
Application Framework for Programmable Network
Control

1,2Rudolf Strijkers, 2Mihai Cristea, 2Cees de Laat, 1,2Robert Meijer

1TNO Information and Communication Technology, Groningen, The Netherlands,
2University of Amsterdam, Amsterdam, The Netherlands

{strijkers, m.l.cristea, delaat}@uva.nl, robert.meijer@tno.nl

Abstract. We present a framework that enables application developers to create
complex and application specific network services. The essence of our
approach is to utilize programmable network elements to create a software
representation of network elements in the application. We show that the typical
pattern of an application specific network service is a control loop in which
topology, paths, and services are continuously monitored and adjusted to match
application specific qualities. We present a platform in which network control
applications can be developed and illustrate possible use cases. Based on these
use cases, new research questions are identified.

Key words: Distributed Computing, Network Management, Programmable
Networks.

1 Introduction

Almost every type of network implements measures to guard against unexpected
environmental changes, such as the effects of failing links, changing traffic patterns or
the failure of network nodes themselves. Such measures can be considered as
optimization of network resources with respect to network robustness. At the basis of
the optimization of network resources are programs that control the response of the
network to changes in and outside of the network. Moreover, actively controlling
network resources is crucial to maintain the network service that is delivered to
applications.

Optimizations have a certain penalty in realistic situations. For example, in sensor
networks [1] minimizing the transmission power of sensor antennae optimizes battery
lifetime, but impacts connectivity. Depending on the application and the actual
situation, engineers will choose an optimum. Generally, the optimum network service
is application-specific, yet in most networks, application programmers have no
control over the network. One reason is that a general applicable, conceptual and
technical framework to program the network is absent [2].

In the absence of any notion of specific application demands, as is usually the case,
network providers offer typically a best or constant effort network service.
Theoretically at least, computer programs can be so specific in their service

requirement and optimal response to disturbances that network providers cannot
configure and control the network for such applications anymore. If cloud
infrastructures would only run on wind energy, for example, the amount and direction
of wind will continuously change the energy available for computing and network
resources. In such cases, (partial) control over the network must also be transferred to
a computer program, i.e. the application domain, to automate continuous
reconfiguration of the infrastructure.

Traditionally, networks have been designed according to well-defined requirements.
One could say that at this point application domain knowledge enters the network
domain. Conversely, application engineers may use the interface of a given network
service, e.g. sockets in the Internet, to include the network in the application logic.
Here, we extend the latter approach; any application-specific property of a network
service becomes a network control issue programmed in the application domain, i.e. a
dynamic user network interface. Moreover, we define the basic framework needed to
design and build network control programs in the application domain.

In Section 2 we review state of the art of related areas in programmable networks,
overlay network and sensor networks that allow network control from the application
domain. Then, in Section 3, the application framework is presented and its functional
components are described in Section 4. In Section 5, the implementation and test bed
is introduced and Section 6 follows with examples of applications that control
networks. The paper ends with conclusions and future work in Section 7.

2 Related Work

A basic approach to develop a programmable network is to use general-purpose
computers as Network Elements (NE) and implement C programs that manipulate
packet streams and network links [3-5]. The programmable and active network [6, 7]
community developed the architectures for dynamic deployment and extensibility of
functions in network elements. Other efforts provide programmability in the control
plane of networks, while remaining backwards compatible with current Internet
technologies [8-11]. These technologies enable network operators to offer better
services to applications.

Basically, there are two types of limitations in networks that motivate application
control: (1) limited network functions or (2) limited network resources. If the network
does not offer enough functionality, a well-known approach is to implement the
network functions as part of the application, i.e. create and manipulate a virtualized
network (overlay network). If the network has limited resources to accommodate
application demands in a best-effort manner, frameworks exist to manage the quality
of service on behalf of the application [12-14]. Next, we illustrate some approaches
from related network research areas that deal with these limitations.

Overlay networks enable developers to redesign and implement, amongst others,
addressing, routing and multicast services optimal to their application domain [15].
Overlay networks are widely used to support specific services, such as distributed
hash tables [16], anonymity [17], and message passing [18]. Overlay networks might

lead to sub-optimal utilization of network resources, because the mapping to the
physical network resources is not open to the application developer. Moreover,
overlay networks essentially duplicate functions offered by the physical network.
Recently, some efforts [19] propose to expose physical network properties to
applications to improve their mapping to the physical network. Assuming that
networks are properly dimensioned, at least from the user’s perspective, overlay
networks are a straightforward solution to support their specific network service
requirements.

