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Abstract

With the ever increasing costs of manual content creation for virtual worlds, the potential of creating it automatically becomes too
attractive to ignore. However, for most designers, traditional procedural content generation methods are complex and unintuitive to
use, hard to control, and generated results are not easily integrated into a complete and consistent virtual world.

We introduce a novel declarative modeling approach that enables designers to concentrate on stating what they want to create
instead of on describing how they should model it. It aims at reducing the complexity of virtual world modeling by combining the
strengths of semantics-based modeling with manual and procedural approaches. This article describes two of its main contributions
to procedural modeling of virtual worlds: interactive procedural sketching and virtual world consistency maintenance. We discuss
how these techniques, integrated in our modeling framework SketchaWorld, build up to enable designers to create a complete 3D
virtual world in minutes. Procedural sketching provides a fast and more intuitive way to model virtual worlds, by letting designers
interactively sketch their virtual world using high-level terrain features, which are then procedurally expanded using a variety of
integrated procedural methods. Consistency maintenance guarantees that the semantics of all terrain features is preserved throughout
the modeling process. In particular, it automatically solves conflicts possibly emerging from interactions between terrain features.

We believe that these contributions together represent a significant step towards providing more user control and flexibility in
procedural modeling of virtual worlds. It can therefore be expected that by further reducing its complexity, virtual world modeling
will become accessible to an increasingly broad group of users.
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1. Introduction

3D virtual worlds have grown tremendously in size, detail
and visual realism, their use being widespread far beyond enter-
tainment games: they are found in games for training, movies,
simulations, visualizations, online social spaces, etc. The down-
side of this, however, is that an ever increasing amount of content
has to be created to fill up these worlds.

Current modeling systems offer designers total control, re-
quiring the virtual world, with all its objects, to be modeled
entirely by hand, on a low level of abstraction. With skill and
dedication, designers can literally create any world exactly the
way they want it, modeling every single aspect in detail. Even-
tually, the workload and repetitiveness of creating large worlds
this way will become unbearable.

Virtual world models in manual modeling systems are also
quite rigid: once completely constructed, they are hard to modify,
e.g. major changes in the landscape may result in the designer
effectively having to start from scratch. Furthermore, because
manual modeling systems are complex and require extensive 3D
modeling experience, the diversity of their user group is limited,
typically excluding e.g. gaming enthusiasts creating new levels,
and training instructors designing a tailored curriculum.

1.1. Procedural modeling

There is an urgent need for new modeling alternatives with
both higher productivity and reduced complexity. Automatic pro-
cedural modeling seems an attractive alternative that promises
such a productivity gain and a seemingly endless variation in
content. It has been an active research topic for over thirty
years, resulting in high-quality procedures for specific terrain
features, such as landscapes [1, 2], rivers [3, 4, 5], plant models
[6] and vegetation distribution [7], road networks [8], urban
environments [9], and building facades [10, 11, 12].

However, as concluded in our recent survey [13], traditional
procedural methods are not directly a suitable alternative to man-
ual modeling. They typically lack any user control other than a
set of, often unintuitive, input parameters, which not always have
a clear, predictable effect on the output, the generated content.
To some extent, using traditional procedural methods in a model-
ing system comes down to trial and error. In addition, because
the runtime of these algorithms often is far from interactive, this
process becomes even more cumbersome. Furthermore, each
procedure generates one specific type of content. Fitting all this
content together into a consistent virtual world involves a large
amount of manual effort. These causes explain why procedural
modeling is hardly used so far in mainstream content design. A
hybrid solution combining the strengths of procedural methods
with manual control would be ideal.
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1.2. Extending traditional procedural methods

In recent years, the research direction in procedural model-
ing is shifting to user controllable and interactive procedures,
thereby successfully addressing some of the downsides of tradi-
tional methods. Here we survey some noteworthy examples.

The lack of user control in procedural generation of elevation
maps was the first issue addressed by several researchers. Their
methods vary in interactivity and level of control, from coarse
to fine-grained. Some of the proposed extensions provide a way
to constrain the generation process in a non-interactive manner
by new forms of user input. Stachniak and Stuerzlinger [14]
propose a method that integrates constraints expressed as mask
images. It employs a search algorithm that finds an acceptable
set of deformation operations to apply to a random terrain in
order to obtain a terrain that conforms to these constraints. Zhou
et al. [15] describe a technique that generates terrain based on an
example input height-map and a user line drawing that defines
the occurrence of large-scale curved line features, such as moun-
tain ridges. Features are extracted from the example height-map,
matched to these curves and seamed in the resulting height-map.
Saunders [16] proposes a method that synthesizes a height-map
based on Digital Elevation Models (dem) of real-world terrain.
A user draws a 2D map of polygonal regions, each of which
is marked to have a certain elevation profile. A height-map is
instantiated using a genetic algorithm, which selects dem data
that matches the requested elevation profile. Kamal and Uddin
[17] present a constrained mid-point displacement algorithm
that creates a single mountain according to such properties as
elevation and base spread. Belhadj [18] introduces a more gen-
eral method where a set of known elevation values constrain
the mid-point displacement process. Doran and Parberry [19]
propose a different constraint-based approach using agents, each
creating a specific landform (e.g. coastline, beach, mountain).

With the evolution of the gpu as a device for general purpose
parallel processing, interactive user control in elevation map
generation has become feasible. Schneider et al. [20] introduce
a setup in which the user interactively edits the terrain by paint-
ing grayscale images, which are used as the base functions of
their noise generator. Using an efficient gpu-based hydraulic ero-
sion algorithm, Stava et al. [21] propose an interactive way for
users to modify terrain using several types of hydraulic erosion.
To provide users with more control over the exact appearance
of mountain ranges, Gain et al. [22] introduce a sketch-based
height-map generation method in which users sketch the sil-
houette and bounds of a mountain in a 3D interface, and the
generator creates a matching mountain using noise propagation.
Even more fine-grained control over the shape of mountains
is provided by the interactive procedural brushing system in-
troduced by de Carpentier and Bidarra [23]. These gpu-based
procedural brushes allow users to interactively sculpt a terrain
in 3D using several types of noise.

Extensions of traditional procedural methods are also pro-
posed for other terrain features, for instance for interactively
defining road networks used in city models. Chen et al. [24]
propose interactive modeling of road networks using tensor
fields that can create common road patterns (grid, radial, along

a boundary) and blend these in a plausible way. McCrae and
Singh [25] present a method for converting strokes to 3D roads
that are automatically fit in the terrain. Their system also creates
junctions and viaducts for crossing roads. An A* based road
generation method proposed by Galin et al. [26] uses a elabo-
rate cost function to encode the influence of terrain slope, water
bodies and vegetation on the trajectory of the road.

