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Chapter 1

Introduction

Computer games are increasingly often used for training purposes. Such ‘serious games’
are exploited to train competences such as leadership, negotiation or social skills. Some-
times, behaviors of the virtual characters in a training game are not clear. Consider for
instance the following fragment of a training scenario, and imagine that you practice the
tasks of a leading firefighter.

When you are called for a fire in a house, you and your four team members
get into a fire engine and drive to the location of the incident as quickly as
possible. Once arrived, you see smoke coming out of a house, people are
standing dangerously close by and from the distance a siren is approaching.
You have to assess the situation quickly, make an attack plan and instruct
your team. Subsequently, while discussing with a policeman where to block
the road, you see that your first two team members, against your instructions,
enter the house through the back instead of the front door. The next moment,
a woman tells you in panic that her dog is still inside the house...

Somewhat later, you finished the virtual training successfully. But though the fire has
been extinguished, the dog has been saved and the roads are open again, you still do not
know why the two virtual team members did not follow your orders. You would like to
actually ask them: “Why did you enter the house through the back door?” The virtual
team members may explain that they misunderstood your instructions. From this expla-
nation, you learn that you will have to provide clearer instructions in similar situations
in the future. The team members may also explain that they found explosive material
at the back door, which they had to remove before entering the house. In that case, you
know that your instructions were clear, but that you should have checked for the presence
of explosive material. Knowing the reasons behind the actions of virtual characters thus
gives more insight into the training situation and your own performance.

This thesis is about automatically generating explanations of the behavior of vir-
tual characters in training games. The behavior of these characters is also computer-
generated, that is, by intelligent software agents. When trainees can ask their virtual
team members, colleagues or opponents to explain the reasons behind their actions, they
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are given the opportunity to understand played scenarios better. Thus, the aim of explain-
ing the behavior of such agents is to support trainees’ learning from virtual training.

In this chapter we will provide a motivation for the research in this thesis, describe
our research plan and give an outline of the thesis. In the last section we will also list on
which publications each of the chapters in this thesis is based.

1.1 Motivation
In this section we motivate the goal of our research, developing explainable agents for
virtual training. We will first discuss the notions of virtual training and intelligent soft-
ware agents. Subsequently, we provide an overview of existing explanation components
that explain agent behavior in virtual training. Finally, we present the approach for ex-
plaining agent behavior that we will take in this thesis.

1.1.1 Virtual training
Virtual training systems typically visualize a virtual environment in which trainees have
to accomplish a given task or mission. By that, virtual training systems offer the possi-
bility to practice tasks while the actions of trainees have no effects in the real world. This
makes virtual training particularly appropriate to train tasks or skills that are dangerous
or expensive to practice in reality, or that involve actions with important consequences in
the real world. For example, the negotiation skills of a military commander may deter-
mine the safety of many soldiers and civilians, and the capacities of a leading firefighter
have a big influence on the outcome of a fire attack. Scenario-based virtual training has
demonstrated considerable potential for learning tasks in complex and dynamic environ-
ments (Oser, 1999).

For effective training, it is important that the skills learned in the virtual world are
applicable in the real world, i.e., there should be a good transfer of training (Baldwin and
Ford, 1988). To achieve transfer of training, those parts of the real world that are relevant
to the execution of the training task must be are offered to trainees in a realistic way. This
requires realistic computer simulations or human experts controlling the virtual world, or
a combination of both.

To ensure realistic virtual character behavior, subject matter experts (usually instruc-
tors) often play the roles of key players in virtual training. Houtkamp and Bos (2007),
for instance, describe a virtual training system for leading firefighters in which instruc-
tors manage the changes in the environment such as the size of a fire, and impersonate
other players in the scenario, e.g., a police officer or bystander. Also in the military
domain, it is common practice that more than one instructor is needed to train a single
trainee (Van den Bosch and Riemersma, 2004). A disadvantage of this approach is that
instructors are generally scarcely available, and the need for multiple instructors elevates
costs of training. As a result, there are often only a few opportunities to receive this type
of training, whereas trainees need a large number of training opportunities. In fact, ac-
quiring expertise for complex tasks requires intensive, deliberate and reflective practice
over time (Ericsson et al., 1993).
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To create more training opportunities, artificial intelligence can be used to take over
(a part of) the instructor’s tasks. Intelligent software agents, for example, can be used
to play the roles of the virtual characters in the training scenario autonomously. Re-
cently, several virtual training systems with intelligent agents have been introduced, e.g.,
to train tactical command and control (Van Doesburg and Van den Bosch, 2005), leader-
ship skills (Riedl and Stern, 2006), negotiation skills (Core et al., 2006b), and deal with
bully behavior (Hall et al., 2006). When intelligent agents produce realistic behavior,
one instructor can monitor a group of trainees and provide help and answer questions
if necessary. Trainees could also use virtual training systems without the presence of
an instructor, and save their questions for later. Virtual training that can be used (more)
independently is cost-efficient, and gives trainees the flexibility to train wherever and
whenever they want.

1.1.2 Intelligent software agents

The concept of an agent is used in computer science to denote an entity that perceives
and performs tasks in an environment more or less independently. Software agents can be
opposed to agents that have a physical body like hardware agents (robots), and biological
agents (animals or humans) (Franklin and Graesser, 1997). Applications of software
agents are for instance online buying and shopping, providing personal assistance, and
representing human behavior in (training) games (Jennings and Wooldridge, 1998).

There has been much discussion about what exactly constitutes an agent (Castel-
franchi, 1997), and many definitions of an agent have been proposed (Franklin and
Graesser, 1997). In general, definitions that are acceptable for many researchers are
often considered too broad, but more specific definitions are usually only accepted by
a small group of people. In this thesis, we will follow one of the most common defi-
nitions of agents (Wooldridge and Jennings, 1995; Wooldridge, 2002), which says that:
“an agent is a computer system that is situated in some environment and that is capable
of autonomous action in this environment in order to meet its design objectives”.

Shoham introduced the agent-based programming paradigm (Shoham, 1993). Agent-
based programming uses (proactive) agents as the main components of a program, in con-
trast to object-oriented programming, where (reactive) objects form the building blocks
of a computer program. There are a number of programming languages that support the
development of agents and multi-agent systems (Bordini et al., 2005, 2009).

Agents can be used to represent human behavior in order to generate believable be-
havior of virtual game characters (Gratch et al., 2002; Norling, 2003; Patel and Hexmoor,
2009). However, as shown in the example at the beginning of this chapter, it is not al-
ways clear why agents act the way they do, and without knowing the motivation of an
agent’s actions, it may be difficult for a trainee to understand the situation and learn from
it. Therefore, several systems that explain agent behavior in virtual training have been
proposed.
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1.1.3 Existing approaches to explainable agents

In this section we will give a brief overview of existing approaches to explaining agent
behavior, in order to motivate our research. In Subsection 2.1.3 we will provide more
detailed descriptions of the approaches.

The first approach in which agent behavior is explained in virtual training is De-
brief (Johnson, 1994). Debrief is an explanation component that is implemented as part
of a fighter pilot simulation in which a trainee pilot interacts with a pilot played by an
agent. Debrief constinously logs the agent’s state during a training session. Afterwards,
the trainee can ask explanations about any of the artificial fighter pilot’s actions. Based
on the logs of the agent’s state, Debrief determines what must have been the factors
responsible for the agent’s decisions, e.g., the position of the aircraft in relation to its
environment, and provides them as an explanation to the trainee.

A second approach to explainable agents, XAI 1 (Van Lent et al., 2004), forms part
of a simulation-based training for commanding a light infantry company. After a training
session, the trainee can select a time and an agent, and ask questions about the agent’s
physical state at that point, such as its location or health.

A third approach is VISTA 1, the Visualization Toolkit for Agents (Taylor et al.,
2002). VISTA 1 is applicable to different intelligent agent architectures, knowledge rep-
resentations and task domains, and aims to visualize the internal reasoning processes
of intelligent agents. The Situation Awareness Panel (SAP) is a particular instantiation
of VISTA that visualizes the knowledge and reasoning of Soar agents operating in the
tactical air combat domain.

The three approaches discussed so far (Debrief, XAI 1 and VISTA 1) continuously
store the agent’s state during training, and use these so-called behavior traces to generate
explanations. The advantage of this method is that it is efficient to develop. Agents al-
ready perform (reasoning) steps to generate actions, and these steps are reused in order
to generate explanations. A disadvantage of this method, however, is that behavior traces
do not always yield useful explanations. The behavior traces logged in XAI 1, for in-
stance, only contain information about the agent’s physical state and not about its mental
state. Therefore, XAI 1 fails to provide explanations that give insight into the agent’s
mental state, e.g., its reasons for performing an action. And as VISTA 1 is applicable to
different training systems, the usefulness of its explanations will strongly depend on the
agents’ behavior representations used in that system. For example, if an agent’s behavior
is generated by a neural network, the visualization of behavior traces will not give much
insight to a trainee.

In order to provide more useful explanations, several alternative approaches to ex-
plaining agent behavior were proposed. The fourth approach is a more recent version
of the XAI 1 approach. This new approach, XAI 2 (Gomboc et al., 2005; Core et al.,
2006b), claims to provide explanations about the motivations behind an agent’s actions,
and to be domain-independent, i.e., applicable to different virtual training systems. XAI
2 still imports behavior traces from virtual training systems, but when these do not in-
clude an agent’s goals, the developers manually build a XAI representation of the agent’s
behaviors including its goals.

The fifth approach is VISTA 2 (Taylor et al., 2006), which is a follow-up of VISTA
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1. VISTA 2 was also extended to be able to explain the rationale behind agent behavior,
e.g., why a particular goal was selected. This information cannot automatically be im-
ported from training simulations, but has to be added by the developers of the explanation
approach.

The sixth approach, TRACE (Young and Harper, 2005), can also be applied to dif-
ferent training systems, and allows users to investigate an agent’s beliefs, goals, and per-
cepts to answer why a certain decision was made. TRACE uses a domain-independent
ontology and developers extend it to match the target domain and simulation.

The last three approaches (XAI 2, VISTA 2 and TRACE) all provide explanations
that include the motivations, reasons, or goals behind an agent’s actions. By that, they
give trainees useful insights into the agent’s behavior. Behavior traces alone, however,
are often not sufficient to generate such explanations, and developers need to add ex-
tra information to an explanation component in order to generate useful explanations.
The developers of XAI 2, for instance, mentioned that training simulations differ in their
explanation-friendliness (Core et al., 2006a). At best, agent behavior is represented by
goals, and the preconditions and effects of actions. In such a case, XAI 2 can automat-
ically import behaviors, and the training simulation is considered explanation-friendly.
At worst, behavior is represented by procedural rules. Then, a manually built XAI rep-
resentation of the behaviors has to be made, and the training simulation is not consid-
ered explanation-friendly. Thus, though these more recent explanation approaches give
trainees more insight into the agents’ motivations, their development requires more effort
than the development of earlier approaches.

Existing research on explaining agent behavior in virtual training focuses on the de-
velopment of explanation approaches. There is not much literature describing studies
that evaluate the effectiveness of the proposed approaches. An exception forms the work
of Haynes et al. (2009), who performed several studies on what explanations users of
virtual training systems require. Based on the results of these experiments, Haynes et
al. proposed a framework for explaining intelligent agents in simulations and decision
support systems.

1.1.4 Our approach to explainable agents
In this thesis, we aim to develop an approach that combines two strengths in existing
approaches: providing useful explanations for actions (goals, motivations) in an efficient
way (using behavior traces). The existing approaches that provide goals and motivations
as explanation for actions are all application-independent explanation components (Gom-
boc et al., 2005; Core et al., 2006b; Taylor et al., 2006; Young and Harper, 2005). Though
it is an advantage that these components can be applied to many training simulations, ap-
plication independence also has a major drawback. The developers of the explanation
components do not control the way in which agent behavior is represented in training
simulations, and often have to represent most of the information needed for explanations
manually. To overcome this extra work, we adopt an approach that is not application-
independent, but instead, integrates the development of agents and their explanation ca-
pabilities. By exerting control over the development of agents in virtual training, we can
ensure that the agents’ behavior is represented in an explanation-friendly way, and use
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behavior traces for the generation of explanations.
Our approach requires that an agent has explicit representations of the concepts and

processes by which its behavior should be explained. We already mentioned that agent
behavior should not be explained by physical properties only, but also by an agent’s
underlying goals or motivations. This is supported by psychological research showing
that people usually explain and understand human (or human-like) behavior in terms
of mental concepts such as beliefs, goals, and intentions (Malle, 1999; Keil, 2006). In
Dennett’s words, people adopt the intentional stance to understand and explain their own
and others’ behavior (Dennett, 1987). We aim to develop agents that display human
behavior, and therefore we believe that people will understand the agents’ behavior best
when it is explained in a similar fashion as human behavior. Thus, in our approach
agents’ actions are explained by their underlying goals, plans, and beliefs.

BDI-based (Belief Desire Intention) programming languages allow for the represen-
tation of agent behavior by beliefs, goals, plans, and intentions, and a BDI agent deter-
mines its actions by a reasoning process on its mental concepts (Rao and Georgeff, 1991,
1995). We expect that by modeling explainable agents as BDI agents, the mental con-
cepts that are responsible for the generation of an action, can also be used to explain that
action. Therefore, we adopt a BDI-based approach to developing explainable agents.

To summarize, connecting the generation and explanation of agent behavior will not
result in application-independent explanation components such as in most of the existing
approaches. However, it avoids that developers have to represent all behaviors twice, that
is, first in the agent itself and then again in the explanation component.

Besides that we adopt a new approach to the development of explainable agents for
virtual training, we will also pay more attention to the empirical evaluation of explainable
agents than is done in existing work.

Our approach to explainable agents can be useful in other application domains than
virtual training. For instance, in tutor and pedagogical systems, natural dialog between
the user and system has been shown to increase the training effect of such systems
(Graesser et al., 2005). Debugging tools for BDI agent programs might benefit from
a natural way of interaction involving asking why agents perform certain actions instead
of looking at execution traces and internal mental states (Broekens and De Groot, 2006).
In gaming and interactive storytelling (Cavazza et al., 2002; Theune et al., 2003), hav-
ing automatic mechanisms to generate explanations of agent actions could enhance the
flexibility and appeal of the storyline.

1.2 Research plan
In this section we present the research aim and questions that will be addressed in this
thesis. Subsequently, we present the used research methodology, and finally, we provide
an overview of the context in which this research was conducted.

1.2.1 Research aim and questions
The aim of the research presented in this thesis is as follows.
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Research aim: To help trainees to learn from virtual training by using BDI
agents that explain their own behavior.

In this thesis, we focus on two questions in particular. The first question concerns the
learning process of trainees.

Question 1: What explanations about agent behavior can help trainees to
learn from virtual training?

As we will show in Chapter 2, there are many different ways to explain one single event,
action or phenomenon. We argued that human-like agent behavior is probably best un-
derstood when it is explained in terms of mental concepts such as beliefs and goals. But
even with this constraint, there are still many ways to explain an action. Therefore, we
will investigate which types of explanations are considered most useful, i.e., can con-
tribute most to learning of trainees.

When it is known which types of explanations about agent behavior are required,
BDI agents that provide such explanations can be developed. The process of developing
agents that can explain their behavior is addressed in the second research question.

Question 2: How can we develop explainable BDI agents that help trainees
to learn from virtual training?

This question addresses a more technical part of the research. To answer this question,
we will investigate how we can represent agent behavior in a BDI model, and how we
can use such behavior representations to generate explanations in an efficient way.

1.2.2 Methodology
Now that we have presented the research questions, we will describe the methods used
to answer them. For that, we use the distinction between design science and natural
science, where we follow March and Smith’s (1995) use of the term natural science,
which includes, besides research in physical and biological domains, also research in
social, and behavioral domains.

The notion of design science, also called the science of the artificial, was introduced
by Simon (1969) and denotes sciences in which, in contrast to the natural sciences, the
objects of research are artificial. Simon claims that this type of research requires an alter-
native research methodology from natural science. The goal of natural science is forming
theory about phenomena in the world. A typical research cycle involves the collection
of observations, theory formation, theory testing in empirical experiments, and possibly
adapting the theory. The goal of design science, in contrast, is to accomplish the goals
or purposes of a designer, e.g., to create a certain functionality or make a process more
efficient. A typical research cycle involves the design of an artifact and its evaluation.
The distinction between natural and design science is generally accepted. March and
Smith (1995) criticized Simon’s view, however, by arguing that developing theory is not
restricted to natural phenomena, but can also apply to artifacts.
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The research reported in this thesis clearly tries to achieve a design goal, that is,
developing explainable agents for virtual training. The design part of the research is
addressed by the second research question, and conform design science, a major part of
the activities performed in this research are design and evaluation. However, like March
and Smith, we believe that theory development can also apply to artifacts, and in our
view, the research addressed by the first research question should be classified as natural
science.

The following research activities are performed in each chapter. Chapter 3 presents
the initial design for explainable agents, which is based on a literature research described
in Chapter 2. Chapter 4 contains a natural science research cycle, investigating which
explanation types people prefer. These empirical experiments are explorative in nature.
Rather than collecting data from as many subjects as possible, they aim to yield new
ideas to improve the design and application of explainable agents. In Chapter 5, the
(improved) design of Chapter 3 is evaluated. Chapter 6 describes new design activities
and presents an extension to the initial design. Finally, in Chapter 7, several steps towards
a framework for explaining agent behavior are made. In summary, Chapter 3, 5 and 6
mostly describe design science research, and Chapter 4 and 7 mainly describe activities
that can be classified as natural science.

