1990) and is labeled as distributed information filter (DIF). Therein, a node
i performs the following DIF algorithm, for Ni(0,1) := {i} ∪ Ni(1).

Algorithm of the DIF

Pi[k
−] = APi[k-1]A

⊤ +Q;

Pi[k] =
(

P−1
i [k−] +

∑

j∈Ni(0,1)

Zj [k]
)−1

;

x̂i[k] = Pi[k]
(

P−1
i [k−]Ax̂i[k-1] +

∑

j∈Ni(0,1)

zj [k]
)

.

The notation k− emphasizes predicted variables from updated ones. This
simple, yet effective, DKF solution triggered many extensions of the DIF to
reduce communication requirements. For example, by asynchronous commu-
nication, or by quantization of the exchanged values, see, e.g., (Mallick et al.,
2001; Ribeiro et al., 2006, 2010). On top of that, several assessments of the
DIF were presented in (Schlosser and Kroschel, 2007; Hasu and Koivo, 2006),
addressing out-of-sequence-measurements and adaptive communication rates.

An additional assessment in this overview involves the asymptotic beha-
vior of the DIF. To that extent, one can derive that the Information filter
with zif and Zif of (6.5) establishes equivalent estimation results as a Kalman
filter that is based on the fused measurement yif [k] := Hix[k] + vif , where
p(vif ) = G(vif , 0, Ri), Ri := diagj∈Ni(0,1)

(Vj) and Hi := colj∈Ni(0,1)
(Cj). As

such, the asymptotic properties of Pi[k] of the DIF are equivalent to the ones
of the error-covariance of a Kalman filter based yif .

Theorem 6.3.1 Let (A,Hi) be an observable pair. Then, there exists a
unique and stabilizing solution Pi[∞] := limk→∞ Pi[k] of the DIF at node i,
independent of Pi[-1], if λq(A) ≤ 1, for all q ∈ Z[1,n].

A proof of this theorem directly results from the asymptotic properties of a
Kalman filter that were established by analyzing convergence of the Ricatti
difference equation in (Chan et al., 1984). The theorem further indicates an
important design aspect of the DIF, i.e., a local estimate xi is based on the
node’s local and neighboring measurements ∪j∈Ni(0,1)

{yj}. Hence, only the
measurements produced in the direct neighborhood of a node are exploited
for computing its local estimate. This further means that the DIF is most
successful in applications where the global state can be estimated from its own
and neighboring measurements, for example, object tracking applications.
However, this further implies that different nodes will obtain different local
estimation results, as a local estimate xi is based on a (unique) subset of
local measurements. This issue is addressed in the next DKF approach.
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6.3.2 Approach 2: synchronization of measurements

Existing solutions in line with the second DKF approach perform synchro-
nization on the exchanged measurements that, similar as to DKF solutions
in the previous approach, are assumed to be independent. Further, since yi
and yj , for any two i, j ∈ N , may have different representations, the presen-
ted solutions will become less complex when nodes share their measurement
yi in the information form of (6.4). The local measurement information zi
and Zi are then individually synchronized with the corresponding received
measurement information zj and Zj from its neighboring nodes j ∈ Ni(1), by
performing L averaging cycles in line with (6.2). After L averaging cycles a
node i obtains the synchronized measurement in an information form, which,
similar as to the DIF, can directly be used as input to an Information filter
for computing a local estimate of the state, as depicted in Figure 6.4.
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Figure 6.5: Schematic set-up of a local estimation algorithm performed

by a node i that typically corresponds to a DKF approach in which local

measurements from neighboring nodes j ∈ Ni(1) are synchronized before

being exploited by an Information filter for computing x̂i and Pi.

Existing DKF solutions that are in line with the set-up of Figure 6.5 are
found in (Olfati-Saber, 2007; Kirti and Scaglione, 2008) and are labeled as
consensus information filter (CIF). Therein, a node i performs the following
CIF algorithm, for some zi(0)[k] := C⊤

i V −1
i yi[k] and Zi(0)[k] := C⊤

i V −1
i Ci.

Algorithm of the CIF

Synchronisation on local measurements

for l = 1 : L , do

Zi(l)[k] =
∑

j∈Ni(0,1)

WijZj(l−1)[k], zi(l)[k] =
∑

j∈Ni(0,1)

Wijzj(l−1)[k];

end

Information filter

Pi[k
−] = APi[k-1]A

⊤ +Q;

Pi[k] =
(

P−1
i [k−] + Zi(L)[k]

)−1
;

x̂i[k] = Pi[k]
(

P−1
i [k]Ax̂i[k-1] + zi(L)[k]

)

.
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The idea of the CIF is that synchronization on local measurements induces
synchronization of local estimates, which can also be proven.

Corollary 6.3.2 Let each node i employ CIF with maximum degree weights
or metropolis weights. Further, let x̂i[0] and Pi[0] be equal for all i ∈ N .
Then, also x̂i[k] and Pi[k] are equal for all i ∈ N , k ∈ Z+ and L → ∞.

A proof of this corollary is a direct result of the fact that zi(L)[k] and Zi(L)[k]
attain the averaged measurement in information form at each node, i.e.,
Zi(L)[k] = N−1

∑

i∈N C⊤
i V −1

i Ci and zi(L)[k] = N−1
∑

i∈N C⊤
i V −1

i yi[k] hold
for all i ∈ N and L → ∞. Since these values are equal in every node at each
sample k, the resulting local estimate xi[k] is equivalent for all i ∈ N . In
reality, the CIF will already achieve similar results for smaller L depending
on the network size. However, a typical requirement in DKF, for satisfying
the limitations in communication, is that data is exchanged once per sample
instant, i.e., L = 1. In that case, the next result shows that the DIF obtains a
smaller error-covariance than the CIF. To that extent, let P dif

i [k] and P cif

i [k]
denote their corresponding error-covariance at node i, respectively.

Lemma 6.3.3 Let each node i employ the DIF in parallel to the CIF, with
L = 1 and P cif

i [0] = P cif

i [0]. Then, P dif

i [k] � P cif

i [k] holds for all k ∈ Z+.

The lemma is proven in Appendix F.1.
The CIF is not a popular DKF approach as it requires to communicate L

times at each sample instant, while communication is one of the limiting re-
sources in sensor networks. Moreover, if L = 1, then Theorem 6.3.3 indicates
that the DIF achieves better estimation results. Nonetheless, a theoretical
extension of the CIF was presented in (Kamgarpour and Tomlin, 2008). The-
rein, conditions on the weights Wij ∈ R

n×n were derived to guarantee that
zi(L) and Zi(L) represent the fused rather than the synchronized measure-
ment. This would then imply that the CIF mimics the centralized Kalman
filter. However, no actual values of the weights were indicated, by which the
fused result would be obtained, while L → ∞ is required as well. Therefore,
given that the objective is synchronizing xi, for all i ∈ N , literature indicates
that exchanging local state-estimates is more effective, which is shown next.

6.4 Exchanging local estimates

The next two DKF approaches exchange the local estimates, which are typi-
cally determined by pre-processing the node’s own measurement locally with
a Kalman filter. Then, shared local estimates are either synchronized (appro-
ach 3) or fused (approach 4). One of the main advantages when exchanging
local estimates is that local measurement information spreads through the
entire network, even when nodes exchange data only once per sample in-
stant. This is probably why the next two DKF approaches have recently
gained attention, especially the third approach.
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6.4.1 Approach 3: synchronization of state estimates

Existing solutions that are in line with the third DKF approach synchronize
the exchanged local state estimates. Some first aspects of such an approach
were studied by performing one averaging cycle of (6.2) on the results of the

DIF in each node i. i.e., substituting θ̂i(0) = x̂i[k], θ̂j(0) = x̂j [k] and L = 1
into (6.2). An illustration of such a DKF solution is depicted in Figure 6.6,
while some studies associated to this DKF are presented in (Olfati-Saber and
Shamma, 2005; Olfati-Saber, 2007; Kirti and Scaglione, 2008). A simplified
implementation was assessed in (Carli et al., 2008). Therein, each node i
employs the following set of equations, in which Ni(0,1) := {i} ∪ Ni(1), for
computing a local mean x̂is [k] that is synchronized with local means obtained
in other nodes of the network.

x̂is [k] =
∑

j∈Ni(0,1)

Wij x̂j [k], x̂i[k] = (1− κi)x̂is [k-1] + κiyi[k], (6.6)

Note that the variable κi in (6.6) could be regarded as the Kalman gain.
In addition, the assessment presented in (Carli et al., 2008) showed that
minimization of the estimation error by jointly optimizing κi and Wij , for all
j ∈ Ni(0,1), is a non-convex problem. Hence, choosing κi as the Kalman gain
affects the weights Wij and vice-versa, which raised new challenges.
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Figure 6.6: Schematic set-up of a local estimation algorithm performed by

a node i that typically corresponds to a DKF approach where local estimates

from neighboring nodes j ∈ Ni(1), obtained by their Information filter, are

synchronized. The routine “Demux” separates the incoming variables x̂i and

Pi, whereas “Mux” combines the incoming variables x̂is and Pi.

A popular DKF solution that addresses such a joint optimization was
introduced as the distributed consensus information filter (DCIF) in (Olfati-
Saber, 2009). Therein, a node i performs the following DCIF algorithm, for
some design parameter ǫ ∈ R(0.1τs,10τs).
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Algorithm of the DCIF

Information filter

Pi[k
−] = APi[k-1]A

⊤ +Q;

Pi[k] =
(

P−1
i [k−] +

∑

j∈Ni(0,1)

Zj [k]
)−1

;

x̂i[k] = Pi[k]
(

P−1
i [k−]Ax̂is [k-1] +

∑

j∈Ni(0,1)

zj [k]
)

;

Synchronisation

µi[k
−] =

∑

j∈Ni(1)

A(x̂js [k-1]− x̂is [k-1]);

x̂is [k] = x̂i[k] + ǫPi[k
−]
(

tr(P−⊤
i [k−]Pi[k

−])
1
2 + 1

)−1
µi[k

−].

A first observation of the DCIF algorithm is that its error-covariance Pi[k] is
computed with the same formulas that were used for determining the error-
covariance of the DIF. Hence, the asymptotic properties of Pi[k] in the DCIF
correspond to the results obtained in Theorem 6.3.1. Moreover, note that
the DCIF and the DIF are equivalent DKF solutions in case ǫ = 0. A diffe-
rent observation is that the first and second moment of xi[k], i.e., x̂is [k] and
Pi[k], have different update formulas, since only the means are synchroni-
zed. A consequence of this difference is Pi[k] does not represent a model for
cov(xi[k]− x̂is [k]) anymore. Or differently, that Pi[k] is a poor approximation
of the uncertainty of the local estimate xi[k] and thus of its estimation-error.
However, the main objective of the DCIF is to attain a consensus on the
mean of local estimates, which was proven in (Olfati-Saber, 2009).

Theorem 6.4.1 Let each node i perform the DCIF and let
∑

j∈Ni(0,1)
Zj≻ 0,

for all i ∈ N . Then limk→∞ ‖x̂is [[k]−x[k]‖2 is bounded for a sufficiently small
ǫ ∈ R>0. Moreover, limk→∞ x̂is [k] has equivalent values for all i ∈ N .

The DCIF is one of many solutions that fit within this DKF strategy. See,
for example, an extensive survey on synchronization algorithms for control
and estimation purposes in (Garin and Schenato, 2011). Therefore, let us
briefly address three other popular DKF solutions that are associated to this
approach of a synchronization on local estimates.

• Distributed minimum variance estimator (Speranzon et al., 2008): The
method computes only a mean of xi, for a process model in (6.1) that is
simplified to the scalar case x∈R and A = 1. The update then involves
x̂i[k] =

∑

j∈Ni(0,1)
Wij x̂j [k-1]+

∑

j∈Ni(0,1)
κijyj [k]. Algebraic formulas of

the weights Wij ∈ R
n×n and κij ∈ R

n×mi , for all i, j ∈ N , are derived
by minimizing the estimation error and can be determined on-line.
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• Off-line DKF (Alriksson and Rantzer, 2006): The method computes
only a mean of xi in line with (6.6), while including a process model,
i.e., x̂is [k] =

∑

j∈Ni(0,1)
Wij x̂j [k] and x̂i[k] = (1−κiCi)Ax̂is [k-1]+κiyi[k].

An extension of this off-line DKF that takes communication noise into
account was presented in (Mosquera and Jayaweera, 2008). However,
as the weights Wij ∈ R

n×n and κij ∈ R
n×mi are jointly determined

off-line, for all i, j ∈ N , the method is sensitive to system changes.

• Kalman consensus algorithm (Ren et al., 2005): The method synchro-

nizes both the mean and covariance. Hence, Pi[k] =
(

P−1
is

[k−] +Zi

)−1

and x̂i[k] = Pi[k]
(

P−1
is

[k−]x̂is [k
−] + zi[k]), in which Pis [k

−] and x̂is [k
−]

are individually obtained by one averaging cycle of (6.2) on their cor-
responding predicted variables at node i and its neighboring nodes
j ∈ Ni(1). The original method included communication noise, which
is omitted for clarity of the algorithm. A similar DKF method for
synchronizing P−1

i and P−1
i x̂i is found in (Casbeer and Beard, 2009).