As districts, blocks and parcels are defined by the city’s
road network, Kelly and McCabe [27] propose an interactive
method to generate secondary roads and house blocks based on
the primary roads the user manipulates. A similar system by
de Villiers and Naicker [28] lets users create a road network
and city blocks using sketch strokes, and interprets a set of
sketch gestures that modify the properties of the city blocks
(e.g. population size, function). Weber et al [29] present an
interactive simulation system for cities growing over time, by
expanding streets in the city’s road network. A dynamic system
that connects geometrical with behavioral modeling is proposed
by Vanegas et al. [30]. Here, users paint behavioral variables like
employment density, which automatically leads to changes in the
population distribution and, thereby, the city geometry. Shape
grammars are often employed for automatic creation of building
facades (see e.g. [11]). However, defining a suitable shape
grammar is complex and requires much experience. Addressing
this, Lipp et al. [31] propose a shape grammar editing system,
in which the effects of new rules are interactively visualized.

Although these extensions have clearly contributed to proce-
dural modeling research, their downside is that they are primarily
designed to generate one specific aspect of virtual worlds. Sel-
dom has attention been given to the integration of separately
generated terrain features into a complete virtual world. Early
work by Amburn et al. [32] already formulated the problem of
fitting roads with terrain: on a coarse level, the road follows the
elevation profile of the terrain and on a fine level, the terrain
must be modified to match locally with the road embankment
profile. This specific integration problem was recently addressed
by Bruneton and Neyret [33], who propose a shader-based sys-
tem for real-time integration of Geographic Information Systems
(gis) vector features, such as road and rivers, into a dem. They
create a road profile texture based on footprint geometry, and
integrate the profile by blending this texture with a height-map
texture. The discussed work by Galin et al. [26] extents this
by also removing any vegetation along the road. Although this
research successfully addresses an important integration issue,
managing the consistency of all terrain features as well as their
relationships and dependencies remains an open problem.

A more generic approach to the problem of integrating ter-
rain features and maintaining their relationships is to enrich their
description with additional semantic information. Semantics-
based modeling has been successfully applied to several fields,
as surveyed in [34], including cad/cam [35], smart object be-
havior [36], and automatic layouts of interior scenes [37, 38].
However, the role of semantics in procedural modeling has, until
now, been limited, which hinders the systematic integration of
all the different procedural methods.

Commercial procedural modeling tools typically also focus
on generating one specific feature, such as height-maps (e.g.
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Figure 1: An overview of the workflow of the declarative modeling approach: using procedural sketching (Section 2), designers interactively create the virtual world,
of which each feature is automatically generated, integrated and maintained within the virtual world model (Section 3). From this semantic model of the virtual world,
other representations are derived, such as a 3D geometric model.

L3DT [39], and many others), vegetation (e.g. XFrog [40]) or
city models (e.g. CityEngine [41]). A noteworthy exception
is CityScape [42], which allows for a hybrid of manual and
procedural modeling, although it provides a somewhat limited
and narrowly focused set of procedural operations.

1.3. Declarative modeling of virtual worlds
As stated above, procedural modeling research is no longer

solely focused on the generation of individual models of high
quality. Researchers realize that more intuitive input, improved
user control, and automatic integration of results are instrumental
to the acceptance of procedural methods in mainstream virtual
world development. However, to date, no research method or
commercial tool provides such an integrated and flexible solution
that allows designers to procedurally model a complete virtual
world that matches their intent.

Our declarative modeling approach aims at contributing to
these open issues, by combining the strengths of manual and
procedural modeling, and providing a more productive and less
complex workflow to model virtual worlds. Basically, this ap-
proach lets designers concentrate on what they want to create
instead of on how they should model it. Designers state their
intent using simple, high-level constructs. The declarative ap-
proach builds upon established research results on parameterized
procedural generation, constraint solving and semantic model-
ing, in order to automatically translate these statements into a
matching 3D virtual world. The consistency of this world is
automatically maintained using a semantically rich model of
all its features and their relations, analogous to the automatic
maintenance of interior scenes based on object semantics [37].

This article discusses the two main contributions of our
declarative modeling approach:

1. an intuitive and accessible user interaction method called
procedural sketching (Figure 1 left hand);

2. automatic virtual world consistency maintenance through
generic methods for resolving interactions between terrain
features and the landscape (Figure 1 middle).

We are developing a prototype modeling framework, called
SketchaWorld, that demonstrates the feasibility of this declara-
tive approach (see Figure 1). Its goals are:

1. to increase designers’ productivity, while still allowing
them to work in an iterative manner and exercise control
over the generated results;

2. to provide an intuitive way for people without special
modeling expertise to create virtual worlds that meet their
requirements;

3. to facilitate the application of results from research in
procedural methods in an integrated modeling approach.

The remainder of this article is structured as follows. Sec-
tion 2 presents interactive procedural sketching. Automatic
virtual world consistency maintenance is explained in Section
3. The implementation and results of the prototype framework
are shown in Section 4, including an example modeling session.
Section 5 discusses the advantages and current limitations of our
approach. Section 6 summarizes ongoing and future work.

2. Interactive procedural sketching

User input and control is provided by procedural sketching
(Figure 1 left hand). With easy to use editing tools, designers
create a 2D digital sketch: a rough layout map of the virtual
world. Procedural sketching provides two interaction modes:

Landscape mode Designers paint a top view of the landscape
by coloring a grid with ecotopes (an area of homogeneous
terrain and features). These ecotopes encompass both
elevation information (elevation ranges, terrain roughness)
and soil material information (sand, grass, rock, etc.). The
grid size is adjustable and the brushes used are similar to
typical brushes found in image editing software, including
draw, fill, lasso, magic wand and transition pattern brushes
(e.g. from ocean to shore).
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Figure 2: User interface for procedural sketching (feature mode), also showing
editing tools (left hand) and navigation, layers, and edit history (right hand).

Feature mode Designers specify features like forests, lakes,
rivers, roads, and cities on the landscape using vector
lines and polygon tools. This resembles vector drawing
software: placing and modifying lines and polygons is
done by manipulating control points.