Sensor networks illustrate best limitations in network resources. Sensor networks
motivate tight integration of applications and network services [20]. Because of the
resource constraints, sensor network designers attempt to use the scarce resources
efficiently and various approaches to program sensor networks have been developed
[21]. In macroprogramming [22], high-level programs use an intermediate language
to abstract away concurrency and communication aspects in sensor application
programming. A compiler translates the programs into basic instructions for
individual nodes, and takes communication characteristics into account. In TinyDB
[23], communication is integrated with a data query mechanism. Macroprogramming
and TinyDB show that with a framework that structures the design space of network
control applications, it becomes possible to design and implement reusable
components for new applications.

Our research in advanced applications of networks [24-30] shows that applications
have different optimal network services. Existing network management systems do
offer APIs to configure network services [31]. Such APIs implement the network
abstractions chosen by the network operator. We found that our use cases in hybrid
networks and sensor networks require more flexible and specific network services
than those designed and implemented by network operators. Because the application
domain offers developers more flexibility, it might be more practical to implement
network services as part of the application. Hence, we developed a model that enables
developers to program networks as part of their application [32]. The resulting
framework, User Programmable Virtualized Networks (UPVN), models the
interworking between networks and applications and provides a conceptual
framework to investigate design patterns of application-specific network services.
Here, we shortly introduce the model.

In UPVN (Figure 1), individual NEs are regarded as resources, which are used
directly or through the Internet (open lines) as components in application programs. A
NE component (NC) can be seen as a manifestation of the NE in the application, i.e. a
virtualized NE. Consequently, all virtualized NEs together create a virtualized
network, allowing interaction with user programs. To accommodate application
specific packet processing, to set particular parameters of the NE, and to facilitate
other functions NEs play in a UPVN, NEs have the ability to deploy Application
Components (ACs).

UPVN’s development is application driven; creating only those facilities that are
crucial for applications while other operations remain automated. The NE uses
technologies, such as Grid- and web services, to expose interfaces on the Internet.
Through the interfaces a NE exposes, various applications interact simultaneously

with the NE. As such, each application is capable to optimize the behavior of the NE
accordingly. During application development, the NE appears as a software object,
i.e. Network Component (NC), in the development environment. During run-time,
state of the art technology allows dynamic extension of the set of NEs the applications
interacts with.

The UPVN model leads to a practical framework in which network control is
implemented as part of application domain programs and in which network services
and optimizations are expressed in user-definable qualities. In the past, we developed
a prototype UPVN that showed that the approach is feasible [33]. In Section 4 and 5,
we present the design and implementation of a prototype that includes the control
concepts we propose. In the following section, the application framework for
programmable network control is introduced.

Fig. 1. Interworking model of applications and networks.

3 Application Framework for Network Control

Programmable network element technologies support dynamic network service
composition for applications that need new network functions, such as network
embedded trans coding of video streams. If changes occur in the network, however,
applications must adapt to the new situation. The adaptation process may be at the
end-points, such as in TCP flow control process but may also be in the network, such
as a process that changes the edge weights of a shortest path routing protocol [34].
The adaptation process typically consists of (1) inferring (possibly incomplete)
network information, (2) calculating network state (3) and adjusting the network to a
configuration that leads towards the desired optimum. A closed-loop control model, a
well-known model in control theory to influence the behavior of a dynamic system
[35], provides a minimal framework for network control (Figure 2).

In order to match the network to a state that is optimal to an application, the
application has to collect (possibly incomplete) network information. The application
developer chooses application specific abstractions (NCx) to update a model the
application uses internally. The application combines state information from all or a
subset of NEs to update the internal model. In principle, the internal model can also
include non-network related information, such as computing or hosting costs, sensor
information and service level agreements.

The control application applies an algorithm to find the actions (NCy) needed to
adjust the network behavior in such a way that it matches the application needs (e.g. a

network functions is more optimal.
Programmable networks allow other architectures

than the OSI layers. A basic approach to create a pro-
grammable network is to use commodity PCs as Net-
work Elements (NE). This way developers can use ex-
isting software and development tools to implement pro-
grams that manipulate packet streams and network links
[11, 12, 13]. In application development, developers use
a network interface to program and configure software
components that execute in NEs on behalf of the ap-
plication. From programmable networks we know that
there are basically three variants to implement the net-
work interface: (1) Remote Procedure Calls (RPC), (2)
message passing and (3) adding executable code to ap-
plication generated traffic. The architectures of the vari-
ous possible combinations of network interface and pro-
grammable NE technologies are well understood [14].

The User Programmable Virtualized Network
(UPVN) [15] is concept that enables networks to deliver
application specific services using NE components that
developers can program as part of a users application.
The UPVN concept provides an elementary network
model to describe and model interworking between
networks and applications. It provides the necessary
abstractions to address optimization in the network or
application domain. Here, we shortly introduce the
concept.

