

Application of HLA in the Optimization of Rail Transport
T.W. van den Berg, R.E.J. Jansen, D. Middelkoop

TNO Defence, Security and Safety

PO Box 96864,
2509JG The Hague, The Netherlands

tom.vandenberg@tno.nl, roger.jansen@tno.nl,
dick.middelkoop@prorail.nl

Keywords:
Dynamic Traffic Management, Monte Carlo Simulation, HLA, Time Management, Rail Transport

ABSTRACT
The Dutch rail infrastructure manager – Prorail – utilizes simulation to perform research in a number of areas of rail-
transport. One area that is of particular interest is that of the analysis of Dynamic Traffic Management (DTM) of trains.
The aim of DTM is to manage plan/timetable deviations from daily train operations effectively in order to improve
overall performance of the train service. To perform this analysis two existing (legacy) systems, FRISO and TMS, have
been connected via the High Level Architecture (HLA).
FRISO is a train simulator that is used to investigate rail transport in the area of several (tens of) kilometers. TMS is a
further development of the controller system COMBINE and is an advanced traffic control system that is used to predict
and minimize route conflicts between trains in order to improve efficiency, reliability and quality in rail transport.
Analysis involves the execution of stochastic (Monte Carlo) simulation, for which conservative Time Management is a
critical issue. This paper focuses on the design of the TMS-FRISO federation, the federation agreements made, the
lessons learned in making both legacy systems HLA enabled and possible future improvements.
Within this project TNO provided distributed simulation expertise and HLA software tools, like the TNO-RTI and the
RCI middleware with code generator.

1. Introduction

The construction of timetables for trains is an off line
process and done well in advance. Train order at
crossings, junctions and platform tracks is fixed to
prevent route conflicts and ensure capacity. When
operating/executing a time table in real time unforeseen
events may happen, causing a deviation from the planned
time table. A Dynamic Traffic Management (DTM)
system can alleviate this by allowing trains to arrive on
alternative platforms, by allowing variations in train
behaviour, by allowing changes in the order of trains and
by allowing variation and synchronization of arrival and
departure times of trains. A DTM system handles
deviations from planning in real time with the aim to
optimize overall performance of the rail network. In order
to study the effects of DTM in a capacity bottleneck area
like Den Bosch in The Netherlands, two existing systems
are connected using the High Level Architecture: a train
simulator (FRISO) that simulates train movements
according to a time table using simple traffic management
and an advanced Traffic Management System (TMS) that
provides an adapted, optimized plan with advisory speed
setpoints to the trains in the model area based on amongst
others current position and speed [1].

Den Bosch
study area

Figure 1. The Den Bosch study area in The

Netherlands.

Both systems are fed with actual rail infrastructure and
time table data of the Den Bosch area (see Figure 1). This
is an area of tens of kilometers, from the city of Tilburg to
Ravenstein and from the city of Boxtel to Geldermalsen.
The analysis involves running a stochastic (Monte Carlo)
simulation, using HLA features to manage simulation
time and to coordinate single or multiple successive runs.
The TMS-FRISO federation is currently in the final stage
of verification and a number of trial experiments are
performed for testing. Verification is expected to
complete in the first half of 2008.
This paper gives an overview of the TMS-FRISO HLA
federation. Section 2. describes the top level architecture
of the federation. The characteristics of the modes and
states that the federation supports are described in Section
3. Section 4. briefly discusses the object model created for
this federation. More federation agreements follow in
section 5. This section also includes the agreements on the
handling of time in the federation. Section 6. addresses a
number of lessons learned in developing this federation
and finally section 7. ends with conclusions.