One of the most important design aspects for this third DKF approach, is
that the concept of synchronization will balance (not reduce!) the estimation
error in the network. As such, nodes with accurate sensor readings will still
obtain erroneous estimates, when other nodes in the network have inaccurate
sensor readings. Or worse, if x is not observable from the measurements
acquired by one node i of the network, i.e., from ∪j∈Ni(0,1)

{yj}, then this
node i yields unstable estimation results and thus a diverging estimation error
and error-covariance. More importantly, the other nodes in the network will
duplicate this behavior as a result of the synchronization procedure. For that
reason, it is required that each node i attains stable estimation results that
are based on the acquired measurements only. Such a requirement was also
necessary to establish Theorem 6.4.1, i.e.,

∑

j∈Ni(0,1)
Zj≻ 0. Therefore, based

on this brief theoretical analysis, the third DKF approach is most effective
when nodes have similar local measurements that result in an observable
local estimate. This makes object tracking a favorable application scenario
for DKF solution that synchronize local estimates. Further, note that the
weights Wij should be chosen in line with Theorem 6.2.1 to preserve the
average and not introduce a bias on the estimates. Solutions to prevent the
spread of instability caused by one node are found in the next DKF approach.

6.4.2 Approach 4: fusion of state estimates

Existing solutions that are in line with the fourth DKF approach perform
fusion on the exchanged local state estimates. Typically, each node employs a
Kalman filter (or Information filter) for processing its own local measurement
yi[k] and thereby, compute an updated local estimate of xi[k] conform a
Gaussian distribution. Local estimates are then shared with neighboring
nodes as input to a state fusion method, see Figure 6.7. The resulting fused
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estimate is denoted as xif [k] and follows a Gaussian distribution, i.e., p(xif ) =
G(xif , x̂if , Pif ), for some suitable x̂if [k] and Pif [k]. The survey focusses on
fusion methods that can cope with unknown correlations. Otherwise, the
sensor network should keep track of all the estimates that are shared between
nodes, which imposes unrealistic requirements.
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Figure 6.7: Schematic set-up of a local estimation algorithm performed by

node i that is typical for DKF approach where local estimates from neighbo-

ring nodes j ∈ Ni(1), obtained by their Information filter, are fused.

Standard fusion methods merge two local estimates xi[k] and xj [k] into
a single fused estimate. Fusion of more then two estimates is commonly con-
ducted recursively. This means that node i fuses xi[k] of its Information filter
with the first received estimate, denoted as xj(1)[k], after which their fusion
result is further merged with the estimate that is received next, i.e., xj(2)[k],
and so on. Therefore, let us denote p(xi(l)[k]) = G(xi(l)[k], x̂i(l)[k], Pi(l)[k])
as the fusion result of node i, after fusing p(xi(l−1)[k]) with the l-th received
estimate p(xj(l)[k]) = G(xj(l)[k], x̂j(l)[k], Pj(l)[k]). A DKF solution that adopts
this reasoning was introduced in Chapter 5 as cooperative Kalman filters
(CKFs). CKFs employs the state fusion method ellipsoidal intersection to
merge two estimates according to the fusion function Ωei(·, ·) of (6.3). As
such, the corresponding CKFs algorithm performed by a node i, yields

Algorithm of the CKFs

Informtion filter

Pi[k
−] = APif [k-1]A

⊤ +Q;

Pi[k] = (P−1
i [k−] + Zi[k])

−1;

x̂i[k] = Pi[k](P
−1
i [k−]Ax̂if [k-1] + zi[k]);

Fusion

x̂i(0) := x̂i[k] and Pi(0) := Pi[k]);

for l = 1, . . . , L and L := ♯Ni(1), do:

x̂j(l) := x̂j [k] and Pj(l) := Pj [k]), j ∈ Ni(1);

xi(l) = Ωei(xi(l−1), xj(l));

end

x̂if [k] = x̂i(L), Pif [k] = Pi(L).



118 An overview of distributed Kalman filtering

The above CKFs employs ellipsoidal intersection for state fusion, as it gua-
rantees a reduction in the uncertainty after fusion. This is a vital property
for proving asymptotic bounds on Pif [k], which is recalled from Section 5.2.3.
Let us simplify those results, so to improve the clarity of the statement.

Theorem 6.4.2 Let each node i perform the CKFs and let there exists at
least one node j ∈ N , for which (A,Cj) is an observable pair and λq(A) ≤ 1
holds for all q ∈ Z[1,n]. Then, λmax(Pif [∞]) is bounded for all nodes i ∈ N .

A different property of CKFs is that the information of any local measure-
ment yi is exploited for computing a local estimate xj at any (other) nodes
j ∈ N . A similar property also holds for the following DKF solution.

The gossip interactive Kalman filter (GIKF), which was introduced in
(Kar, 2011), starts with the same Information filter as the CKFs for compu-
ting Pi[k] and x̂i[k] of the local estimate xi[k]. However, xif [k] is determined
by swapping the local xi with xj of a randomly selected neighboring node j.
As such, x̂if [k] = x̂j [k], Pif [k] = Pj [k] and x̂jf [k] = x̂i[k] and Pjf [k] = Pi[k]
are followed for one unique j ∈ Ni(1) at each instant k ∈ Z+. It was proven in
(Kar, 2011) that the probability of an unbounded Pif [k], i.e., Pr(|Pif | → ∞),
is zero for all i ∈ N , given that three conditions are satisfied.

Theorem 6.4.3 Let A−1 exists, (A,Q
1
2 ) be a stabilizable pair and let

∑N
i=1 C

⊤
i Ci have full rank. Then limα→∞ supk∈Z+

Pr(|Pif [k]| ≥ α) = 0.

An important design consideration of GIKF is that the local estimate xi is
based on a unique set of measurements. This is because yi[k] is used to update
xi[k] and it is not shared with any other node. Yet, each local estimate xi[k]
is based on sensor readings from all the nodes in the network, for large k.

An important design aspect, for both the GIKF and CKFs, is that the
mean and error-covariance of a local estimate xi are based on the available
sensor readings from all over the network. Such DKF solutions are beneficial
in sensor networks that have many different types of local measurements. In
additional, this fourth DKF approach does not require any initialization with
neighboring nodes, for example, to re-evaluate the weights Wij for synchroni-
zation. Hence, fusion of local estimates is advantageous in large-scale sensor
networks that are subject to system changes, e.g., in the network topology, or
new nodes that are added to an existing network during operation. However,
please note that a trade-off for attaining the reduction in uncertainty (and
estimation error) with CKFs is an increase of computational complexity.

6.5 Illustrative examples

The theoretical overview on DKF presented in the previous sections summa-
rized the different approaches that are found in literature. An indication of
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their main design considerations was given for each approach, though a prac-
tical evaluation of various DKF solutions in two real-life application examples
is presented in this section. The first application is multi-object tracking on
a parking lot using four static cameras. The second application is following a
2D environmental diffusion process in time with a large-scale, ad-hoc sensor
network. Six DKF solutions are compared according to the four approaches.

• The DIF from approach 1, i.e., fuse measurements;

• The CIF from approach 2, i.e., that synchronize measurements;

• The DCIF from approach 3, i.e., synchronize estimates. In addition,
a second DKF solution associated to this approach is included. This
solution is denoted as DKF-SC and follows the set-up of Figure 6.6;

• The CKFs and GIKF from approach 4, i.e., fuse estimates.

6.5.1 Object tracking with camera

The first application example involves object tracking, in which the goal is to
track 10 moving objects (humans) in a small network of four cameras (nodes).
The cameras are placed 3 meters above the ground at different locations to
cover a certain range of a parking lot in Rxy, i.e., Rxy represents the ground
plane having a X-direction and a Y -direction. The camera image is updated
at approximately 10 [Hz] and is processed for detecting moving objects in the
stream of camera images. This is done by estimating a background image
of the camera, via low-pass filtering, which after substraction of the current
camera image results in “blobs” that each could represent a moving object.
The center-of-mass of each blob is referred to as detection. It cannot be
assumed that each detection is related to a moving object in the real scene,
as false detections will be present. Figure 6.8(a) illustrates a top-view of the
application set-up and Figure 6.8(b) depicts a snapshot of camera 4.

cam 1

cam 2

cam 3

cam 4

parking lot

(a) Top-view of the parking lot. (b) Snapshot of camera 4

Figure 6.8: The object tracking set-up in a parking lot with 4 cameras
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Communication Each camera can exchange data with neighboring came-
ras, i.e., N1(1) = {2, 4}, N2(1) = {1, 3}, N3(1) = {2, 4}, N4(1) = {1, 3}.

Process Tracking a single human is equivalent to estimating the position
and speed of its random walk in time. Therefore, let the state x(q) ∈ R

4

denote a collection of the position and speed of the q-th human (in both
theX-direction and Y -direction). Then, the process model is described
by two double integrators, for which the sampling time is τs = 0.5, i.e.,

x(q)[k] =

(

1 τs 0 0
0 1 0 0
0 0 1 τs
0 0 0 1

)

x(q)[k-1] + w[k-1].

The process-noise w∈R
4 depends on the unknown acceleration of hu-

mans and is characterized byQ =
(

W 02×2

02×2 W

)

andW = 0.15
(

1
4 τ

4
s

1
2 τ

3
s

1
2 τ

3
s τ2

s

)

.

Local position measurements yi ∈ Rxy of a q-th human are obtained
from the detections in the coordinate-frame of the corresponding ca-
mera (camera-frame), i.e., by projecting a detection on Rxy. See also
Figure 6.9 for an illustration. However, since none of the cameras
has information on which q-th human caused what detection, a local
measurement yi at camera i is of the following form:

yi[k] = Cix
(q)[k] + vi[k] and Ci =

(

1 0 0 0
0 0 1 0

)

. (6.7)

Based on these local measurements, the DKF methods compute a lo-

cal estimate on x
(q)
i of the q-th human in each i-th camera, i.e., for

some suitable mean x̂
(q)
i and error-covariance P

(q)
i . To that extent, the

measurement yi of (6.7) must first be associated to a human q, as this
information is not available in the detections. Association is done ac-
cording to the method proposed in (Bar-Shalom and Li, 1995), which
computes the following probabilistic measure

di,q := e
−
(

Cix̂
(q)
i −yi

)

⊤
(

C⊤

i

(

P
(q)
i

)

−1
Ci+Vi

)

−1(

Cix̂
(q)
i −yi

)

, ∀q ∈ Z+.

The highest “probability” di,q then indicates to which human q the
local measurement yi should be associated with. Still, any di,q must
satisfy a lower threshold to be associated, so to prevent the associa-
tion of false detections. Further, let us point out that when cameras
exchange local measurements, then they include the association infor-
mation.

A practical aspect of the measurement-noise vi ∈ Rxy is that it de-
pends on the location of the human with respect to the camera. In
general, cov(vi) = Vi will increase with a larger distance of the human
to the camera. This aspect is also illustrated in Figure 6.9, though
further details are omitted for clarity of the comparison.
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Figure 6.9: A projection from the camera-frame to Rxy implies that the

measurement-noise vi on the object’s position in the ground-plane Rxy de-

pends the position of its detection in the camera-frame. Note that the Gaus-

sian PDF p(vi) = G(vi, 0, Vi) is graphically represented by its sub-level-set

E0,Vi
⊂ Rxy, for which an illustrative explanation is found in Figure 1.9.

Before presenting the tracking results of the different DKF solutions,
let us point out that the real trajectories of the observed humans are not
available. Therefore, apart from the assessed DKF solutions, all detections
are acquired by a centralized Kalman filter to obtain an optimal estimate
x̂(q)[k] and P (q)[k] that characterizes some kind of “ground truth” trajectory
per human q. Then, instead of the estimation error, the estimated position
of the centralized Kalman filter is compared to the corresponding position
estimated by a particular DKF solution. This is used to compute the average
distance error ∆ ∈ R+, which is determined per camera i ∈ N and per human
q ∈ Z[1,10] according to the following formula

∆ =
1

4

4
∑

i=1

1

10

(

10
∑

q=1

1

40

( 40
∑

k=1

√

η
(q)
i [k]

)

)

,

η
(q)
i [k] =

(

{x̂(q)[k]}1 − {x̂(q)
i [k]}1

)2
+
(

{x̂(q)[k]}3 − {x̂(q)
i [k]}3

)2
.

(6.8)

A top-view of the estimated trajectories is depicted in Figure 6.10. Note
that the assessed DKF solutions estimate four trajectories per human q, each

corresponding to a local estimate x
(q)
i at the i-th camera. These four tra-

jectories per human can be compared within one DKF solution and thereby,
give an indication to what extent a consensus is achieved on the different
local estimates throughout these four cameras. Further, the results of the
average distance error between the centralized Kalman filter and a particular
DKF solution is presented in Table 6.1.
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Figure 6.10: The estimated tracks, i.e., trajectories, of the humans in all

cameras. The initial position of each human is marked with the symbol ◦, af-
ter which four estimated tracks follow per initial human-position. Each track

corresponds to one local x
(q)
i , i.e., an estimated track in camera i associated

to human q. The four camera-positions are marked with the symbol �.

Tabel 6.1: The average distance ∆ [m] of (6.8) between the estimated
position of the centralized Kalman filter and one of the assessed DKF
methods (per camera, per tracked human and per sample instant).