The most important criterion to evaluate explainable agents for virtual training is
to test whether they contribute to learning of trainees. In general, most models that
generate behavior are evaluated by their intended use, that is, from the perspective of the
end-user (Chandrasekaran and Josephson, 1999), the trainee in our case. For this type
of evaluation we use experimental techniques from psychology and human-computer
interaction.

Van Doesburg (2007) states that, besides the end-user perspective, human behavior
representation models can also be evaluated from a psychological and developer’s per-
spective. The psychological perspective considers how truthful the generation of human
behavior is represented, or in other words, how well the cognitive processes underlying
the observable behavior are simulated. We do not adopt this perspective in this thesis.
As mentioned in Subsection 1.1.2, our aim is not to simulate human cognition, but to de-
velop models that generate realistic human behavior and that have the ability to explain
it.

The developer’s perspective concerns the effectiveness and efficiency of model cre-
ation. We do pay attention to this perspective. As discussed in Subsection 1.1.3, some
ways of representing agent behavior are more explanation-friendly than others, and we
aim to reduce the amount of work for a programmer when developing explainable agents.
The evaluation from the perspective of the developer is mostly based on our own expe-
riences because, though there are standard works for the assessment of software quality,
e.g., the IEEE Standard 1061 IEEE98, these are not available for representations of hu-
man behavior in particular (Harmon et al., 2002).

1.2.3 Research context
The idea for this research project originated at TNO Human Factors, when at several
points in the development of virtual training systems with intelligent agents the reasons
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behind the agents’ behavior were unclear, even for the developers of the system (e.g.,
the TACOP training system (Van Doesburg et al., 2005)). Of course, the developers
could look into the programming code to figure out why the agents were acting the way
they did. But trainees cannot do that, and moreover, programming code is not always
easy to interpret. Therefore, it was considered useful to make the agents explainable
and give trainees the opportunity to ask the agents for the motivations of their behavior.
Eventually, that idea has led to this PhD thesis.

The research has been performed in a collaboration between TNO Human Factors
and Utrecht University. Through TNO, there was access to virtual training systems and
its users. Through Utrecht University, we had access to expertise in the field of intel-
ligent software agents, and the agent-based programming language 2APL described in
Subsection 3.1.2. We also made use of the knowledge and facilities at other places. The
research described in Section 5.3 was performed at the Institute for Human and Machine
Cognition (IHMC) in Pensacola in Florida. The research described in Section 4.3 and
5.2 has been performed in collaboration with the Human-Machine Interaction group at
the Technical University Delft.

The research was funded by GATE, Game Research for Training and Entertain-
ment (GATE, 2011). The goal of GATE research is to advance the state-of-the-art in
gaming, simulation and virtual reality substantially, in order to create highly effective
entertainment products and learning systems. The research presented here is part of the
Virtual Characters theme, which deals with the creation of realistic behavior for the vir-
tual characters that inhabit the virtual worlds and games. Besides academic research
into games and game-technology, GATE also aims to develop this knowledge further
into practical solutions. That happens through projects in which small and medium size
enterprises collaborate with research partners, in which companies provide knowledge
questions and intended applications, and the research partners provide new technology.

1.3 Thesis outline
In Chapter 1 the topic of this thesis is introduced. The introduction includes a motivation
for the research, two research questions, our research methodology and an overview of
the research context. The rest of this thesis is organized as follows.

Chapter 2 is a background chapter that discusses related work. The first section pro-
vides an overview of explanation research in different fields, and is an extended version
of the overview provided in a publication at the conference on Simulation and Modeling
Methodologies, Technologies and Applications (SIMULTECH) (Harbers et al., 2011c).
The second section gives an overview of BDI-based agent programming. The third sec-
tion of this chapter discusses related work on providing feedback in virtual training, and
partly incorporates work discussed in a publication at the workshop on Human Aspects
in Ambient Intelligence (Mioch et al., 2008). The fourth section provides a broader per-
spective on the research topic, and discusses two problems that are related to agent-based
virtual training. The first part of this section discusses difficulties of connecting intelli-
gent agents to game engines (Subsection 2.4.1), and is based on parts of a publication
in the International Journal of Computer Games Technology (Dignum et al., 2009). The



10 Chapter 1

second part discusses the issue of balancing player freedom and scenario direction in
virtual training (Subsection 2.4.2). This topic was first introduced in a publication at the
Digital Human Modeling Conference (Van den Bosch et al., 2009), and further elabo-
rated in a paper presented at the workshop on Human Dimensions in Embedded Virtual
Simulation (Heuvelink et al., 2009).

Chapter 3 introduces an approach for developing explainable agents. The chapter
involves the behavior representation model of explainable agents, which was first intro-
duced in a paper at the workshop on Explanation-aware Computing (ExaCt) (Harbers
et al., 2008), and further elaborated in an article at the Journal of Artificial Societies
and Social Simulation (JASSS) (Harbers et al., 2010c). Next, the implementation of this
model in 2APL is discussed, based on a paper that appeared as an extended abstract at
the conference on Autonomous Agents and Multi-Agent Systems (AAMAS) (Harbers
et al., 2009b), and as a full paper at the workshop on LAnguages, methodologies and
Development tool for multi-agent systemS (LADS) (Harbers et al., 2009c). Finally, the
design and implementation of an explanation module is discussed, which appeared in
a publication at the conference on Intelligent Agent Technologies (IAT) (Harbers et al.,
2010b). The approach introduced in this chapter yields agents that are able to provide
different types of explanations.

Chapter 4 presents three user studies that evaluate which explanation types are pre-
ferred by novices, experts, and instructors. The first study was conducted in the domain
of onboard firefighting and has been published at the conference on Intelligent Virtual
Agents (IVA) (Harbers et al., 2009e), the second study was performed in the domain
of firefighting and has been published at the conference on Intelligent Agent Technolo-
gies (IAT) (Harbers et al., 2010b), and the third study was performed in the domain
of cooking and has been published at the conference on Multi-agent System Technolo-
gies (MATES) (Broekens et al., 2010a). The last section of Chapter 3 presents guide-
lines for the design and modeling of explainable agents, based on the three studies. The
guidelines have been published at the International Conference on Cognitive Modeling
(ICCM) (Harbers et al., 2010a).

Chapter 5 presents three studies that investigate the effects of explanations gener-
ated according to our approach on performance. The first two studies investigate the
effects of explanations on learning from virtual training. The first study was conducted
in the domain of onboard firefighting and has not been published. The second study was
performed in the domain of negotiation and is accepted as a poster at the conference on
Intelligent Virtual Agents (IVA) (Broekens et al., 2011). The third study investigates the
effects of our explanations on coordination in human-agent teams, and has been pub-
lished at the workshop on Coordination, Organization, Institutions and Norms in agent
systems (COIN) (Harbers et al., 2011a). The final section of this chapter provides an
overall discussion.

Chapter 6 discusses the development of explainable agents with a theory of mind,
and their application in virtual training. The chapter starts with an example training
scenario involving agents with a theory of mind, and an overview of theory of mind liter-
ature. Based on the literature, two executable models of agents with a theory of mind are
proposed (Section 6.3), which were first described in a paper published at the workshop
on Educational Uses of Multi-Agent Systems (EduMAS) (Harbers et al., 2009a). Subse-
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quently, a simulation study comparing the two models is described (Section 6.4), which
has been published at the conference on Intelligent Agent Technology (IAT) (Harbers
et al., 2009d). In the next section, extensions to the programming language 2APL are
proposed in order to implement agents with a theory of mind (Section 6.5). This section
is based on a book chapter that appeared in ”‘Multi-Agent Systems for Education and
Interactive Entertainment: Design, Use and Experience”’ (Harbers et al., 2011b). An ar-
ticle with an overview of all the work presented in this chapter will appear in the Journal
of Web Intelligence and Agent Systems (WIAS) (Harbers et al., 2012).

Chapter 7 provides a discussion of the work presented in this thesis. First, the ad-
vantages and disadvantages of our approach are discussed. Then, the usefulness of our
approach in different application domains is discussed. The section about explainable
agents in social simulations is based on a publication in the Journal of Artificial Societies
and Social Simulation (JASSS) (Harbers et al., 2010c). Finally, a more general per-
spective on explanations about agent behavior is provided, based on a publication at the
conference on Simulation and Modeling Methodologies, Technologies and Applications
(SIMULTECH) (Harbers et al., 2011c).

Chapter 8 concludes the thesis. In this chapter, the main contributions of the thesis
are discussed, and suggestions for future research are made.

In this thesis, male pronouns (‘he’, ‘him’ and ‘his’) are used when referring to a
person of unspecified gender.





Chapter 2

Background

This chapter discusses literature from several fields that is relevant to the research pre-
sented in this thesis. We start with an overview of research on explanation, in which
we particularly focus on the content of an explanation. In the second section, we give
an overview of BDI-based agent programming, the family of languages we will use to
implement explainable agents. In the third section, we discuss work on how explana-
tions and feedback are provided in virtual training. In the fourth section, we provide
a broader perspective on the research of this thesis by discussing advantages and dif-
ficulties of agent-based virtual training in general. We use the term agent-based virtual
training to refer to virtual training in which the behavior of virtual characters is generated
by intelligent agents.

2.1 An overview of explanation research
Most events, processes or phenomena can be explained in different ways. One expla-
nation is not by definition better than another; the desired explanation depends on the
receiver of the explanation and the context in which it is given. For example, possible ex-
planations for why an apple fell are that someone dropped it, because the person holding
the apple stumbled, or because someone pushed the person holding the apple. A whole
other type of explanation is that the apple fell because of the gravitation force.

Explanation is a complex phenomenon that has been studied in different fields. In this
section, we discuss psychological research about explaining human behavior, followed
by work on argumentation in which the motivation for action is studied. Finally, we
discuss literature in the field of artificial intelligence on the explanation of intelligent
system behavior, and more specifically, of agent behavior.

2.1.1 Explaining human behavior

Keil (2006) provides an extensive overview of explanation in general, in which he catego-
rizes explanations according to the causal patterns they employ, the explanatory stances
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they invoke, the domains of phenomena being explained, and whether they are value or
emotion laden. He notes that any phenomenon or action has many possible explanations,
but that people usually need remarkably little information for a satisfying explanation.
Which piece of information best explains an action depends on the context of the action,
and the person to whom the action is explained. Designing automatic explanation gener-
ation is not always easy, as people frequently prefer one explanation to another without
explicitly knowing why (Kozhevnikov and Hegarty, 2001).

For the explanation of human behavior, Keil refers to Dennett’s three explanatory
stances: the mechanical, the design, and the intentional stance (Dennett, 1987). The
mechanical stance considers simple physical objects and their interactions, the design
stance considers entities as having purposes and functions, and the intentional stance
considers entities as having beliefs, desires, and other mental contents that govern their
behavior. Humans usually understand and explain their own and others’ behavior by
adopting the intentional stance. The intentional stance is closely related to the notion of
folk psychology, which refers to the way people think that they think. Folk psychology
determines the language people use to describe their reasoning about actions in everyday
conversation (Norling, 2004).

Besides folk psychology, attribution theory is one of the most important theories
about explanations of human behavior in psychology (Heider, 1958; Kelley, 1967). At-
tribution theory focuses on the various causes that people assign to events and behavior.
External attribution assigns causality to factors outside of the person, e.g., the weather.
Internal attribution assigns causality to factors within the person, e.g., own level of com-
petence. Related to attribution theory is the concept of explanatory style, i.e., people’s
tendency to explain causes of events in particular ways (Buchanan and Seligman, 1995).
People with a negative explanatory style believe that positive events are caused by things
outside their control and that negative events are caused by them. People with a positive
explanatory style, in contrast, believe that positive events happened because of them and
that negative events were not their fault. Explanatory style is part of someone’s person-
ality.

Figure 2.1: Malle’s four modes of explaining behavior.

Malle (1999) criticized attribution theory because it does not make a distinction be-
tween the explanation of intentional and unintentional behavior. He proposed a frame-
work about how people explain behavior that distinguishes four modes of explanation
(see Figure 2.1). One mode considers explanations about unintentional behavior and
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the other three consider explanations about intentional behavior. The three explanation
modes of intentional behavior are (1) reasons, (2) causal history of reasons, and (3) en-
abling factors. Reason explanations consist of beliefs and goals, causal history explana-
tions explain the origin of beliefs and goals, and enabling factor explanations consider
the capabilities of the actor. Malle states that people mostly give reason explanations for
intentional behavior.

In psychological literature, Malle’s proposal is one of the most elaborate frameworks
on how people explain behavior. It gives a useful overview of different explanation types.
However, the distinction between different types may not always be clear. Though beliefs
are categorized as reason explanations, enabling factor and causal history explanations
may also involve beliefs, i.e., beliefs about an enabling factor or causal history, respec-
tively. For instance, ‘I go to the supermarket because I believe I will be able to reach it
before closing time’. Is the explanation of me going to the supermarket a reason or an
enabling factor? The same confusion can occur between reason explanations with a goal
and causal history explanations. For instance, I go to the supermarket because I want
to buy food, I want to buy food because I want to prepare a meal, I want to prepare a
meal because I am hungry, I am hungry because I just smelled food, etc. In this chain
of explanations it is not clear which are goal explanations and which are causal history
explanations.

2.1.2 Argumentation and explanation
In philosophical literature, explanations used to be viewed within the deductive-nomological
model, in which explanations are seen as logic proofs in natural language (Hempel and
Oppenheim, 1948). In this view, an explanation consists of a set of laws and the de-
ductive consequences of those laws. Later, however, it was acknowledged that everyday
explanations almost never have the structure of such logic proofs, and more practical
approaches to explanation emerged (Salmon, 1989).

One of the fields studied in philosophy that is relevant for the explanation of agent
behavior is argumentation, and argumentation for practical reasoning in particular. Ar-
gumentation is the study of how humans should, can, and do reach conclusions through
logical reasoning. In argumentation for practical reasoning, argumentation about what is
most sensible to do is studied. This is closely related to explanation of behavior, as ar-
guments for a certain action can also be used to explain that action (Moulin et al., 2002).
Atkinson et al. (2006) proposed an argumentation scheme for practical reasoning, which
provides a motivation of an action.

In the circumstances R
we should perform action A
to achieve new circumstances S
which will realize some goal G
which will promote some value V.

When using the argumentation scheme for explanation, an action can be explained by
the current circumstances, the new circumstances it will achieve, the goal it will realize,
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and the value that it promotes. For instance, I go to the supermarket (A) because I am at
home (R) and after going there I will be at the supermarket (S), and I want to buy food
(G) so that I can eat healthy (V).

The argumentation scheme has similarities with Malle’s framework. Goals in this
scheme could be mapped to reason explanations in the framework. Values have similari-
ties with causal history explanations, though a causal history is broader than a value and
can involve other aspects as well. A description of the current and new circumstances in
this scheme could be seen as beliefs in Malle’s framework, but this link is less clear. Note
that in this argumentation scheme sometimes the new circumstances an action achieves
are the same as the goal that it realizes. For instance, I go home (A) because I want to be
home (G), and after going home I am home (S).

2.1.3 Explainable AI
Explainable AI stands for explainable artificial intelligence and refers to the explanation
of intelligent system behavior. Most research in explainable AI has been done in the field
of expert systems, where outcomes such as diagnoses or advices are often accompanied
by an explanation (Swartout et al., 1991; Swartout and Moore, 1993; Wick and Tompson,
1992). Such explanations increase the user’s acceptance, understanding and confidence
in the decisions and recommendations of the system (Nakatsu, 2004; Herlocker, 1999;
Dhaliwal and Benbasat, 1996; Ye and Johnson, 1995).

In the field of expert systems, the following four types of explanation are distin-
guished: (1) trace, (2) justification, (3) strategy, and (4) terminological explanations (Gre-
gor and Benbasat, 1999). Trace explanations (1) are explanations in which the outcome
of a system, such as a diagnosis or an advice, is explained by the steps that lead to it.
For example, the outcomes of rule-based systems are explained by the rules that were ap-
plied (Buchanan and Shortliffe, 1984), and the outcomes of case-based reasoning systems
are explained by cases (Srmo et al., 2005). A trace explanation of an expert system on
medical diagnoses is for example: ‘the patient has disease X because it shows symptoms
Y and Z’. The first explainable expert systems provided trace explanations. Justification
explanations (2) contain the reasons behind a rule, e.g., an explanation of why symptoms
Y and Z indicate disease X. Justification explanations were added to trace explanations
because researchers concluded that simple traces of behavior generation usually do not
provide sufficient information to explain a system’s actions in a satisfying way (Swartout
and Moore, 1993). Users not only wanted to know how an outcome was reached, but also
why this trace of rules was applied. Strategy explanations (3) involve information about
how the expert system uses its domain knowledge to accomplish a task. For instance,
a system could explain how it calculates the probability that someone has a certain dis-
ease given a specific combination of symptoms. Terminological explanations (4) clarify
the meaning of certain concepts. Currently, in expert systems usually a combination of
different explanation types is provided.

Our aim is not to explain expert system behavior, but that of agents in virtual training.
Haynes et al. (2009) propose a framework for explaining intelligent agents in simulations
or decision support systems, based on several user studies. They distinguish the follow-
ing four explanation types for explaining intelligent agents: (1) ontological explanations
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explain the properties of an agent, (2) mechanistic explanations tell how it works, (3)
operational explanations show how to use it, and (4) design rationale explanations ex-
plain why it has been designed the way it is. Though related, Haynes et al.’s focus is still
different from ours, as they study all kinds of explanations related to agents, whereas we
study the explanation of agent behavior in particular.