Application
NC

NE
AC

Application

NE NE

NC

AC AC

NC

Figure 1: Interworking of applications and networks in
User Programmable Virtualized Networks.

UPVN regards individual NEs as resources, which are
exploited directly or through the Internet (open lines) as
components in application programs. A NE component
(NC) can be seen as a manifestation of the NE in the
application, i.e. a virtualized NE. Consequently, all vir-
tualized NEs together create a virtualized network, al-
lowing interaction with user programs (Figure 1). To ac-
commodate application specific packet processing, to set
particular parameters of the NE, and to facilitate other
functions NEs play in a UPVN, NEs have the ability to
deploy Application Components (ACs).

UPVN’s development is application driven; creating
only those facilities that are crucial for applications. The
NE uses technologies, such as Grid- and web services, to
expose interfaces on the Internet. Through the interfaces

a NE exposes, various applications interact simultane-
ously with the NE. As such, each application is capable
to optimize the behavior of the NE accordingly. During
application development, the NE appears as an object
(NC) in the development environment. During run-time,
our model, as well as state of the art technology, allows
dynamic extension of the set of NEs the applications in-
teracts with.

We implemented several prototypes to validate the
plausibility of the UPVN concept and demonstrated the
first prototype to support high-performance packet pro-
cessing (figure 3) at the Dutch exhibition booth at Su-
per Computing 2008 in Austin, Texas [16]. We showed
experts, e.g. in the fields of mathematics, artificial in-
telligence or compiler technologies, how to apply their
domain knowledge and use existing software to solve
advanced network optimization and control issues. Our
experiences with the UPVN concept and its implemen-
tation led us to the notion of the control loop to describe
the adaptation of network services to application needs.

3 Fitting in the control loop
Applications implement some kind of optimization strat-
egy to manipulate virtualized NEs according to their
needs. An elementary optimization problem consists of
a utility function and a solution space. The goal is to
find the values from the solution space that minimizes
the utility function. An optimizer searches the solution
space to find these values. Typically, an optimizer (1)
collects values, (2) solves the utility function and (3) de-
termine the values that lead towards the optimum.

Utility functions are a common tool to determine the
required dimensioning of network capacity in network
design [17]. Here, the utility function abstracts appli-
cation needs into network properties, such as latency,
throughput and jitter, and a linear program describes
the desired network service. In practice, optimizers can
solve such linear programs with a set of assumptions
about routing for example. Generally, controllers use
a description of application needs (reference) and im-
plement optimization mechanisms to find optima with
regard to the reference.

Both the network domain or the application domain
can implement the controller. In case of the network do-
main, applications need to tell the network their needs.
While this is possible for simple network properties, e.g.
latency, the description of what is optimal to the appli-
cation quickly becomes larger with more complex re-
quirements. In case of the application domain, the appli-
cation need hooks to the network (NCs), so it can con-
trol the network services (ACs). As a consequence, the
application needs to potentially know everything of the
network to find the best network service. The major ad-
vantage of implementing the controller in the applica-

stable, optimized state), which are described by the reference. To implement changes
in the network, the control application translates decisions into instructions, such as
create, forward or drop packets specific to each NE involved in the application. This
means that the system needs to provide a distributed transaction monitor to keep
network manipulations that involve multiple NE consistent.

Fig. 2. The application framework to control networks contains a control loop.

In control theory, a measurement (AC Properties) from the system is subtracted
from a reference value, which leads to an error value as input for the control
application. In our framework, the measurements (AC Properties) that represent
network state may use different metrics compared to the controlled state (AC
Actions). For example, a controller may manipulate edge weights in shortest path
routing based on throughput information. Such a scenario is meaningful if the relation
between throughput and edge weights (δ) is known or can be learnt and would be
useful to dynamically distribute traffic to avoid congestion, for example [34].

Applications exchange information (NCx,y) with NEs over a communication
network, possibly over the same network the application is controlling (in-band).
Even though application developers may have access to a separate management
network, the communication path between network and application complicates the
design and validation of the controller. Network properties, such as latency and
packet loss, limit the amount of information that can be exchanged or synchronized.
So, NE state information can become incomplete, inaccurate or aged. The application
developer has to understand the limits in information exchange of a given network,
i.e. observability, when designing the control application.

This section introduced the abstractions needed to provide the basic framework for
network control in the application domain. Next, the details related to interworking of
applications and networks that lead to a functional model are described.