Each sketched element is procedurally expanded to a corre-
sponding terrain feature (procedural generation box in Figure
1). To directly see the effect of an edit action on the virtual
world model (e.g. drawing ecotopes, rerouting the path or modi-
fying the shape of a feature, removing a feature), users sketch
on a 2D top view of the generated virtual world. This view
updates immediately as new results are generated. Depending
on the interaction mode, an overlay is displayed representing
relevant elements of the user sketch. Figure 2 shows the user
interface for procedural sketching in feature mode. By keeping
the user interface and interaction modes simple and clear, pro-
cedural sketching is more accessible for people without special
modeling expertise; see also [43].

A short feedback loop between a designer’s edit action and
the visualization of the generated results is essential to allow
designers to model virtual worlds iteratively. This requires each
edit action to be executed separately and the results of an action
to be displayed immediately. Such an interactive setup allows
designers to quickly see the effect of their edit operations and
work towards the desired end result.

Several challenges have to be overcome in order to provide
designers with this interactive and iterative workflow. The so-
lutions for this are detailed in [44]. Although improvements
in hardware and new approaches such as gpu computing sig-
nificantly alleviate the execution time of procedural methods,
operations affecting large regions or requiring complex algo-
rithms (e.g. city generation) may still execute at non-interactive
rates. Therefore an asynchronous setup was implemented, ex-
plained in Figure 3. It separates the user interaction and the
actual execution of edit actions. This allows designers to con-
tinuously work on the virtual world without being hindered by
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Figure 3: Diagram showing the execution flow of interactive procedural sketch-
ing. In this situation, a designer has just edited (1) the landscape or a certain
terrain feature. For this, the user interface thread creates an edit action (2) with
id number 3 and appends it to the history (3). Furthermore, a copy of the action
is enqueued (4) in the process queue. Simultaneously, the execution thread polls
the queue (5) and obtains action 1, which is executed (6), modifying the virtual
world. These modifications trigger events indicating changes (7, 8) that are
received by the user interface thread, which updates the 2D view (9) and the 3D
view thread, which modifies (10) and renders the 3D scenegraph.

long procedural operations.
The ability to undo and redo any modeling action is one of

the main requirements for an iterative modeling workflow. For
this, the familiar edit history is provided. Because of memory
constraints inherent to modeling large virtual worlds, it is far
more efficient to implement undo and redo by (partial) regen-
eration, instead of storing all intermediate modeling states. At
the expense of some additional computation time, designers are
provided with unlimited undo and redo facilities. Furthermore,
because designers expect regenerated results to be exactly the
same as before when redoing an action, we need to carefully
manage the state of the random number generator used in proce-
dural methods, as explained in [44].

3. Virtual world consistency maintenance

Using procedural sketching, designers declare the properties
of the landscape and specify its terrain features. In the declara-
tive approach introduced in Section 1.3, these features are not
only generated according to the user specifications, but they are
also properly integrated in order to form a consistent and lifelike
virtual world. Each terrain feature introduced in a virtual world
affects in some way the existing landscape and nearby features,
and vice versa, e.g. the feature fits itself to local constraints, it
affects the structure of a nearby feature, it modifies the elevation
profile, or it forms some sort of connection with a compatible
feature. One can imagine the amount of tedious manual model-
ing work if the responsibility of solving these interactions and
keeping the virtual world consistent would be left to the designer.
Because the semantics of terrain features and their relations are
encapsulated in the layered virtual world model, we are able
to maintain the consistency in an automated manner. This sec-
tion summarizes the generic resolution methods with which the
consistency of the virtual world model is maintained.
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3.1. Virtual world semantic model

The virtual world’s semantic model is a layered data struc-
ture (Figure 1 middle). All terrain features are grouped in logical
layers of the virtual world model, which are inspired from Ge-
ographic Information Systems. This ordering has been chosen
because of the semantic similarity and relations of the terrain
features within each layer. We distinguish five specific layers,
stacked as follows:

1. Urban layer: e.g. cities, districts, parcels, buildings
2. Road layer: e.g. highways, local roads and streets, bridges
3. Vegetation layer: e.g. natural forests, planted vegetation
4. Water layer: e.g. rivers, canals, lakes, oceans
5. Landscape layer: elevation profile and soil material

Each terrain feature is defined at several levels of abstraction,
giving structure to its layout (e.g. city topology) and its objects
(e.g. buildings). Procedural generation of each terrain feature
can therefore be described as a top down process, starting from
a coarse user specification, and refining this specification from
abstract structures to concrete objects in several refinement steps,
resulting in the complete feature representation. Moreover, the
objects integrating a terrain feature do not only have a geometric
description (e.g. polygon, spline, 3D shape), but also a seman-
tic description, which includes their relevant attributes, as well
as the logical connections and geometric and functional con-
straints involving them [37]. The number of levels of abstraction
varies according to the complexity of the feature. At least, the
following three levels can be discerned per feature type:

1. Specification level: user-sketched coarse outline and input
parameters (e.g. a forest specification);

2. Structural level: the layout of the feature and the area it
encompasses (e.g. the contour of the forest);

3. Object level: all individual semantic objects making up
the feature that will result in concrete, geometric objects
(e.g. the set of individual trees).

On the structural level, features only have a semantic repre-
sentation; this structure helps to layout their individual objects,
and to preserve their logical and functional structure (e.g. which
districts make up a city center). At the object level, further
structuring is provided by connections (e.g. street connectivity)
and constraints (e.g. minimum distance between certain objects)
between semantic objects.

3.2. Consistency maintenance basic notions

We first introduce several preliminary concepts and notions
before discussing the actual resolution methods. In each re-
finement step in a terrain feature’s generation process, we can
discern two phases (shown in Figure 1 middle):

1. Starting from the specification level, the next level of
abstraction of the feature is procedurally generated;

2. This level of the feature is fit with its surroundings.

The generation procedure is steered by the provided speci-
fication and influenced by relevant nearby terrain features. In
order to fit with its surroundings and place its objects, a feature
often requires a certain area of the landscape to be clear of any
other features. Moreover, the local elevation profile might be
unsuitable for a feature to attach its objects; therefore, it might
require the landscape to adhere to a profile constraint (e.g. re-
garding slope, regularity or flatness). For these requirements,
features are provided with two types of requests:

Claim A feature can make a claim for an area of terrain in order
to use it exclusively. A claim is a request by feature fx

to reserve an area of terrain a (defined as a complex 2D
polygon) for exclusive use at the given level of abstraction
l. A claim can be either granted or rejected. A feature
can claim an area of terrain on either the structural or
the object level of abstraction. This allows a feature to
disregard irrelevant, small objects when laying out its
structure, and to consider only concrete, existing objects
when placing its integrating objects.