In Subsection 1.1.3 we already shortly introduced six approaches to explaining agent
behavior. Here, we will discuss them more extensively. The Debrief explanation com-
ponent (Johnson, 1994) can explain actions of Soar agents in the TacAirSoar tactical air
combat domain (Laird and Nielsen, 1994). Debrief makes use of Soar’s infrastructure
to continuously log an agent’s state during a mission. After the mission, Debrief can
recall the state of the agent at various points during the mission. It then modifies the state
repeatedly and observes the effects of the modifications on the agent’s decisions. By this
process, Debrief can determine which factors must have been responsible for the agent’s
next decision. Debrief is not applicable to agents other than Soar agents.

The XAI 1 approach (Van Lent et al., 2004) forms part of a simulation-based training
for commanding a light infantry company. Like Debrief, XAI 1 continually logs an
agent’s state during a training session. These logs contain physical information about the
agent, like its location, ammunition and health. After the session, trainees can select a
time and an agent, and investigate the agent’s physical state at that time. XAI 1 is not
applicable to other training simulations, and it is not possible to query agents about the
reasons for their actions.

The third approach to explaining agent behavior that we mentioned in the introduc-
tion is VISTA 1 (Taylor et al., 2002), the Visualization Toolkit for Agents. VISTA 1
is applicable to different intelligent agent architectures, knowledge representations, and
task domains, and aims to visualize the internal reasoning processes of intelligent agents.
Explanations are generated from behavior traces. The Situation Awareness Panel (SAP)
is a particular instantiation of VISTA 1 that visualizes the knowledge and reasoning of
Soar agents operating in the tactical air combat domain.

XAI 2 is claimed to overcome shortcomings of XAI 1 (Gomboc et al., 2005; Core
et al., 2006b). Namely, XAI 2 supports domain independence, i.e., it is applicable to
different virtual training systems, and it has the ability to explain the motivations behind
an agent’s actions. To demonstrate its domain independence, the system has been applied
to a tactical military simulator (Gomboc et al., 2005), and a virtual trainer for soft skills
such as leadership, teamwork, negotiation and cultural awareness (Core et al., 2006b). As
mentioned in Subsection 1.1.3, XAI 2 imports information that is made available by the
simulation and uses it for the generation of explanations. When the available information
is not sufficient to generate useful explanations, a manually-built XAI representation of
the behaviors has to be made.

TRACE (Young and Harper, 2005) offers a graphical interface through which users
can search for answers to the questions ‘why’ and ‘why not’ a certain action was taken.
The interface shows an agent’s beliefs, goals and percepts at different point in the training
session. TRACE uses a domain-independent ontology and extends it to match the target
domain and simulation. TRACE can be applied to different training systems.

VISTA 2 (Taylor et al., 2006) provides a general framework for building explana-
tion systems across agents systems and application domains. Besides behavior trace
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knowledge, it several other knowledge sources to generate explanations, such as design
knowledge, domain knowledge and display knowledge. The user interface involves both
textual and graphical representations.

2.2 BDI-based programming

To implement agents that can generate explanations in terms of mental concepts, we will
use BDI-based programming languages. The BDI-based agent programming paradigm
is based on Bratman’s theory of human practical reasoning, in which human reasoning
is described with the notions of belief, desire and intention (Bratman, 1987). This the-
ory is closely related to the notion of folk psychology mentioned in the previous section.
Rao and Georgeff (1991) were the first to formalize Bratman’s theory, and later, they
developed a BDI-based software model (Rao and Georgeff, 1995). Note that BDI-based
programming languages differ from agent-based programming languages that aim to sim-
ulate human cognition, such as Soar (Rosenbloom et al., 1993) and Act-R (Anderson and
Lebiere, 1998). Instead of simulating the way people think, BDI languages simulate the
way people think that they think.

BDI programming has been and is being developed at universities and is currently
mostly used in scientific settings. Still, there are some examples of practical applications
of BDI-based programming. For instance, BDI agents have been successfully applied
to generate virtual player behavior in computer games (Norling, 2003) and in virtual
training (Van Doesburg et al., 2005; Heuvelink et al., 2009).

In this section we will introduce a general BDI architecture. Subsequently, we will
discuss the BDI-based programming languages 2APL and GOAL in more detail, as we
will use these languages to illustrate our approach and to implement agents for the user
studies in this thesis. For a more extensive discussion of the BDI approach we refer to
Wooldridge (2000), who presents a mainstream view on BDI agents.

2.2.1 BDI architecture

These is no single BDI model. The BDI approach is represented by a family of BDI
architectures, each implementing its own interpretation of BDI theory. BDI-based pro-
gramming languages are for example PRS (Georgeff and Lansky, 1987), Jadex (Pokahr
et al., 2003), Jack (Busetta et al., 1999), Jason/AgentSpeak (Bordini et al., 2007), Con-
Golog (De Giacomo et al., 2000), 3APL (Hindriks et al., 1999), 2APL (Dastani, 2008),
and GOAL (Hindriks, 2009). These languages have in common that an agent’s mental
state is defined by its beliefs (representing the agent’s knowledge), goals (desires) and
intentions (goals to which the agent commits itself). Usually, BDI agents also have a
plan library containing a set of plans, where a plan is a recipe for achieving a goal given
particular preconditions. The plan library may contain multiple plans for the achieve-
ment of one goal. An intention is the commitment of an agent to execute the sequence of
steps making up the plan. A step can be an executable action, or a subgoal for which a
new plan should be selected from the plan library.
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Figure 2.2: Overview of the BDI architecture.

Figure 2.2 displays a general BDI architecture shared by most BDI-based program-
ming languages (adopted from Wooldridge, 2000). The mental state of a BDI agent (the
gray box in the figure) is constituted by its beliefs, goals, plans, and intentions in its
belief base, goal base, plan library, and intention stack, respectively. A BDI agent can
perceive and act in its environment (perception and action in the figure). The behavior of
a BDI agent is generated by a deliberation process on its mental state, performed by the
reasoner. Deliberation cycles differ per agent architecture, but a typical BDI execution
cycle contains the following steps: (i) perceive the world and update the agent’s internal
beliefs and goals accordingly, (ii) select applicable plans based on the current goals and
beliefs, and add them to the intention stack, (iii) select an intention, and (iv) perform the
intention if it is an atomic action, or select a new plan if it is a subgoal.

2.2.2 The 2APL language

2APL is a typical BDI-based agent programming language and allows for agent repre-
sentations in terms of beliefs and goals. Moreover, 2APL is built in Java, which makes
it suitable to extend the language with explanation facilities. In this section, we provide
a short overview of 2APL. For a more complete and detailed overview of 2APL we refer
to Dastani (2008).

The mental state of a 2APL agent is defined by its beliefs, goals, plans, and reasoning
rules. When the agent is executed, a deliberation process on this mental state determines
the agent’s actions. 2APL agents can interact with environments, e.g., the blockworld
environment, by performing actions in the environment and receiving external events
from the environment.

A 2APL agent can execute different types of actions: actions that add and remove
beliefs to and from the belief base, actions that pass a message to another agent, actions
to interact with the environment, abstract actions encapsulating a plan by a single action,
actions to test the belief and goal bases, and actions to add and remove goals to and
from the goal base. In 2APL, an agent’s beliefs are Prolog facts and rules, and the belief
base of a 2APL agents is a Prolog program. Thus, from the beliefs x and y :- x, the
belief y can be derived. The goals of a 2APL agent are declarative, that is, they what
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Figure 2.3: 2APL deliberation cycle.

an agent wants to achieve, not how to achieve it. To reason with goals in the agent’s
goal base, so called PG-rules (Planning Goal rules) are used, which are of the form Goal
<- Belief | Plan. Informally this means that if the agent believes Belief, then to achieve
the Goal it should execute Plan. An agent can adopt a new goal by executing the action
adopt(Subgoal), which means that the Subgoal is added to the agent’s goal base. A plan
is a sequence of actions or subplans. A 2APL agent can reason with plans through PC-
rules (Procedure Call rules), which are of the form Plan <- Belief | Plan’. If an agent has
Plan in its plan base and Belief in its belief base, it can execute Plan by executing Plan’.
In the agent’s plan base, Plan is replaced by Plan’, which usually contains a set of actions
and/or subplans.

Figure 2.3 shows the deliberation cycle of a 2APL agent. The cycle starts with trying
to apply all PG-rules. Subsequently, the first action of all plans are executed, and external
events, internal events and messages are processed. Then reached goals are removed.
Next, it is checked whether any rules were applied, plans were executed, or events or
messages were processed in the current deliberation cycle. If yes, a new cycle starts, and
if no, the process sleeps until an external event or message arrives.

2.2.3 The GOAL language
Like in 2APL, GOAL agents are specified by mental concepts, and their actions are de-
termined through a reasoning cycle on these mental concepts. A GOAL agent program
consists of the six different sections, specifying the agent’s knowledge, beliefs, goals,
action rules, action specifications, and percept rules. In the remainder of this section we
only discuss two important differences between GOAL and 2APL. For a more extensive
overview of GOAL we refer to Hindriks (2009).

The first difference between GOAL and 2APL is that in 2APL all beliefs are part of
one belief base, whereas in GOAL the distinction between knowledge and beliefs is made.
An agent’s knowledge section contains general knowledge or rules about the world, e.g.,
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a fire can be extinguished with water, and an agent’s belief section contains observations
about the current state of the environment, e.g., there is a fire at location X.

The second difference between GOAL and 2APL is the usage of plans. 2APL knows
abstract actions, which are actions that encapsulate a plan. Therefore, besides PG-rules,
used to reason with goals, 2APL also has PC-rules, reasoning rules that are used to reason
with plans. In GOAL there are no abstract actions, and it only has one type of reasoning
rules, i.e., action rules. In contrast to the PG-rules and PC-rules in 2APL, an action rule
can only select one action that is executable in the environment.

2.3 Providing feedback on training
In order to learn from training, it is important that trainees reflect on the events in a
virtual training at some point. In traditional learning situations, instructors can monitor
the performance of a trainee, provide feedback and explanations, and answer the trainee’s
questions. However, agent-based virtual training should be usable without continuous
attention of an instructor. To encourage reflection on training by the trainee without an
instructor, the training system should include feedback or explanation capabilities. In this
section we will give an overview of providing feedback in intelligent tutoring systems,
and discuss different choices to make when providing explanations in virtual training
systems.

2.3.1 Intelligent tutoring systems
In the past twenty years, much research has been done on intelligent tutoring systems,
which are systems that teach students how to solve a problem or execute a task by giv-
ing explanations (Polson and Richardson, 1988; Psotka et al., 1988; Murray, 1999). Van
Lehn (2006) provides a general description of the behavior of tutoring systems. He de-
scribes tutoring systems as having two loops. The outer loop selects a task for the trainee,
where a task usually consists of solving a complex, multi-step problem. The inner loop
can provide feedback and hints to the trainee on each step. Van Lehn distinguishes three
types of feedback. First, minimal feedback tells the trainee whether a step was correct, in-
correct or not optimal. Second, error-specific feedback can be provided when the trainee
makes an incorrect step, and aims to help the trainee to understand why his action was
wrong. Third, hints on the next step can be provided when the trainee appears to get
stuck. Furthermore, intelligent tutoring systems usually have an expert model and a user
model. The expert model contains knowledge about how the task in the system should
be performed. The user model contains descriptions of the trainee’s past actions and his
current estimated knowledge. In the inner loop, the actions of the trainee can be com-
pared to the expert model, and based on that feedback can be provided. In the outer loop,
a new task can be selected based on the estimation of the trainee’s current knowledge.

Intelligent tutoring systems have been successfully designed for the training of well-
structured skills and tasks such as LISP programming (Anderson et al., 1989) or alge-
bra (Koedinger and Anderson, 1998). These tasks are relatively closed and involve little
indeterminacy, meaning that there is only one or a few ways to reach the solution. Fur-
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thermore, in these tasks there is no need to deal with (unexpected) online events, and so
they do not require real-time planning. Both of these task properties make it easier to
provide feedback.

Attempts have been made to also build tutoring systems for training in open, complex
and dynamic tasks like crisis management or military operations (Zachary et al., 1999;
Livak et al., 2004). Designing training and feedback systems for such tasks poses new
challenges. In traditional intelligent tutoring systems, as described above, a new task
is selected for the trainee each time the previous one is finished. Training for complex
and dynamic tasks, however, is often scenario-based. Instead of selecting a new task at
fixed time points, the development of the scenario continuously has to be monitored and
adjusted if necessary, e.g., by a director agent such as described in Subsection 2.4.2. Fur-
thermore, providing feedback on the performance of a trainee in scenario-based training
is also different from closed, well-structured tasks because often there is no single ‘right’
way to accomplish a task, but instead, there are multiple good solutions (Hutchins et al.,
1999). This makes it particularly difficult to develop an expert model.

2.3.2 Providing explanations
As it is difficult to build intelligent tutoring systems for training of complex and dynamic
tasks, alternative ways of evoking reflection on training have been proposed. As dis-
cussed, several approaches for explaining agent behavior have been approached. Jensen
et al. (2005) proposed an explanation component that can provide explanations about
important training points. With such explanation components, the trainee learns about
the consequences of his actions through explanations about events and behaviors in the
training scenario, instead of through direct feedback on his actions. Good explanations
in virtual training can improve conceptual understanding (Van den Bosch, 1999), and
prolong the duration of an acquired skill (Teichert and Stacy, 2002).

An explanation component for a virtual training system must of course be able to
generate useful explanations. In Section 2.1 we discussed different types of explanations.
Besides the content of an explanation, however, Nakatsu (2004) stresses that choices
about the explanation interface and advisory strategies have to be made as well. In his
framework, the interface of an explanation involves characteristics such as the ability to
undo changes made to the system, and the ability for the user to request explanations with
different levels of detail. Advisory strategies concern characteristics such as the timing
of explanations, the provision mechanism, and the amount of explanations.

2.4 Agent-based virtual training
In the introduction chapter, we advocated to replace human players by intelligent soft-
ware agents in virtual training systems in order to save costs and increase training flex-
ibility. The use of intelligent agents in games and virtual training is a recent develop-
ment (Dignum et al., 2009). Most games and virtual training systems are based on a
scenario script describing the storyline of the game, including the behavior of the virtual
game characters. Disadvantages of script-based virtual training are that (1) fixed sto-
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rylines provide only little freedom for trainees to choose their actions, (2) they do not
give much opportunity to show trainees the (long-term) effects of their actions, and (3)
playing a scripted training twice will deliver nearly the same scenario.

Script-based virtual training becomes richer when the storyline branches in different
directions, depending on the trainee’s decisions and actions. Gordon et al. (2004), for
instance, use scripted agents to play the main characters in a virtual training for lead-
ership with branching scenarios. However, though branching storylines give the trainee
more freedom, it tends to lead to an exponential growth of possible storylines as the sce-
nario continues. All those possible storylines have to be devised in advance, which soon
becomes unmanageable for a scenario writer.

An alternative to using a single scenario script is to represent the behavior of each
virtual character in a separate cognitive behavior model that generates the character’s
behavior in real-time (Riedl and Stern, 2006). Agent technology can then be used to
represent these behavior models. This way, not all possible courses of the scenario have
to be written in advance, which makes it easier to provide the user with more freedom
and achieve more diverse training scenarios. By allowing autonomy to the user as well
as to the virtual agents, real interaction is accomplished. A second advantage is that the
agents can easily be reused for different scenarios, as their behavior patterns remain equal
over different scenarios. Examples of agents generating the behavior of virtual game
characters are the Soar Quakebot for Quake II (Laird, 2001), a BDI Quake agent (Norling,
2003), a BDI agent for naval training (Van Doesburg et al., 2005) and a BDI agent in the
Unreal tournament game engine (Davies and Mehdi, 2006).

Agent-based virtual training has strong advantages over script-based training, but
also introduces two challenges. First, when agent technologies are used to implement
the behavior of virtual characters, a connection between the agents and their virtual en-
vironment needs to be established. In Subsection 2.4.1, we will discuss some issues and
possible solutions related to that. Second, a higher degree of autonomy for the trainee
and agents makes it more difficult to maintain control over the storyline of a scenario,
whereas such control is often desired for achieving efficient training. Thus, on the one
hand, autonomy for agents and trainee is desired because it yields more natural behavior,
but on the other hand, control over their behavior is desired to guide the storyline. This
phenomenon is called the narrative paradox (Aylett, 1999). In Subsection 2.4.2, we will
discuss the narrative paradox and show solutions suggested to solve the paradox.

2.4.1 Connecting agents and simulations
We use the term simulation to refer to the virtual environment of a game or virtual train-
ing, e.g., a house on fire, a room in which a crisis is managed, or a battle field. The
simulation is usually implemented in a game engine and involves the visualization of
the virtual world and representation of object properties, e.g., fires are extinguished by
water and walking through walls is impossible. When connecting agents to a simulation,
issues related to information representation, communication, and synchronization need
to be solved (Dignum et al., 2009). We will provide an example of a potential problem
for each of these three aspects.

Information is represented in different ways in agents and simulations. Agents reason
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with high-level concepts, such as beliefs and goals, for instance, they reason in terms of
going to a building, finding a fire and extinguishing it. Simulations, in contrast, process
more detailed information such as the exact positions of all the entities and objects in
the game at every time-step. When an agent wants to execute an action, e.g., going to a
building, its abstract decision needs to be translated to low-level descriptions required by
the simulation, e.g., the coordinates of the agents starting position, exact path and final
position. Similarly, the low-level information that is made available by the simulation is
not immediately useful to the agents and must first be translated to more abstract concepts
that are perceivable and understandable for the agent.