2. Federation Architecture

The HLA federation consists of two federates, a FRISO
federate and a TMS federate, interconnected via the HLA
Run Time Infrastructure. FRISO (Flexible Rail Infra
Simulation of Operations), from InControl in The
Netherlands, is a simulator that is used to investigate and
enhance rail transport in the area of tens of kilometers. It
contains a model of the rail infrastructure and of trains
that follow a time table.
FRISO models the following relevant functions of the rail
infrastructure:
• track layout,
• signalling system,
• route setting and
• interlocking.
FRISO also models the following functions with respect
to trains:
• train schedule (timetable),
• entry and exit of trains in to and out of the model

area,
• disturbances in train entry time,
• stopping time and departure time,
• rolling stock combinations with a certain probability,
• planned stops and passings,
• train behavior (acceleration, deceleration and driving

speed of trains) and
• communication delays (from train and infrastructure

to TMS).

TMS (Traffic Management System), from CO.S.MO.S
and On Air in Italy, is a controller system that is used to
investigate and enhance efficiency, quality and reliability
in rail transport. It optimizes on punctuality, energy
consumption and/or throughput, and controls train speed
and route booking on the basis of amongst others current
train status information and schedule information. TMS
models the following relevant functions:
• rail infrastructure,
• rollling stock characteristics,
• train schedule,
• detailed planning with goals to be achieved and

routes to be booked,
• advisory speed setting,
• route booking,
• communication delays (from TMS to train and

infrastructure).

TMS itself is composed of a number of components:
• CRS1 (Conflict Resolution System, level 1) is

responsible for train scheduling and routing. Its
purpose is to optimize traffic, developing and
updating a current plan for all trains, which aims at
reducing the final global delay.

• CRS2 (Conflict Resolution System, level 2) takes
care of reconstruction of the system initial status,
plan update management and route management.

• SR (Speed Regulator) is responsible for TMS plan
execution. SR receives from the CRS1 the current
plan, defined in terms of goals (arrival times,
departure times, speed) for each train. The purpose of
SR is to compute a speed profile for each controlled
train that will achieve all the goals in a safe and
energy consumption efficient manner.

• CS (Communication Server) is responsible of the
routing of (TCP/IP) messages between the TMS
components and interfaces with the mapper for
outside communication.

Both federates interface to the RTI through the use of so
called “mappers”. These mappers translate RTI service
invocations to TMS socket messages or FRISO ActiveX
Controls and visa versa. By using this solution the
advantage is that all HLA RTI specifics are concentrated
in relatively small software components, leaving much of
the original systems intact.
In addition, each federate uses its own (proprietary)
databases for logging information and retrieving
information about the rail infrastructure, timetable,
signals, routes and rolling stock. The infrastructure related
data is imported from Prorail’s infrastructure database
“Infra Atlas”. This data is converted pre-runtime to other
formats.

Finally, for the Run Time Infrastructure the TNO-RTI is
used. The TNO-RTI is a high performance and partial
RTI implementation that supports most of the RTI
management services.
An architectural overview of the federation is shown in
Figure 2.

Run Time Infrastructure (RTI)

TMS Federate

TMS Mapper

TMS

TMS
database

pre-runtime
data

conversion
TMS
log

user

Communication Server

CRS2 CRS1 SR

socket API

userFRISO Federate

FRISO Mapper

FRISO

FRISO
log

FRISO
database

GUI

ActiveX Control

RTI API RTI API

Infra Atlas

pre-runtime
Infra Atlas
conversion

Figure 2. Federation Architecture.

3. Federation Simulation Modes and States

The federation design enables both a real time (possibly
human operator in the loop) simulation and a faster than
real time stochastic (Monte Carlo) simulation. Only the
latter mode is supported in the current release of the
federation.

The characteristics of both modes are:
1. Manual
• Both real time and non real time simulation;
• One replication (simulation run);
• During a replication the TMS federate may

take/return control of train movement and route
booking from/to the FRISO federate;

• The TMS federate may join and leave the federation
during a replication.

2. Batch
• Faster than real time simulation;
• Multiple replications (simulation runs) with variable

seeds;
• During one replication the TMS federate takes

control of train movement and route booking after a
warm up period of the FRISO federate;

• During one replication the TMS federate does not
return control of train movement and route booking
to the FRISO federate;

• The TMS and FRISO federates are present
throughout the federation execution.