Modification A feature can request a local modification of the
landscape (elevation profile or soil material) in order to
properly fit with its requirements (see Section 3.3).

A feature interaction is said to occur when two claims are
made for the same area of terrain. More precisely, a feature
interaction is an overlap area a between the area claimed by
feature fx and the area already granted to another feature fy,
due to a claim at the same level of abstraction l. Because area
ownership is by definition exclusive, feature interactions always
have to be solved; we do this in one of two possible ways:

1. An interaction is solved in a cooperative way when it is
possible to introduce a connecting structure. A connection
formed at a level of abstraction l links the feature flose,
for which the claim is rejected, to feature fwin over the
disputed area a. The claim of fwin on this area a is or
remains granted. Connections made on the structural level
are abstract (e.g. a highway is linked to a city), and results
in concrete connection objects (e.g. a road junction object),
once made on the object level. Examples of connection
objects include bridges, tunnels, road junctions, estuaries,
etc. Of course, connections cannot be defined for every
possible pair of feature types, as there might not be a
sensible real world equivalent (e.g. between a lake and
a forest). Furthermore, for some pairs of terrain feature
types, several alternative connection types may be defined.

2. An interaction is solved in a conflictive way when one
of the features, fwin, prevails and the other, flose, can no
longer make any use of the disputed area a. If the conflict
occurs at the structural level of abstraction, this entails
that the feature layout of flose cannot include this area a
and as such has to be restructured. At the object level, this
means that the objects of flose cannot be placed within this
particular area.

The decision mechanism for resolving interactions is steered
by priorities. A priority is a ranking score or weight of a feature
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Algorithm 1 Landscape interaction resolution method

// solve all interactions between landscape and terrain features
// a - area of the landscape that is changed
SolveLandscapeInteractions(area a):

// find all affected terrain features
F = { f | f ∈ f eatures, a ∩ f .area , ∅}
sort F according to highest priorityclaim( f , levelstructural)
// let each affected feature handle the landscape interaction
for all feature f in F do

f .restructure(a, levelstructural)
end for

at the structural or object level. Priorities are divided in three
categories:

• priorityclaim(feature fx, level l) is the priority of feature fx

for claiming an area of terrain at the level of abstraction l;

• priorityconnect(feature fx, feature fy, area a, level l) is the
priority of feature fx for forming a connection with feature
fy at area a and at abstraction level l;

• prioritycon f lict(feature flose, area a, level l) indicates the
threshold at which feature flose rejects any connection.

For each feature type and for each level, a single user-defined
value serves as the default priority value for every feature in-
stance. However, for priorityconnect and prioritycon f lict, features
can define context-dependent functions that compute the actual
priority value, for instance a cost function for road connections.
Furthermore, each specific feature instance may override any of
the priority values of its type.

3.3. Landscape interaction
Before discussing how multiple features interact with each

other, we analyze the basic interaction between the landscape
and a single terrain feature. The landscape plays a special role in
our virtual world model in the sense that it forms its omni-present
basis on which all other terrain features attach. Therefore, the
landscape does not compete with terrain features in the form of
claims, and no priorities need to be defined for the landscape. A
local change to the landscape affects all terrain features in that
area, each to an extent that is defined by its particular semantics.
This notion is captured in the landscape interaction resolution
method, summarized in Algorithm 1.

As follows from this algorithm, the outcome of the land-
scape interacting with any feature f present in area a is always
that f needs to adapt its structure. However, features decide to
what extent to restructure, if at all, which typically depends on
the scope of the changes to the landscape. Drastic changes in
the elevation profile will probably cause features like roads or
cities to strongly revise their structure, whereas changes in soil
material will probably affect vegetation the most. Depending
on the feature’s procedure implementation, restructuring could
entail that part of the former structure and objects of the fea-
ture are removed from the respective terrain layer(s), and that
corresponding area claims are abandoned, thus allowing other

Algorithm 2 Feature interaction resolution method

// solve all interactions between a feature and existing features
// fx - feature which has made a new claim
// ax - area of terrain claimed by fx

// l - level of abstraction
SolveFeatureInteractions(feature fx, area ax, level l):

// find all interacting features with granted claims
F = { fy | fy ∈ f eatures, ax ∩ fy.area , ∅}
sort F according to highest priorityclaim( fy, l)
// handle all feature interactions
for all feature fy in F do

if priorityclaim( fx, l) > priorityclaim( fy, l) then
SolveInteraction( fy, fx, ax ∩ fy.area, l)

else
SolveInteraction( fx, fy, ax ∩ fy.area, l)

end if
end for

// solve an interaction between a pair of terrain features
// flose - feature for which the claim is rejected
// fwin - feature for which the claim is granted
// a - disputed area
// l - level of abstraction
SolveInteraction(feature flose, feature fwin, area a, level l):

// determine whether connection can and should be formed
if connectionDefined( flose.type, fwin.type) and
priorityconnect( flose, fwin, a, l) > prioritycon f lict( flose, a, l) then

// interaction is solved with a connection
flose.connectTo( fwin, a, l)

else
// interaction is solved by restructuring the losing feature
flose.restructure(a, l)

end if

features to reclaim these areas. We handle interactions ordered
by priorityclaim, as its value provides a good heuristic of the
impact a feature will have on other features.

Although features adjust their structure to the landscape
profile, to be able to attach to the landscape, features can have
specific requirements for the local elevation profile. For instance,
a building could require an area of flat terrain. To fulfill these
requirements, features can act on the landscape through modi-
fication operations, which they can issue after each refinement
phase. A modification is a request by a feature fx for a certain
area a of the landscape to be constrained to the given elevation or
soil material profile p. This profile is to be integrated in the land-
scape according to a blending fall-of mask m. This mask allows
for smooth transition zones. Such a modification request is com-
bined with the overlapping requests of nearby features; claimed
areas cannot be affected by other feature’s modify requests.

3.4. Feature interaction resolution

Terrain features compete with each other to claim areas of
the landscape for their own use. A generic interaction resolution
method has been devised to handle potentially conflicting claims
between terrain features. This resolution method is outlined in
Algorithm 2, and works as follows. A new terrain feature fx

can make a claim for a certain area of terrain ax, on either the
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structural or the object level l. The set of interacting features
is found, and is sorted according to priorityclaim, where features
with higher priorities are resolved first, as these features will
most likely have the highest impact on the new claim.