DIF CIF DCIF DKF-SC CKFs GIKF

δ 0.98 1.17 1.00 2.08 1.16 2.17

The results of the DIF and CIF in Figure 6.10, i.e., when comparing the
four local estimation results per human, indicate that a consequence of ex-
changing local measurements yields a difference in the local estimation results
per node (camera). The CIF could solve this aspect by performing multi-
ple averaging cycles, as the current case-study adopted one averaging cycle
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L = 1. Although this would improve the consensus between the different lo-
cal estimates, Table 6.1 indicates that the obtained estimation results of the
DIF and CIF are already close to the centralized Kalman filter. The main
reason is that this application set-up has four cameras. Hence, exchanging
local measurements implies that each camera already receives three out of
four different local measurements. Therefore, in this small sensor network
it is questionable whether exchanging local estimates and thereby, have the
potential to obtain more measurement information per local estimate, is be-
neficial. In fact, Table 6.1 indicates that the other four DKF solutions, which
exchange local estimates, do not result in smaller distances between their esti-
mated trajectories and the trajectories obtained by the centralized Kalman
filter. However, keep in mind that the centralized Kalman filter does not ob-
tain the true trajectories but an estimate. Nonetheless, Figure 6.10 indicates
that consensus between the different local estimates is improved when the
DCIF, DKF-SC and the CKFs are employed rather than the DIF and the
CIF (even though the CKFs does not aim for a consensus per se). It should
be mentioned that the DCIF was very sensitive to its design parameter ǫ,
which was set to ǫ = 0.1. Perhaps a smaller value yields a better consensus
between the tracks, as there are still quite some difference in consensus bet-
ween results of the DCIF and the results of the DKF-SC and CKFs. A last
observation in this application example is obtained from trajectories estima-
ted by the GIKF. The estimation results of this DKF solution show severe
variations. This is mainly induced by the accuracy of local measurements
yi ∈ Rxy that are quite different per camera i. More precisely, the transfor-
mation of a detection from the camera-frame to Rxy results in a very accurate
position measurement with respect to the azimuth of the camera but a very
poor distance measurement. Hence, local estimates of the GIKF are given
large updates with respect to the azimuth of the camera, which differs per
sample instant as gossiping implies that local estimates are swapped from
one camera to another.

Overall, the results of the assessed DKF solutions indicate that they
are comparable in estimation error, with an exception to the DKF-SC and
GIKF. Further, note that the CKFs solution computes the eigenvalues of Pi.
As such, the CKFs algorithm will require additional computational power
compared to the other DKF methods, though a state dimension of 4 implies
that it is still in a comparable range. The next application example of a
diffusion process simulates a larger network size.

6.5.2 Environmental diffusion process

In this section the DKF methods are assessed on a diffusion process in the
presence of wind. To that end, consider an area of 1200×1200 meters contai-
ning a chemical source. As time passes, chemical matter spreads across the
area due to diffusion and wind. To simulate this spread of chemical matter,
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let us divide the area into a grid with a grid-size of 100 meters. The center
of each grid-box is defined as a grid-point. The spread of chemical matter
is simulated by computing the concentration level ρ(q) ∈ R+ at each q-th
grid-point. The concentration level ρ(q) [m−3] depends on the corresponding
levels at neighboring grid-points, which are denoted as qn for north, qs for
south, qe for east and qw for west. See also Figure 6.11 for a graphical repre-
sentation of these grid-points relative to the q-th grid-point. More precisely,
the time-continuous process model of ρ(q)(t), for some a, an, as, ae, aw ∈ R

and for all q ∈ Z[1,144], yields

ρ̇(q) = aρ(q) + anρ
(qn) + asρ

(qs) + aeρ
(qe) + awρ

(qw) + u(q), ∀t ∈ R+

The above variable u(q) ∈ R+ parameterizes the production of chemical mat-
ter at a grid-point q and yields u(18)=75, u(28)=75, u(29)=100, u(30)=100
and u(40) =175 for all t ∈ R+, while u(q) =0 for all other q ∈ Z[1,144]. The
remaining parameters are chosen to establish a change in the wind direction
from north to north-east-east:

• North: a = −12
800 , an = 1

800 , as = 7
800 , ae = 2

800 and aw = 2
800 , for all

t ≤ 300.

• North-east-east: a = −10
800 , an = 1

800 , as =
3

800 , ae =
1

800 and aw = 5
800 ,

for all t > 300.
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Figure 6.11: The monitored area is divided into a grid. Each grid-point

q has four neighbors qn, qs, qe and qw, i.e., one to the north, south, east

and west of grid-point q, respectively. The chemical matter produced by the

source spreads through the area due to diffusion and wind.

An ad-hoc sensor network is deployed in the area to reproduce the concen-
tration levels at each grid-point. This means that the assessed DKF solutions
are employed for an estimation of the state vector x[k] in each node i with a
sampling time of τs = 10 seconds, where x[k] := (ρ(1)[k] ρ(2)[k] · · · ρ(144)[k])⊤.
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Communication The network consists of 18 sensor nodes that are randomly
distributed across the area. The communication range per node is 370
meters and the resulting network topology is depicted in Figure 6.11.

Process Neither the wind direction nor values of the chemical source are
available at the nodes. Therefore, the assessed DKF solutions employ
a simplified version of the diffusion model in continuous time, i.e.,

ρ̇(q) = αρ(q) + αnρ
(qn) + αsρ

(qs) + αeρ
(qe) + αwρ

(qw) + w(q), ∀t ∈ R+

with α= −12
800 , αn = 3

800 , αs =
3

800 , αe =
3

800 and αw = 3
800 . The un-

known source and model uncertainties are represented by the process-
noise w(q) ∈ R, for all q ∈ Z[1,144]. This noise is characterized by a

Gaussian PDF p(w(q)[k]) = G(w(q)[k], 0, 2·103), for all k ∈ Z+ and all
q ∈ Z[1,144]. Information on some of these state elements is provided
by the sensor nodes. More precisely, each node i measures the concen-
tration level at its corresponding grid-point, i.e., yi[k] = ρ(q)[k] + vi[k],
for some q ∈ Z[1,144] and p(vi[k]) = G(vi[k], 0, 0.5), for all i ∈ Z[1,18].
The real concentration levels at the instants t = 300 and t = 600 are
illustrated in Figure 6.12.
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Figure 6.12: The simulated concentration levels at the different grid-points

for two instances of the time, i.e., t = 300 seconds and t = 600 seconds.

The concentration profiles depicted in Figure 6.12 will be used to eva-
luate the DKF solutions. To that extent, the estimation error in node 1 of
the assessed DKF methods is depicted in Figure 6.13, for t = 300, and in
Figure 6.14, for t = 600. In contrast to the first application example, the CIF
of this sensor network performs 5 averaging cycles, i.e., L = 5. Additionally,
Table 6.2 lists the average, squared error of nodes 2 until 18 with respect to
node 1, for each assessed DKF method and at a certain time instant t, i.e.,

η(t) :=
1

17

18
∑

i=2

(

x̂1(t)− x̂i(t)
)⊤(

x̂1(t)− x̂i(t)
)

.
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Figure 6.13: The estimation error at each grid-point per DKF solution, for

t = 300 seconds.
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Figure 6.14: The estimation error at each grid-point per DKF solution, for

t = 600 seconds.

Figure 6.13 and Figure 6.14 indicate that the DIF has the worst perfor-
mance of all the assessed DKF solutions. Not only in estimation error of
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Tabel 6.2: The average, squared error of the estimated state values at
nodes 2 until 18 compared to node 1, which indicates the consensus
between the different local estimates

DIF CIF DCIF DKF-SC CKFs GIKF

η(300) 26.1 0.75 4.80 3.15 0.31 7.12

η(600) 10.3 0.64 2.11 1.75 0.12 4.44

node 1 but Table 6.2 further implies that the local estimates computed by
the DIF show large differences. The fact that the DIF exchanges measure-
ments explains this behavior, i.e., it causes that the local estimate xi will
merely obtain accurate concentration levels in the close region of node i. A
similar behavior is prevented in the CIF by performing 5 averaging cycles
when synchronizing local measurements. However, a trade-off for preventing
this behavior is that it requires 5 times more communication power. Hence,
the results of the DIF and CIF show that exchanging measurements in large-
scale sensor networks is suboptimal, due to the limitations in communication
resources. The four remaining DKF algorithms exchange local estimates.
The DCIF and DKF-SC, which synchronize local estimates, have a mutually
comparable performance with respect to the previous object tracking appli-
cation. Also in this example, the DKF-SC has a better consensus than the
DCIF, see Table 6.2, but the DCIF has less estimation error compared to
the DKF-SC, see Figure 6.13 and Figure 6.14. Yet, notice that the estima-
tion error of node 1 is still high for both methods. This is caused by the
synchronization procedure on local estimates. Similar as to the DIF, these
DKF solutions establish a local estimate xi that will merely obtain accurate
concentration levels in the close region of node i. The other concentration
levels that are not in the close region will be inaccurate. Synchronization
then enforces a consensus and balances the accurate estimates with the in-
accurate ones. This is reflected in Table 6.2, which indicate that the DCIF
and DKF-SC yield a better consensus than the DIF, though it is not the
best consensus result that is obtained. Note that the CKFs, which shows
the least estimation error in node 1, has the best consensus properties as
well. Moreover, node 1 is even capable of estimating the concentration levels
at all four corners of the network with a very little estimation errors. The
results are even better than the CIF that requires 5 times more communi-
cation power. Hence, employing the ellipsoidal intersection fusion approach
on local estimates tremendously improves the estimation results throughout
the entire network. However, this improvement is not attained when local
estimates are swapped, i.e., the GIKF. To improve the results of the GIKF
one should reduce the sampling time, as local estimates will then manoeuvre
through the network with shorter interval times.
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Overall, the CKFs shows an exceptional performance for large-scale sen-
sor networks with respect to the other DKF algorithms. Comparable results
can be achieved with the CIF, although that requires five times more com-
munication power, which is not desired in sensor networks.

These two real-life inspired case-study conclude the practical assessment
of DKF. They were used for indicating the benefits of the difference DKF ap-
proaches as well as their drawbacks. Next, let us complete this overview with
a discussion on recent extensions to the field of distributed state estimation.

6.6 Extended algorithms

The DKF methods, as they were discussed in previous sections, show that
there are four fundamentally different approaches to address distributed esti-
mation. Often, these each of these approaches was extended to allow for a
reduced local state or nonlinear processes.

Solutions that reduce local state vectors aim to decrease the computati-
onal power of each node. To that end, a node i divides the global state x
in two unique parts: one part θi that is estimated by node i and another
part ϕi that is not estimated by node i. Preferably, different nodes i and j
also have different local state vectors θi, ϕi, θj and ϕj . An extension of the
DIF with this property was proposed in (Mutambara and H.F., 2000). The-
rein, the reduced state vector θi is estimated, while ϕi is regarded as process
noise. A related method in (Khan and Moura, 2007) proposed an additional
communication step of local estimates between the nodes, so that each node
i could reconstruct the unknown ϕi by combining the received estimates θj
from neighboring nodes j ∈ Ni(1). Notice that this imposes a strict require-
ment on the network topology. An alternative solution of reduced local state
vector regarding synchronization of local estimates was proposed in Stanko-
vic et al. (2009). Therein, each node employs a local process model to update
θi by exploiting the local measurement yi. Nodes then exchange these local
estimates to establish a synchronized estimate of the global state x. In fact,
determining a local process model for θi from the global one is often based
on heuristics and requires further investigations.

Solutions for nonlinear processes are being developed to enable distri-
buted state estimation beyond the Kalman filtering algorithm and thereby,
increase the amount of applicable set-ups. One obvious solution is to adopt
the DIF approach and replace the Kalman filter (or Information filter) with a
particular nonlinear state estimator, such as the extended Kalman filter that
was proposed in (Regazonni, 1994). A similar DIF solution for nonlinear
processes that included a quantization on the exchanged measurements was
presented in (Kar et al., 2008). Further, in (Farina and Scattolini, 2009) a
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solution was presented that exchanges local estimates, which are then com-
bined with a moving horizon scheme for distributed state estimation. Also,
Section 5.4 studies the effects of nonlinear processes in a distributed state-
estimator based on fusion of local estimates. Nonetheless, a clear overview
of nonlinear, distributed state estimation is not yet available.

6.7 Conclusions

A comprehensive survey on distributed Kalman filtering solutions that are
found across several communities was presented. To that end, four diffe-
rent types of strategies were considered, i.e., fusion or synchronization of
local measurements and fusion or synchronization of local estimates. Their
differences in communication showed to be negligible, as most method that
exchange local measurements assume the information form when exchanging
data, which is of the same size as the local estimate.

Further, a unified description was introduced for comparing the theore-
tical results of each of solution, i.e., the corresponding set of state update
formulas followed by an asymptotic analysis. The results indicated that
the local estimates throughout the sensor network have different values in
case measurements are exchanged. This also includes the main advantage
of exchanging local estimates, which is that local measurement information
spreads through the entire network. Even under the condition that nodes
exchange data only once per sample instant.

In addition, a critical assessment was performed in two real-life inspired
sensor network applications. The first application involved object tracking
in a parking lot based on four static cameras. For that application, estima-
tion results of the assessed solutions were comparable, except for one gossip
based approach. In the second example, the sensor network had a larger
network-size for monitoring a diffusion process of a chemical matter. In this
application, the cooperative (fusion) approach showed superior performance
with respect to the other distributed Kalman filtering solutions.

To summarize, this chapter provides an initial insight and argumentation
for choosing a suitable distributed Kalman filtering strategy when deploying
a sensor network.
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7

Conclusions

7.1 Contributions 7.2 Ideas for future research

A summary of the main contributions and a collection of several possible
directions for future research conclude this thesis.