4 Functional Components

The OSI reference model organizes the interworking of applications and networks in
seven layers [36]. The design principle of layering allows decomposition of a
complex problem, but application specific details may be lost in the process. If
network elements are virtualized in software, the application interface to the software
(NCs) can be fine-tuned to the specific problem domain. However, the fine-tuning

tion domain is that developers can use existing software,
such as libraries or other applications developed by do-
main experts. The assumption is that applications know
what network service is required and that applications
can implement the mechanisms to find the optimum net-
work service. We focus on the latter approach with this
assumption in mind.

Model

Controller

AC
Actions

AC
Properties

Reference

NE

Application

NCx NCy

δ

Figure 2: A closed-loop control model between applica-
tion and network.

An application has to collect (incomplete) network in-
formation, calculate an optimum network configuration
and adjust the network to reach the optimal adaptation
of network service (Figure 2). The application devel-
oper chooses application specific abstractions, such as
interactive visualization for a human controller (figure 3)
or existing domain-specific software as controller (fig-
ure 4), to update an internal network model (NCx) and
to manipulate network state (NCy). The internal net-
work model is updated by combining state information
from all or a subset of NEs (NCx). In principle, the
internal network model can also take into account non-
network related information, such as computing or host-
ing costs, energy usage and service level agreements.

A controller applies an optimizer or other algorithm
to find the actions (NCy) needed to adjust the network
behavior in such a way that it matches the application
needs (e.g. a stable, optimized state), which are de-
scribed by the reference. While state information, such
as neighbors, throughput and latency, from a collection
of NEs combine into global network state, actions to im-
pact network state need to translate into actions, such
as create, forward or drop a packet, specific to each
NE involved in the application. This means that actions
that involve multiple NE benefit from using a distributed
transaction monitor to keep network manipulations con-
sistent.

In control theory, the sensor (AC Properties) subtracts
the measurement from the reference value, which leads
to an error value as input for the controller. In our model,
however, the measurements (AC properties) that de-
scribe network state do not have to match the controlled

state (AC Actions). For example, a controller may ma-
nipulate edge weights in shortest path routing based on
throughput information. Such a scenario is meaningful
if the relation between throughput and edge weights (δ)
is known or can be learnt. This example would be useful
for load balancing or routing traffic around undesirable
NEs.

4 Implications of the control loop
When discussing the implications of the control loop,
one should be aware that the complexity of the applica-
tion depends on the network environment. Depending
on the type of application, the AC properties and actions
are at the edges, e.g. do not control routers and switches,
in the data plane or in the control plane of the network.
The following classification of applications follows from
the location of application in the network environment:

Applications that integrate a network service im-
plement alternative addressing, routing or security,
which is optimal to the application. Such applications
have no control over the intermediate network, but form
an overlay of new network functions that map to the in-
terfaces of the underlay.

Applications that are the network service offer al-
ternative network interfaces to other applications, such
as MPLS or openflow [5, 18]. By implementing tech-
nologies in the network other applications have better
control over service levels. The network should support
traffic isolation and application management, i.e. oper-
ating system concepts, to support multiple applications.

Applications that manage a network service use the
hooks or configurable parameters of a network service to
optimize the workings of a network service. In existing
network management systems, the functions are exposed
to the network operator [19] in a centralized system. In
a centralized system, it is straightforward to create an
environment that enables applications to control network
services [20]. We look at the implementation of a typical
application.

4.1 Network model in the application
Any application that implements a controller operates
on a network model, which must be updated by NCx

events or polling. An AC property getNeighor is enough
to discover the network topology from a controller, for
example with a depth-first search. The information is
then translated into an application-specific data struc-
ture, such as a graph model in Mathematica [21]. With
access to throughput (resulting in thptNetwork figure 4)
router configuration, it is trivial to develop a controller
that load balances router traffic by manipulating their
edge weights. This approach shows that developers can
write advanced, yet straightforward controllers using ex-
isting software.

might lead to an application specific organization of network functions. Here, we
define the organization of functional components to support fine-tuning of the
application interface and organization of network functions. The functional
organization preserves the context of the NEs by creating and managing the software
representation of NEs in the application domain. For example, an application can use
the software representation of NEs to manipulate traffic of a single strategic point in
the network for filtering or anomaly detection purposes.

We identify three layers of abstraction in a distributed program: network element
execution environment, middleware/orchestration, and application code. The latter
can be subdivided in two sub layers, namely the programming environment providing
reusable components such as programming libraries, and the application program.
The result is a four-layer architecture (Figure 3). Clearly, the architecture resulting
from the application point of view is similar to programmable network architectures
[6]. However, the functional components between the application and programmable
network need to be further defined to support network control from the application
domain and is described next.