Manual mode is intended to mimic the situation in which
TMS is connected to a “life system”. Trains continue to
run, with or without the presence of TMS. When TMS is
present it may take control of train movement. Batch
mode is used for analyses where TMS is always present.
This mode is for Monte Carlo simulation.

Figure 3 shows the federation states and state transitions
for both modes. The states are:
1. Start up
State in which federates of the federation are launched,
start up and discover each other.
2. Initialization
State in which the federation initializes. Model properties
are exchanged and individual federates initialize.
3. Save (batch mode)
State in which the federation state is saved via the HLA
Save for a future restore.
4. Replication
State in which the federation performs a replication
(simulation run). During a replication the federation is in
one of the following sub states:
• Uncontrolled: state in which the FRISO federate

controls train movement and route booking.
• Prepare to control: state in which the FRISO

federate still controls train movement and route
booking, but where the TMS federate has indicated
that it is about to take control of train movement and
route booking.

• Controlled: state in which the TMS federate controls
train movement and route booking.

5. Restore (batch mode)
State in which the federation state is restored via the HLA
Restore for another replication.
6. Shutdown
State in which the federation shuts down.

The state transitions are controlled by the FRISO federate,
so simulation control is implicitly with this federate.

Execution

Start up

Initialisation

Replication

Controlled

Prepare to control

Ini tial

Final

Restore

Sav e

Uncontrolled

Shutdow n

Start Session

Federation Saved

Federation Restored

Ready To Control

Stop Control
[manual]

End Simulation

Federation
Restore begun
[batch]

Start Simulation [batch]

Start Simulation
[manual]

Startup Finished

Figure 3. Federation simulation modes and states.

4. Federation Object Model

The Federation Object Model (FOM) defines the HLA
objects and interactions that can be exchanged between
the HLA federates. The FOM for the TMS-FRISO
federation is in the current federation release based on the
existing (legacy) TMS message interface for two reasons:
• There exists no reference FOM like the RPR-FOM

that can be reused for the purpose of this federation.
• To simplify the integration between TMS and FRISO

by reusing the TMS message definitions.

The FOM has two HLA object classes, namely
ModelProperties and Train. The ModelProperties object
class defines the experiment and scenario. The Train
object class includes attributes for amongst others the
train name, length, current position, current speed and
current advisory speed. Modelling these as objects allows
(in manual mode) a potential late joining federate like a
viewer to retrieve the current situation from the
federation.
All other TMS interface messages are modelled as HLA
interaction classes. Interaction classes include plan (time
table) related messages, route booking related messages,
infrastructure related messages, and train target.

The plan related messages communicate time table
information at run time to TMS. For example, an Initial
Plan interaction is used to communicate a part of the
timetable at the start of the simulation. Then, periodically
after a defined interval (e.g. 15 minutes), a Supplemental
Plan interaction contains the next part of the timetable. A
modification to a previously sent plan is communicated
by a PlanChanges interaction.
The route booking related messages deal with the booking
of routes or partial routes, as explained in the next section.
The infrastructure related messages provide information
about availability and status of signals, sections, blocks,
speed restrictions, etc.
The train target provides the advisory speed for a
controlled train. After receiving a target the train should
accelerate or decelerate to the target speed specified, if
allowed by the safety system (signals, speed restriction).

5. More Agreements

5.1. Train Entry and Exit

The FRISO federate simulates train movement over the
infrastructure according to a time table. When a train
“enters” the controlled area FRISO creates the associated
HLA train object in the federation execution and TMS
will receive a Discover Object message from the RTI.
When a train leaves the area FRISO deletes the associated
train object from the federation execution and TMS will
receive a Delete Object message from the RTI. Train
objects are created (and their attributes updated) a few
simulation minutes before they actually enter the area to
ensure that TMS is “aware” of their presence.