7.1 Contributions

The research presented in this thesis focusses on state estimation in networ-
ked systems. Networked systems can manage large amount of sensor data.
However, they often lack the required communication and/or computational
resources for processing the excessive quantity of produced measurements
in classical implementations, i.e., centralized and synchronous in time. Li-
mitations in communication were addressed by reducing the amount of mea-
surements with event sampling, while a distributed estimation approach was
employed when both communication as well as computational resources are
limited. In particular, the key contributions of this thesis are the following:

• Stable state estimation results for (any) event sampling strategy;

• Integration of event based state estimation in a control system;

• Fusion of two estimates with unknown correlations;

• Global covariance as emergent behavior in distributed state estimation;

• A comprehensive overview on distributed Kalman filtering.

Let us present these contributions in more detail.

7.1.1 Exploiting event sampled measurements

Classical implementations of a centralized state estimator require that new
measurements are sampled synchronously in time. However, recently, mea-
surement data is exchanged via data connections that are known to have a
limited capacity regarding the number of exchanged data packages per se-
cond. As such, solutions that reduce the amount of sampled measurements
are sought for. Event based sampling has the potential to enable this re-
duction, as new measurements are sampled when a predefined event occurs
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ont he sensor value. However, if event sampling is not accounted for in the
estimation strategy, it can cause unstable estimation results. To that ex-
tent, the event based state-estimator (EBSE) was developed in Chapter 2
that supports any event sampling strategy and yet attains stable estimation
results. Supporting any type of event sampling strategy allows the sensor
node to adopt different event criteria depending on, for example, the expec-
ted lifetime of its battery. However, it can result in situations that after
some time t no event will occur anymore and thus no new measurement will
be received by the estimator. To guarantee stability, the EBSE exploits an
implicit property of event sampling, i.e., not receiving a new measurement
still gives information on the current sensor value. Exploiting this property
means that the proposed EBSE performs an update on its estimation results
at two different types of sample instants: at event instants, when a new me-
asurement value is received, and at instants synchronously in time, when no
measurement is received. In the latter case, the update based on inherent
knowledge that the measured value lies within a bounded set. A derivation
to obtain such a bounded set at any given time instant was established from
a general mathematical formulation of event sampling. The fact that estima-
tion results of the EBSE are regularly updated in time guarantees stability,
even in the situation that no new measurement is received anymore. This
was proven by establishing the conditions for an asymptotic bound on the
error-covariance of the EBSE. Furthermore, the effectiveness of the EBSE
with respect to estimation error and solutions for coping with package loss
were demonstrated in an illustrative example of object tracking.

The promising results of this stable EBSE were further assessed in a
control system to create a new type of event based controller. Existing event
control solutions assume that the entire state is measured with a specific event
sampling strategy. The novelty of the event control design in Chapter 3 is
that the EBSE processes the event sampled measurements, which are not
necessarily equal to the state, so that a time synchronous controller (robust
MPC) can be employed to optimize a stabilizing control action based on the
estimated state. As a result, the proposed event based controller is suitable
for various event sampling strategies, while stability of the closed-loop control
scheme is decoupled from the event triggering criteria. To that extent, an
integration procedure was developed that interprets the EBSE results for
the employed robust MPC. More precisely, the error-covariance of the EBSE
is transformed into explicit polytopic bounds on the estimation error. It
was proven that the robust MPC achieves ISS with respect to estimation
errors and, moreover, that it optimizes the closed-loop ISS gain. Simulations
provide convincing and promising evidence of the potential of the proposed
method, though it should be noted that the set-up integrates a stochastic
EBSE with a deterministic MPC. Additional to the integration, a novel event
sampling strategy was proposed to obtain a more constant performance of
the EBSE and thus of the control system.
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7.1.2 Fusion of estimates with unknown correlation

State fusion addresses the problem of merging two prior estimates of the same
state into a single fused estimate. Such methods are beneficial in distributed
state estimation, for merging the different local estimates of the correspon-
ding sensor network and thereby, improve its estimation results. However,
as keeping track of shared data is infeasible in most networks, correlations
of the different local estimates will not be available. Hence, the considered
state fusion problem cannot assume that the correlation of its prior estima-
tes is known. Current fusion solutions that agree to this assumption are too
conservative, in the sense that a reduction in uncertainty (estimation error)
after fusion is not attained. Yet, such a reduction is reasonable to insist, as
prior information is merged. Therefore, Chapter 4 proposed the state fusion
method ellipsoidal intersection (EI), in which a reduction in uncertainty af-
ter fusion is guaranteed. To that extent, a novel parametrization of the prior
estimates is proposed that results in an explicit characterization of correla-
tion. This parametrization involves the introduction of three new estimates,
each representing an independent part of the prior estimate. State fusion
is then equivalent to merging these three independent estimates, for which
algebraic fusion formulas were derived. To assure that the newly introduced
estimates are independent, EI determines a worst case scenario by maximi-
zing the derived characterization of the correlation. Further, the guaranteed
reduction in uncertainty was illustrated in a pure fusion example.

7.1.3 Cooperation in distributed estimation

Distributed state estimation refers to a collection of estimation strategies,
often used in large-scale or ad-hoc sensor networks, where each node per-
forms an estimation algorithm to compute a local estimate of the global
state. The main challenges in distributed estimation are to exploit the large
amount of local measurements, while at the time be robust to the evidential
changes that will be present in sensor networks. Existing solutions impose
strict requirements to address these challenges, since they focus on optimi-
zing the estimation results per node individually. Instead, the distributed
approach of Chapter 5 solves the estimation problem from a network point
of view by describing a desired emergent behavior, i.e., cooperation, before
deriving the corresponding local estimation algorithms. To that extent, a
characterization for attaining cooperation was proposed first. This involves
a distributed state-estimator that fulfills the global covariance property, i.e.,
the error-covariance of each node in the network is a combination of all error-
covariances found across its nodes. Then, a corresponding local estimation
algorithm was derived for observing the state of linear processes, labeled as
cooperative Kalman filters. Therein, each node performs the Kalman filte-
ring algorithm to process its local measurement and thereby, compute a local
estimate of the state. These estimates are shared with neighboring nodes as
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input a state fusion method, i.e., ellipsoidal intersection of Chapter 4. Ellip-
soidal intersection proved to be a vital element for establishing asymptotic
bounds on the error covariance of each local estimate, i.e., stability, under
realistic conditions. An illustrative example of tracking the leading vehicle
in a platoon of scalable size further showed the benefits of this cooperative
strategy compared to popular alternative distributed Kalman filters. In addi-
tion, nonlinear process models were investigated in a benchmark application
of tracking shockwaves on a highway. This analysis showed that even a mix-
ture of local state-estimators among the nodes is achievable, e.g., some nodes
perform the extended Kalman filter, while others perform the unscented Kal-
man filter to process their local measurements. Such a set-up could reduce
computational requirements of some nodes, without comprising on the esti-
mation results. Although the proposed approach supports linear as well as
nonlinear processes, a large amount of existing solutions already present a
distributed implementation of the Kalman filter.

Therefore, a comprehensive survey on distributed Kalman filtering solu-
tions that are found across several communities was presented. The objective
is to provide an initial insight and argumentation when choosing a suitable
distributed Kalman filtering strategy for a particular sensor network appli-
cation. To that extent, existing distributed Kalman filters were divided into
four types of strategies, depending on what local variables are shared and
how they are used for improving the estimation results in the overall net-
work. Differences in communication requirements showed to be negligible,
as most method that exchange local measurements assume the Information
form when communicating, which is of the same size as the local estimate.
Further, the overview presented the theoretical expectations of the different
approaches, along with an asymptotic analysis of their estimation results. To
that extent, each distributed Kalman filtering approach was presented via a
unified description. On top of these theoretical results, a critical assessment
was performed in two real-life inspired sensor networks to fulfill the main
objective. The first set-up considered an object tracking application based
on four static cameras. The estimation results of all assessed strategies were
comparable, except for one gossip based approach. In the second example the
sensor network was larger in size and a diffusion process of chemical matter
was to be followed. For this set-up, the cooperative Kalman filters showed
superior performance compared to the other distributed Kalman filtering so-
lutions, though it also requires additional computational power.

7.2 Ideas for future research

Based on the ideas presented in this thesis, several directions for future re-
search from the author’s point of view are presented, next.
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7.2.1 Event based estimation and control

Current research on estimation with event sampled measurements focusses on
minimizing the number of samples, while attaining a particular performance
of the estimator. The idea of an event based state-estimator suitable for any
event sampling strategy was, up until now, not covered by current literature
and can thus provide new insights for dealing with event based sampling. For
example, in event based control. To that extent, note that the proposed event
based state-estimator supports a control algorithm that runs synchronously
in time and that it decouples the event-triggering procedure from closed-loop
stability. An example of such a control set-up was studied in Chapter 3
and integrated a stochastic state-estimator with a deterministic controller.
Although the presented results were convincing, other integration procedures,
or even estimation and control combinations, could be promising as well

7.2.2 Fusion of estimates

The proposed method on cooperative state estimation, presented in Chap-
ter 5, is based on fusing the local estimate of a node with the estimates
received from neighboring nodes. The proposed method for fusing more then
two estimates adopts a recursive fusion procedure, i.e., the local estimate is
merged with the estimate that is received first, after which their fusion result
is further merged with the estimate that is received next, and so on. Note
that the order of arrival of neighboring estimates could influence its oucome.
Hence, an open question is what the order of the neighboring estimates should
be, so to minimize the estimation error of the resulting fused estimate.

7.2.3 Cooperative estimation of reduced states

The distributed solutions for state estimation that were presented in this
thesis assume that each node in the network computes a local estimate of
the global state. In Section 6.6 some methods were presented that do not
require this assumption. Instead, they propose a different distributed solu-
tion, where each node computes a part of the global state. As such, The
global state is distributed among the nodes, possibly with overlapping state
elements between some nodes in the network. Notice that such a set-up is
more in line with ant colonies, as individual ants will not have a global view of
the surroundings of their colony. Furthermore, such a distributed estimation
approach results in a more efficient usage of the resources, as each node esti-
mates those state elements that are relevant to its purpose. Establishing such
a set-up for a network of cooperative state-estimators, as proposed in Chap-
ter 5, requires a localized state-space model and a state fusion method that
can cope with unequal local state vectors. Especially the issue on state fusion
is not yet found in literature and offers opportunities for future research.
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A

Matrix properties

• Suppose that A,B,C,D � 0. If A � B and B � C, then A � C
(Proposition 8.1.1 (Bernstein, 2005)). If A � B and C � D, then
A+ C � B +D (Proposition 8.1.2 (Bernstein, 2005)).

• Suppose that A � 0. Then it holds that λmin(A)I � A � λmax(A)I
(Corollary 8.4.2 (Bernstein, 2005)).

• Suppose that A,B � 0. If A � B, then CAC⊤ � CBC⊤ for any C of
suitable size (Proposition 8.1.2 (Bernstein, 2005)).

• Suppose that A,B ≻ 0. If A � B, then A−1 � B−1 (Proposition 8.5.5
(Bernstein, 2005)).

• Suppose that A and B are symmetric matrices. Then it holds that
λmax(A+B) ≤ λmax(A) + λmax(B) (Corollary III.2.3 (Bhatia, 1997)).

• Suppose that A ≻ 0. Then λq(A) = σq(A) (p.5 (Bhatia, 1997)).

• Suppose A � 0 and let α ∈ R. Then it holds that λq(αA) = αλq(A)
(In case one can find a solution for the equality (λI −A)x = 0 for any
||x||2 = 1, then the corresponding λ and x are defined as an eigenvalue
with corresponding eigenvector of A respectively. Therefore if νq(A) is
defined as the q-th eigenvector of A then (λq(A)I − A)νq(A) = 0 ⇒
(αλq(A)I − αA)νq(A) = 0).

• If A is symmetric, then CAC⊤ is also symmetric for any C of suitable
size.

• For any given matrices A,B of suitable size, it holds that σmax(AB) ≤
σmax(A)σmax(B) (Theorem III.4.5 (Bhatia, 1997)).
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B

Proofs corresponding to Chapter 2

B.1 Proof of Lemma 2.4.2

Statement lemma:
The proposed EBSE satisfies P [k] � ς[k]Θ[k], for all tk ∈ T.

The following result is used in this proof of Lemma 2.4.2, for which

ŷ[k] :=

N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]
ŷq[k],

Y [k] :=

N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]

(

(ŷ[k]− ŷq[k])(ŷ[k]− ŷq[k])
⊤).

(B.1)

Lemma B.1.1 For all synchronous instants tk ∈ Ts\Te there exists am[k] :=
(ŷ−[k]− ŷ+[k])⊤(ŷ−[k]− ŷ+[k])λ−1

min(R[k]), such that Y [k] � m[k]R[k].

The proof of Lemma B.1.1 is found in Section B.1.1. Further, let us recall
the approximation of P [k] in the EBSE algorithm in Section 2.3.3, i.e.,

P [k] = Θ[k] +
N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]

(

(x̂[k]− θ̂q[k])(x̂[k]− θ̂q[k])
⊤). (B.2)

Combining the expressions of x̂[k] and θ̂q, as presented in the same algorithm,

with the above ŷ[k], one can derive that x̂[k] − θ̂q[k] = Θ[k]C⊤R−1[k](ŷ[k] −
ŷq[k]). Substituting this expression into (B.2), while taking the above defini-
tion of Y [k] into account, implies that (B.2) can be rewritten as follows:

P [k] = Θ[k] + Θ[k]C⊤R−1[k]Y [k]R−1[k]CΘ[k]. (B.3)

Substituting m[k] into the definition of ς[k] given in (2.4.1), implies that
ς[k] = 1 if tk ∈ Te and ς[k] = m[k] + 1 if tk ∈ Ts \ Te. Lemma 2.4.2 is thus
proven by considering each of these sample instants separately.