Most agent platforms offer facilities for the communication among agents. However,
when the communication between agents is exclusively mediated by these facilities, un-
realistic situations may arise. For instance, if there is a large amount of noise in an
environment, agents should not be able to understand each other. However, the noise is
only represented in the simulation, and not in the agent platform. So when the agents
would communicate without interference of the simulation in this situation, they would
seem telepathic.

When agents and simulation run on separate platforms, it is important that informa-
tion is passed regularly and timely between the two to prevent synchronization problems.
For instance, if an agent walks towards a burning building to extinguish the fire, but sud-
denly something inside the building explodes, it should immediately be able to turn and
run away from the building. To do so, the simulation must send updates to the agent con-
tinuously so that the agent perceives its environment without a delay and can reason with
adequate information. Furthermore, when the agent sends a message to the simulation to
perform a certain action, the simulation should immediately process this action. Without
such continuous synchronization, the agent in the example would run away way after the
explosion, which is not realistic.

To deal with these issues, a middle-layer between agents and simulation can be
used (Dignum et al., 2009). Such a layer is responsible for the translation of actions
of the agent into actions within the simulation and translations of changes in the environ-
ment into percepts that can be handled by the agent. Furthermore, the communication
between agents should be mediated by the simulation to overcome communication prob-
lems such as described above.

2.4.2 Scenario direction
Goal-directed, systematic training is more effective than ‘free play’, or learning-by-
doing only (Blackmon and Polson, 2002). In order to make learning purposive and
goal-directed, events in the simulation as well as the behavior of key players need to
be carefully managed (Cannon-Bowers et al., 1998; Fowlkes et al., 1998). Players in the
scenario should respond realistically to any situation emerging from the trainee’s actions,
and the responses should keep the scenario on track of the learning goals. Moreover, the
difficulty level of training should be adapted to the trainee’s competences so that training
is challenging, but not too difficult (Westra et al., 2011).

In an agent-based approach to virtual training, the control over the development of
a scenario is spread over several components. The scenario writer determines the initial
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situation and key events that will occur in the training, the agents and the trainee au-
tonomously make their own decisions, and the simulation determines the effects of their
actions in the virtual environment. Thus, the different elements comprising the virtual
training system have a certain degree of freedom, but as they interact, they also influence
each other. This interaction makes it difficult to predict the course and outcome of a
scenario.

On the one hand, the freedom to act for agents and trainee is desirable, but on the
other hand, it may create uninteresting training situations for the trainee. An instance of
the latter is a trainee who makes an assessment error at the beginning of the situation, and,
e.g., decides to deploy just one fire engine because of which a fire cannot effectively be
extinguished. The trainee will later realize that he should have called for more resources,
but missed many opportunities of dealing adequately with the events in the scenario. This
problem of balancing the intentions of a story writer or designer with player freedom, the
narrative paradox, is well recognized in the literature on interactive narratives (Aylett,
1999; Louchart and Aylett, 2005; Lockelt et al., 2005; Riedl and Stern, 2006; Swartjes
and Theune, 2009).

Figure 2.4: The elements in an agent-based virtual training.

More control over the course of the scenario in agent-based virtual training can be
provided by a director agent (see, e.g., Van den Bosch et al., 2009; Riedl and Stern, 2006;
Peeters et al., 2011). The concept originates from studies into interactive narratives where
story directors or drama managers are used to maintain an interesting storyline (Louchart
and Aylett, 2005; Lockelt et al., 2005). A director agent can be considered as an agent
‘behind the scene’. The director agent directs the agents and the simulation if the sce-
nario moves in an unwanted direction. For instance, if a trainee lacks to call for extra
fire engines, but that is crucial for an interesting course of the scenario, the director agent
can let one of the trainee’s team members advise the trainee to call for extra fire engines.
Thus, most of the time, the agents autonomously determine their actions, but if the sce-
nario requires specific agent behavior to bring about a desired state, the agent receives
instructions from the director agent to do so. Figure 2.4 shows the relations between a
director agent, scenario writer, agents, simulation, and trainee in a virtual training sys-
tem (adopted from Van den Bosch et al., 2009).
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2.5 Chapter conclusion
In this chapter we provided a background for the rest of this thesis. We gave an overview
of literature on explanation, introduced BDI-based agent programming, discussed the
provision of feedback in virtual training, and discussed the use of intelligent agents in
virtual training in general. With this, the ground is laid to introduce our approach to
developing explainable BDI agents. In the next chapter, we will describe the general
explainable agent approach of this thesis. In subsequent chapters, we will further refine
and extend this general approach.
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Developing explainable agents

This chapter describes an approach for developing software agents that can explain their
own behavior. The agents in this approach are modeled as BDI (Belief Desire Intention)
agents (Rao and Georgeff, 1991, 1995). The behavior of BDI agents is represented by
mental concepts such as beliefs, goals, and intentions. BDI agents determine their actions
by a reasoning process on their mental concepts. There are several BDI-based agent
programming languages that allow for the implementation of such agents (Bordini et al.,
2005, 2009).

The choice for BDI agents is motivated by two observations in existing explanation
research. As described in the previous chapter, psychological research shows that people
explain and understand human (or human-like) behavior in terms of mental concepts like
beliefs, goals, and intentions. We aim to develop explainable agents for virtual training
that display human behavior, and therefore we believe that their explanations should exist
of mental concepts as well. Second, explanation research in the field of AI shows that
the behavior of intelligent systems is often (partly) explained by the steps that lead to
it. This is efficient, representations that are used for the generation of behavior can also
be used for the generation of explanations, but requires that behavior representations are
meaningful for users. So when we want our agents to generate human-like explanations,
their behavior should be represented by beliefs, plans, goals, and the like. BDI agents
satisfy this requirement.

In this chapter we will first introduce a way to construct a behavior representation
of an explainable BDI agent. Subsequently, we discuss its implementation in a BDI-
based agent programming language, and show how such a BDI agent can be extended
with explanation capabilities. Though the addition of explanation capabilities is only
discussed at the end, the purpose of explanation is taken into account in earlier steps as
well.
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3.1 Constructing a BDI agent model
At the beginning of this thesis we described a training scenario for firefighting. The
trainee in this scenario interacts with virtual agents playing the trainee’s team members.
To display realistic firefighting behavior under different circumstances, these agents need
to be equipped with domain specific task knowledge, e.g., about extinguishing different
fires or communication procedures. So-called Subject Matter Experts (SMEs) can pro-
vide such expert knowledge to agent developers, who in turn have to translate it into a
BDI agent model. Norling (2004) points out that because experts tend to explain their ac-
tions in terms of beliefs, goals, and intentions, BDI models offer a natural way to capture
expert knowledge. Still, the translation from expert knowledge to a BDI representation is
not trivial and there is no commonly accepted methodology for constructing a BDI agent
model.

We use hierarchical task analysis (HTA) to guide the process of knowledge elicita-
tion from subject matter experts. HTA is a well established technique for cognitive task
analysis in cognitive psychology, and has proven to be appropriate for the specification
of complex human tasks (Schraagen et al., 2000). More specifically, HTA is the process
of constructing a hierarchical task network by dividing a higher-level task into subtasks
until the level of actual actions is reached. For instance, the main task of a firefighter
is to take action when there is an incident, which can be divided into subtasks such as
saving victims, extinguishing fires, and ensuring safety of bystanders, which in turn can
be divided into more detailed subtasks. HTA involves the knowledge, thought processes,
and goal structures that underlie observable task performance (Shepherd, 1998). It thus
smoothly connects internal cognitive processes (such as goals and knowledge) to observ-
able behavior (actions), which corresponds well to our goal of explaining the observable
by the internal.

HTA has been examined extensively, and there is a great deal of documentation on it
available. Therefore, in this thesis we do not focus on HTA itself, but we do describe what
its result -a task hierarchy- should look like in our approach. In this section we will first
discuss GPGP, one of the most extensive accounts of planning based on hierarchical task
networks, on which we inspired our approach. Subsequently, we discuss the similarities
between task hierarchies and BDI models. Finally, we introduce the goal hierarchy model
which forms the core of our approach.

3.1.1 GPGP
The GPGP/TAEMS approach (Generalized Partial Global Planning / Task Analysis, En-
vironment Modeling and Simulation) (Lesser et al., 2004) is currently one of the most
extensive accounts of general (hierarchical task network) planning. Many accounts of
planning in artificial intelligence are based on hierarchical task representations, usually
called hierarchical task networks (Russell and Norvig, 2003). In the strict sense, a hierar-
chical task network is the decomposition of an abstract task into more detailed subtasks.
Many accounts of hierarchical task networks, like GPGP, have additional features, e.g.,
information about which subtasks to select under given circumstances.

GPGP is a framework for the coordination of small teams of agents, and it makes use
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of local (from the perspective of one agent) and non-local task structures. TAEMS is the
language used to represent these task structures. In the GPGP approach, coordination
and scheduling are distinguished, where coordination refers to planning among agents
and scheduling to the planning within an agent. The underlying model of the GPGP
approach can be represented conceptually as an extended AND/OR goal tree where the
leaves of a tree are primitive (non-decomposable) actions. A goal can have any number
of subgoals.

GPGP distinguishes two types of coordination relationships between the nodes of a
tree: task-subtask relations and non-local effects. For the task-subtask relations, Quality
Accumulation Functions denote how the success of a main task is determined by its
sub-tasks, where the success of a task is a gradual measure. A task-subtask relation
is for instance Qmin, which means that the quality of the main task is the minimum
single quality of all subtasks. Figure 3.1 gives an overview of all Quality Accumulation
Functions distinguished by GPGP.

QAF Description
Qmin minimum single quality of all subtasks
Qmax maximum single quality of all subtasks
Qsum total aggregate quality of all subtasks
Qlast quality of most recently completed subtask
Qsumall as with Qsum, except all subtasks must be completed
Qseqmin as with Qmin, except all subtasks must be completed in order
Qseqmax as with Qmax, except all subtasks must be completed in order
Qseqlast all subtasks must be completed in order, and overall quality is

the quality of last task
Qseqsum as with Qsum, except all subtasks must be completed in order
Qexactlyone quality of single subtask, only one subtask may be performed

Table 3.1: Quality Accumulation Functions (QAFs) distinguished by GPGP.

The second collection of coordination relationships in GPGP exists of non-local ef-
fects, which are relations between two tasks at any place in the task hierarchy. Relations
between more than two tasks are not used in GPGP. Non-local effects mentioned in the
GPGP literature are: inhibits, cancels, precedes, constrains, causes, enables, facilitates,
hinders. However, not all of them are worked out in detail. Of all coordination relations,
enables and facilitates receive most attention in the GPGP papers. Enables is a hard
constraint (the result of one problem-solving activity is required to perform another), and
facilitates is a soft constraint (the result of one problem-solving activity may be benefi-
cial but is not required to perform another). GPGP mainly focuses on non-local effects
between tasks situated at different agents, since these define potential places for coordi-
nation.
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Task hierarchy BDI agent
State Beliefs
Main task Goal
Subtask Goal or plan
Primitive task Action (atomic plan)

Table 3.2: Task Hierarchies versus BDI agents.

3.1.2 Task hierarchies versus BDI models

Sardina et al. (2006) pointed out that hierarchical task networks have similarities with
BDI models. The most important similarity is that both reduce high-level entities into
lower-level ones. Table 3.2 shows the correspondence between the concepts used in task
hierarchies and those in BDI agent models. For most task hierarchy concepts, the map-
ping to a related BDI concept is clear. However, whereas a task hierarchy only contains
tasks, BDI models make a distinction between goals (desired world states) and plans
(sequence of actions or sub-plans describing how a goal can be achieved). An agent’s
main task must be implemented as a goal because otherwise no plans are generated and
the agent does not act. Primitive tasks must be implemented as (atomic) plans, again,
because otherwise the agent does not act. But for tasks that are not main or primitive
tasks, it is not immediately obvious whether they should be translated to either plans or
goals.

A first difference between plans and goals in BDI agents is the way they are removed
from an agent’s mental state. Most BDI-based programming languages, e.g., AgentS-
peak (Bordini et al., 2007), 2APL (Dastani, 2008), and GOAL (Hindriks, 2009), are gov-
erned by the rationality principle, which means that an agent cannot believe a certain
fact and pursue that fact as a goal at the same time. Usually, a goal stays in an agent’s
goal base until the agent obtains the belief that the goal is achieved. Goals can also be
explicitly dropped by the agent (as part of a plan). Plans, in contrast, are removed from
an agent’s plan base once they are executed. As a consequence, goals are more appropri-
ate for the implementation of tasks which are achieved by an unknown number of actions
(depending on the environment), e.g., monitoring plan execution.

A second difference between plans and goals concerns the way in which they are
executed or achieved. The deliberation cycle of an agent determines which step the agent
should perform next, e.g., execute an action or apply a reasoning rule. In 2APL (Dastani,
2008) for instance, all rules that are applicable to goals (PG-rules) are tried to be applied
in the deliberation cycle. But for plans, in contrast, it is considered per plan in the plan
base which rules (PC-rules) apply to it. Thus, the order of goal execution depends on the
order of the rules, whereas the order of plan execution depends on the order of the plans
in the agent’s plan base. As a programmer it is easier to exert control over the order of
rules than over the order of plans in a plan base because an agent’s rules remain the same,
but its plans change during program execution. This is similar for other BDI-based agent
programming languages.

To conclude, for domains in which the number and order of tasks to be executed is
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Figure 3.1: Example of a general goal hierarchy.

fixed, it is easier to implement tasks as plans because the agent program ensures that plans
are executed in the given order and dropped after execution automatically. In general,
however, implementing tasks as goals allows for more flexibility because the number
and order of actions to achieve a goal may vary. Therefore, we have chosen to implement
all tasks in a hierarchy as goals, except for primitive tasks. This makes that the underlying
structure of our BDI agents is a goal hierarchy.

3.1.3 Goal hierarchy
In this subsection we introduce a goal hierarchy representation language defining a goal
hierarchy structure for explainable agents. The language is a simplified version of GPGP.
In contrast to GPGP, we do not have non-local effects. Non-local effects are used for
coordination among different agents in GPGP, and we take a single agent perspective
only. Furthermore, whereas GPGP uses a gradual scale for the achievement of goals, in
our approach a goal is either achieved or not. There are several reasons for not allowing
partially successful task execution. We give three of them. First, it is often hard to
determine the measure of success of a task execution. Second, the task domains we aim
at are of a procedural nature; next actions are selected based on procedures that only
distinguishe whether a task is executed satisfactorily or not. Third, the easiest way to
represent partially succeeded tasks would be with a numerical approach, which makes it
more difficult to provide explanations.

We define a goal hierarchy as a number of goals which are related to each other by
goal-subgoal relations. A goal is defined as G(Relation,[(G1,B1),...,(Gn,Bn)]), where
Relation denotes the relation of goal G to it subgoals G1,...,Gn, and beliefs B1,..,Bn
indicate the conditions under which the respective subgoal G1,...,Gn can be adopted.
Subgoals can in turn be decomposed into further subgoals, etc. There are four goal-
subgoal relations, namely all, one, seq and if. The leaves of the goal hierarchy are formed
by actions that can be executed in the environment. Actions are represented as goals that
do not have a relation and are not decomposed into subgoals G(−,[]). Figure 3.1 shows
an example of a simple goal hierarchy, and Table 3.3 shows its formal representation.

Goals can be adopted, which means that they are tried to be achieved, and dropped,
which means that they are either achieved or no longer tried to be achieved. For all
goals but the top goal it holds that a goal Gi can only be adopted when its parent goal is
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goal_G(all,[(action_a,belief_1), (action_b, belief_2),
(action_c,belief_3)])

action_a(-,[ ])
action_b(-,[ ])
action_c(-,[ ])

Table 3.3: The example goal hierarchy in formal notation.

adopted, and the conditions Bi are believed to be true. Since we do not allow for gradual
goal completion, we have less goal-subgoal relations than in GPGP. The different goal-
subgoal relations all, one, seq and if describe when a goal is achieved. A goal with a
relation of the type all is achieved when all its subgoals are achieved. A relation of the
type one implies that a goal is achieved when exactly one of its subgoals is achieved. The
term seq refers to sequential and it means that a goal is achieved when all subgoals are
achieved, in a specific order. A goal with a relation of the type if is achieved when all
applicable subgoals are achieved. Dependent on the beliefs of the agent, this may be all,
some or none of the subgoals.

When a goal is believed to be true, it is achieved and can be dropped. A goal can
become achieved because (1) the agent executed certain actions, or (2) through events
in the environment. For instance, the goal to extinguish a fire is achieved and can thus
be dropped when the agent observes that the fire is out. Sometimes the environment
does not immediately give feedback on whether a task has been performed successfully.
For instance, the task to report something can be achieved by sending an email, but one
does not directly know if the email is read and understood. In such a case we use task
execution to determine task performance, that is, if a task is executed it is assumed to be
achieved.

3.2 Implementation of explainable agents
In this section we will start with an example by providing the goal hierarchy of a fire-
fighter. Then we will show how this and other goal hierarchies can be implemented as
BDI agents. For that, we use the BDI language 2APL (Dastani, 2008).

3.2.1 Goal hierarchy of a firefighting agent

The example in this section involves an agent that is part of a virtual crisis management
training. In this training, the trainee is playing the head of a crisis management team that
is confronted with a crisis. The trainee has to instruct and monitor the leaders of several
teams, e.g., a firefighting team, a police team, and a health care team, which are played
by intelligent agents. The agent in this example is a leading firefighter of which the tasks
are to receive an attack plan from its head (the trainee), pass corresponding instructions
to the firefighting team, monitor plan execution, and finally, report to the head that the
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incident has been solved. Figure 3.2 shows a picture of a part of the goal hierarchy
of the firefighting agent. The boxes and circles represent the agent’s goals and beliefs,
respectively.