5.2. Route Booking

In the time table trains are allocated to routes. A route is
further composed of blocks and sections to increase the
granularity of locking. A route must be booked (reserved)
by a train and set by the route booking system before the
train may enter the route. If a route is not set, the train
must wait. The authorization to proceed is provided by a
signal (not showing red if authorized). When a train
leaves a section the (partial) route is released again and
available for new route booking and setting.
The FRISO federate manages the routes in the
infrastructure. Route booking requests are (in the state
Replication.Controlled) initiated by the TMS federate as
interactions during the simulation cycle. Depending on,
amongst others, the current simulation time and the time
parameters in the route booking request FRISO may set
the route in the future, set the route immediately or cancel
the request. The TMS federate may also cancel an earlier
issued route booking request.

5.3. Time Management

Since the TMS-FRISO federation is mainly intended as an
analysis tool performing many simulation runs,
repeatability is a highly desirable characteristic. This
allows unexpected or unusual analysis results to be
investigated in greater detail to explain the underlying
phenomenon. Repeatability requires a conservative Time
Management strategy using Time Stamp Ordered (TSO)
messages.
The TMS-FRISO federation uses the HLA Time
Management services [2] to control the advancement of
time and ordering of messages and to simulate the
communication channel delay between TMS, train and
infrastructure, as explained in the following subsections.

5.3.1. Advancing Time

FRISO and TMS are time regulating and time constrained
federates as they both send and receive TSO messages.
Every time step (also called “simulation cycle”) the
FRISO federate processes the received train targets and
route booking requests, calculates the new train state for
each train, updates the train states in the federation and
advances simulation time by issuing a Time Advance
Request (TAR) with a time step “dt”. The receipt of a
Time Advance Grant (TAG) marks the start of a new
simulation cycle.
The TMS federate runs “event driven”. It “follows” the
federation time by issuing a Next Message Request
(NMR) supplying the value “infinite” as logical time
value. This means that the TMS federate waits for the
next message from the federation.
When the TMS federate “wakes up” it consumes the
received messages (e.g. train state, route settings). The
receipt of the TAG marks the end of the batch of
incoming messages and the beginning of the “planning
cycle”. In the planning cycle TMS calculates, amongst
others, new train targets and sends these into the
federation. Once the planning cycle is completed TMS
waits again for the next message from the federation.
Figure 4 illustrates the working of a simulation cycle. The
figure shows two simulation cycles #1 and #2 (indicated
by the square box). To simplify the sequence diagram
only train state messages (from FRISO) and train target
messages (from TMS) are shown. But in reality many
other messages are communicated, including plan and
route booking messages, and discover and delete object
messages for train entry and exit.
In Figure 4 a one second simulation time step dt is used.
The epsilon values are used to ensure that train state and
train target can be exchanged in the same simulation
cycle. That is, when epsilon2 ≤ dt – epsilon1 a train target
from TMS shall be received by FRISO before the start of
the next simulation cycle (where dt, epsilon1 and epsilon2
> 0).

The RTI simulation time starts at zero for each new
replication. Since the train time table is constructed in
another time frame than the RTI simulation time each
mapper corrects for this by adding the scenario start time
to the RTI simulation time value.

FRISO federate RTI TMS federate

Time = 5

Time = 6

Time = 4

Time = 5

alt Cycle #1

alt Cycle #2

Time = 4

Time = 6

NMR

Target(3 + epsilon2)

TAG(4 - epsilon1)

Simulate(3 => 4)

State(4)

TAR(5 - epsi lon1)

State(4)

TAG(4)

Plan

Target(4 + epsilon2)

NMR

Target(4 + epsilon2)

TAG(5 - epsilon1)

Simulate(4 => 5)

State(5)

TAR(6 - epsi lon1)

State(5)

TAG(5)

Plan
Target(5 + epsilon2)

NMR

Target(5 + epsilon2)

TAG(6 - epsi lon1)

Simulate(5 => 6)

State(6)

TAR(7 - epsi lon1)

State(6)

TAG(6)

Plan

Target(6 + epsilon2)

Figure 4. Simulation cycles.