The orchestration layer (2) facilitates the interworking of software objects and ACs
located on individual NEs (1). The orchestration layer may also supports basic
mechanisms, such as discovery services, brokers, billing services, authorization, etc.
The usefulness of these services depends on the network environment and application.
In sensor networks, for example, there just may not be enough computational and
storage resources to support an elaborate set of services.

The programming environment, layer (3), provides the NC implementation and
reusable components, such as a Distributed Transaction Monitor (DTM) or breadth-
first search algorithm, to support programming of a collection of NCs. Depending on
the network environment, some abstractions can be implemented in the ACs, as a
library in the programming environment or both. For example, the application
developer might want to program network element interactions in a non-blocking
manner. Hence, either the programming environment or the orchestration layer must
facilitate non-blocking interaction mechanisms between ACs and NCs. In our
implementation (Section 3) we use message passing in the orchestration layer and
implemented (an easier to program) blocking interface to the application (Section 5).

Fig. 3. Four functional layers characterize practical application domain network control.

Application Application

Programming environment

Libraries
DTM NC NC

Network
model

Orchestration

Controller Visualization
Interactive
Network

Manipulation

Network Element Network Element
1

2

3

4

NC AC

Because network control is now part of the application domain (layer 4),
developers can benefit from a large amount of existing software to implement
network control programs. A characteristic of the control applications is that they
operate on data structures that represent the network state. Therefore, the
programming environment (3) explicitly contains a model of the network and the
orchestration layer must supply the data with which the model can be updated. In
Section 6, we discuss issues related to the accuracy of the network model.

Some applications support the construction of a network model that is close to
mathematical concepts, such as graphs. The Mathematica [37] environment, for
example, contains a graph data structure, which can be used as a basis for control
applications that require graph algorithms. By enabling dynamic updates of network
state into the Mathematica graph data structure, domain experts can simply apply
graph algorithms to find and remove (through network manipulation) articulation
vertices; vertices that may disconnect a graph. Besides control, the application layer
can also include visualization or other means of interaction with the network. The
integration with toolboxes, such as those available in Mathematica, makes the
application layer a powerful environment to develop network control applications.

5 Implementation and Test Bed

In the preceding sections, we introduced the framework for control applications as
well as a four-layered functional model to implement such applications. We
developed a test bed according to the presented functional model (Figure 3) to gain
practical insight in the implementation of the application framework to support
network control programs. The test bed implements the first three functional layers
and enables further exploration of the network control applications that are part of the
fourth layer.

5.1 Hardware

The test bed consists of eight machines (four dual processor AMD Opteron with
16GB RAM and dual port 10Gb NICs and four Sun Fire X4100 with 4GB RAM and
1Gb NICs) interconnected by two 1Gb switches and a Dell hybrid 1/10Gb switch. All
machines run VMWare [38] ESXi hypervisor software and the virtual hardware is
centrally managed and monitored with VMware vSphere management software. The
test bed was bootstrapped with one Linux instance containing the software we
developed, and iteratively grown to 20 instances to create a non-trivial configuration
of networks and computers (Figure 4).

The setup involves two datacenter locations: a virtual infrastructure running in our
datacenter in Groningen and an interactive programming environment including an
interface to a multi-touch table running in our lab in Amsterdam. The multi-touch
table enables users to interact with NCs (Section 6). The two locations are connected
by two OSI-Layer 2 Virtual Private Networks (VPN) on basis of OpenVPN [39]: one
for control traffic and one for data traffic. At the receiving host in Amsterdam, the

control and data networks are separated by VLANs.

5.2 Software

The primary purpose of developing a prototype is to gain insight in the challenges
and details to control a network from applications that require dynamic traffic
manipulation, and to enable experiments with various network control mechanisms.
The implementation combines several open source software tools into one NE
platform. We provide a global overview of the software that implements the
functional layers.

Packet Processing and Token Networking. Fine-grained packet processing and
manipulation facilities are implemented in Streamline [4], a tool originally developed
for high-speed packet filtering and similar to other approaches presented in literature
(Section 2). However, Streamline differs from other approaches by providing a simple
and flexible query language to manipulate filter graphs on the fly (Figure 5) and a
packet processing language FPL [40]. In addition, Streamline also allows dynamic
loading of kernel modules that provide specific packet manipulation functions.

We extended Streamline to support insertion, removal and filtering of tags in the
IPv4 options field, which allows us to bind ACs to network traffic. A Streamline
expression defines a chain of packet processing modules, which describes the network
behavior for a particular application on a NE. Filters, such as fpl_tbs allow packets
with specific tags to pass through a specific chain of packet processing modules. The
expression is calculated for each NE separately by the control software and a
distributed transaction monitor manages loading of each expression on the subsequent
nodes to provision a path, for example.
Orchestration Software. The orchestration of ACs in the programmable network is
implemented in Java. ACs available to applications, such as Streamline, are wrapped

Fig. 4. Test bed and network connectivity.