For each fy interacting with feature fx on an area a and on a
feature level l, the claim priorities for fx and fy are compared,
resulting in either fx losing the claim to fy or vice versa.

Each interaction is then resolved either by forming a con-
nection to the winning feature fwin or, if that is unavailable or
has a lower priority, by a conflict where the losing feature flose

has to restructure itself to avoid the lost area of terrain. More
concrete, a connection must be defined between the feature types
of flose and fwin and it must have a higher priority over conflict,
which may not be the case in specific scenarios where a given
connection might be deemed too costly or impractical.

Together, these resolution methods offer a generic and auto-
mated way to overcome interactions, while still providing the
designer with control through setting and overriding the different
types of priorities.

4. Framework implementation and results

To validate our approach we implemented representative
terrain features for each of the five terrain layers. Their gener-
ation procedures are often based on (combinations of) existing
procedural methods, but they have been modified to fit in the
framework, i.e. to consider their surroundings and context, and
to employ the claim and modification methods of the interaction
resolution scheme of Section 3. These features form a basic set
useful for many scenarios, to support other types of scenarios;
additional features might be integrated such as railways, lakes,
canals, harbors, levees, farming fields, etc. For each of these
terrain features, we briefly discuss their procedure and conclude
with an example session using all features.

4.1. Landscape layer: elevation and soil

The Landscape layer provides the foundation for placing ter-
rain features. Its generation procedure is detailed in our previous
work [43], and is outlined in Algorithm 3. The input is derived
from the grid of painted ecotopes (see Figure 1). The definition
of each ecotope includes, among other things, a minimum and
maximum elevation and a roughness percentage, describing how
rough or smooth its terrain should be. From this definition, each
cell in the ecotope grid is assigned a randomized, local variation
of these ranges. These local values in the grid are smoothed
using a small Gaussian kernel, to obtain natural changes in ele-
vation. For each point (x, y) in the landscape, the coarse grid g
is interpolated with Catmull-Rom splines to obtain the ranges
r̄ at the desired spatial resolution (e.g. 1 meter). Note that the
coordinate (x, y) is first perturbed in 2D to decrease the regular-
ity of this interpolation, resulting in (x′, y′). A combination of
several ”flavours” of fractal noise, such as ridged multi-fractal
noise [45], mixed according to the roughness factor, are used to
determine the elevation value within the range r̄ . The distribu-
tion of soil material is based on the ecotope value at (x′, y′), and
by mapping the elevation value to a lookup table. The procedure

results in (resultelevation, resultsoil) being stored at position (x, y)
in a height-map data-structure.

Algorithm 3 Landscape layer generation method

// g - coarse grid of ecotopes (elevation ranges, roughness, etc.)
GenerateLandscape(ecotope grid g, random seed s):

for y = 0 to height do
for x = 0 to width do

// perturb x and y locally
p = perturb(x, y, s) // in range [−π . . . π]
x′ = x+ offsetperturb cos(p), y′ = y+ offsetperturb sin(p)
// obtain 4x4 grid region for Catmull-Rom interpolation
xg = (x′− gridcelldim(g)/2)/ gridcelldim(g) // grid x
yg = (y′− gridcelldim(g)/2)/ gridcelldim(g) // grid y
x1 = bxgc, x f = xg − x1, x0 = x1 − 1, x2 = x1 + 1, x3 = x2 + 1
y1 = bygc, y f = yg − y1, y0 = y1 − 1, y2 = y1 + 1, y3 = y2 + 1
// interpolate 4x4 grid cells based on fractions (x f , y f )
// interpolation result r̄.xyz = (min, max, roughess)
r̄ = spline(g, x0, x1, x2, x3, y0, y1, y2, y3, x f , y f )
// generate 3 noise values, mix based on roughess
n̄ = noiseValues(x′, y′, s) // all in range [−1 . . . 1]
f̄ = mixFactors(r̄.z) // all in range [0 . . . 1], | f̄ | = 1
v = f̄ · n̄ // combined noise value
// result for x, y: elevation and soil values
resultelevation = r.x + (1/2 + v/2)(r.y − r.x)
resultsoil = distribute(x′, y′, resultelevation, ecotope(g, xg, yg))

end for
end for

The advantage of this combination of fractal noise and coarse
grid interpolation is that it allows to evaluate any point indepen-
dently of its neighbors. This makes it efficient to execute the
procedure in parallel (see Section 4.7). Furthermore, the eleva-
tion and soil maps can be split in conveniently sized tiles, where
each tile is computed and stored independently. This allows
us to manage even relatively large landscapes at a high spatial
resolution (e.g. 2 or 4 meters).

4.2. Water layer: river feature
The generation of a river is constrained by the feature speci-

fication polyline and by the local elevation profile. The actual
river path is determined by iteratively finding a sub-path for each
pair of control points p̄src and p̄dst in the specification. Starting
from the highest elevated point p̄cur = p̄src, each iteration gener-
ates n new candidate points p̄can on a circle with range rstep at
an interval [α−αdev . . . α+αdev], where α is the angle from p̄cur

towards p̄dst and αdev is an angle range of deviation from α (e.g.
36◦). Each of these generated candidates is scored according to
the following weighted sum of scores:

selevation =
p̄cur.z − p̄can.z
‖p̄can − p̄cur‖

scurve =1 − cos−1(
p̄dst − p̄cur

‖p̄dst − p̄cur‖
·

p̄can − p̄cur

‖p̄can − p̄cur‖
)/αdev

scan =welevationselevation + wcurvescurve + w f eatures f eature

The terms selevation and scurve denote the scores for local
elevation difference and river curvature, respectively. The feature
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score term s f eature is negative if the current segment crosses a
feature resulting in a conflict that the river feature would lose. If
the candidate with the highest score scan does not adhere to the
constraint of monotonously decreasing elevation, the elevation
value of the candidate is forced to an elevation slightly lower
than its predecessor. The determined river bank is claimed for
exclusive use, with possible connections with the various types
of roads, other rivers and the sea. The concrete river object
is created by segmenting a Catmull-Rom spline along the path,
with small variations in width according to the local slope. Using
a modification request, the elevation profile is locally adapted
to fit with the river’s bed and bank, and the soil is changed to a
more fertile ecotope, where applicable.