5.3.2. Communication Channel Delays

The HLA Time Management functions are used to
simulate the communication delay that exists between
TMS, train and infrastructure. Two communication
channels are defined:
• Between TMS and infrastructure (for route booking,

route setting and infra status) and
• Between TMS and train (for train state and train

target).
The communication time between TMS and infrastructure
is negligible.

The TMS federate models the communication time from
TMS to train driver and back to TMS as a “control loop
delay” (see Figure 5). When TMS (SR component)
receives speed and position data for the circulating trains,
it calculates an advisory speed for each train. The
computation (or planning) time is a parameter t1
depending on the TMS internal algorithms efficiency.
Another delay t2 is introduced to communicate this
advisory speed to each “train driver”. An important delay
t3 is associated to the driver reaction time. Other delays
are generated by the train on-board systems responsible
for estimating the train position and speed (parameter t4)
and to communicate this information (parameter t5) to
TMS.

TMSFRISO

Planning (t1)

Driver reaction (t3) Communication
Delay (t2)

Train (t4)

Communication
Delay (t5)

Speed Setpoint

Train State

Figure 5. Control loop delay.

So, let t be the total Control Loop Delay. The parameter t
is composed by a set of parameters that are all
independent of the TMS, except for parameter t1 (besides,
compared with the other parameters, t1 is negligible):
• TrainToTMSDelay;
• TMSToTrainDelay;
• driver reaction time.
From the viewpoint of the TMS performance, the only
relevant parameter is the total delay t. The effect of the
delay control loop could cause a reduced capacity of the
TMS to control the trains. As a consequence, to reach a
proper control of the trains, the TMS must estimate
position and speed of the trains at time t+t, on the basis of
the knowledge of the position and speed of the trains at
time t, and on an estimation of the parameter t.

Simulation of the communication channels is as follows.

1. TMS – infrastructure communication channel:
Since the delay time is negligible this channel is not
simulated (in effect the value zero is assumed as delay
time).

2. TMS – train communication channel:
This channel is simulated by both federates.
• The TMSToTrainDelay time is simulated by the

TMS federate. The TMS mapper adds
“TMSToTrainDelay” to the RTI timestamp of each
TrainTarget message.

• The TrainToTMSDelay time is simulated by the
FRISO federate. The FRISO mapper adds
“TrainToTMSDelay” to the RTI timestamp of each
Train State message.

• The driver reaction time is simulated by the FRISO
federate.

5.3.3. TMS Planning Time

As mentioned in the previous paragraph the TMS
planning time is generally negligible with respect to the
TMS – train communication channel delay. Planning time
is not negligible in the following cases:
• Upon the “initial planning” when TMS receives the

initial plan, infra status and train states (just before
the Ready To Control).

• Upon a “re-planning” by TMS.
The first case is relevant in manual mode, where the TMS
federate may join and leave the federation any time. Upon
each join TMS will perform an initial planning. In batch
mode initial planning happens only once at the start of
each replication. The second case happens once in a
while, because TMS looks well ahead in planning.
For the current federation release, TMS planning time is
neglected. This means that the TMS federate issues an
NMR after processing each batch of messages.
In a future release planning time is not neglected. The
TMS federate manages the planning time (“pt”) as
follows. Since the TMS federate has become “time
aware” the federate should not merely issue an NMR, but
instead issue:
• a TAR(T+pt) when the TMS federate received and

processed messages (thus spent pt > 0 time on
planning);

• an NMR(inf) when the TMS federate just received a
TAG without any messages (thus spent pt = 0 time on
planning).

As can be seen, the management of time by the initial and
later TMS federate release is compatible.