Let us start with an event instant tk ∈ Te, for which P [k] � Θ[k] should
hold. Notice that at these instants the EBSE receives a measurement, yiel-
ding N = 1 and ŷ1[k] = y[k], which further implies that Y [k] = 0. Substitu-
ting Y [k] = 0 into (B.3) directly results in the first inequality, i.e.,

P [k] = Θ[k], ∀tk ∈ Te. (B.4)
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If tk ∈ Ts\Te, i.e., a time-synchronous instant, then P [k] � (m[k]+1)Θ[k]
should hold. The result of Lemma B.1.1, i.e., Y [k] � m[k]R[k], gives that
C⊤R−1[k]Y [k]R−1[k]C � C⊤R−1[k]

(

m[k]R[k]
)

R−1[k]C and thus

Θ[k] + Θ[k]C⊤R−1[k]Y [k]R−1[k]CΘ[k] � Θ[k] + Θ[k]
(

m[k]C⊤R−1[k]C
)

Θ[k].

Since the left hand side of the above inequality is equal to P [k] in (B.3),
one obtains that P [k] � Θ[k]

(

Θ−1[k] +m[k]C⊤R−1[k]C
)

Θ[k], which after

substituting Θ−1[k] = P−1[k−] + C⊤R−1C, see (2.16b), yields

P [k] � Θ[k]
(

P−1[k−] + (m[k] + 1)C⊤R−1[k]C
)

Θ[k] (B.5a)

� (m[k] + 1)Θ[k]
(

P−1[k−] + C⊤R−1[k]C
)

Θ[k], (B.5b)

= (m[k] + 1)Θ[k], ∀tk ∈ Ts \ Te, (B.5c)

as m[k] ∈ R>0. Notice that (B.5c) together with (B.4) complete the proof.✷

B.1.1 Proof of Lemma B.1.1

Notice that the lemma considers synchronous instants tk ∈ Ts \ Te, at which
H[e|tk] is given and thus also the values of ŷq[k], for all q ∈ Z[1,N ], R[k], ŷ−[k]
and ŷ+[k]. The inequality Y [k] � m[k]R[k] is proven in two steps. Firstly,
a bound on the covariance Y [k] is given in terms of ŷ−[k] and ŷ+[k] and
secondly, the connection between R[k] and m[k] is derived.

Fact 8.7.38 of (Bernstein, 2005) gives that yy⊤ � y⊤yI holds for any

y ∈ R
n. Hence, Y [k] =

∑N
q=1

ωq [k]
∑

N
q=1 ωq[k]

(

(ŷ[k]− ŷq[k])(ŷ[k]− ŷq[k])
⊤) that was

defined in (B.1) satisfies

Y [k] �
N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]

(

(ŷ[k]− ŷq[k])
⊤(ŷ[k]− ŷq[k])

)

I. (B.6)

The vector ŷ[k] is constructed from a linear combination of all the vectors
within ∪q∈Z[1,N]

{ŷq[k]}, see also (B.1). As a result, the Euclidian distance

‖ŷ[k] − ŷq[k]‖2 =

√

(ŷ[k]− ŷq[k])
⊤
(ŷ[k]− ŷq[k]) is always less or equal than

‖ŷ−[k] − ŷ+[k]‖2, since ‖ŷ−[k] − ŷ+[k]‖2 is always larger than the Euclidian
distance between any two vectors within ∪q∈Z[1,N]

{ŷq[k]}. Substituting this
inequality into (B.6) gives that also the following inequality holds:

Y [k] �
N
∑

q=1

ωq[k]
∑N

q=1 ωq[k]

(

(ŷ−[k]− ŷ+[k])⊤(ŷ−[k]− ŷ+[k])
)

I

=
(

(ŷ−[k]− ŷ+[k])⊤(ŷ−[k]− ŷ+[k])
)

I.

(B.7)

The second step starts with I � λ−1
min(R[k])R[k], which follows from the

fact that λmin(R[k])I � R[k]. Substitution of this inequality in (B.7) gives
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that Y [k] � m[k]R[k] with m[k] := (ŷ−[k]− ŷ+[k])⊤(ŷ−[k]− ŷ+[k])λ−1
min(R[k]).

Moreover, the fact that H[e|tk] is bounded and R[k] ≻ 0, further implies that
(ŷ−[k]− ŷ+[k])⊤(ŷ−[k]− ŷ+[k]) < ∞ and λ−1

min(R[k]) < ∞ hold, due to which
0 ≤ m[k] < ∞. Hence, the proof is completed. ✷

B.2 Proof of Theorem 2.4.3

Statement lemma:
Consider the proposed EBSE and the hRDE of (2.19) and let P [0] = Σ̄[0].
Then P [k] � Σ̄[k] holds for all tk ∈ T.

The proof of this lemma starts by rewriting the formula of the hRDE
into one expression, after which P [k] � Σ̄[k] is proven, for all tk ∈ T.

To rewrite Σ̄[k] of the hRDE, let us introduce ς̄[k] ∈ {1, ςmax} and D[k] ∈
R

n,tk ∈ T, according to the following characterization:

ς̄[k] :=

{

ςmax if tk ∈ Ts,

1 if tk ∈ Te \ Ts,
, D[k] :=

{

C⊤R−1
maxC if tk ∈ Ts,

0 if tk ∈ Te \ Ts.

Then substituting these variables into the Σ̄[k] of the hRDE, i.e., into (2.19),
and restating the result of Lemma 2.4.2 for P [k], gives that the following
holds for all tk ∈ T, i.e.,

P [k] � ς[k]
(

(A(τk)P [k-1]A⊤(τk) +Q(τk))
−1 + C⊤R−1[k]C

)−1
,

Σ̄[k] = ς̄[k]
(

(A(τk)Σ̄[k-1]A
⊤(τk) +Q(τk))

−1 +D[k]
)−1

.
(B.8)

An important property that is used in the second part of this proof, yields

ς̄[k] ≥ ς[k] and D[k] � C⊤R−1[k]C, ∀tk ∈ T. (B.9)

A derivation of (B.9) is presented in the following two cases that each corres-
pond to a certain type of sample instant. To that end, recall that R[k] � Rmax

and ς[k] ≤ ςmax hold for all tk ∈ T (see Property 2.4.1).

1. If tk ∈ Te \ Ts, then ς[k] = 1, ς̄[k] = 1 and D[k] = 0 implies that
ς̄[k] = ς[k] and D[k] � C⊤R−1[k]C.

2. If tk ∈ Ts, then ς̄[k] = ςmax and D[k] = C⊤R−1
maxC implies that ς̄[k] ≥

ς[k] and D[k] � C⊤R−1[k]C.

The second part proves the main inequality P [k] � Σ̄[k], for all tk ∈ T,
by induction and starts from k = 0.

Since P [0] = Σ̄[0], the formulas of (B.8) result in

P [1] � ς[1]
(

(A(τ1)P [0]A⊤(τ1) +Q(τ1))
−1 + C⊤R−1[1]C

)−1
,

Σ̄[1] = ς̄[1]
(

(A(τ1)P [0]A⊤(τ1) +Q(τ1))
−1 +D[1]

)−1
.



152 Proofs corresponding to Chapter 2

InequalityD[1] � C⊤R−1[1]C of (B.9) gives that (F+C⊤R−1[1]C)−1 � (F+
D[1])−1, for any suitable F ≻ 0, including F = (A(τ1)P [0]A⊤(τ1)+Q(τ1))

−1.
Together with the above update of P [1] and Σ̄[1], this further implies that
ς−1[1]P [1] � ς̄−1[1]Σ̄[1]. Moreover, since ς−1[1] ≥ ς̄−1[1] (see (B.9)), the
latter inequality will only hold if P [1] � Σ̄[1].

The next step of induction shows that P [k] � Σ̄[k], if P [k-1] � Σ̄[k-1].
To that end, let us define F := (A(τk)P [k-1]A⊤(τk) + Q(τk))

−1 and G :=
(A(τk)Σ̄[k-1]A

⊤(τk) +Q(τk))
−1. Then starting from P [k-1] � Σ̄[k-1] one can

derive that G � F , which together with D[k] � C⊤R−1[k]C of (B.9) induces
G+D[k] � F + C⊤R−1[k]C and thus (F + C⊤R−1[k]C)−1 � (G+D[k])−1.
Notice that the update formulas of (B.8) characterize ς−1[k]P [k] � (F +
C⊤R−1[k]C)−1 and ς̄−1[k]Σ̄[k] = (G + D[k])−1, which further implies that
ς−1[k]P [k] � ς̄−1[k]Σ̄[k]. Moreover, since ς−1[k] ≥ ς̄−1[k] (see (B.9)), the
latter inequality can only hold if P [k] � Σ̄[k], which completes the proof. ✷

B.3 Proof of Lemma 2.4.4

Statement lemma:
Consider the hRDE of (2.19) and the wRDE of (2.18). At synchronous in-
stants tk ∈ Ts it holds that λmax

(

Σ̄[k]
)

= λmax (Σ[k]), while λmax

(

Σ̄[k]
)

≤
α2(τs)λmax (Σ[k-a(k)]) + β2(τs) holds at event instants tk ∈ Te \ Ts.

The following result is used in the proof of Lemma 2.4.4, for which a(k)
denotes the number of sample instants in between the current instant tk ∈ T

and the first preceding synchronous instant tk-a(k) ∈ Ts (see Section 2.4.1).

Lemma B.3.1 Consider the hRDE of (2.19) and let τ̄k := tk− tk-a(k). Then

Σ̄[k−] = A(τ̄k)Σ̄[k-a(k)]A
⊤(τ̄k) +Q(τ̄k) holds for all tk ∈ Ts.

The proof of this lemma is presented in Section B.3.1
The proposed statement of Lemma 2.4.4 is then proven if: (i) Σ̄[k] = Σ[k]

holds for all tk ∈ Ts and (ii) λmax

(

Σ̄[k]
)

≤ α2(τs)λmax (Σ[k-a(k)]) + β2(τs)
holds for all tk ∈ Te \ Ts.

The proof of implication (i), i.e., Σ̄[k] = Σ[k] for all tk ∈ Ts, starts by
applying Lemma B.3.1. Since tk, tk-a(k) ∈ Ts, it follows that τ̄k = τs is equal
to the sampling time. Hence, the results of this lemma imply that the update
of Σ̄[k] given in (2.19), for all tk ∈ Tc, becomes

Σ̄[k−] = A(τs)Σ̄[k-a(k)]A
⊤(τs) +Q(τs),

Σ̄[k] = ςmax

(

Σ̄−1[k−] + C⊤R−1
maxC

)−1
.

(B.10)

Since the above update of Σ̄[k] for all tk ∈ Ts is equivalent to Σ[k] of the
wRDE, as shown in (2.18), Σ̄[k] = Σ[k] holds for all tk ∈ Ts if Σ̄[0] = Σ[0].

The second implication analyzes Σ̄[k] in between the synchronous in-
stants, i.e., for all tk ∈ Te \ Ts. At these instants, the update formula of the
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hRDE gives that Σ̄[k] = Σ̄[k−], see (2.19). An expression of Σ̄[k−] in terms
of Σ̄[k-a(k)] is found in Lemma B.3.1, due to which the update of the hRDE
at an event instant is conform to

Σ̄[k] = A(τ̄k)Σ̄[k-a(k)]A
⊤(τ̄k) +Q(τ̄k), ∀tk ∈ Te \ Ts. (B.11)

The first implication established Σ̄[k] = Σ[k], for all tk ∈ Ts. By defi-
nition we have that tk-a(k) ∈ Ts holds for Σ̄[k-a(k)] of (B.11). As such,
Σ̄[k-a(k)] = Σ[k-a(k)] can be substituted into (B.11), which after taking the
largest eigenvalues on both sides of the equation gives that

λmax

(

Σ̄[k]
)

= λmax

(

A(τ̄k)Σ[k-a(k)]A
⊤(τ̄k) +Q(τ̄k)

)

(B.12a)

≤ λmax

(

A(τ̄k)Σ[k-a(k)]A
⊤(τ̄k)

)

+ λmax

(

Q(τ̄k)
)

(B.12b)

= σmax

(

A(τ̄k)Σ[k-a(k)]A
⊤(τ̄k)

)

+ λmax

(

Q(τ̄k)
)

(B.12c)

≤ σ2
max

(

A(τ̄k)
)

σmax(Σ[k-a(k)]) + λmax

(

Q(τ̄k)
)

, (B.12d)

holds for all tk ∈ Te \ Ts. Notice that only A(τ̄k) and Q(τ̄k) depend on
tk. Therefore, finding the maximum value of (B.12d), for all tk ∈ Te \ Ts,
results on finding the largest values of both σmax (A(τ̄k)) and λmax (Q(τ̄k)),
for all τ̄k ∈ R(0,τs). The definition of α(τs) and β(τs) in Section 2.4.1 imply

that α(τs) ≥ σmax (A(τ̄k)) and β(τs) ≥
√

λmax (Q(τ̄k)), for all τ̄k ∈ R(0,τs).
Therefore substituting these variables into (B.12d) gives that

λmax

(

Σ̄[k]
)

≤ α2(τs)λmax(Σ[k-a(k)]]) + β2(τs) ∀tk ∈ Te \ Ts, (B.13)

which completes this proof. ✷

B.3.1 Proof of Lemma B.3.1

The proof employs the following condition, which was established in Chap-
ter 1 to guarantee a correct discretization of the process, i.e.,

Condition B.3.2 The process model (2.1) satisfies A(τ1+τ2) = A(τ1)A(τ2)
and Q(τ1+τ2) = A(τ1)Q(τ2)A

⊤(τ1) +Q(τ1), for any τ1, τ2 ∈ R>0.