The advantage of this procedure is the generation speed and
the fact that it closely follows the designer’s specification. It gen-
erates good results as long as the control points are reasonably
well placed, otherwise they can be interactively adjusted.

4.3. Vegetation layer: forest feature

The forest feature is declared by its coarse area, vegetation
density and species that occur in this forest. The input area is
slightly perturbed using standard noise techniques to obtain natu-
ral tree lines. The refined forest area is claimed on the structural
level. An iterative procedure based on the method introduced by
Deussen et al. [7], which simulates the competition of plants for
natural resources as space and water, determines a distribution
of trees of different species in this forest (see [43] for specific
details on this procedure). Additional input for this procedure is
the local elevation profile and soil material, as the definition of a
tree species includes preferences for certain soil types, as well
as elevation and slope ranges. For each generated tree object,
its position is claimed. The forest feature restructure operation
removes any trees in the areas lost to other features.

4.4. Road layer: primary road feature and road network

A primary road (e.g. highway, interstate) is declared by
coarsely specifying its path. Its generation procedure is based on
the path plotting algorithm introduced by Kelly et al. [27]. This
algorithm iteratively finds a smooth path between a set of control
points of a polyline defined on an elevation map. It prefers an
even change in elevation from start to end, while guaranteeing
all control points to be visited and the path to deviate only
within a limited range from the specification. The algorithm
was extended to avoid unacceptably sharp turns and slopes, to
connect to existing features, such as rivers, if necessary, and to
avoid potential feature conflicts with negative consequences for
the road. Although the procedure uses a scoring mechanism
to determine a path, it is not optimizing a cost function, as for
instance the A*-based path finding method by Galin et al. [26],
and therefore is not guaranteed to find an optimal path in all
cases. However, our procedure typically runs more interactively
while staying close to the coarse path sketched by the designer,
thereby providing more fine-grained user control.

Similarly to the river feature procedure explained in 4.2, a
path is constructed between subsequent control points by gen-
erating and testing intermediate nodes. The partial procedure

outlined in Algorithm 4 explains that the scoring of candidates is
again composed of three factors: change in elevation, road cur-
vature and crossed terrain features. However, as in [27], an even
change in elevation is preferred, whereas the river prefers the
steepest slope. Furthermore, the weights reflect the natural pref-
erences of the river (welevation = 0.7,wcurve = 0.1,w f eature = 0.2)
versus the road (welevation = 0.35,wcurve = 0.15,w f eature = 0.5).

Algorithm 4 Iterative path planning for the road feature

for all subsequent points ( p̄src, p̄dst) in p̄start . . . p̄end do
while !reached do

c = generateCandidates( p̄src, ncan, rstep, α, αdev)
for all p̄can in c do

// se : local elevation change ratio / global change ratio
se = 1 − ( | p̄src .z−p̄can .z|

‖ p̄dst−p̄src‖−‖p̄dst−p̄can‖
−
| p̄end .z−p̄start .z|
‖p̄end−p̄start‖

)
// sc : angle deviation from straight road
sc = 1 − arccos( p̄dst−p̄cur

‖ p̄dst−p̄cur‖
·

p̄can−p̄cur
‖ p̄can−p̄cur‖

)/αdev

// s f : lost conflict(s) = −∞, connection(s) = 0, none = 1
s f = score(findInteractions(p̄src, p̄can))
s[p̄can] = we se + wc sc + w f s f

end for
p̄best = selectCandidate(c, s)
if ‖p̄dst − p̄best‖ ≤ rsnap then

// snap to destination control point
reached = true, p̄best = p̄dst

end if
p̄src = p̄best

end while
end for

After the 3D path has been planned, the elevation profile of
this path is fit to a defined slope constraint and smoothed using a
Gaussian smoothing kernel. Catmull-Rom interpolation results
in a 3D spline. By segmenting and sweeping along the road
spline, we obtain the road surface. The area of the road is then
claimed on the structural level. Connections have been defined
with other road features (junction), river features (bridges), and
city features (junctions with local road network’s outer ring).
Using a modification request, the elevation profile is cut and
filled to match with the desired embankment profile of this road.
This embankment profile consists of the inner road area, the
embankment and the verge. For the verge, a blending zone is
established to create a natural smooth transition between the
road and the surrounding landscape.

A city’s road network consists of secondary and tertiary
roads. It is composed of road patterns, as described by Sun et
al. [8], where the secondary roads follow the population centers
and the tertiary roads follow the grid, radial or mixed patterns.
The procedure iteratively places new roads within the city, while
checking validity constraints concerning angle, slope and length,
and applying snapping rules, such as snapping a new road to
existing nearby junctions (see, e.g. [9]). The primary road and a
city’s road network can form connections by road junctions.

4.5. Urban layer: city feature
A designer defines a city feature by coarsely sketching its out-

line and selecting a template describing its historical background,
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(a) (b) (c)

(d) (e) (f )

Figure 4: A procedural sketching session: (a) basic landscape, defined by brushing ecotopes, (b) several forest features, (c) river flowing towards the sea, (d) road
feature crossing this river, (e) city created along the river, (f) road rerouted to run through the city.

which defines how the city core is structured and includes a sta-
tistical distribution of types of districts typically found in these
kinds of cities. Template examples for a Western European city
include the mercantile, the feudal or the absolutistic historic city.
The designer can also declare the city’s population size, affecting
the number and type of residential districts that will be created.

The generation procedure is described in detail in [46]. The
city area is first split in one or more clusters. A cluster is an
area of landscape limited by either the city bounds or land that
is either unsuitable for building or could not be claimed from
other features. A distribution of districts within these clusters is
determined by an iterative district placement procedure, which
uses constraints derived from established models of urban land
use. In this procedure, terrain features have an attraction or repul-
sion influence on districts, depending on their type (commercial,
heavy industry, high-class residential, etc.). For each district,
candidate locations are generated within the city bounds and
evaluated according to a suitability score, which is a weighted
sum of scores for several factors, including the type and proxim-
ity of other, already placed districts, the location’s soil material,
the area within the city model (e.g. center, suburban), and the
distance to nearby rivers and to primary roads. Each district is
placed at the most suitable candidate location.

After districts have been placed, secondary roads and streets
are placed to form the road network of the city (see Section

4.4). Within this network, parcels and building lots result from
subdividing the available open space, and buildings are gener-
ated based on footprint shapes and district types (see [47] for
details). Each generated street and building within the city issues
a modification request to constrain the local elevation profile.