6. Lessons learned

This section summarises some of the lessons learned in
the development of the TMS-FRISO federation. The
lessons learned have been based on feedback from the
parties involved in the project (On Air, CO.S.MO.S,
Prorail, InControl and TNO).

6.1. HLA Concepts

An important statement to start with is that the suppliers
of TMS and FRISO are all new to HLA. For them HLA
provides many new concepts for simulation
interoperability, amongst which the new concepts for
Time Management and object/declaration management
are the most important ones for the TMS-FRISO
federation. Previously, interoperability with TMS was
mainly built on the concept of a real time point-to-point
TCP socket connection, without much time
synchronisation. The new HLA concepts were initially
hard to grasp, partly due to the lack of simple examples to
start with.

6.2. HLA Architecture

HLA structures simulation models in federates,
interconnected by an RTI for run-time information
exchange. It is a general good practice to have some form
of ‘mapping function’ or ‘conversion module’ between
the simulation model and the RTI to prevent mixing of
RTI specifics with the simulation model. This approach
was followed for TMS-FRISO federation as well,
resulting in so called ‘Mapper’ components between
simulation model (TMS and FRISO) and RTI. This
‘design decision’ was also made to preserve the existing
TCP socket connection among TMS components and to
prevent just too many changes in one release. Identified
further improvements include:
• Extend the use of HLA to the individual TMS

components, replacing the TCP socket interface by
the RTI. The consequence is that the RTI becomes
part of TMS and thus of a potential operational TMS,
unless variants of TMS are created. Note that each
individual TMS component will still have a
‘conversion module’ or ‘Mapper’.

• A consideration is to split also FRISO in smaller
building blocks (federates) to promote reuse across
simulation applications, e.g. route booking
simulation, safety system simulation, train (and train
driver) simulation.

6.3. Time Management

Time Management was problematic with earlier
integrations of train simulators with TMS. Time
synchronisation was performed by passing a timestamp in
each message. Problems included:
• Time is only synchronized when messages are

transmitted;
• No guarantee that a scenario is reproducible, as the

timing of message receipts is dependent on the
operating system functions and the network topology
and bandwidth;

• No guarantee that an “as fast as possible” running
scenario provides a correct outcome as each
simulator runs at its own pace;

• No concept of simulation time; everything is in wall-
clock time.

HLA Time Management was the hardest HLA topic to
tackle in developing the TMS-FRISO federation, because:
• The concept of time is a difficult topic anyway,

regardless of the simulation application;
• FRISO and TMS were initially not prepared for Time

Management by an external software component (the
RTI), in particular for time stepped simulation.

Once the required behaviour was specified, both FRISO
and TMS were adapted to time stepped HLA federates.
With the federation both real time and faster than real
time simulation is possible, without effects on the
outcome of the simulation. Also scenarios are
reproducible.
It was also noted that the added value of HLA Time
Management becomes really visible with three or more
federates participating in a simulation. With two federates
Time Management is still relatively easy to oversee.

6.4. HLA Middleware

TNO’s HLA middleware, the Run-time Communication
Infrastructure (RCI), provides the federate developer with
the necessary functionality to incorporate the federate into
a federation and supports reuse of federate components
[3]. The RCI library provides all kind of services that are
independent from the FOM, while the RCI code generator
takes care of all the federate’s FOM dependent interface
functionality.
The RCI library provides the federation developer a
simplified programming interface to the RTI. The RCI
programming interface deviates slightly from the RTI
programming interface due to the simplification of
programming interface. One of the benefits of the RCI is
the very easy transformation from HLA 1.3 to IEEE1516,
since the specifics of both interfaces is “hidden” by the
RCI.
The RCI library and RCI code generator were used in the
construction of the “mappers”. The mappers can be seen
as the glue code between the generated HLA interface
code and the higher-level functionality of the federate [4].
When the FOM was changed or extended during the
project, the HLA interface code could simply be
regenerated and the developer could concentrate on the
actual functionality of the federate. The general
conclusion was that the RCI has saved time in the
construction of the mappers and federates.