The goal is to prove the following equation:

Σ̄[k−] = A(τ̄k)Σ̄[k-a(k)]A
⊤(τ̄k) +Q(τ̄k), ∀tk ∈ Ts, (B.14)

where a(k) characterizes the first preceding synchronous instant tk-a(k) ∈ Ts,

for any tk ∈ T. Notice that Σ̄[k−] of (B.14) is independent on the number
of sample instants in between tk and tk-a(k). Hence, the lemma is proven by

induction, for which the original formula of Σ̄[k−] is recalled for clarity, i.e.,

Σ̄[k−] := A(τk)Σ̄[k-1]A
⊤(τk) +Q(τk), ∀tk ∈ T. (B.15)
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The first step of induction is to prove (B.14) in case a(k) = 1, i.e., Σ̄[k-1] =
Σ̄[k-a(k)] and τk = τ̄k. Substituting these values into Σ̄[k−] of (B.15), results
in Σ̄[k−] = A(τ̄k)Σ̄[k-a(k)]A

⊤(τ̄k) +Q(τ̄k) and completes the first step.
The second step of induction is to prove (B.14) for any tk ∈ T and

a(k) > 1, given that (B.14) holds for tk-1. Note that a(k) = a(k-1)+1 implies
Σ̄[k-a(k)] = Σ̄[k-1-a(k-1)]. Substituting this result into the formula of (B.14)
at tk-1, i.e., Σ̄[(k-1)

−] = A(τ̄k-1)Σ̄[k-1-a(k-1)]A
⊤(τ̄k-1) +Q(τ̄k-1), induces

Σ̄[(k-1)−] = A(τ̄k-1)Σ̄[k-a(k)]A
⊤(τ̄k-1) +Q(τ̄k-1). (B.16)

Since a(k) > 1, we have that tk-1 ∈ Te \ Ts. Further, (2.19) gives that the
hRDE update at this event instant is Σ̄[(k-1)] = Σ̄[(k-1)−]. Therefore, one
can rewrite (B.15) into Σ̄[k−] = A(τk)Σ̄[(k-1)

−]A⊤(τk) + Q(τk), which after
substitution of (B.16) results in

Σ̄[k−] = A(τk)
(

A(τ̄k-1)Σ̄[k-a(k)]A
⊤(τ̄k-1) +Q(τ̄k-1)

)

A⊤(τk) +Q(τk)

=A(τk)A(τ̄k-1)Σ̄[k-a(k)]A
⊤(τ̄k-1)A

⊤(τk) +A(τk)Q(τ̄k-1)A
⊤(τk) +Q(τk).

Based on the results of Condition B.3.2, after substituting τ1 = τk and τ2 =
τ̄k, the above formula can be rewritten as follows:

Σ̄[k−] = A(τk + τ̄k-1)Σ̄[k-a(k)]A
⊤(τk + τ̄k-1) +Q(τk + τ̄k-1). (B.17)

As τk + τ̄k-1 = τ̄k, Σ̄[k
−] in (B.17) is similar to (B.14), which completes the

second step of induction and the proof of Lemma B.3.1. ✷
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Proofs corresponding to Chapter 3

C.1 Proof of Lemma 3.2.1

Statement lemma:
Let ∆KL ∈ R+ be given and let α(t) be conform to (3.5). Then 0 <
∆KL − α(t) ≤ ∆KL + 1

2n, for all t ∈ T.

For clarity of expression, let us remove the time-index t, due to which α
of (3.5) gives that α = 1

2

(

log |P2| |P1|−1 + tr(P−1
2 P1) − n

)

. Further, (3.5)

directly proves that 0 < ∆KL − α, since (x̂1 − x̂2)
⊤
P−1
2 (x̂1 − x̂2) ≥ 0 and

d(p1(x)||p2(x)) < ∆KL. Then, the above statement is proven if ∆KL−α(t) ≤
∆KL + 1

2n, or similarly, if α ≥ − 1
2n. The expression of α gives that this is

guaranteed when: (i) log |P2| |P1|−1 ≥ 0 and (ii) tr(P−1
2 P1) ≥ 0 hold.

To prove implication (i), let us recall from (3.4) that P−1
1 = P−1

2 +
C⊤V −1C. The fact that V ≻ 0 implies C⊤V −1C � 0 and thus P−1

1 � P−1
2 .

The result of Corollary 8.4.10 of (Bernstein, 2005), i.e., for all A � B it holds
that |A| ≥ |B|, further gives that |P1|−1 � |P2|−1. Hence, |P2| |P1|−1 ≥ 1
and thus log |P2| |P1|−1 ≥ 0.

Implication (ii) is proven by observing that P1, P
−1
2 ≻ 0. Applying

Lemma 2.2 of (Belmega et al., 2009), i.e. for any A,B � 0 it holds that
tr(AB) ≥ 0, induces tr(P−1

2 P1) ≥ 0, which completes the proof. ✷

C.2 Proof of Lemma 3.2.2

Statement lemma:
Let C ∈ R

m×n of (3.1) be such that rank(C) = m and let Υ(t) satisfy (3.6).
Then, Υ(t) ≻ 0 holds for all t ∈ T.

For clarity of expression, let us remove the time-index t. Further, let us
state Proposition 8.1.2 of (Bernstein, 2005) that will be used in this proof,
i.e., for any B ≻ 0 and A ∈ R

m×n it holds that ABA⊤ ≻ 0 if rank A = m.
Then, from the fact that P−1

2 ≻ 0, Proposition 8.1.2 gives that P1P
−1
2 P1 ≻ 0,

CP1P
−1
2 P1C

⊤ ≻ 0 and thus V −1CP1P
−1
2 P1C

⊤V −1 ≻ 0 holds as well. This
latter inequality further implies that the expression of Υ in (3.6), i.e., Υ =
V −1CP1P

−1
2 P1C

⊤V −1, satisfies Υ ≻ 0, which completes this proof. ✷



156 Proofs corresponding to Chapter 3

C.3 Proof of Lemma 3.4.2

Before stating the lemma, let us first recall the considered formulas of (3.10)
and (3.13), respectively, i.e.,

V (Ax+Bu(x̂))− V (x) + a‖x‖c − ϑ(‖̟‖) ≤ 0, (C.1)

V (Ax̂+Bu(x̂))− V (x) + a‖x‖c ≤ 0,

V (A(x̂-̟j) +Bu(x̂))− V (x) + a‖x‖c − ςj ≤ 0, ∀j ∈ Z[1,N ].
(C.2)

Then an equivalent statement of the lemma is the following:
Let Assumption 3.4.11 be satisfied and let x̂ and x be given. If there exist a
u(x̂) and ̟j , for all j ∈ Z[1,N ], such that (C.2) holds, then (C.1) holds for
the same u(x̂), with ϑ(‖̟‖) := η‖̟‖ and η := maxi=1,...,M{‖ζTi(WTi)

−1‖}.

This lemma is proven by merging the two inequalities of (C.2) into one
inequality, which is then related to the original (C.1).

To accomplish the merge, note that for any ̟ ∈ W there exists a simplex
Si, such that ̟ ∈ Si =Co{0, ̟q(i,1), · · · , ̟q(i,l)}. Hence, for some weights
κ0, κ1,...,κl ∈R+ that satisfy

∑

r=Z[0,l]
κr=1, any ̟ ∈ Si can be established

as a convex combination ̟ =
∑

r=Z[1,l]
κr̟q(i,r) + κ00 =

∑

r=Z[1,l]
κr̟q(i,r).

Substituting WTi = (̟q(i,1) · · · ̟q(i,l)) gives that ̟ = WTi

(

κ1 · · · κl

)⊤

and thus
(

κ1 κ2 · · · κl

)⊤
= (WTi)

−1̟.

Further, as for any combination (i, r) ∈ Z[1,M ] × Z[1,l] there exists a
j ∈ Z[1,N ], such that ̟j = ̟q(i,r), the second inequality of (C.2) can be
rewritten as

V
(

A(x̂-̟q(i,r)) +Bu(x̂)
)

−V (x)+a‖x‖c−ςq(i,r) ≤ 0, ∀i ∈ Z[1,M ], r ∈ Z[1,l].

Multiplying the above inequality with the corresponding κr does not affect
its outcome. Similarly, the first inequality of (C.2) can be multiplied with
κ0. Then, for any ω ∈ Si, the following set of inequalities are satisfied:

κ0

(

V (Ax̂+Bu(x̂))− V (x) + a‖x‖c
)

≤ 0,
∑

r∈Z[1,l]

κr

(

V
(

A(x̂-̟q(i,r)) +Bu(x̂)
)

− V (x) + a‖x‖c − ςq(i,r)

)

≤ 0.

Addition of the above two inequalities, with ̟q(i,r=0) := 0, for all i ∈ Z[1,M ],
while taking into account that

∑

r=Z[1,l]
κr = 1, results in

∑

r=Z[0,l]

κrV
(

A(x̂-̟q(i,r)) +Bu(x̂)
)

− V (x) + a‖x‖c −
∑

r=Z[1,l]

κrςq(i,r) ≤ 0. (C.3)

1The assumption states that V (·) is a continuous, convex Lyapunov function.
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Convexity of V gives that V (αa+ (1−α)b) ≤ αV (a) + (1−α)V (b) holds for
any a, b ∈ R

n and α ∈ [0, 1]. Therefore, if (C.2) is met, then the inequality
in (C.3) is also met, which further implies that

V
(

A
(

x̂−
∑

r=Z[0,l]

κr̟q(i,r)

)

+Bu(x̂)
)

− V (x) + a‖x‖c −
∑

r=Z[1,l]

κrςq(i,r) ≤ 0.

Since
∑

r=Z[0,l]
κr̟q(i,r) = ̟ was already established and formula (3.12)

gives that ζTi = (ςq(i,1) · · · ςq(i,l)), the above inequality is equivalent to

V (A(x̂-̟) +Bu(x̂)) − V (x) + a‖x‖c − ζTi(κ1 · · · κl)
⊤ ≤ 0. Substituting

x = x̂ −̟ and (WTi)
−1̟ = (κ1 · · · κl)

⊤ into the inequality further yields
V (Ax+Bu(x̂))−V (x)+ a‖x‖c − ζTi(WTi)

−1̟ ≤ 0, for any ̟ ∈ Si and all
i ∈ Z[1,M ], which can be rewritten by considering the fact that a⊤b ≤ ‖a‖‖b‖
holds for any a, b ∈ R

n, i.e.,

V (Ax+Bu(x̂))− V (x) + a‖x‖c − ‖ζTi(WTi)
−1‖‖̟‖ ≤ 0, ∧̟ ∈ Si. (C.4)

Notice that (C.4) holds for any simplex Si, given that ̟ ∈ Si. To enable
an equality that is satisfied for any ̟ ∈ W(= ∪i∈Z[1,M]

{Si}), one can derive
that if (C.4) holds for all i ∈ Z[1,M ], then the following is also met, i.e.,

V (Ax+Bu(x̂))−V (x)+a‖x‖c− max
i∈Z[1,M]

{‖ζTi(WTi)
−1‖}‖̟‖ ≤ 0, ∀̟ ∈ W.

The above inequality is equivalent to (C.1) in case ϑ(‖̟‖) = η‖̟‖ and
η := maxi=1,...,M{‖ζTi(WTi)

−1‖}, which completes the proof. ✷

C.4 Proof of Theorem 3.4.3

Before stating the theorem, let us recall the considered formulas of (3.4.2).

u(tk) := argu∈U min J(ζ), ∀ςj ∈ R+ and ∀j ∈ Z[1,M ], (C.5a)

subject to

Az +Bu ∈ X, ∀z ∈ {x̂(tk)} ⊕W(tk), (C.5b)

V (Ax̂(tk) +Bu)− Vmin(tk) + amax(tk) ≤ 0, (C.5c)

V
(

A
(

x̂(tk)-̟j(tk)
)

+Bu
)

− Vmin(tk) + amax(tk)− ςj ≤ 0. (C.5d)

Then an equivalent statement of the theorem is the following:
Let a Lyapunov function V , satisfying Assumption 3.4.12, and a cost-function
J be given. Further, let a bounded set W be defined, such that W(tk) ⊆ W

for all tk, and suppose that (C.5) is feasible for all x̂(tk) ∈ X⊕W and all tk.
Then the difference inclusion x(tk + τs) ∈ X (tk + τs), for all k ∈ Z+, is ISS in
X for inputs in W.

2The assumption states that V (·) is a continuous, convex Lyapunov function.
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As x(tk) ∈ {x̂(tk)} ⊕ W(tk), for all k ∈ Z+, note that (C.5b) induces
x(tk+τs) = Ax(tk)) + Bu ∈ X for all u ∈ U(tk), i.e., the real state satisfies
state constraints. Furthermore, since x(tk + τs) ∈ {x̂(tk + τs)} ⊕W(tk + τs),
x(tk + τs) ∈ X and W(tk) ⊆ W is a symmetric set, one can further derive
that x̂(tk + τs) ∈ X ⊕ W(tk + τs) ⊆ X ⊕ W. Therefore, the statement of
the lemma implies that (C.5b) remains feasible also at k + τs, due to which
X (tk + τs) ⊆ X for any ̟(tk) ∈ W(tk) and all k ∈ Z+.