(netfilter_fetch_in) >(fpl_tbs,expression="TOKEN") \
 >(fpl_ipdest,expression="DST_IP") >(skb_transmit)

Fig. 5. A Streamline request in which packets are taken from the Linux Netfilter [41] hook,
then filtered by token and the IP destination overwritten.

R1 R1
ESXi

vSwitch
Data Internal

vSwitch
Control

vSwitch
Data

N1 N2 P1

pSwitch
Control

pSwitch
Data

R1 Display

Multi-touch Table

Internet Amsterdam Groningen

Bridge
Node OpenVPN Bridge

Node
pSwitch

Data/Control

by Java objects. Network elements communicate using a peer-to-peer model. ACs
register as a service on the network element. Each network element knows at least one
peer to which it can connect (the controller). Currently, all peers connect to a single
known controller, which provide basic message-passing functions over TCP sockets.
The controller also provides basic services that involve more than one NE, such as a
distributed transaction monitor or topology discovery. The basic services are
implemented as a set of ACs and can be used by network control applications.
Currently only a single instance of the controller is used. Creating more controllers
on-demand is a topic for future investigation. (Section 6).
Network Model. Our implementation provides various active and passive monitoring
ACs that enables network control applications to create and maintain a network
model:
Ping provides basic information about latency and jitter,
Network Mapper (NMap) [42] can detect nodes in the broadcast domain of an
interface with ARP, and
/proc/dev/net is used to retrieve basic throughput information from the Linux kernel,
Uptime collects CPU load information.
The controller contains a Dispatcher AC that allows other ACs to subscribe to events,
such as NEs registering to or detaching from the network and is the entry point for
peers that connect to the control network. The Dispatcher AC subscribes to all known
network elements and triggers network discovery requests when a new NE registers,
consequently updating its network model to the new network state.
AC Management. Management functions, such as starting, stopping and
manipulating AC of the programmable network implementation, are implemented in

the Ruby [43] programming language. This allows new network behavior to be added
at runtime, e.g. Java classes, kernel modules or installation of complete applications.

Fig. 6. A multi-touch table enables direct manipulation of programmable network components
of 20 virtual machines. A user (a) modifies a sampler component of a streamline graph that
multicasts a video to screen (b) and (c). As a result, the stream of (b) is distorted, while the
other remains normal.

A

C B

For example, a ruby script with instructions to compile new code for Streamline and
insert it into the kernel can be remotely executed on NEs.

6 Network Control Programs

We showed a practical implementation of the model in Section 4, which enables a
straightforward prototyping of network control programs. To test the setup an
interface to view and modify the state of NCs was built. It allows manipulation of
video streams produced by several nodes, which can be displayed on computers with
a screen attached. By manipulating the NCs, a user can interact with the
programmable network: create and modify paths and modify NE parameters, such as
the packet processing chains of Streamline. We successfully demonstrated the setup at
Super Computing 2008 in Austin, TX [44] (Figure 6).

We developed an interactive programming environment with Mathematica, which
enabled automation of the possible user manipulations in the setup. Combining
Mathematica with programmable networks allows advanced, yet straightforward
implementation of network control applications. We implemented a Java adapter
between Mathematica and the Management Agent (orchestration layer). The Java
adapter deals with limitations of Mathematica’s, such as real-time polling of the
network, while being responsive to user input at the same time.

The Java adapter enables the Monitor AC to trigger the continuous updates of a
number of data structures in the Mathematica kernel, such as theNetwork or

Fig. 7. Mathematica’s function Dynamic[] facilitates continuous reevaluation of network state.
The statement redraws the graph every time theNetwork data structure is updated with
information of the network (a). Picture (b) and (c) show two stages of topology discovery.

B C

A

thptNetwork, and facilitates the development of control applications in Mathematica.
An elementary control application is one that visualizes the network state while the
data structures are updated (Figure 7). For example, the current IP network topology
can be displayed while the discovery of the network is in progress; fully discovered in
(a) and two intermediate steps (b) and (c). Another visualization example maps
throughput measurements on a 3D contour plot (Figure 8). We also implemented
various control applications using the test bed. For example, two control applications
avoiding congestion were implemented by switching paths and by dropping packets
on basis of throughput measurements. Another control application was to developed
to continuously find and provision disjoint shortest paths [26]. Based on the
experiments, we identify new research questions.