4.6. Example

To give a more vivid impression of how one can currently
design a virtual world in SketchaWorld, we present the (inter-
mediate) results of an example session (see Figure 4), in which
a designer creates, in a couple of minutes, a landscape with a
city along a river. The example session also involves several
instances of consistency maintenance, resulting in conflicts, con-
nections and modifications to the landscape. Throughout this
session, a 3D geometric model derived from the layered seman-
tic virtual world model, is incrementally updated (Figure 1 right
hand), allowing designers to preview the results in 3D.

Figure 4.a shows the basic landscape, sketched in landscape
mode by brushing the ecotope grid: a coastline with some moun-
tains and dry land in the east. On top of this landscape, using the
tools of the feature mode, features of the landscape are added.
The designer specifies several forest features using polygons,
resulting in the vegetation distribution shown in Figure 4.b. Note
that the trees do not grow on steep slopes, rocky terrain and
barren land.
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(a) (b) (c)

Figure 5: 3D virtual world, resulting from the example session of Figure 4: (a) natural environment with road crossing river, (b) final virtual world, (c) city close-up.

A river feature is sketched to run from the mountain lands
in the south-east towards the ocean. After the river’s path is
coarsely defined, a suitable course is plotted through the land-
scape. Through the default priorities, the claim for land is
granted to the river, which leads to restructuring of the affected
forests. Using a modification request, the river bed and banks
are carved into the elevation profile (Figure 4.c). In Figure 4.d
the designer adds a main road to the virtual world. Although
here the river has a higher priority than the road, a connection is
defined between the two features: a bridge is inserted at the river
crossing connecting the road segments. Again, the landscape is
modified, in this case to form a road embankment (except at the
crossing which is still claimed by the river). The forests loose
again some of their claimed terrain, now to this primary road.
Figure 5.a shows the resulting virtual world.

Subsequently, the designer specifies a small city with a fairly
low priority. As a result, its districts and secondary roads have
to form around the river, as shown in Figure 4.e. Finally, the
designer decides to reroute the primary road to now run through
this city (Figure 4.f). This edit action affects the city’s claim,
therefore, this city is restructured to include this main road and
its bridge. Figure 5.b shows the final virtual world, and details
of the city are shown in Figure 5.c.

4.7. Implementation and performance

SketchaWorld is implemented in C# and C++ and uses Open-
SceneGraph for the visualization of the resulting 3D virtual
world. Several of its generation and integration procedures are
highly suitable for a parallel implementation, and where there-
fore implemented on the gpu using cuda, a C-like programming
language for performing general purpose parallel computations
on gpu’s. These gpu procedures are an order of magnitude
more efficient than their cpu counterparts, thus making inter-
active procedural sketching feasible. Examples of procedures
implemented in cuda include the elevation and soil map genera-
tion procedure, and the procedures for landscape modification
requests. In addition, it is used for creating images, such as
textures and the 2D view on the virtual world.

Regarding the quality of the resulting 3D virtual world mod-
els, we have aimed at achieving functional realism, i.e. to gener-
ate a plausible and consistent structure and a logical placement
of objects and features. Our goal is to be able to export created
virtual worlds to a number of engines which differ very much

in their graphical capabilities and application (e.g. entertain-
ment games, training simulators). Therefore, instead of focusing
on graphics quality, we have concentrated on making new ex-
ports straightforward to develop, by clearly separating the virtual
worlds semantic model from any derived representations (see
Figure 1) and, particularly, by facilitating the replacement of
currently used content (e.g. textures) with high-quality content.
Currently supported export formats are OpenSceneGraph, col-
lada and gis raster and vector data; we are developing additional
exporters to widen the possible application of our prototype.

The current prototype’s performance is good for small and
medium sized landscapes (up to 1000 km2). Most procedural
operations typically take between 100 ms and 3 seconds. How-
ever, when modeling larger landscapes continuously updating
the 3D geometry of the virtual world becomes a bottleneck that
hinders the interactive feedback loop. To further improve the
user experience of the prototype and to enable modeling larger
landscapes, we plan to optimize some of the complex generation
procedures and make more use of gpu computing.

5. Discussion

The combination of procedural sketching and virtual world
consistency maintenance helps designers to concentrate on what
they want to create and to express this intent at a high level of
abstraction, without being bothered with low-level modeling
tasks. We have had many informal user sessions with simulation
and game development professionals, training instructors, game
researchers and students, which provided valuable feedback
on our modeling approach and current prototype. Typically,
they found the procedural sketching approach very easy to use,
requiring no 3D modeling experience, and were able to create a
virtual world matching their intent within minutes.

Although the approach gives designers proper control at a
high level, especially game designers commented that they miss
even more fine-grained user control, for instance to tune gen-
erated objects (e.g. individual buildings or trees) to precisely
match their intent or artistic vision. We therefore believe that the
integration of both procedural generation and manual editing op-
erations is a very promising direction for this research. It seems
to combine the best of two worlds, but so far the topic is as good
as unaddressed, and it provides numerous new challenges to
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overcome (see [48]). For instance, manually rerouting a gen-
erated street through a city center might entail automatically
moving and removing certain blocks of buildings and possibly
creating new lots and individual buildings. However, during par-
tial regenerations of such areas (for instance because of feature
interactions), manual changes should be preserved as much as
possible, which makes these situations especially complex.

Similarly, although designers can influence the consistency
maintenance mechanism through setting priorities, either per
feature type, or by overriding e.g. the claim priority of a spe-
cific feature instance (e.g. a historical wood within a city), we
think this level of control may be too coarse to accommodate
all modeling scenarios. We are investigating more fine-grained
mechanisms for constraining the automatic consistency main-
tenance, which might include locking features or objects from
modification, grouping objects together, introducing local geo-
metric constraints, etc.

A major advantage of this approach is the flexible support
for integrating both existing and new procedural methods within
the same framework, especially since the semantics and, par-
ticularly, the interactions of terrain features are defined inde-
pendently from their generation procedures. The framework
provides a clean interface and a structured way to incorporate
new procedural methods for terrain features as e.g. railways,
lakes, canals, or replace existing methods with sophisticated pro-
cedures for e.g. complex urban environments. The interaction
resolution mechanism is flexible enough to accommodate for
interactions with newly introduced features, as well as new types
of connections. However, it is primarily geared towards solving
interactions that are either user-intended (e.g. a bridge connec-
tion) or unavoidable (e.g. removing all trees in the highway path).
Naturally, to be integrated effectively in this framework, a pro-
cedure has to be made aware of its surroundings and be able to
cope with losing claims. Furthermore, the procedure should be
made compatible with interactive procedural sketching, which
might not be straightforward for procedural approaches that are
based on optimization or growth. For these procedures, a sig-
nificant amount of work could be required to fit them in the
framework, after which the respective feature interactions can
be properly handled.