Figure 3.2: Part of the firefighter’s goal hierarchy.

Table 3.4 shows the goal hierarchy of firefighter agent in Figure 3.2, in the formal
representation introduced in Subsection 3.1.3. The figure and representation show that
the agent’s two main activities are checking the plan execution by the team, and reporting
its observations to the head. Usually, the firefighter agent reports several times to the
head during one incident. The all relation of the goal Monitor denotes that the Check(X)
and Report goals are both adopted. The achievement of goal Check(X) depends on the
circumstances of the incident, shown by an if relation. If there are fires, victims or
explosives, the agent has to check fire extinction, saving of victims, or the deactivation
of explosives, respectively. To report, the firefighter has to contact the head and report
about the different aspects of the incident. These two goals have to be performed one
by one and in this order, which is denoted by a seq relation. The fire-fighter agent can
either contact the head on his own, ContactHead(Self), or let a team member do so,
ContactHead(Member). The one relation represents that executing one of these options
is sufficient to achieve the goal ContactHead(Y).

As mentioned at the beginning of this section, we do not focus on the construction
of a goal hierarchy itself. The goal hierarchy of an agent, however, does determine the
explanations that it will provide. For now, we assume that the available HTA methods
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Monitor(all,[(Check(X),true),(Report,true)])
Check(X)(if,[(Check(Fire),fire),(Check(Victims),victims),

(Check(Explosives),explosives)])
Check(Fire)(−,[ ])
Check(Victims)(−,[ ])
Check(Explosives)(−,[ ])
Report(seq,[(ContactHead(Y),somethingToReport and not inContact),

(Inform,inContact)])
ContactHead(Y)(one,[(ContactHead(Member),not handsFree),

(ContactHead(Self),handsFree])
ContactHead(Member)(−,[ ])
ContactHead(Self)(−,[ ])
Inform(−,[ ])

Table 3.4: The firefighter’s goal hierarchy in formal notation.

are followed and that the resulting goal hierarchy represents an agent’s tasks as well as
possible, but we will get back at this point in Sections 4.4 and 7.3.

3.2.2 From goal hierarchy to 2APL agent
In this section we discuss the implementation of a goal hierarchy to 2APL code. For each
of the goal types (all, if, seq, one) we show how the goal hierarchy representation can be
implemented. To ensure that the program covers the goal hierarchy as desired, we use the
fact that the interpreter considers PG-rules from top to bottom. More specific rules are
implemented above (and thus tried before) more general rules, so that the most specific
rule as possible is always applied.

All relation For goals of the type all, all subtasks are adopted. In the implementation,
a PG-rule is added for each subgoal, thus an all-goal with n subgoals is implemented
by n PG-rules. In our example, the goal Monitor has an all relation to its subgoals:
Monitor(all,[ (Check(X),true), (Report,true) ]). The 2APL implementation of this repre-
sentation looks as follows.

Monitor <- true | adopt(Check(X))
Monitor <- true | adopt(Report)

The first part of a rule is a check on the agent’s goal base. Both PG-rules in this example
are only applied if Monitor is one of the agent’s goals. The second part of the PG-rule is
a check on the agent’s belief base. Here, the guards of both rules are always true, i.e., the
adoption of the subgoals does not depend on the agents beliefs. The bodies of the two
rules state that the goals Check(X) and Report have to be adopted, respectively.

Goals can be achieved (1) because a certain situation in the environment is true, or
(2) because its subgoals have been achieved. In this paragraph we provide an example
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of the second situation. The next paragraphs (under if relation) show how to implement
the first situation. To implement goal dropping resulting from achievement of subgoals,
we make use of the rationality principle in 2APL, i.e., if a goal (a desired world state) is
believed to be true, that goal is dropped. Thus, ensuring that a goal is dropped when both
its subgoals are achieved can be implemented by the following code.

Monitor :- Check(X), Report.

This line states that when both the goals Check(X) and Report are achieved successfully,
the goal Monitor can be dropped as well.

If relation For goals of type if, all applicable subtasks are adopted. In our example,
the goal Check(X) has an if relation to its subgoals. The expression Check(X)( if,
[(Check(Fire),fire), (Check(Victims),victims), (Check(Explosives),explosives)]) is im-
plemented as follows.

Check(X) <- fire | Check(fire)
Check(X) <- victims | Check(victims)
Check(X) <- explosives | Check(explosives)

The first part of these three PG-rules says that the rules are only considered if the agent
has the goal Check(X). The second part of these rules involve a check on the agent’s
belief base. In these rules it is checked whether the agent has the beliefs fire, victims,
and explosives, respectively. If the agent indeed has (one of) these beliefs, that particular
PG-rule fires, and the agent executes (one of) the actions Check(fire), Check(victims),
and Check(explosives). Note that the subgoals of Check(X) are actions, and thus imple-
mented as plans. If it would have been subgoals, the adopt(subgoal) action would have
been used, like in the example with the all relation.

The goal Check(X) can be dropped when there are no more fires, victims, and explo-
sives. This can be expressed by the following 2APL code.

Check(X) :- not fire, not victims, not explosives.

The rule ensures that if all subgoals are no longer applicable (e.g., the fire has been
extinguished, the victims are saved and the explosives are deactivated), the agent starts
to believe Check(X) and thus the goal Check(X) is dropped.

Actions are implemented as plans (Check(fire), Check(victims), Check(explosives)),
and therefore automatically removed from the agent’s plan base once executed. It may
happen that the goal for which an action was executed is not achieved yet after its ex-
ecution. In that case, the action will be adopted and executed again. For instance, to
extinguish a fire, it may be necessary to use the content of several fire-extinguishers.
Besides goals that are only dropped when certain conditions in the environment become
true, there are goals that are always achieved by executing one or several actions. For
example, the goal to report something to the dispatch center is always removed after the
action of sending a message. For such goals, the last action to achieve the goal should
also add a belief to the agent’s belief base which indicates that the action has been exe-
cuted.
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Seq relation For goals of the type seq, all of their subgoals are adopted, but one by
one and in a specific order. For example, the goal Report( seq, [ (ContactHead(Y), some-
thingToReport and not inContact), (Inform, inContact)]) is implemented as follows.

Report <- somethingToReport,
not inContact | adopt(ContactHead(Y))

Report <- inContact | Inform

Again, the heads of the rules contain the goal for which subgoals need to be achieved.
The guards of the rules contain the conditions under which a rule can be adopted. For
goals of type seq, the conditions specify unique circumstances, so that only one subgoal
is executed at a time. Because the subgoals must be achieved in a specific order, the
guards of the rules often specify the result of the previous goal in the sequence. Here,
for instance, the firefighter agent only starts to inform the head when it believes it is in
contact.

There is one exception. Namely, if the subgoals of a goal of type seq are actions, only
one PG-rule is needed. For instance, a goal with three actions which have to be executed
one by one in a fixed order is implemented as follows.

Head <- Guard | { Action1; Action2; Action3 }

As the order of the actions is fixed and they can be executed immediately, it is not nec-
essary to use different PG-rules. The actions are added to the agent’s plan base, and
automatically executed in the right order.

In general, a goal with relation seq can be dropped if its last subgoal is achieved. In
this case, the result of the last action Inform is that there is no longer something to report.
The goal Report can thus be dropped by the following code in the agent’s belief base.

Report :- not somethingToReport.

Note that it is not possible to add the belief Inform to the agent’s belief base to drop the
goal Report. Namely, the agent may need to report to the head several times, and there-
fore it has to be able to drop the goal Report again.

One relation For goals of type one it holds that only one of their subgoals is adopted. A
one goal with n subgoals is implemented by n PG-rules. The goal ContactHead(Y)( one,[
(ContactHead(Member),not handsFree), (ContactHead(Self),handsFree]), for example,
is implemented as follows.

ContactHead(Y) <- not handsFree | ContactHead(member)
ContactHead(Y) <- handsFree | ContactHead(self)

The guards of both rules, not handsFree and handsFree, denote exclusive situations to
ensure that only one subgoal is adopted.

The goal ContactHead(Y) can be dropped when the agent believes that it is in contact
with the head. This is implemented in the agent’s belief base as follows.
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ContactHead(Y) :- inContact.

In this example, the goal ContactHead(Y) is achieved because of a change in the envi-
ronment. When a goal of type one is achieved because of the execution of one of its
subgoals (with no immediate observable effects in the environment), two separate beliefs
are needed to express the dropping of the main goal. Namely, a one goal is achieved by
the achievement of only one of its subgoals.

3.3 Explanation of agent behavior
In this section we discuss how explanation capabilities can be added to BDI agents. In
order be explainable, an agent should fulfill several requirements. We mention three
of them. First, an agent must have an explanation-friendly behavior model, meaning
that the concepts and processes generating the agent’s behavior are understandable and
meaningful for humans. In our approach this requirement is satisfied by using a BDI
model for the representation of agent behavior. Second, an explainable agent should
be able to introspect. Namely, an agent needs to have knowledge about its own states
and processes in order to explain them. BDI agents are able to check their own belief
and goal base, but only by performing explicit check actions. Third, explainable agents
need to have an episodic memory. To explain its actions, an agent needs to know about
its states and processes not only at the time they occur, but also at later points in time.
BDI agents normally do not have an episodic memory. Most BDI-based programming
languages create a log of the agent’s reasoning steps and actions. However, these logs are
created for debugging purposes and often not accessible by the agent for introspection.
Moreover, the information in such logs is usually not organized in a practical way for
generating explanations.

One way to provide an agent with an episodic memory is to log the agent’s reason-
ing steps within its own program, e.g., by adding update actions to store the agent’s
reasoning steps and actions in its belief base. The disadvantage of this method is that
the bookkeeping necessary for the explanation can interfere with the generation of ’real’
plans and actions. For this reason, we have chosen to build a separate explanation module
to store the information that may be needed for explanations.

Figure 3.3 shows the architecture of a BDI agent (as introduced in Subsection 2.2.1)
extended with an explanation module. The explanation module contains a behavior log
for remembering the agent’s past actions and motivations, and an explanation generator
that applies explanation algorithms to the behavior log to generate explanations when the
agent receives an explanation request. We implemented the explanation module in 2APL,
where the module was implemented as a 2APL environment (Harbers et al., 2010b).

3.3.1 Behavior log
When a BDI agent is executed, the agent perceives its environment and accordingly up-
dates its beliefs. In the approach presented here, an agent’s beliefs determine how it
“walks through” its goal hierarchy. To provide explanations about the agent’s actions,
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Figure 3.3: BDI architecture with an explanation module.

this path with reasoning steps and actions needs to be remembered. In most BDI-based
programming languages, debugging tools allow for the observation of an agent’s internal
states during runtime, and browsing through a trace of the program execution during and
after runtime. In principle, the execution traces should give sufficient information to find
semantic bugs in an agent program. However, current debugging tools do neither pro-
vide help on finding the right information in the execution trace, nor are they organized
in a practical way for explanation purposes. Therefore, an agent’s reasoning steps and
actions are updated to the explanation module during the execution of the agent, and thus
a behavior log is created.

The explanation module can generate explanations about the behavior of agents with
different goal hierarchies, implemented in different BDI-based programming languages.
But though the content of the information updated to the behavior log may differ per
agent, the structure of the updates has to be the same. A fixed update structure ensures
that the agents’ updates are ‘understood’ by the explanation module, or in other words,
that they fit in the organization of the behavior log. For each goal or action that an agent
adopts, the behavior log is updated with the following information.

< goal/action, parent, relation, [belief 1,...,belief n],
[child 1,...,child n], time(adoption,dropping) >

The update is a tuple containing, in this order, the identity of the goal or action (e.g.,
the goal ContactHead(Y) from the goal hierarchy in Figure 3.2), the identity of its par-
ent goal (Report), the relation between the goal/action and its parent (seq), its adoption
conditions (somethingToReport, not inContact), the identities of the child goals/actions
of the parent goal (ContactHead(Y),Inform), and the time at which is was adopted and
dropped (t(adopt,drop)). Note that the list with children also includes the goal/action
itself. The order of execution of the children is maintained in the behavior log.

An agent’s goal hierarchy contains all goals and actions that the agent can possibly
adopt. Consequently, in the BDI implementation, all goals that may be adopted are
present in the plan library of the agent. A behavior log, in contrast, does not contain a
specification of the agent’s goal hierarchy. Before execution of the agent, the behavior log
is empty. After execution of the agent, the behavior log contains a set tuples containing
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Figure 3.4: Goal hierarchy of an explainable BDI agent.

the goals/actions that the agent actually adopted and performed. The goals and actions
in the behavior log are equal to, or a subset of the goals and actions in an agent’s goal
hierarchy. With the information in the behavior log, the ’used’ part of the goal hierarchy
can be reconstructed.

3.3.2 Explanation algorithms

We developed several explanation algorithms that can be applied to the behavior log.
When a user sends a request for an explanation about a certain agent action to the ex-
planation module, one or more of the explanation algorithms is (are) applied to select
information from the behavior log. The result of this process, an explanation for the
given agent action, is presented to the user. Note that explanations could be asked for
during runtime, as the goal tree is built up continuously.

Actions can be explained in different ways, e.g., someone opened a door ‘because
he believed someone was outside’ or ‘because he wanted to know who was outside’. In
our approach, an action can be explained by the beliefs and goals underlying that action.
For example, in the goal hierarchy in Figure 3.4, when action e is executed, the agent
must have had goals A and C, and beliefs c and e. However, providing the whole trace
of beliefs and goals responsible for an outcome, in particular with big goal hierarchies,
often does not create a useful explanation and may even result in an information overload.
Keil (2006) noted that not all ‘explaining elements’ are equally useful in an explanation.
Therefore, to generate useful explanations, explanation algorithms should not only select
which goals and beliefs are responsible for an action, but also make a selection among
those beliefs and goals.
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Below, we introduce the following explanation algorithms: G+1, G+2, B+1, B+2,
Gnext’ and Gnext. The explanation algorithm Gnext’ is an initial version of Gnext. Still,
we do discuss Gnext’ here because Chapter 4 describes an experiment in which Gnext’ is
used. In the following definitions, the A in action/goalA is a variable denoting the identity
of the tuple in the log. ChildA i refers to the i’th child of the parent of the action/goal in
tuple A.

Algorithm G+1. According to the first algorithm, an action is explained by the goal
directly above the action, i.e., the parent goal of an action.

if (Explain(action/goalA)) then
(explanation = parentA = action/goalB)

Following this explanation algorithm, action E in Figure 3.4 is explained by goal C.

Algorithm G+2. Explanation algorithm G+2 explains actions by the goal two levels
up in the goal tree, that is, the parent goal of the action’s parent goal.

if (Explain(action/goalA) and
parentA = action/goalB) then

(explanation = parentB = action/goalC)
In this case, action E is explained by goal A.

Algorithm B+1. Algorithm B+1 explains actions by the belief(s) that enabled the exe-
cution of that action.

if (Explain(action/goalA)) then
(explanation = beliefA 1...n)

According this explanation algorithm, action E is explained by belief(s) e.

Algorithm B+2. This algorithm explains actions by the belief(s) that enabled the adop-
tion of the parent goal of that action.

if (Explain(action/goalA)) then
parentA = action/goalB) then

(explanation = beliefB 1...n)
According to explanation algorithm B+2, action E is explained by belief(s) e.

Algorithm Gnext’. Algorithm Gnext’ checks if the relation of an action to its parent
is of type seq and whether the action is not the last one of the sequence. If so, the action
is explained by the next action or goal in the sequence, also called the enabled action or
goal. If not, the algorithm does not generate an explanation.

if (Explain(action/goalA) and action/goalA = childA i
and relationA = seq) then

(explanation = childA i+1)
Following algorithm Gnext’, if relation 2 is of type seq, action E is explained by action
F. If relation 2 is not of type seq, the algorithm does not generate an explanation.
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Algorithm Gnext. Algorithm Gnext checks if the relation of an action to its parent is
of type seq and whether the action is not the last one of the sequence. If so, the action is
explained by the next action or goal in the sequence. If not, the algorithm tries to explain
the parent of the action in a similar way. Each time no relations of type seq are found or
the action/goal is the last in the sequence, the algorithm searches one level higher in the
tree for an explanation. When the top goal is reached without finding an explanation the
top goal is provided as an explanation. Thus, an action is explained by the first action or
goal that must follow the action (independent of the conditions in the environment), and
that becomes achievable or executable because of the action.

if (Explain(action/goalA) and action/goalA = childA i
and relationA = seq) then

(explanation = childA i+1)
else if (Explain(action/goalA) and (action/goalA =

childA n or not relationA = seq)) then
(Explain(parentA))

else (explanation = action/goalA)
Following algorithm Gnext, if relation 2 is of type seq, action E is explained by action F.
If relation 2 is not of type seq, but relation 1 is, action E is explained by goal D. If both
relation 1 and 2 are not of type seq, action E is explained by goal A.

The execution of explainable BDI agents that are designed as a goal hierarchy, also
result into a tree-shaped structure in the behavior log, i.e., there is one main goal and each
goal has a limited number of subgoals or actions. Other BDI agent programs may result
into less regular tree shapes, e.g., one main goal with many subgoals, several separated
trees when multiple independent initial goals are present, or several partly connected
trees when multiple dependent initial goals are present. In principle, the explanation
algorithms can be applied to all kinds of goal trees to generate explanations, but in this
thesis we focus on tree-shaped structures.