6.5. Federation Object Model

It was relatively easy to create a FOM from the TMS
message definitions. As a side effect however, some time-
related fields are also present in the FOM. As HLA Time
Management is used, these (redundant) fields should be
removed from the FOM.

The question remains if the FOM (based on TMS) is
generic enough and future proof. Probably not. As
additional federates may be added to the federation (or
existing ones are replaced) the FOM will change, improve
and mature. One simulator that already has been
suggested for addition to the federation is the train cabin
simulator “MATRICS”. Another candidate is a simulator
of the safety system, called “BITS”.
One proposed improvement for the FOM is to split the
object model into smaller parts, so called Base Object
Models. For example, models for routes, infrastructure,
safety, planning. These Base Object Models are the
building blocks for extending the federation with
additional federates.

6.6. Databases

InfraAtlas is the source database for the infra data.
InfraAtlas data is converted to FRISO format data. And
FRISO format data is converted to TMS format data.
Because of the various transformations to different
database formats inconsistencies are possible.
Ideally, InfraAtlas should provide an exchange data
format that is readable by both TMS and FRISO. This
makes TMS independent from FRISO when TMS is
reused in another federation configuration. In addition,
other federates (such as a viewer) can use the same
exchange format. A possible (pre-runtime) exchange
format is RailML [5]. The purpose of the RailML is to
define XML-based standards for simplified data exchange
between railway applications.

7. Conclusion

The main conclusions are:
• HLA concepts may be difficult to understand for first

time users. Training and good training or reference
materials are therefore important.

• Time Management is hard topic to tackle. Sufficient
time and effort should be allocated for Time
Management agreements and for the identification of
required changes in existing systems.

• FOM based code generation speeds up development.
An example of supporting tools is the TNO RCI and
codegenerator.

• A good design pattern is to use a “mapper”
component to prevent the mixing of RTI specifics
with the simulation model.

• Both TMS and FRISO can be split in smaller HLA
based building blocks, creating a component based
federate.

• The TMS-FRISO FOM should be improved by
removing TMS specifics and by dividing and
standardizing the FOM in several Base Object
Models.

• RailML may be a way to standardize the exchange of
pre-runtime infrastructure and time table data.

8. References
[1] Simulation of traffic management with FRISO, A.D.

Middelkoop, L. Loeve. Computers in Railways X:
Computer System Design and Operation in the
Railway and Other Transit Systems. 2006.

[2] IEEE Std 1516.1-2000, IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA) – Federate Interface Specification, March
2001.

[3] Marco Brasse, Wim Huiskamp, Olaf Stroosma, “A
Component Architecture for Federate
Development”, Simulation Interoperability
Workshop, Fall 1999 (99F-SIW-025).

[4] Roger Jansen, Louwrens Prins, Wim Huiskamp,
“Template Driven Code Generator for HLA
Middleware”, Simulation Interoperability
Workshop, Fall 2007 (07F-SIW-038).

[5] RailML, http://www.railml.org.

9. Author Biography

Tom van den Berg is scientist in the M&S department at
TNO Defence, Security and Safety, The Netherlands. He
holds an M.Sc. degree in Mathematics and Computing
Science from Delft Technical University. His research
area includes distributed processing and simulation
systems, software architectures and software process
improvement.

Roger Jansen is a member of the scientific staff in the
M&S department at TNO Defense, Security and Safety in
the Netherlands. He holds an M.Sc. degree in Computing
Science and a Master of Technological Design (MTD)
degree in Software Technology, both from Eindhoven
University of Technology, The Netherlands. He works in
the field of distributed simulation and his research
interests include distributed computing and simulation
interoperability.

Dick Middelkoop is working at ProRail, department of
Rail Development and responsible for decision support
tools in the field of capacity analysis and optimisation of
the rail network.