Application developers have to consider the accuracy of the network model. For
network properties as throughput and delay some range of error can be tolerated.
However, applications that require exact shortest paths require accurate topology
information. The accuracy of the network model is influenced by the rate at which
state information is (1) generated, (2) transported and (3) processed. At least (2) and
(3) have architectural consequences for the control loop. One possible architectural
consequence is to divide the network in multiple separately controlled domains,
similar to areas in OSPF. In one extreme, dividing up the network into smaller
individual control domains eventually leads to a fully decentralized architecture, i.e.
peer to peer networks. In the other extreme, if network state can be generated,
transported to and processed fast enough by one controller, then for practical purposes
a centralized implementation might be preferred.

Application developers have to make a trade-off between state exchange and the
processing capabilities of network elements. For example, an application that finds
and removes articulation vertices can run as (1) a centralized component or, in the

Fig. 8. Network throughput of the test bed visualized in Mathematica. The vertex weights in the
thptNetwork data structure are updated with throughput values from the programmable
network. The network topology is mapped to the x-y plane and throughput to the z-axis (in
bytes per second). This way, a user can detect busy spots network and write algorithms to avoid
such spots.

other extreme, (2) can run on each NE under its control. Because the computation of
articulation vertices requires full topology knowledge, running the application on each
NE (2) requires additional mechanisms to update and synchronizes changes in
topology. Between centralized and decentralized implementations of control loops
many architectural variants exist. Likewise, an enormous variety of control algorithms
can be expected. On these points applications programmers would benefit from
research [45] on design patterns of control loops.

7 Conclusion and Future Work

Until now, engineers optimize networks at design time and independent of application
engineers. Examples from sensor networks, hybrid networks and overlay networks
show a need to control networks at run-time. Past efforts created the programmable
network element technologies to support dynamic network service composition. In
this paper, we use these technologies in a framework for network service development
in which each programmable network element has a software representation in a
possibly distributed application. We presented an implementation of the framework
and several network control applications.

Our implementations are limited to a single application that controls the network.
In case many applications want control over the network, another control application
is needed to manage (conflicting) resource demands, i.e. an operating system for
networks. In the future, however, it can be expected that network management
systems support mechanisms to host and run applications on the network. Recent
research also continues in this direction (Section 2). More experience is needed to
create reusable software components that enable and simplify control application
development for large networks.

Control loops are a fundamental part of applications that optimize a specific
network service as a response to changes in or outside the network. In subsequent
research we shall determine the operational properties of a control application (e.g.
how accurate is a given network state, what is the delay between network events and
the application’s ability to react, how fast can failures be detected). We have shown
that architectural consequences can be expected when changes in the network occur
faster than a single control loop can effectuate new adjustments, e.g. in large or
unstable networks. In this case, the application framework needs to support
decentralized network control. Hence, to extend the application framework to support
multi-domain, multi-scale network control is a topic for further research.

Acknowledgments

We thank Wolfgang Mühlbauer, Burkhard Stiller and Bernhard Plattner for their
comments and support.

References

1. Culler, D., Estrin, D., Srivastava, M.: Guest Editors' Introduction: Overview of Sensor
Networks. IEEE Computer 37 (2004) 41-49

2. Ng, T.S.E., Yan, H.: Towards a framework for network control composition. Proceedings of
the 2006 SIGCOMM workshop on Internet network management. ACM, Pisa, Italy (2006)

3. Elischer, J., Cobbs, A.: FreeBSD Netgraph pluggable network stack
http://www.freebsd.org/, accessed at 10 August 2009

4. Bos, H., Bruijn, W.d., Cristea, M., Nguyen, T., Portokalidis, G.: FFPF: Fairly Fast Packet
Filters. OSDI (2004)

5. Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The Click modular router. SIGOPS
Oper. Syst. Rev. 33 (1999) 217-231

6. Campbell, A.T., Meer, H.G.D., Kounavis, M.E., Miki, K., Vicente, J.B., Villela, D.: A
survey of programmable networks. SIGCOMM Comput. Commun. Rev. 29 (1999) 7-23

7. Tennenhouse, D.L., Wetherall, D.J.: Towards an active network architecture. SIGCOMM
Comput. Commun. Rev. 37 (2007) 81-94

8. Wang, W.M., Dong, L.G., Bin, Z.G.: Analysis and implementation of an open
programmable router based on forwarding and control element separation. Journal of
Computer Science and Technology 23 (2008) 769-779

9. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev. 38 (2008) 69-74

10. Casado, M., Freedman, M.J., Pettit, J., Luo, J., Gude, N., McKeown, N., Shenker, S.:
Rethinking Enterprise Network Control. Networking, IEEE/ACM Transactions on 17 (2009)
1270-1283

11. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.: NOX:
towards an operating system for networks. SIGCOMM Comput. Commun. Rev. 38 (2008)

12. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture: an
Overview. RFC1633 (1994)

13. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for
Differentiated Services. RFC2475 (1998)

14. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architecture.
RFC3031 (2001)

15. Lua, K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-
peer overlay network schemes. Communications Surveys & Tutorials, IEEE (2005) 72-93

16. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communications.
ACM, San Diego, California, United States (2001)

17. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router.
13th USENIX Security Symposium (2004) 303-320

18. Open MPI: Open Source High Performance Computing http://www.open-mpi.org/, accessed
at 11 August 2009

19. Xie, H., Yang, Y.R., Krishnamurthy, A., Liu, Y.G., Silberschatz, A.: P4p: provider portal
for applications. SIGCOMM Comput. Commun. Rev. 38 (2008) ACM--362

20. Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless
Communications 11 (2004) 54-61

21. Royer, E.M., Chai-Keong, T.: A review of current routing protocols for ad hoc mobile
wireless networks. Personal Communications, IEEE 6 (1999) 46-55

22. Newton, R., Arvind, R., Welsh, M.: Building up to macroprogramming: an intermediate
language for sensor networks. Proceedings of the 4th international symposium on
Information processing in sensor networks. IEEE Press, Los Angeles, California (2005)

23. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 30 (2005) 122-173

24. Meijer, R.J., Koelewijn, A.R.: The Development of an Early Warning System for Dike
Failures. 1st International Conference and Exhibition on WATERSIDE SECURITY,
Copenhagen, Denmark (2008)

25. Cristea, M., Strijkers, R.J., Marchal, D., Gommans, L., Laat, C.d., Meijer, R.J.: Supporting
Communities in Programmable Networks: gTBN. IFIP Integrated Management 2009, New
York (2009)

26. Strijkers, R.J., Meijer, R.J.: Integrating networks with Mathematica. 9th International
Mathematica Symposium 2008, Maastricht (2008)

27. Cook, G.: ICT and E-Science as an Innovation Platform in The Netherlands. Cook Report
on Internet Protocol. Cook Network Consultants (2009)

28. Portegies ��������� Zwart, S., Ishiyama, T., Groen, D., Nitadori, K., Makino, J., Laat, C.d., McMillan,
S., Hiraki, K., Harfst, S., Grosso, P.: Simulating the universe on an intercontinental grid of
supercomputers. Submitted to IEEE Computer (2009)

29. Kruithof, N., Marchal, D.: Real-time Software Correlation. INGRID Workshop (2008)
30. Strijkers, R., Cristea, M., Khorkov, V., Marchal, D., Belloum, A., Laat, C.d., Meijer, R.:

Network Resource Control for Grid Workflow Management Systems. SWF2010. IEEE,
Miami, Florida (2010)

31. Haggerty, P., Seetharaman, K.: The benefits of CORBA-based network management.
Commun. ACM 41 (1998) 73-79

32. Meijer, R.J., Strijkers, R.J., Gommans, L., de Laat, C.: User Programmable Virtualized
Networks. Proceedings of IEEE International Conference on e-Science and Grid Computing.
IEEE Computer Society (2006)

33. Strijkers, R.J.: The Network is in the Computer. Master Thesis. Informatics Institute,
University of Amsterdam, Amsterdam (2009)

34. Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP routing protocols.
Communications Magazine, IEEE 40 (2002) 118-124

35. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Computing
Systems. John Wiley & Sons (2004)

36. Zimmermann, H.: OSI Reference Model--The ISO Model of Architecture for Open Systems
Interconnection. Communications, IEEE Transactions on 28 (1980) 425-432

37. Wolfram Mathematica http://www.wolfram.com/mathematica/, accessed at 2 August 2007
38. VMWare http://www.vmware.com, accessed at 2 August 2007
39. OpenVPN http://www.openvpn.net/, accessed at 14 August 2009
40. Cristea, M., de Bruijn, W., Bos, H.: FPL-3: towards language support for distributed packet

processing. Proceedings of IFIP Networking '05 (2005)
41. Linux Netfilter http://www.netfilter.org, accessed at 17 August 2009
42. Network Mapper http://nmap.org, accessed at 7 April 2008
43. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby. Pragmatic Bookshelf (2004)
44. Strijkers, R., Muller, L., Cristea, M., Belleman, R., Laat, C.d., Sloot, P., Meijer, R.:

Interactive Control over a Programmable Computer Network using a Multi-touch Surface.
ICCS 2009. LNCS, Baton Rouge, Louisiana (2009)

45. Feitelson, D.G.: Distributed Hierarchical Control for Parallel Processing. Computer 23
(1990) 65-77