3.4 Chapter conclusion
In this chapter we presented an approach for developing explainable agents. First, we
provided a method for constructing an explainable BDI agent model. Then, we showed
how such models can be implemented in 2APL. Finally, we introduced an explanation
module that adds explanation capabilities to BDI agents.

We may conclude that an action often is the result of many underlying beliefs and
goals, but it is not desirable to provide the whole trace in an explanation for that action.
However, we do not know which beliefs and goals form the most useful explanations
of an action, and thus, which explanation algorithms can best be applied. Psychologi-
cal research provides no conclusive answers to which explanation types should be used
to explain actions. Malle (1999), who proposed a framework about how people explain
behavior (Subsection 2.1.1), states that people mostly give reason explanations for in-
tentional behavior. He distinguishes beliefs and goals as reason explanations, but does
not (yet) describe when and how which goals and beliefs are used. Therefore, in the
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next chapter, we will present three user studies that investigate which explanation types
people consider most useful.



Chapter 4

Studying user preferences for
explanations

In this chapter we present three studies evaluating the approach for developing explain-
able agents introduced in the previous chapter. In all studies, the subjects are provided
with a training scenario, and then asked to provide, select or judge explanations for sev-
eral of the actions of the player(s) in the scenario. The explanations presented to the
subjects are generated according to our approach to explainable agents. In the studies,
we investigate the preferences of instructors (Harbers et al., 2009e), novices (Harbers
et al., 2010b), and experts (Broekens et al., 2010a). The domains in the studies are train-
ing for onboard firefighting, firefighting, and cooking, respectively. In the last section
of this chapter, we discuss all results and provide general guidelines for the design and
explanation of agent behavior (Harbers et al., 2010a).

4.1 Instructors’ preferred explanations
The purpose of the first study is twofold. First, we want to examine whether instructors
consider intentional explanations about agent behavior, i.e., explanations in terms of be-
liefs and goals and the like, useful for learning from virtual training. We believe that the
opinion of instructors is important as they have knowledge on both the task domain and
didactic aspects. If they do consider the explanations useful, then second, we want to
investigate which types of intentional explanations they consider most useful. We will
consider three properties of explanations: explanation length, abstraction level, and men-
tal concept type. For instance, should the explanations be long or short, contain detailed
or more general information, and consist of beliefs or goals?

In Chapter 2 we showed that human behavior is usually explained and understood
by intentional explanations (Dennett, 1987; Malle, 1999; Keil, 2006), and we also men-
tioned that intelligent agents in virtual training usually display human behavior. There-
fore, our proposition in this study is that intentional explanations about agent behavior in
virtual training will be considered useful. Concerning explanation length, we hypothe-
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Figure 4.1: The CARIM virtual training system.

size that short explanations will be preferred over long ones because not all information
explaining an action is relevant. This corresponds to earlier observations by others (Keil,
2006). Concerning abstraction level, our proposition is that explanations containing more
detailed, low-level information will be preferred over explanations with more abstract,
high-level information. We expect that trainees often know about the general intentions
of players in a certain domain before they learn what happens on a more detailed level.
And finally, concerning mental concept type, our proposition is that explanations in terms
of beliefs and explanations in terms of goals will both be considered useful. More specif-
ically, we expect that beliefs with a condition under which an action can be performed
and goals that are achieved by executing an action are considered useful explanations for
those actions.

4.1.1 Method
Domain and training task. The first study took place in the navy domain and involved
a training for Officer of the Watch. An Officer of the Watch is the person in command
when there is a fire aboard a navy frigate. We chose this domain because we expect
explanations to be particularly useful in complex and dynamic environments. Moreover,
we had access to the CARIM system1, a virtual training system developed for the Royal
Netherlands Navy to train the tasks of an Officer of the Watch, and to subjects that were
expert on the tasks of an Officer of the Watch.

An Officer of the Watch works aboard a navy frigate and is the person in charge
when there is an incident on the ship. From the Technical Center of the ship (see Figure
4.1) he collects information, makes an assessment of the situation, develops plans to
solve the incident, instructs other people, monitors the situation, and adjusts his plans if

1The CARIM system has been developed by TNO and VSTEP
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Figure 4.2: Interaction with virtual agents in CARIM.

necessary. The Officer of the Watch communicates with several other officers, of which
the most important are the Chief of the Watch, the Leader Confinement Team, and the
Leader Attack Team. In a typical incident scenario, the Officer of the Watch and the
Chief of the Watch remain in the Technical Center, the Leader Attack Team is situated
close to the location of the incident, and the Leader Confinement Team moves between
both locations.

Subjects. The subjects, 15 in total, were instructors of the Royal Netherlands Navy.
They all had expert knowledge about the task domain and experience in teaching.

Materials. The CARIM system (Cognitive Agents for Realistic Incident Management)
provides virtual training for an Officer of the Watch. A single trainee plays the role of
Officer of the Watch and can freely navigate through the Technical Center of the ship in
the simulation. All equipment that the Officer of the Watch normally uses is simulated
and available to the trainee, e.g., a damage panel containing a map of the entire ship,
information panels and communication equipment. Agents communicate to the trainee
through pre-recorded speech expressions, and a trainee can communicate to agents by
selecting speech acts from a menu (see Figure 4.2). These menus are agent-specific and
context dependent, and may change over the course of a training session. One training
session takes about half an hour to complete.

The course of a training session in the CARIM system is guided by a scenario script.
The script defines for each possible situation what should happen, which is either an
event in the environment or an action of an agent. The trainee has certain freedom to
act the way he wants, but if he deviates from the storyline in the scenario, the simulation
redirects the trainee back to the intended scenario. For instance, if it is necessary that the
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trainee contacts the Leader Attack Team, the Chief of the Watch will repeat an advice to
contact the Leader Attack Team until the trainee does so. In a more recent version of the
CARIM system the behavior of agents is not scripted, but generated online by intelligent
agents (Heuvelink et al., 2009). In this newer version, the trainee has more freedom
in choosing his actions and the courses of different training scenarios are more diverse.
Moreover, the intelligent agents can be reused in different scenarios. However, this new
version of the CARIM system was not available yet at the time of the study. More details
on the CARIM system can be found in two papers on the topic (Van den Bosch et al.,
2009; Heuvelink et al., 2009).

Following our explainable agent approach presented in the previous chapter, we con-
structed goal hierarchies of three of the players in the CARIM scenario, the Chief of
the Watch, Leader Confinement Team, and Leader Attack Team, based on interviews
with experts and task descriptions provided by the Navy, and implemented them in
2APL (Dastani, 2008). Figure 4.3 shows a part of the goal hierarchy of the Leader Attack
Team agent.

Ideally, the implemented agents would generate the behavior of the virtual agents
online, but this was not possible because only a scripted version of the CARIM system
was available. Therefore, instead, we simulated the events in the environment (without
a visualization) and ensured that the agents we implemented would generate the same
behavior as the scripted players in the CARIM system. Though the observable behavior
of our explainable agents and the scripted agents was equal, the explainable agents made
reasoning steps in order to generate behavior and the scripted agents did not. We used
these actions and reasoning steps, logged in the agents’ behavior logs, to generate expla-
nations. More particularly, we applied the explanation algorithms B+1, B+2, G+1, G+2
and Gnext’ to twelve actions, four actions of each of the three CARIM agents, which
resulted in four or five explanations per action. In Figure 4.3, for instance, the action
Contact the OW and its possible explanations are marked in gray.

We developed a paper-based questionnaire based on these twelve actions. In the first
part of the questionnaire, the twelve actions were listed without explanations, and in the
second part they were offered again with explanations. A question in the second part of
the questionnaire was for instance which of the following explanations the subject con-
sidered most useful.

The Leader Attack Team contacted the Officer of the Watch because...
- there was a fire alarm
- he wants to initiate the fire attack
- he arrived at the location of the incident
- he wants to develop an attack plan
- he wants to report the situation

The five explanations in this example are of the types B+2, G+2, B+1, G+1 and Gnext’,
respectively. We translated the programming code explanations to sentences in natural
language by hand.

In this study we used an older version of the explanation module in which the behav-
ior log was kept in the agent’s belief base (Harbers et al., 2009e). In the newer version,
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Figure 4.3: Part of the goal hierarchy of the Leader Attack Team.

logs are made in a separate explanation module implemented as an environment. Though
logs are made in different locations in the old and the new version, the same information
is stored. Therefore, the use of the older version was of no influence on the explanations
that were generated. Moreover, the resulting explanations were exactly the same as when
the explainable agents would have generated the behavior of the virtual CARIM players
online.

Procedure. None of the subjects had used the CARIM system before. So to get ac-
quainted to the system, they first received some time to practice with navigating their
avatar, communicating with other agents, and marking an incident on a damage panel.
Then all subjects played a training scenario with the CARIM system, and after that, filled
in the questionnaire. In the first part, the open choice questions, the subjects had to ex-
plain twelve agent actions that occurred in the scenario. They were instructed to provide
explanations from the perspective of the agent that executed the action, and to keep in
mind that the explanations should help trainees to achieve a proper understanding of the
situation. In the second part, the multiple choice questions, the same list of twelve ac-
tions with four or five possible explanations were presented to the subjects, and they were
asked to select the explanation they considered most useful. Again, the subjects were in-
structed to keep in mind that the explanations should increase trainees’ understanding of
the situation. The subjects were deliberately asked to give their own explanations first to
ensure that their responses were not influenced by the agents’ explanations.

We conducted two experimentation sessions, with 8 subjects in the first and 7 sub-
jects in the second session. In the first session, the subject could only choose between
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four possible explanation types (B+1, B+2, G+1 and B+2) in the multiple choice ques-
tions. The results of the first session showed that many of the subjects’ own explanations
contained explanations with enabled goals and beliefs about others’ goals. Therefore, in
the second experimentation session, we added explanations of type Gnext’ to the mul-
tiple choice questions, and added questions with explanations containing a belief about
others’ goals. We will get back to these findings and adaptations in the results section.

4.1.2 Results
Though some of the subjects experienced difficulties with the navigation of their avatar
at the beginning, all were able to solve the incident in the training scenario. In general,
they were positive about the CARIM system as a training tool. We will first present the
results of the open questions, followed by the results of the multiple choice questions. For
the open questions, we only present the data of the subjects in the first experimentation
session.

Open questions: explanation length. In the first part of the questionnaire, the subjects
(n=8) were asked to provide explanations for twelve of the virtual agents’ actions. For
some actions, some of the subjects found it hard to come up with a useful explanation, and
therefore we only obtained 88 instead of 96 explanations (8 subjects x 12 actions = 96).
The first categorization of these explanations is according to their length. We defined
explanation length by the number of elements, where an element is a goal, a belief, a
fact, etc. Table 4.1 shows the frequencies of the number of elements in the subjects’
explanations. The results show that most explanations contained only 1 element (70%).

Length No. of explanations
1 element 62
2 elements 26
>2 elements 0

Table 4.1: Frequencies of the number of elements in the provided explanations (n=8).

All others contained 2 elements (30%). No explanations with more than 2 elements were
given.

Open questions: mental concept. A second way to categorize the explanations is
according to mental concept type. More specifically, explanation elements can be cat-
egorized according to mental concept. Our aim was to examine whether the subjects’
explanations are compatible with the intentional stance. Therefore, we tried to map the
provided explanation elements to intentional concepts such as beliefs, goals, and inten-
tions.

An examination of the provided explanations resulted into five mental concept types:
(1) the condition for executing an action, (2) background information concerning an ac-
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tion, (3) others’ goals that become achievable after executing an action, (4) the goal to
be achieved with an action, and (5) the goal that becomes achievable after executing an
action. A condition for an action was for example ‘I went to the location of the inci-
dent because I heard the alarm message’. An example of background information is ‘the
Officer of the Watch and the Leader Attack Team communicate by a headphone’. An
explanation referring to another’s goal is, for instance, ‘if I make the location voltage
free, my colleague can safely use water in the room’. An explanation containing a goal
to be achieved is, e.g., ‘I put water on the fire to extinguish it’. Finally, an example of an
explanation with an enabled goal is, e.g., ‘I prepared fire hoses to extinguish the fire’.

Explanations with a condition, background information and another’s goal can be
considered as beliefs, and explanations with a goal to be achieved and an enabled goal
can be categorized as goals. We do not claim that our classification is the only one pos-
sible. These results should rather be seen as an explorative examination of whether the
provided explanations are compatible with the intentional stance. Table 4.2 shows the
number of provided elements per mental concept type. Some of the explanations in Ta-

Mental concept No. of elements
Condition belief 12
Background belief 14
Another’s goal belief 26
Achieve goal 15
Enabled goal 47

Table 4.2: Number of explanations per mental concept type (n=8).

ble 4.2 classified as enabled goals could also be classified as goals. For instance, the
explanation ’the Leader Confinement Team goes to the TC to report to the Officer of the
Watch’ can be classified in two ways. Namely, the explaining element ’to report to the
Officer of the Watch’ can be seen as a goal of which going to the TC is a subgoal, but
also as an enabled goal that can be achieved after the Leader Confinement Team arrived
in the TC. In the first interpretation the explanation would be classified as a goal, and in
the second as an enabled goal. In case of such ambiguity, we have chosen for the second
interpretation, and classified the explanation as an enabled goal.

Multiple choice: abstraction level and mental concept. The second part of the ques-
tionnaire contained multiple choice questions. In the first experimentation session, the
subjects had four choices, as described in the method section. However, the results in
Table 4.2 show that many of the subjects’ own explanations also contained enabled goals
and beliefs about others’ goals. Therefore, we decided to add these explanation types to
part II of the questionnaire in the second session where possible. For seven actions (ac-
tion 3,4,6,9,10,11,12) we initially offered the same four choices in both experimentation
sessions. Table 4.3 shows which explanation types and abstraction levels were preferred
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for these actions, and whether at least 75% or 50% of the subjects (n=15) agreed on that.
Thus, the italic numbers in the table are action numbers and not frequencies. The results

Mental concept Abstraction >75% >50%
Condition belief Detailed 10 3
Condition belief Abstract - -
Achieve goal Detailed 9 11,12
Achieve goal Abstract - 6

Table 4.3: Preferred explanation types for actions 3,4,6,9,10,11,12 (n=15).

show a divided picture. Out of seven actions, only for two actions (9 and 10) more than
75% of the subjects agreed on the preferred explanation type and abstraction level, which
is reflected in a rather low kappa coefficient of 0.33. For action 4, no preference on which
at least 50% of the sujects agreed was found.

Multiple choice: abstraction level and mental concept with enabled goals. For five
of the twelve actions (action 1,2,5,7,8) it was possible to derive an enabled goal expla-
nation from the agents’ goal hierarchies with the Gnext’ algorithm. Note that during this
study we had not yet developed the Gnext algorithm with which it is always possible to
derive an explanation. In Figure 4.3, for instance, an explanation in terms of an enabled
goal for the action ’The Leader Attack Team contacted the Officer of the Watch’ is that
’The Leader Attack Team wants to report the situation to the Officer of the Watch’. For
these five actions we added a fifth possible explanation to the answers of the multiple
choice questions. Table 4.4 shows the results. The general agreement among the sub-

Type Abstraction >75% >50%
Condition belief Detailed 8 -
Condition belief Abstract - -
Achieve goal Detailed - 1
Achieve goal Abstract - 7
Enabled goal Detailed 2,5 -

Table 4.4: Preferred explanation types for actions 1,2,5,7,8 (n=7).

jects expressed in a multi-rater kappa coefficient (Randolph, 2008) was 0.55. The results
show that for some actions (action 2 and 5) a large majority of the subjects preferred an
explanation in terms of an enabled goal. However, explanations in terms of enabled goals
were not always preferred. Subjects even agreed for more than 75% that action 8 could
best be explained in terms of a detailed condition belief.
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Multiple choice: beliefs about others’ goals. The results of the first session showed
that, besides enabled goals, the subjects sometimes explained actions by beliefs about
others’ goals. Explanations in terms of another’s goal are not derivable from the agents’
own goal hierarchies, but it is possible to generate such explanations based on goal hi-
erarchies of other agents. For each action, we selected a goal from another agent’s goal
hierarchy for which that action was relevant. We asked the subject’s preferences about
these explanations in separate questions, for instance, in the following multiple choice
question.

The Leader Attack Team contacted the Officer of the Watch because...
- < answer given in part a of the multiple choice question >
- the Officer of the Watch knows he is there

Thus, after indicating their preference of four or five possible explanations, subjects were
asked to compare their first answer to another (fifth or sixth) option involving an explana-
tions in terms of another’s goal. We used a separate question for this type of explanations
because we did not use a formal explanation algorithm to generate them. The results of
the follow up question are presented in Table 4.5. A kappa of 0.43 for the overall agree-

Type >75% >50%
First choice 1 7,8
Another’s goal belief 4,5,9,10,11,12 2,3,6

Table 4.5: Preferences for explanations with another’s goal belief (n=7).

ment among the subjects was found. The results show that for 9 out of 12 actions, the
subjects preferred explanations in terms of another’s goal over their first choice. For six
of the actions (4,5,9,10,11,12) more than 75% of the subjects preferred an explanation in
terms of another’s goal and only for one action (1) more than 75% of the subjects agreed
on a preference for an explanation not based on another’s goal.

4.1.3 Discussion
The first objective of the study was to examine whether preferred explanations are com-
patible with an intentional perspective. In part I of the questionnaire, the subjects were
asked to provide explanations for actions freely. We were able to classify the elements
in the subjects’ own explanations in five mental concept types, which were all either
belief-based or goal-based (Table 4.2). Though the explanations might be classifiable in
other ways, possibly in non-intentional explanation types, it was possible to classify them
consistently with an intentional perspective. We may thus conclude that the preferred ex-
planations are compatible with the intentional stance, and that a BDI-based approach
seems appropriate for developing self-explaining agents.