The additional execution time for consistency maintenance
is in typical modeling cases hardly noticeable. However, generat-
ing or removing a large, high priority feature can, of course, have
a significant impact on nearby features, resulting in a cascade
of many conflicts and connections to be resolved. Such extreme
situations can be alleviated by using proper heuristics or conflict
avoidance during procedural generation (see e.g. Section 4.4).

The framework SketchaWorld is currently used in several
research projects and for a number of simulators. We are investi-
gating possibilities of making it available to a wider audience.

6. Conclusions

We identified the challenges currently faced by designers
of virtual worlds, arising from limitations of both manual and
procedural modeling techniques. From recent developments in
procedural modeling research, we concluded that improvements

in user control, interactivity and integration of results are now
not only feasible but also essential to increase the acceptance of
procedural techniques in mainstream virtual world development.

In this article we introduced declarative modeling of virtual
worlds, a novel approach that combines the integrated use of
various procedural modeling techniques with a semantics-driven
model to capture designers intent. This approach was illustrated
using our research prototype, the modeling framework Sketcha-
World. One of its main contributions is procedural sketching,
which combines user interaction, data representation and proce-
dural techniques in order to enable designers of virtual worlds
to concentrate on stating what they want to create, instead of on
describing how they should model it. This is achieved by means
of familiar sketch actions, promoting interactive experimentation
to quickly see the effects of procedural modeling operations.

This interaction method is complemented by virtual world
consistency maintenance, which automatically solves conflicts
due to spatial interactions occurring between terrain features
and their surroundings. By maintaining in the virtual world
semantic model more information than simply its geometric
data, this technique assists designers in keeping it in a coherent
state, in which the semantics of all terrain features is preserved.
This encourages designers to freely experiment with design al-
ternatives without the penalty of laborious manual editing, as
feature integration and consistency are taken care of automat-
ically. In traditional modeling systems, in turn, making large
scale changes to a virtual world is mostly prohibitive, in terms
of both time and manual effort.

Current research is focusing on performance optimization
of individual procedures and on enhancements of the quality
and diversity of the 3D output. However, our main research
challenge ahead concerns new mechanisms for designers to
interactively manipulate generated objects, and for controlling
and handling the consequences of these manual operations. We
believe that supporting such a fine level of editing will be crucial
to have designers fully profit from procedural techniques, while
remaining in control over their outcome.

Concluding, the declarative modeling approach presented
here provides virtual world designers with the productivity gain
of procedural generation techniques, while still allowing for
user control; it provides researchers with a flexible platform
to integrate new techniques from procedural modeling research
within an interactive environment; and, finally, it provides whole
new groups of non-specialists with a clear and accessible method
to create complete 3D virtual worlds in minutes.
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P. Prusinkiewicz, Realistic Modeling and Rendering of Plant Ecosystems,
in: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York, NY, USA,
1998, pp. 275–286.

[8] J. Sun, X. Yu, G. Baciu, M. Green, Template-based Generation of Road
Networks for Virtual City Modeling, in: VRST ’02: Proceedings of the
ACM Symposium on Virtual Reality Software and Technology, ACM,
New York, NY, USA, 2002, pp. 33–40.

[9] Y. I. H. Parish, P. Müller, Procedural Modeling of Cities, in: SIGGRAPH
’01: Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, ACM, New York, NY, USA, 2001, pp. 301–
308.

[10] P. Wonka, M. Wimmer, F. Sillion, W. Ribarsky, Instant Architecture, in:
SIGGRAPH ’03: Proceedings of the 30th Annual Conference on Computer
Graphics and Interactive Techniques, ACM, New York, NY, USA, 2003,
pp. 669–677.

[11] P. Müller, P. Wonka, S. Haegler, A. Ulmer, L. V. Gool, Procedural Mod-
eling of Buildings, in: SIGGRAPH ’06: Proceedings of the 33rd Annual
Conference on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, 2006, pp. 614–623.

[12] D. Finkenzeller, Detailed Building Facades, IEEE Computer Graphics and
Applications 28 (3) (2008) 58–66.

[13] R. M. Smelik, K. J. de Kraker, T. Tutenel, R. Bidarra, S. A. Groenewegen,
A Survey of Procedural Methods for Terrain Modelling, in: Proceedings of
the CASA Workshop on 3D Advanced Media In Gaming And Simulation
(3AMIGAS), Amsterdam, The Netherlands, 2009.

[14] S. Stachniak, W. Stuerzlinger, An Algorithm for Automated Fractal Terrain
Deformation, Computer Graphics and Artificial Intelligence 1 (2005) 64–
76.

[15] H. Zhou, J. Sun, G. Turk, J. Rehg, Terrain Synthesis from Digital Elevation
Models, IEEE Transactions on Visualization and Computer Graphics 13 (4)
(2007) 834–848.

[16] R. L. Saunders, Terrainosaurus: Realistic Terrain Synthesis Using Genetic
Algorithms, Master’s thesis, Texas A&M University (December 2006).

[17] K. R. Kamal, Y. S. Uddin, Parametrically Controlled Terrain Generation,
in: GRAPHITE ’07: Proceedings of the 5th International Conference on
Computer Graphics and Interactive Techniques in Australia and Southeast
Asia, ACM, New York, NY, USA, 2007, pp. 17–23.

[18] F. Belhadj, Terrain Modeling: a Constrained Fractal Model, in: AFRI-
GRAPH ’07: Proceedings of the 5th International Conference on Computer
Graphics, Virtual Reality, Visualisation and Interaction in Africa, ACM,
New York, NY, USA, 2007, pp. 197–204.

[19] J. Doran, I. Parberry, Controlled Procedural Terrain Generation Using
Software Agents, IEEE Transactions on Computational Intelligence and
AI in Games 2 (2) (2010) 111–119.

[20] J. Schneider, T. Boldte, R. Westermann, Real-Time Editing, Synthesis,
and Rendering of Infinite Landscapes on GPUs, in: Vision, Modeling and
Visualization 2006, 2006.
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