The next step is proving ISS. Since V (x(tk)) ≥ Vmin(tk) (see (3.15)) and
a‖x(tk)‖c ≤ amax(tk) (see (3.16)), satisfying (C.5c) and (C.5d) implies that
the inequalities of (3.13) are met, i.e.,

V (Ax̂(tk)+Bu)− V (x(tk)) + a‖x(tk)‖c ≤ 0,

V (A(x̂(tk)-̟j(tk))+Bu)− V (x(tk)) + a‖x(tk)‖c − ςj ≤ 0, ∀j ∈ Z[1,N ],

for all x(tk) ∈ {x̂(tk)} ⊕ W(tk) and u ∈ U(tk). Then, from Lemma 3.4.2 it
follows that (3.10) holds with ϑ(‖̟‖) := η(tk)‖̟‖ and η(tk) of (3.14), i.e.

V (Ax(tk)+Bu(tk))− V (x(tk)) + a‖x(tk)‖c − ϑ(‖̟(tk)‖) ≤ 0,

for all x(tk) ∈ {x̂(tk)} ⊕ W(tk) and u(tk) ∈ U(tk). It was already proven
in (Kellett and Teel, 2005) that satisfying the above inequality, with V (·)
being an ISS Lyapunov function, would guarantee ISS of the corresponding
control system. Hence, closed-loop ISS is proven if there exists a positive
value ϑ(‖̟(tk)‖), for all tk, that is derived from (C.5). To that extent, let us
define

ς∗ := max
x∈cl(X),u∈cl(U)

{V (Ax+Bu)− V (x) + a‖x‖c},

in which cl(X) and cl(U) denote the closure of X and U, respectively. Since
X, U and W are assumed to be bounded sets, ς∗ exists, and inequality (C.5d)
is always satisfied for ςj = ς∗, for all j ∈ Z[1,N ] at each sample instant tk,

irrespective of x, u and the vertices of W(tk) ⊆ W. This in turn, via (3.14),
ensures the existence of a positive η∗ such that η(tk) ≤ η∗ for all tk and
for all ̟(tk) ∈ W. Hence, it is proven that inequality (3.10) holds and as
X (tk+1) ⊆ X, closed-loop ISS of x(tk+1) ∈ X (tk+1) is proven for all for inputs
in ̟(tk) ∈ W. ✷
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Proofs corresponding to Chapter 4

D.1 Proof of Corollary 4.4.3

Statement corollary
Let x1 and x2 represent two unbiased and consistent estimates of x that are
independent. Then, x3 := Ω(x1, x2) is a Gaussian distributed random vector
characterized by

P3 :=
(

P−1
1 + P−1

2

)−1
, x̂3 := P3

(

P−1
1 x̂1 + P−1

2 x̂2

)

, (D.1)

such that x3 is the consistent fused estimate with minimal tr(P3).

The proof directly results from the fact that any linear function of Gaus-
sian distributed random vectors is again a Gaussian distributed random
vector, see (Edwards, 1979). As such, x3 := Ω(x1, x2) implies that x3 =
(

P−1
1 + P−1

2

)−1 (
P−1
1 x̂1 + P−1

2 x̂2

)

is random variable that is Gaussian dis-
tributed. The corresponding definitions for the expectation x̂3 and covari-

ance P3 of this random variable x3, then yield P3 =
(

P−1
1 + P−1

2

)−1
and

x̂3 =
(

P−1
1 + P−1

2

)−1 (
P−1
1 x̂1 + P−1

2 x̂2

)

and thus satisfy (D.1). Alternati-
vely, since x1 and x2 are independent, one could substitute xi = x1, xj = x2,
xf = x3 and Pij = 0n×n into Theorem 4.2.1, which further gives that
P3 = P1 −P1(P1 +P2)

−1P1 and x̂3 = x̂1 −P1(P1 +P2)
−1(x̂1 − x̂2). One can

derive that these expressions are equivalent to P3 and x̂3 of (D.1), by em-
ploying the “matrix inversion lemma” presented in (Woodbury, 1950). The
results of this theorem then given that the fusion formulas of (D.1) results
in a fused estimate x3, which is consistent and has a minimal tr(P3). Hence,
the proof is completed. ✷

D.2 Derivation of Proposition 4.4.3

Before the statement of Proposition 4.4.3 is given, let us first recall that the
prior estimates xi and xj , characterized by the Gaussian distributions p(xi) =
G(xi, x̂i, Pi) and p(xj) = G(xj , x̂j , Pj), were parameterized as follows:

xi = Ω(xij ,xii) and xj = Ω(xij , xjj),

with p(xii) := G(xii, θi,Θi), p(xjj) := G(xjj , θj ,Θj),

p(xij) := G(xij , γ,Γ).

(D.2)

Further, Corollary 4.4.1 states that Ω(·, ·) of two independent prior estimates
is a fusion function that attains the Best Linear Unbiased Estimate. Then,
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a statement equivalent to Proposition 4.4.3, yields
Let the prior estimates xi and xj be given according to (D.2), such that xii,
xij and xjj are pair-wise independent. Then, the fused estimate xf of the
prior estimates xi and xj , yields xf = Ω(xi, xjj), where

Pf =
(

P−1
i +Θ−1

j

)−1
, x̂f = Pf

(

P−1
i x̂i +Θ−1

j x̂jj

)

. (D.3)

Before deriving (D.3), note that xj is the fusion result of the two prior
estimates xij and xjj . Hence, instead of fusing xi and xj directly, one could
perform two fusion steps recursively: first merge xi with xij and fuse that
result further with xjj to determine xf . Let us start with the first merging
step. From the fact that xi = Ω(xii, xij), one can derive that cov(xi, xij) = Pi

is available, due to which the fusion approach presented in Theorem 4.2.1
can be used for merging p(xi) = G(xi, x̂i, Pi) and p(xij) = G(xij , γ,Γ). This
theorem gives that fusion of xi and xij establishes xi as their fused estimate
(because xi and xij are “fully correlated”). The next step is to fuse this result,
i.e., xi, with xjj to determine the desired fused estimate xf . Note that xi and
xjj are independent, due to which that can be fused by the fusion function
Ω(·) in Corollary 4.4.3 and thus xf = Ω(xi, xjj).

D.3 Proof of Lemma 4.4.5

Statement lemma:
Let Pi, Pj ≻ 0 be given and let P̂i, P̂j , Γ̂ satisfy (4.16) and (4.17), for some

nonsingular T ∈ R
n×n. Then Γ = T Γ̂T⊤.

The transformation presented in (4.16), yields P̂i = T−1PiT
−⊤ and P̂j =

T−1PjT
−⊤. Similarly, let us recall the definitions for Γ̂ and Γ, as they were

presented in (4.17) and (4.15), respectively, i.e.,

Γ̂ = arg min
Υ̂∈Rn×n

log |Υ̂|,

subject to Υ̂ � P̂i, Υ̂ � P̂j ,
(D.4)

Γ = arg min
Υ∈Rn×n

log |Υ|,

subject to Υ � Pi, Υ � Pj ,
(D.5)

and let Υ̂ := T−1ΥT−⊤. Then from the fact that T−⊤ := (T⊤)−1 = (T−1)⊤

holds for any nonsingular matrix T , see Proposition 2.6.8 of (Bernstein, 2005),
one can derive that Υ = T Υ̂T⊤, Pi = T P̂iT

⊤ and Pj = T P̂jT
⊤. As such, for

proving the statement it suffices to show that:
(i) argminΥ̂∈Rn×n log |Υ̂| = argminΥ̂∈Rn×n log |Υ|;
(ii) Υ̂ � P̂i and Υ̂ � P̂j induce Υ � Pi and Υ � Pj .
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Implication (ii) results directly from Proposition 8.1.2 of (Bernstein,
2005), i.e., if A � B then CAC⊤ � CBC⊤ holds for any suitable C. As
such, Υ̂ � P̂i implies T Υ̂T⊤ � T P̂iT

⊤, which is further equivalent to Υ � Pi.
Similarly, Υ � Pj is derived from Υ̂ � P̂j .

To prove (i) consider Proposition 2.7.3 of (Bernstein, 2005), i.e., |EF | =
|E||F | holds for any nonsingular matrices E,F . As such, one can derive
that log |Υ| = log |T Υ̂T⊤| = log |Υ̂| + 2 log |T | and thus argminΥ̂ log |Υ| =
argminΥ̂ log |Υ̂|, which completes the proof. �

D.4 Proof of Lemma 4.4.6

Statement lemma:
Let Pi = In and Pj = Dj , for some diagonal matrix Dj ≻ 0. Then Γ = DΓ.

The definition of Γ used in this lemma was already recalled in (D.5).
Further, the diagonal matrix DΓ ∈ R

n×n was defined in (4.18), for some
diagonal Dj ∈ R

n×n, with the following diagonal elements:

⌊DΓ⌋qq = max{1, ⌊Dj⌋qq}, ∀q ∈ Z[1,n]. (D.6)

Therefore, the proof of this lemma is given by showing that

D∗ := arg min
Υ∈Rn×n

log |Υ|,

subject to Υ � Di, Υ � Dj ,
(D.7)

implies D∗ = DΓ. Notice that DΓ is the obvious solution of (D.7) when
In � Dj or In � Dj holds, as these cases result in DΓ = In or DΓ = Dj ,
respectively. To prove the remaining cases, i.e., I 6� Dj and I 6� Dj , a
result of (Vashentsev, 2004) is recalled by considering the general case of two
diagonal matrices Di, Dj ≻ 0, rather than In, Dj ≻ 0. A first assumption
defines a certain structure of Di and Dj .

Assumption D.4.1 ⌊Di⌋qq < ⌊Dj⌋qq, for all q ∈ Z[m+1,n], and ⌊Di⌋qq ≥
⌊Dj⌋qq, for all q ∈ Z[1,m], hold for some m ∈ Z(0,n).

Assumption D.4.1 is met for a suitable transformation of Dj , since I 6� Dj

and I 6� Dj . Further, given m as according to Assumption D.4.1, let us define
T := {T ∈ R

m×n−m|TT⊤ � Im} as a set of matrices and let the diagonal
matrices Q,R ∈ R

n×n and Σ(T ) ∈ R
n×n be defined conform to

⌊Q⌋qq := min{⌊Di⌋qq, ⌊Dj⌋qq}, ∀q ∈ Z[1,n],

⌊R⌋qq :=
√

|⌊Di⌋qq − ⌊Dj⌋qq|, ∀q ∈ Z[1,n],

Σ(T ) :=
(

Im T

T⊤ In−m,.

)

, T ∈ T .

(D.8)
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Then with D(T ) := Q+RΣ−1(T )R, for all T ∈ T , Theorem 2 of (Vashentsev,
2004) states the following

Theorem D.4.2 LetDi, Dj≻0 be given. Then there does not exist a matrix
D̄ 6= D(T ), for any T ∈ T , such that Di � D̄ � D(T ) and Dj � D̄ � D(T ).

Combining the result of Theorem D.4.2 with Corollary 8.4.10 of (Bernstein,
2005), i.e., log |A| ≤ log |B| holds for any A � B and A,B ≻ 0, gives that
D∗ = D(T ), for some T ∈ T . As such, we can limit the search of (D.7)
from Υ ∈ R

n×n to Υ = D(T ), for all T ∈ T , due to which this optimization
problem can further be rewritten into

D∗ = Q+RΣ−1(T ∗)R with T ∗ := arg min
T∈T

log |D(T )|.

Notice that DΓ characterized by (D.6) is equal to Q + R2, for any Dj ≻ 0
and Di = In. Therefore, the proof is completed if D∗ = Q+R2, or similarly
T ∗ = 0m×n−m, which is proven next.

The property that log |A| ≤ log |B| holds for any 0 ≺ A � B (Corol-
lary 8.4.10 of (Bernstein, 2005)) gives that T ∗ satisfies Q + RΣ−1(T ∗)R �
Q+RΣ−1(T )R and thus Σ(T ∗) � Σ(T ), for all T ∈ T . As such, T ∗ is equiva-

lently obtained via T ∗ = argmaxT∈T log |Σ(T )|. Since Σ(T ) =
(

Im T

T⊤ In−m

)

,

Fact 2.14.9 of (Bernstein, 2005) gives that |Σ(T )| = |Im − TT⊤||In−m| and
thus

T ∗ = argmax
T∈T

log |Im − TT⊤| (D.9a)

= argmax
T∈T

m
∑

q=1

λq(Im − TT⊤) (D.9b)

= argmax
T∈T

m
∑

q=1

1− λq(TT
⊤). (D.9c)

As 0 � TT⊤ � Im, it follows that λq(TT
⊤) ∈ R[0,1] for all T ∈ T and

q ∈ Z[1,m]. Hence, the maximum in (D.9c) is attained at λq(TT
⊤) = 0 for

all q ∈ Z[1,m], i.e., T = 0m×n−m, which completes the proof. �

D.5 Proof of Theorem 4.4.7

Statement theorem:
For any Pi, Pj ≻ 0, the covariance Γ conform to (4.15) is equal to TDΓT

⊤.