We formulated three propositions about the nature of preferred explanations. Con-
cerning explanation length, our proposition was that short explanations would be pre-
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ferred over long ones. In part I of the questionnaire, the subjects were asked to provide
their own explanations, whereby no restrictions on explanation length were given. Table
4.1 showed that their explanations in most cases only contained one element, and never
more than two elements. These results thus support our proposition. Consequently,
self-explaining agents should make a selection of elements which they provide in an
explanation.

Concerning preferred abstraction level, our proposition was that detailed explanations
would be preferred over abstract ones. In this study, detailed and abstract explanations
consisted of mental concepts low (just above action level) and higher in an agent’s goal
hierarchy, respectively. We cannot give a general conclusion concerning preferred ab-
straction level because the data only give information about the preferred abstraction
level of two types of mental concepts, condition beliefs and achieve goals. For belief-
based explanations, the results clearly show that detailed explanations are preferred over
abstract ones (Table 4.4 and 4.3). For goal-based explanations, the results in Table 4.4
and 4.3 also show that detailed explanations are preferred over abstract ones, but not as
strongly as belief-based explanations.

A possible explanation for the finding that the subjects hardly preferred abstract
belief-based explanations is that condition beliefs are often directly related to events
in the environment. Abstract beliefs take place earlier in time than detailed beliefs, for
example, the fire alarm rings before the Leader Attack Team reaches the location of the
incident, and it is plausible that more recent cues are preferred over older ones.

Our last proposition involved the mental concept type of preferred explanations. Our
proposition was that most of the subjects’ own explanations would contain condition
beliefs and achieve goals. Though a part of the instructors’ explanations in part I could
be classified into one of these categories, the results in Table 4.2 show that three other
mental concept types were also used, namely background beliefs, another’s goal beliefs,
and enabled goals. The results from part II of the questionnaire supported these findings.
Namely, Table 4.4 and 4.5 show that the instructors sometimes selected other mental
concept types than the ones we originally expected. Our proposition concerning mental
concept type is thus only partly supported by the results.

4.2 Novices’ preferred explanations
The first study corresponded to earlier findings that preferred explanations are compati-
ble with the intentional stance, and that preferred explanations are relatively short. The
results were more diverse regarding preferred abstraction level and mental concept type.
In this second study, we want to test the proposition that preferred abstraction level and
mental concept type depend on characteristics of the action to be explained. If this turns
out to be the case, action characteristics can be used to develop guidelines for which
explanation types should be given for which action types.

An important change with regard to the first study is that we used novices instead
of instructors as subjects. First, to test if we can find differences between novices and
instructors. And second, an advantage is that the subjects did not have to take the perspec-
tive of someone else when evaluating explanations, but could just indicate how useful the
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explanations were for them.

4.2.1 Method
Domain and training task. It was not possible to use the CARIM system again for
the second study because there were not enough suitable novel students available at the
Royal Netherlands Navy. Using subjects that were not training for Officer of the Watch
was also not an option, as it requires a great deal of domain knowledge to train with the
CARIM system. Therefore, we used a similar, but somewhat better known domain than
onboard firefighting instead, namely, civil firefighting. Most people are more familiar to
this domain than onboard firefighting, and the jargon is more common to most people
than the terminology used in the navy.

In the scenario used in this study, a leading firefighter is confronted with a fire alarm.
He goes to the location of the incident with his team, and once there, he has to assess the
situation, develop a plan, instruct his team members, monitor plan execution, and initiate
changes if necessary.

Subjects. The study was performed with 20 subjects (12 male, 8 female). All had
higher education, the average age was 31 (range 24-58) and 17 of them were native
Dutch speakers. The subjects were unfamiliar with the domain of firefighting and the
tasks of a leading firefighter, they can thus be considered as novices.

Materials. We analyzed the task of a leading fire-fighter by reading protocols and con-
sulting experts. Based on that, we constructed the goal hierarchy shown in Figure 4.4,
and implemented the agent in 2APL. For the experiment, we used the actions in the num-
bered gray boxes in Figure 4.4. Action 4, 5, 6, 7 and 8 have a relation of type all to their
parent goal, action 10, 11, 12, 13 have a relation of type one, action 14, 15 and 16 have
a relation of type if, and action 1, 2, 3 and 9 have a relation of type seq. We applied four
explanation algorithms, B+1, G+1, G+2 and Gnext, to the 16 actions to generate four
explanations for each action. We composed a questionnaire in English containing the
16 actions with each four explanations. For each subject, the questions were placed in a
(different) random order to correct for order effects. The order of the four explanations
per action was also randomized. The question related to action 1 was for example:

Why did the leading firefighter collect his equipment?
- To prepare and go to the fire
- To lead the fire-fighting team
- Because he had not yet collected his equipment
- To get into the fire engine after that

The explanations are, respectively, of the types G+1, G+2, B+1 and Gnext.
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Figure 4.4: Goal hierarchy of a leading firefighter agent.
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Procedure. Instead of performing an actual virtual training, the subjects received a
description of the tasks of a leading firefighter. The description gave them a context to
understand the leading firefighter’s actions listed in the questionnaire. In the paper-based
questionnaire, the subjects had to indicate for 16 actions which of four explanations
they considered most useful for learning the task of a leading firefighter. Usefulness was
explained as: ‘which explanation helps you best in understanding the leading firefighter’s
motives for performing those actions?’. The subjects could only pick one explanation,
and they were told that none of the four explanations was wrong.

4.2.2 Results

The subjects reported no problems with understanding the leading firefighter’s actions,
and all subjects were able to indicate a preferred explanation for all actions. Table 4.6
shows for each of the firefighter’s actions (1−16): the action’s relation to its parent task
(all, seq, if, one), and per explanation algorithm (G+1, G+2 B+1, and Gnext), the number
of subjects who preferred that explanation for the action.

To remind, algorithm G+1 explains an action by the parent goal of the action, algo-
rithm G+2 explains an action by the parent goal of the parent goal of the action, algorithm
B+1 explains an action by the enabling belief(s) of that action, and algorithm Gnext ex-
plains an action by the first action or goal that must follow the action.

If preferred explanation type is independent of action type, similar preferences for
explanation types are expected over different action types. The results show different
preferences, however, and we calculated whether these differences are significant. As
the frequencies in Table 4.6 are dependent observations (the subjects make more than one
observation, i.e., they select an explanation for several actions), the statistical analysis of
the results is done per action. We performed a Chi-square goodness-of-fit to the results
of every action, with an expected frequency of 5 per explanation algorithm. The tests on
action 2 (χ2 = 2.8, p = 0.42) and action 9 (χ2 = 7.6, p = 0.055) indicate that the results
are not significant, but the test on action 8 (χ2 = 8.8, p = 0.032) shows significance at a
level of 5% and the tests on all other actions are significant at a level of 1%.

We calculated kappa to express the agreement among subjects and found K = 0.23
(p = 0.15), indicating fair agreement. This result can partly be explained by the fact that
algorithm B+1 was overall often chosen, which gives a high P(E) in the calculation of
kappa. Some statisticians suggest using free-marginal kappa when raters are not forced
to assign a certain number of cases to each category. A free-marginal kappa calculation
gives K = 0.44, and when action 2 and 9 (not significant) are omitted even K = 0.50,
indicating moderate agreement.

The pie charts in Figure 4.5 summarize the data in Table 4.6. Each pie chart shows
for one action relation (all, one, if, seq) the percentages of preferred explanation types.
The charts clearly show that for actions with a one or an if relation to their parent, ex-
planations generated by algorithm B+1 are preferred, i.e., explanations containing an
enabling belief. For actions with relations all and seq, also other explanation types are
preferred. For all action relations it holds that explanations generated by algorithm Gnext
were rarely chosen.
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Actions Explanation types
Relation No. G+1 G+2 B+1 Gnext

seq 1 13 1 3 3
2 7 6 5 2
3 4 1 14 1
9 10 3 5 2

all 4 1 2 13 4
5 1 12 6 1
6 10 0 9 1
7 7 0 12 1
8 6 2 10 2

one 10 1 1 18 0
11 1 1 18 0
12 2 3 15 0
13 2 1 17 0

if 14 0 1 19 0
15 0 0 20 0
16 1 0 19 0

Total 66 34 203 17

Table 4.6: Frequencies of preferred explanation types per action.

4.2.3 Discussion

Our proposition that different actions yield different preferred explanation types is sup-
ported by the results. More specifically, we expected that the preferred explanation type
of an action depends on the relation between the action and its parent goal. The results
indeed show that for action relations one and if, subjects preferred explanations gener-
ated by algorithm B+1, and for action relations all and seq, subjects preferred a mix of
different explanation types.

There are several factors that could explain the variation among preferred explanation
types for the actions with seq and all relations. For some of the individual actions there
is no general agreement on preferred explanation type. This holds for action 2 and 9, on
which the preference results are not significant, and to a lesser extent for action 6 and
8, where not more than 50% of subjects preferred the same explanation. Possible expla-
nations for this disagreement among subjects are that none of the offered explanations
are considered useful and the results do not give much information (this would require
a whole other type of explanation), or that a combination of the provided explanations
would be considered useful. The low agreeability could also be caused by methodolog-
ical errors. For instance, for action 2, ‘Get into the fire engine’, the word ‘fire engine’
may have caused problems for mostly native Dutch speaking subjects, with English as
their second language. And it could be argued that action 9, ‘Develop an attack plan’,
was misplaced in the goal hierarchy. Instead of being a subaction of the goal ‘Prepare
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Figure 4.5: Percentages of preferred explanation type per action relation.

the fire extinction’, it could also be a subaction of the main goal, ‘Lead the firefighting
team’. In that case, other explanations would have been generated. Finally, it could be
that preferred explanation type does not (only) depend on the action relation, and that
other factors are needed to account for preferred explanation type.

Concerning explanation algorithms, explanations generated by algorithm Gnext are
rarely preferred and not discussed further here. Of the other three algorithms, G+1 and
G+2 generate explanations containing a goal to be achieved, and B+1 generates expla-
nations containing an enabling belief. The result of application of algorithm G+1 and
G+2 strongly depends on the design of an agent’s goal hierarchy. Actions can sometimes
be placed at different levels in the goal hierarchy, as seen with action 9, and it is up to
the designer how many subgoals are included in the hierarchy. Thus, the explanations
generated by algorithm G+1 and G+2 are more similar to each other than explanations
generated by algorithm B+1. When we collapse G+1 and G+2 into one category, of the
four actions with a seq relation, B+1 explanations are preferred for action 3, but for the
others at least 65% of the subjects prefers an explanation with a goal to be achieved (ei-
ther one or two levels above the action). This gives a stronger indication that, in general,
goal-based explanations (G+1 or G+2) are preferred for actions with a seq relation.

Though there are no clearly preferred explanation types for actions with relation all
and seq, there is a clear difference between actions with relation if and one on the one
hand, and seq and all on the other hand. A difference between the two groups is that
all and seq actions have to be executed in order to achieve their parent goal, whereas
the execution of if and one actions is not always necessary for the achievement of their
parent goal. For if and one actions holds that their execution strongly depends on the
conditions in the environment. For example, dependent on the risk of explosion, the
fire is either extinguished with water (action 12) or with foam (action 13). And only
if more firemen are needed, the leading firefighter has to call the operator (action 15).
Conditions in the environment are reflected in the agent’s beliefs and it is therefore not
surprising that explanations containing a belief are preferred. Actions like getting into
the fire engine (action 2) and instructing the team to prepare the equipment (action 5), in
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contrast, always need to be performed when there is a fire. Actions with a relation all
and seq are often part of a procedure or embody a rule. Thus, when the performance of
an action strongly depends on the state of the environment, a belief-based explanation is
preferred. When that is not the case, other explanation types are also preferred.

4.3 Experts’ preferred explanations
Like in the second study, the proposition tested in this study is that different action types
require different types of explanation. We will test for actions with all, one and seq
relations how useful and natural explanations generated by the algorithms B+1, G+1 and
Gnext are considered. At the time we started to prepare this study, we did not distinguish
actions with an if relation yet. The difference between this and the second study is that
we use experts instead of novices as subjects. Furthermore, whereas in the previous
two studies we only asked subjects to indicate which explanations they considered most
useful, in this study we also ask them to indicate how useful. Besides the usefulness
of explanations, we also considered the experienced naturalness of explanations. The
exact description of naturalness follows in the procedure. Finally, in the first two studies
we did not consider explanations containing more than one mental concept because the
subjects provide short explanations themselves (see Table 4.2). In this study, however, the
subjects do get the possibility to select different mental concepts to explain one action,
e.g., a combination of a goal and a belief.

4.3.1 Method
Domain and training task. The domain of this study is cooking and the task being
trained is baking pancakes. In contrast to the training tasks in the first two studies, this
task is not very complex and dynamic, and it does not require interaction with other
players. We chose this relatively simple task because most people are familiar with it.
Not being dependent on scarcely available expertise allowed us to have a larger number
of subjects.

Subjects. The study was performed with 30 subjects (18 male, 12 female) with an
average age of 32 (sd=9). The subjects rated their own cooking skills on a 5-point Likert
scale with an average of 3.6. Their education levels varied between Bachelor, Master and
PhD.

Materials. Figure 4.6 shows the goal hierarchy of the cooking agent. The agent was
implemented in the BDI language GOAL (Hindriks, 2009), and executed to generate
explanations automatically for all of the agent’s actions. The agent program was con-
structed such that it included actions of types all, one and seq. Action 1, 6, and 10 are
of type one (mutually exclusive actions), action 2, 3, 4, and 5 are of type all (actions
that all need to be executed), and action 7, 8, 9 and 11 are of type seq (actions that all
need to be executed in a particular order). We let the explainable agent use the expla-
nation algorithms B+1, G+1 and Gnext to generate three explanations for each action.
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Post hoc analysis excluded action 11 from the statistical result analysis as this action was
misplaced in the tree (see Results section).

Procedure. To investigate the effects of algorithm and action type on the perceived
usefulness and naturalness of explanations, we used a 11x3 between-subjects design (11
actions, 3 algorithms) with usefulness and naturalness as dependent variables. Subjects
were randomly assigned to the different explanation conditions with exactly 10 subjects
per condition. All subjects scored all actions for a particular explanation condition, re-
sulting in 10 measurements per action per condition.

The procedure of the experiment was as follows. Subjects were told to read the in-
structions (stating that the study was about developing smart agents for virtual training
purposes), after which they received the first feedback form. Subjects were asked to
write down their own explanations for the 11 actions listed on the form (see also the gray
boxes in Figure 4.6), as if they were the cook explaining to a student how to bake pan-
cakes. This feedback was aimed at extracting the ‘ideal’ explanations according to the
subjects. When finished, subjects received a second form. This form asked for 5-point
Likert feedback on the naturalness of each action’s automatically generated explanation
(1=not natural, 5=very natural). Subjects were asked to take the role of observer when
judging the naturalness of the explanation. Naturalness was explained as follows: “With
a natural explanation we mean an explanation that sounds normal and is understandable,
an explanation that you or other people could give”. When finished, a similar form was
presented for 5-point Likert feedback on the usefulness of the explanations. Subjects
were asked to imagine they were the student learning to cook when judging the useful-
ness. Useful was explained as follows: “Indicate how useful the explanations would be
for you in learning how to make pancakes”. Finally, subjects were presented with the
goal tree (the graphical representation of the goal hierarchy as shown in Figure 4.6). We
asked users to indicate all elements in the tree they deemed useful for giving an explana-
tion of each of the 11 actions, by putting the action number next to the element. Subjects
were asked to imagine they were the instructor cook when selecting elements. We call
this tree-based feedback. The purpose of this measure was to extract information about
what could be a good and feasible version of an explanation algorithm, given our way of
automatically generating behavior logs.
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Figure 4.6: Goal hierarchy of the cooking agent. The gray boxes denote the 11 actions used in the experiment.
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Actions Explanation types
Relation No. G+1 B+1 Gnext

one 1 3.8 2.4 3.6
6 3.4 2.3 2.0

10 3.0 3.4 1.7
all 2 3.7 3.2 2.9

3 2.8 2.9 3.6
4 2.8 3.0 3.7
5 2.9 3.0 3.7

seq 7 3.1 3.6 2.2
8 2.2 2.9 2.4
9 3.2 2.8 1.5

11 1.2 4.1 4.1

Table 4.7: Naturalness of actions per condition.

4.3.2 Results

To test our proposition that different action types require different types of explanations,
we performed a 3x10 2-way MANOVA with algorithm (3 conditions) and action (10 con-
ditions) as independent variables, and usefulness and naturalness as dependent variables.
Analysis showed a main effect of algorithm type (F (4, 538) = 3.973, p < 0.01), a main
effect of action (F (18, 538) = 1.917, p < 0.05), and an interaction effect between action
and algorithm (F (36, 538) = 2.638, p < 0.001). Post hoc testing (Tukey) for the influ-
ence of action alone on naturalness and usefulness revealed no significant differences.
This indicates that the actions were explained equally well according to the subjects,
meaning that no action had more natural and useful explanations than another. Post hoc
tests for the effects of algorithm type revealed a significant effect on perceived usefulness.
Inspection of the data showed that algorithm G+1 (parent goal as explanation) was rated
significantly more useful (p < 0.01) than the other two algorithms (Mean(G+1)=3.1,
Mean(B+1)=2.5, Mean(Gnext)=2.5). This indicates that there is a significant influence
of algorithm type on the perceived usefulness of the explanation, and that explaining an
action with its parent goal (Algorithm G+1) is the best default method. However, the in-
teraction effect, indicating that different actions need different explanations (supporting
our main proposition), is more important, as we will see next.