Let us start by assuming that T is nonsingular. This means that T satis-
fies the hypothesis of Lemma 4.4.5. Therefore, substituting P̂i = T−1PiT

−⊤,
P̂j = T−1PjT

−⊤ and Γ̂ = T−1ΓT−⊤ into this lemma gives that Γ = T Γ̂T⊤,
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if Γ̂ = argminΥ̂∈Rn×n log |Υ̂|, subject to Υ̂ � P̂i and Υ̂ � P̂j . Since P̂i = In

and P̂j = Dj are diagonal, the result of Lemma 4.4.6 gives that Γ̂ = DΓ.

The lemma is thus proven if T = SiD
1
2
i Sj is nonsingular. Employing the

results of Proposition 2.6.5 of (Bernstein, 2005), i.e., AB is nonsingular for
any nonsingular matrices A and B, gives that T is nonsingular when all three

Si, Sj , D
1
2
i are nonsingular. Note that each column of Si is an eigenvector of

Pi ≻ 0, due to which Corollary 5.4.8 of (Bernstein, 2005) gives that S⊤
i = S−1

i

and thus SiS
−1
i = In and S−1

i Si = In hold. These latter two equalities
imply that Si is by definition a nonsingular matrix (see (Bernstein, 2005) for
this definition). Similarly, Sj is nonsingular and since Pi ≻ 0, the diagonal

matrices Di ≻ 0 and D
1
2
i ≻ 0 are nonsingular as well, which completes the

proof. �
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Proofs corresponding to Chapter 5

E.1 Proof of Lemma 5.2.4

Statement lemma:
Let each node i employ the CKF. Then Pif [k] � Pj [k] and Pi[k+1] �
APj [k]A

⊤ +Q hold for all j ∈ Ni(0,1) and k ∈ Z+.

Let us first prove Pi[k+1] � APj [k]A
⊤ +Q, for all j∈Ni(0,1) and k∈Z+,

given that Pif [k] � Pj [k] holds for all j∈Ni(0,1) and k∈Z+. The algorithm of

CKFs (Section 5.2.2) gives that P−1
i [k+1] = (APif [k]A

⊤+Q)−1+C⊤
i V −1

i Ci.

As V −1
i ≻ 0, and thus C⊤

i V −1
i Ci� 0, it follows that Pi[k+1]� APif [k]A

⊤+Q.
Therefore, if Pif [k] � Pj [k], for all j ∈ Ni(0,1) and k ∈ Z+, then also

Pi[k+1] � APj [k]A
⊤ +Q holds for all j ∈ Ni(0,1) and k ∈ Z+.

The second part shows that Pif [k] � Pj [k], for all j ∈ Ni(0,1) and k ∈ Z+.
From the algorithm of CKFs (Section 5.2.2) it follows that this inequality
holds if Pi(l) � Pj(l) and Pi(l) � Pi(l−1), for all l ∈ Z[1,L]. Notice that in
the l-th fusion-cycle, i.e., with Pi(l−1) and Pj(l) as the prior covariances, Pi(l)

represents the resulting fused covariance. Hence, substituting Pi = Pi(l−1),
Pj = Pj(l) and Pif = Pi(l) into Proposition 5.2.1 gives that Pi(l) � Pj(l) and
Pi(l) � Pi(l−1), which completes the proof. ✷

E.2 Proof of Lemma 5.2.5

Statement lemma:
Let each node i employ the CKF. Then for any c ∈ Z≥1 the following holds

Pif [k] � AcPj [k-c](A
c)⊤ +

c-1
∑

q=0

AqQ(Aq)⊤, ∀k ∈ Z≥c, j ∈ Ni(c+1). (E.1)

Before the proof is presented, let Nh(1) denote the set of direct neighbo-
ring nodes for a given node h ∈ M, in which M ⊂ N . Then {∪h∈MNh(0,1)}
denotes the set of all nodes h ∈ M and all nodes j that are a direct neighbor
of any node h ∈ M. The proof of (E.1) proceeds by induction.

Step one of induction employs c = 1, i.e., Pif [k] � APj [k-1]A
⊤+Q should

hold for all j ∈ Ni(2) and k ∈ Z≥1. Let a node h ∈ Ni(1) be given, such that
j ∈ Nh(1). Then substituting i = h and k = k-1 into Lemma 5.2.4, yields

Ph[k] � APj [k-1]A
⊤ +Q, ∀j ∈ Nh(0,1), k ∈ Z≥1. (E.2)
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Since node h ∈ Ni(1) is a direct neighbor of node i, Lemma 5.2.4 gives that
Pif [k] � Ph[k] holds for all h ∈ Ni(1) and k ∈ Z+. Combining this inequality
with (E.2) induces

Pif [k] � APj [k-1]A
⊤ +Q, ∀j ∈ {∪h∈Ni(1)

Nh(0,1)}, k ∈ Z≥1. (E.3)

The condition j ∈ {∪h∈Ni(1)
Nh(0,1)} means that (E.3) holds for all nodes j,

such that the graph distance d(vi, vj) ≤ 2. Hence, {∪h∈Ni(1)
Nh(0,1)} =

{∪q≤2Ni(q)} and since Ni(2) ⊂ {∪q≤2Ni(q)}, (E.3) holds for all j ∈ Ni(2).
The second step of induction is to show that (E.1) holds for any c ≥ 2,

by assuming that (E.1) holds for c-1. This latter assumption gives that the
following inequality is met, for all nodes h ∈ Ni(c) and k ∈ Z≥c-1, i.e.,

Pif [k] � Ac-1Ph[k-(c-1)](A
c-1)⊤ +

c-2
∑

q=0

AqQ(Aq)⊤. (E.4)

Substituting i = h and k = k-c into Lemma 5.2.4, while observing that
k-c+1= k-(c-1), gives that at Ph[k-(c-1)] � APj [k-c]A

⊤ + Q holds for all
j∈ Nh(0,1) and k-c ∈ Z+. Based on this inequality one can rewrite (E.4) into

Pif [k] � Ac-1
(

APj [k-c]A
⊤ +Q

)

(Ac-1)⊤ +

c-2
∑

q=0

AqQ(Aq)⊤

= AcPj [k-c](A
c)⊤ +

c-1
∑

q=0

AqQ(Aq)⊤, ∀j ∈ {∪h∈Ni(c)
Nh(0,1)}, k ∈ Z≥c.

Similar as to the first step, Ni(c+1) ⊂ {∪h∈Ni(c)
Nh(0,1)} implies that the above

inequality holds for all j ∈ Ni(c+1), which completes the proof. ✷

E.3 Proof of Lemma 5.2.6

Statement lemma:
Let each node i employ the CKF. Then, Pi[k] � Σi[k] holds for all k ∈ Z+

and Pi[−1] = Σi[−1], where Σi[k] satisfies the RDE in (5.4)

The above statement is proven by induction. To clarify the derivation,
let us recall the update formulas of Pif and Σi for all k ∈ Z≥1, i.e.,

P−1
i [k] =

(

APif [k-1]A
⊤ +Q

)−1
+ C⊤

i V −1
i Ci,

Σ−1
i [k] =

(

AΣi[k-1]A
⊤ +Q

)−1
+ C⊤

i V −1
i Ci.

(E.5)

The first step of induction employs k = 0, due to which Pi[0] � Σi[0]
should be proven. Note that this property follows directly from the fact that
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Pif and Σi have similar updates, as it is shown in (E.5), and Pi[−1] = Σi[−1].
Or more precisely, Pi[0] = Σi[0] holds, which completes the first step.

The second step is to prove that Pi[k] � Σi[k], for all k ∈ Z≥1, if Pi[k-1] �
Σi[k-1] holds. The result of Lemma 5.2.4, i.e., Pif [k] � Pi[k], gives that
Pi[k-1] � Σi[k-1] induces Pif [k-1] � Σi[k-1], which is further rewritten into

(APif [k-1]A
⊤ +Q)−1 � (AΣi[k-1]A

⊤ +Q)−1. Using this inequality in (E.5)

implies that P−1
i [k] � Σ−1

i [k] and thus Pi[k] � Σi[k] completes the proof. ✷

E.4 Proof of Theorem 5.2.7

Statement lemma:
Let each node i perform the CKF and let Nrde 6= ∅. Then, Pif [∞] exists and
satisfies Pif [∞] � Σ̄i,j [∞], for all j ∈ Nrde..

For clarity of exposition, let us recall the following characterization:

Σ̄i,j [k] =

{

Σj [k] if j ∈ Ni(0,1), k ∈ Z+,

AcΣj [k-c](A
c)⊤ +

∑c-1
q=0 A

qQ(Aq)⊤ if j ∈ Ni(c+1), k ∈ Z≥c.

Then above statement is proven by showing that Pif [k] � Σ̄i,j [k] holds
for all j ∈ N , due to which Pif [∞] � Σ̄i,j [∞] will hold for all j ∈ Nrde.
Further, in line with the above characterization of Σ̄i,j [k], let us distinguish
the two cases j ∈ Ni(0,1) and j ∈ Ni(c+1), for some c ∈ Z≥1.

In the first case, i.e, j ∈ Ni(0,1), we have that Σ̄i,j [k] = Σj [k], due to
which Pif [k] � Σj [k] should hold for all k ∈ Z+. The results of Lemma 5.2.4
and Lemma 5.2.6 give that Pif [k] � Pj [k] and Pj [k] � Σj [k] hold for all
j ∈ Ni(0,1) and k ∈ Z+. Combining these inequalities gives the desired
inequality Pif [k] � Σj [k], for all j ∈ Ni(0,1) and k ∈ Z+. Let us continue with
its asymptotic properties by rewriting this expression as Pif [k] − Σj [k] � 0,
and thus,

Pif [k]−Σj [k] + Σj [∞]−Σj [∞] � 0, ∀j ∈ {Ni(0,1) ∩Nrde}, k ∈ Z+. (E.6)

Proposition 5.2.2 gives that limk→∞(Σj [k] − Σj [∞]) = 0. Hence, if k → ∞,
then (E.6) becomes limk→∞(Pif [k] − Σj [∞]) � 0. As Σj [∞] is a constant,
this inequality is equivalent to limk→∞ Pif [k]− Σj [∞] � 0 and thus,

Pif [∞] � Σj [∞], ∀j ∈ {Ni(0,1) ∩ Nrde}. (E.7)

The second case, i.e., j ∈ Ni(c+1) and c ∈ Z≥1, implies that Pif [k] �
AcΣj [k-c](A

c)⊤ +
∑c-1

q=0 A
qQ(Aq)⊤ should hold for all k ∈ Z≥c. Note that,

for all c ∈ Z≥1 and k ∈ Z≥c, the result of Lemma 5.2.5, yields

Pif [k] � AcPj [k-c](A
c)⊤ +

c-1
∑

cq=0

AqQ(Aq)⊤, ∀j ∈ Ni(c+1).
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When substituting the result of Lemma 5.2.6, i.e., Pj [k-c] � Σj [k-c], into the
above inequality gives for all c ∈ Z≥1 and k ∈ Z≥c that

Pif [k] � AcΣj [k-c](A
c)⊤ +

c-1
∑

q=0

AqQ(Aq)⊤, ∀j ∈ Ni(c+1).

Note that the above expression yields the desired inequality of this second
step. Therefore, let us continue with its asymptotic properties, next, by
observing that c < ∞ induces limk→∞ k-c = ∞. Then, similarly as to (E.6)
and (E.7) one can derive that

Pif [∞] � AcΣj [∞](Ac)⊤ +
c-1
∑

q=0

AqQ(Aq)⊤, ∀j ∈ Ni(c+1) ∩ Nrde,

holds for any c ∈ Z≥1, which completes the proof. ✷



F

Proofs corresponding to Chapter 6

F.1 Proof of Lemma 6.3.3

For clarity, let us define Xi := P dif

i and Yi := P cif

i . Then to prove the
inequality Xi[∞] � Yi[∞], for all i ∈ N , let us prove that Xi[k] � Yi[k] holds
for all i ∈ N and all k ∈ Z+ by induction. From the update of the DIF and
CIF and the fact that L = 1 one obtains that

X−1
i [k] =

(

AXi[k-1]A
⊤ +Q

)−1
+

∑

j∈Ni(0,1)

Zj [k],

Y −1
i [k] =

(

AYi[k-1]A
⊤ +Q

)−1
+

∑

j∈Ni(0,1)

WijZj [k].
(F.1)

Moreover, since
∑

j∈Ni(0,1)
Wij = 1, the following inequality also holds

∑

j∈Ni(0,1)

Zj [k] �
∑

j∈Ni(0,1)

WijZj [k]. (F.2)

Then the first is step to prove that Xi[1] � Yi[1]. Starting from Xi[0] =

Yi[0] one can derive that (AXi[1]A
⊤+Q)−1 =

(

AYi[1]A
⊤ +Q

)−1
. Combining

this equality with the inequality of (F.2) gives that the update equations of
(F.1) are such that X−1

i [1] � Y −1
i [1] holds and thus Xi[1] � Yi[1].

The second step is to prove that Xi[k] � Yi[k], if Xi[k-1] � Yi[k-1] holds.
Starting from the latter inequality one can derive that (AXi[k-1]A

⊤+Q)−1 �
(

AYi[k-1]A
⊤ +Q

)−1
. Combining this equality with the inequality of (F.2)

gives that the update equations of (F.1) are such that X−1
i [k] � Y −1

i [k] and
thus Xi[k] � Yi[k], which completes the proof. �
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