Tables 4.7 and 4.8 give an overview of the average naturalness and usefulness of the
actions per algorithm type, respectively. Figure 4.7 displays a frequency table, showing
for each action (listed vertically) which element(s) in the tree (listed horizontally) the
subjects chose to explain that action. The elements and their corresponding numbers are
shown in Figure 4.6.

As can be seen, actions 1, 2, 6, and 9 have higher scores on both measures when the
parent goal is given as explanation (algorithm G+1), while actions actions 3, 4, and 5 have
higher scores on both measures when the next action or goal is given as explanation (“I
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Actions Explanation types
Relation No. G+1 B+1 Gnext

one 1 3.8 1.7 2.9
6 3.3 2.1 2.0

10 2.0 3.3 1.0
all 2 3.8 2.4 2.8

3 3.0 2.5 3.5
4 3.0 2.5 3.7
5 3.1 2.5 3.7

seq 7 2.5 2.7 1.9
8 2.5 2.5 2.4
9 3.8 3.1 1.0

11 1.3 4.3 3.7

Table 4.8: Usefulness of actions per condition.

Figure 4.7: Frequencies of the tree elements that were selected as explanations for different ac-
tions. Actions number from 1 to 11, elements number from 1 to 43 and refer to numbers in Figure
4.6.

want to mix the ingredients”, algorithm Gnext), and actions 7 and 10 have higher scores
when the enabling condition (belief) is given as explanation (algorithm B+1). Action 8
does not have high scores on either of the algorithms. Action 11 has a high score when
explained by algorithm Gnext, but this is a side effect of two factors. First, it can be
argued that action 11 should have been placed under “I want to eat pancakes”. Second,
Gnext defaults to the top level goal when no next steps are available in the sequence,
which in our case happened to be the most logical option for explanation. We therefore
decided to exclude action 11 from our analysis.

Actions 2, 3, 4, and 5 are actions of the type all; they are all needed (in arbitrary
order) to achieve the parent goal. For 3, 4, and 5, the parent goal is not very helpful
for understanding the underlying actions, e.g., I put X in the bowl - because I want
to put all ingredients in the bowl. As can be seen in Figure 4.7, subjects included in
their own choice of elements the goal numbered 13 (“I want to make pancake mix”),
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indicating that subjects indeed need a more descriptive goal. Action 2 is well explained
by its parent goal, as indicated by the naturalness and usefulness scores as well as the
tree-based feedback.

Actions 1, 6, and 10 are actions of the type one. Action 1 and 6 score high on
using the parent goal as explanation, but in addition to that they seem to require extra
information for an adequate explanation. In Tables 4.7 and 4.8 we can see that for action
1 and 6 subjects preferred the goal two levels up in the hierarchy. Action 10 is well
explained by algorithm B+1. This is reflected in the tree-based feedback, as for action
6 and 10 subjects use the enabling conditions for the action and for the parent goal.
Action 6 seems to have a rather complex explanation structure using two goals and two
conditions.

As indicated by the tree-based feedback, enabling conditions in combination with the
parent goal are also used for action 7, 8, and 9; all three actions are actions in a sequence,
type seq. However, action 8 and 9 use only the enabling condition for the action itself,
while action 7 uses both the enabling condition for the action itself as well as the enabling
condition for the action’s parent goal. We will interpret these results in more detail in the
discussion.

Finally, we have conducted several standard correlations between the subject demo-
graphics and usefulness and naturalness. We found four significant correlations. Two
of the correlations were positive: the one between usefulness and naturalness (p <
0.001, r = 0.491), and the one between cooking skill and usefulness (p < 0.001, r =
0.145). The first correlation is as expected. It indicates that natural explanations are more
useful and vice versa. The second is somewhat counterintuitive: more experienced cooks
judge the explanations slightly more useful. This could be due to the fact that a better
cook is better able to understand the explanation in the first place, but as the correlation
coefficient is rather small, we do not pay further attention to this. Furthermore, we found
two negative correlations: between action number and naturalness (p < 0.001, r−0.200),
and between action number and usefulness (p < 0.01, r = −0.178). As actions were
always scored from top to bottom, and this corresponds to the action number, this might
indicate two different things: for the later actions it is more difficult to generate explana-
tions automatically, or, subjects got tired of scoring explanations. As we cannot decide
upon this, we do not pay further attention to it here.

4.3.3 Discussion

Our results indicate two things. First, the data support our proposition that different
actions need different explanations. Second, we failed to find support for our proposition
on how action types and explanation algorithms relate. This suggests that our notion is
too simplistic. We expected that all actions would be explained best by the action’s parent
goal, that seq actions would be explained best by the next action/goal in the sequence, and
one actions would be best explained by their enabling condition. However, looking at the
tree-based feedback, most of the actions seem to need at least one additional element for
explanation, in addition to their parent goal. The kind of additional information seems to
depend on the action’s role in the process and the action’s type (seq, all, or one).
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First, consider the actions of type all: action 2, 3, 4 and 5. According to the tree-
based feedback, only action 2 is explained well by only one element, its parent goal.
Action 3, 4 and 5 are well explained by the next action in the sequence according to
Table 4.8, but as subjects indicated in their tree-based feedback, they choose for a com-
bination of the parent goal and the parent’s parent goal. We currently cannot explain this
difference, but it does indicate that neither the enabling condition nor the parent goal are
sufficiently descriptive in this particular case, i.e., on their own they do not comprise a
useful explanation.

Second, consider actions 1, 6 and 10 which are of type one. The way this type of
action is modeled in the tree is such that the parent goal presents a choice, while the
enabling condition of the action’s parent explains why the choice has to be made. From
the experiment we learned that for this action type, the parent goal is not sufficiently
descriptive to provide a satisfying explanation. Instead, both the enabling condition of
the action and the enabling condition of the parent goal are needed.

Third, consider the actions 7, 8, 9, and 10 which are part of the same sequence (note
that 7, 8 and 9 are of type seq, but 10 is of type one). According to the tree-based
feedback (Figure 4.7), these actions should be explained by their parent goal and their
enabling condition, contrary to our expectation that such actions would need the next
action/goal in the sequence. In addition, actions 7 and 10 also need the enabling condition
of their parent’s goal in their explanations. A possible explanation for this difference is
that action 8 and 9 are in the middle of a sequence. Their parent goal explains what is
to be done, and the enabling condition explains where we are in the process. Action 10
does need its parent goal and its enabling condition because it is an action of type one.
The enabling condition of its parent goal needs to be given because it is also, though
implicitly, part of the sequence involving action 7 to 10. Action 7 can be explained in the
same way. It is the first action of a next phase in the process (baking). The parent goal of
action 7 is about that next phase, but it does not explain why we ended up in this phase.
This is what the parent goals’ enabling condition is about, therefore, action 7 needs again
two enabling conditions (its own and that of its parent goal).

4.4 Discussion and explanation guidelines
We will first provide a discussion on the results of the three studies, focusing on their
differences and similarities. We refer to the studies with instructors (Section 4.1), novices
(Section 4.2) and experts (Section 4.3) by Study 1, 2, and 3, respectively. Then, based
on the findings of these studies, we provide a set of guidelines for modeling explainable
agents and explaining their behavior.

4.4.1 Discussion
From the literature we learned that people adopt the intentional explanatory stance when
they explain (intentional) human behavior. In other words, human(-like) behavior is ex-
plained by mental concepts such as beliefs and goals. The results of Study 1 show that
it is possible to categorize the subjects’ explanations in beliefs and goals, i.e., they are



Studying user preferences for explanations 65

compatible with the intentional stance (we do not claim that this is the only way to cat-
egorize these explanations). In Study 3, the subjects’ explanations were not categorized
systematically, but an examination of the explanations provides a similar picture. Thus,
our results support the earlier findings showing that people explain human-like virtual
player behavior by the underlying beliefs and goals.

The results also support earlier observations that preferred explanations are relatively
short. We expressed explanation length by the number of elements in an explanation,
where an element is a fact, a goal, etc. In Study 1, the subjects’ explanations had an
average length of 1.3 elements, and in Study 3 the subjects selected an average of 1.7
elements from the goal hierarchy. The lower average in Study 1 might be due to the fact
that the subjects had to write down complete explanations, whereas in Study 3 they only
had to mark numbers of elements. So as expected, people’s explanations about virtual
player behavior usually only contain one or two elements.

The results discussed so far support our proposition that explanations contain a se-
lection of beliefs and goals. Therefore, it makes sense to examine people’s preferred
abstraction level and mental concept type.

In Study 1, except for explanations of type B+2, all explanation types (G+1, G+2,
B+1) were considered most useful for at least one action by the majority of the subjects.

In Study 2, for actions of type one and if, explanations containing a belief (B+1) were
clearly preferred, and for actions of type all and seq, also other explanation types (G+1,
G+2, B+1) were preferred for at least one action by most of the subjects. The results
of Study 2 are consistent with those in Study 1, in which only all and seq actions were
examined.

In Study 3, unlike Study 2, for all action types, explanations of type G+1 were on
average rated higher than those of type B+1. Like in Study 2, for action types one and
seq, Gnext explanations received relatively low ratings, and for actions of type all, they
were highly rated. The usefulness of type Gnext explanations is closely related to the
goal hierarchy to which it is applied. This will be discussed in more detail in the next
section. Interestingly, in the last part of Study 3, subjects often selected a combination of
a belief and a goal as their preferred explanation.

A remarkable difference between Study 1 and 3 on the one hand, and Study 2 on
the other hand is that goal-based explanations were generally stronger preferred in the
former, and belief-based explanations in the latter. A possible reason is that the subjects
in Study 2 (novices) were unfamiliar with the domain, whereas the subjects in Study
1 and 3 (instructors and experts) were familiar with the training task. Literature sug-
gests that, on average, beliefs carry more idiosyncratic information and are harder to
infer than goals (Malle, 1999). For subjects unfamiliar with a training task, belief-based
explanations may provide more information that they are not able to derive from the
context themselves than goal-based explanations. Experts may not realize that goal-
based explanations are easier to infer for trainees. A second explanation is that experts,
more than non-experts, focus on the general characteristics of a virtual character’s behav-
ior (Klein, 1998). The instructors in Study 1 ought to know which explanations are useful
for trainees as they have, besides being expert on the training task, didactic knowledge.

To conclude, action type is sometimes, but not always, predictive for preferred ex-
planation type. Of all studies, only Study 3 indicates to what extent explanations are
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preferred. The highest usefulness scores on action type all, one and seq are 3.4, 3.0 and
2.9, respectively. The scores are not low (all above the average of 2.5), but not very high
either. In the experiments, we only provided subjects with explanations containing one
element, but the results seem to indicate that both beliefs and goals carry important in-
formation. Thus, though the results of the three studies do not show which explanation
type is preferred for each and every situation, they provide directions for modeling and
explaining virtual player behavior. In the next subsection we present a set of guidelines
for designing and explaining agent behavior.

4.4.2 Modeling and explanation guidelines
The design and explanation of agent behavior are closely related in our approach. First,
the elements in an agent’s behavior representation determine the content of its explana-
tions. Namely, in our approach explanations consist of the beliefs and goals underlying
an action. Though a virtual agent’s beliefs and goals remain unknown for users that only
see its behavior, they become explicit when the agent’s behavior is explained.

Second, the way the elements in an agent’s behavior representation are organized
also determines the content of its explanations. Two behavior representations that con-
tain same elements, but that are structured in a different way, may produce the same
observable agent behavior, but generate different explanations about it. Figure 4.8, for
instance, shows two possible positions of action E in a goal hierarchy. As both relations
in this hierarchy are of the type seq, the position of action E does not affect the agent’s
observable behavior, but it may influence the way action E is explained. When action E
is explained by using explanation algorithm G+1, it will be explained by either Goal A
(left goal hierarchy in Figure 4.8) or Goal B (right goal hierarchy in Figure 4.8).

Figure 4.8: First example of two goal hierarchies that generate the same behavior, but different
explanations.

A second example in which the organization of the behavior representation matters
for the generation of explanations, but not for the generation of behavior is the following.
Consider the two goal hierarchies in Figure 4.9. Goal B and C can be modeled as two
neighboring goals or as goal and subgoal, e.g., when goal A, B, and C represent Report
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to head officer, Go to the head officer and Report new information, respectively. In the
first case, achieving goal B enables the achievement of goal C, and in the latter, goal C is
achieved by achieving B.

Figure 4.9: Second example of two goal hierarchies that generate the same behavior, but different
explanations.

Of course, developing agents for virtual training always deserves ample attention.
But as illustrated, when developing explainable agents it is particularly important to pay
attention to the elements in a behavior representation and the way they are organized.
Thus, though they may seem obvious, the following two modeling guidelines are crucial
for developing useful explainable agents.

• Guideline 1: the goals and beliefs in a goal hierarchy should be meaningful.

• Guideline 2: the internal structure of a goal hierarchy should be meaningful.

At the end of the overall discussion, we concluded that both beliefs and goals carry
important information for explanations. The results showed that beliefs directly above
an action (B+1) were considered most useful for explaining that action. Regarding goal-
based explanations, the studies are less conclusive; several goal-based explanation types
were considered useful (G+1, G+2 and Gnext) for different actions. But all together,
goal-based explanations of type G+1 were most often preferred and highest rated. More-
over, people tend to use explanation types B+1 and G+1 together. Therefore, we propose
the following default explanation guideline. This guideline applies to all action types and
is supported by the results of all three studies.

• Guideline 3: an action should be explained by its goal G+1 and belief(s) B+1.

In addition to this general guideline, we propose two more specific guidelines that
take action type into account. The first guideline concerns the addition of a Gnext goal to
the default explanation of G+1 and B+1. In contrast to G+1 and G+2 explanations, Gnext
explanations do not contain goals from a particular level above the action. The level of
the Gnext goal depends on the relations in the goal hierarchy. In Study 3 we found that
Gnext explanations were considered useful for actions of type all whose parents had a
seq relation to their parents. Addition of a Gnext goal to the explanation may also be
useful for other action types, but we have no evidence for that. Thus, we propose the
following guideline that forms an exception to guideline 3.
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• Guideline 4: an action of type all whose a parent goal has a seq relation should be
explained by its goals G+1 and Gnext, and belief(s) B+1.

Another exception to guideline 3 concerns actions of the type one. The left side
of Figure 4.10 represents a situation where action B is followed by action C or D, for
example, the action Take money is followed by either Cycle to the shop or Drive to the
shop. Action C and D are explained by goal A (G+1), e.g., Buy ingredients. However,
a goal can only have one relation to its subgoal/actions, so the goal hierarchy in the left
side is not allowed. The right side of Figure 4.10 shows how this situation should be
represented. Goal A has a relation seq to its children, and a new goal X is introduced,
e.g., Go to the shop, with a relation one to its children. Now, when action C and D are
explained by their parent goal X, the explanation is not informative (I cycle to the shop
because I want to go to the shop). In this case, it would be better to provide goal A as an
explanation (I cycle to the shop because I want to buy ingredients).

Figure 4.10: Incorrect (left) and correct (right) goal hierarchy with one relations.

Although it may result in redundant goal-subgoal relations, we believe that from an
explanation point of view a goal should have only one relation to its subgoals, as this
simplifies interpretation of the behavior representation. The following guideline also
overrules guideline 3, and states that instead of goal G+1, such as dictated by guideline
3, goal G+2 should be provided.

• Guideline 5: an action of type one should be explained by its goal G+2 and be-
lief(s) B+1.

Guidelines 4 and 5 are two examples of how explanations following guideline 3 can
be improved, that is, by providing other beliefs and goals than dictated by the default
guideline, or by providing extra beliefs or goals in addition to the default guideline, re-
spectively. Based on our studies, we were only able to propose two action-type-specific
guidelines, but there may be more guidelines that would improve the usefulness of ex-
planations.
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4.5 Chapter conclusion
In this chapter we presented and analyzed the results of three user studies investigating
preferred explanations of virtual player behavior. From the analyses, we extracted a set
five of guidelines for developing and explaining cognitive models. In general, the beliefs
and goals in a goal hierarchy should be meaningful, as well as the way they are organized.
By default, an action should be explained by its goal G+1 and belief(s) B+1. In addition
to this general rule, we also introduced two guidelines for specific action types.

The aim of the studies presented in this chapter was to evaluate and improve the
explainable agent approach proposed in Chapter 3. The explainable agents developed
according to our approach, in turn, aim to help trainees to learn from virtual training.
Therefore, in the next section we will validate our approach by testing whether explana-
tions do affect performance.





Chapter 5

Effects of explanation on
performance

In Chapter 3, we introduced an approach for developing explainable agents. In Chapter
4, we investigated which of these agents’ explanations users prefer. To evaluate our ex-
plainable agent approach, including the explanation guidelines introduced in Chapter 4,
we performed three empirical studies investigating the effects of explanations on perfor-
mance, where the explanations were generated according to our BDI-based approach.

The first two studies aimed to investigate the effects of BDI-based explanations on
learning from virtual training. We set up two studies in parallel in two domains, on-
board firefighting and negotiation, respectively. In the first study, we intended to conduct
a between-subjects experiment with an experimental (explanation) and a control (no-
explanation) condition, and measure understanding of the training task of all subjects.
We were, however, not able to demonstrate a within-subjects learning effect in the exper-
imental condition, and therefore, did not conduct the control condition. Similarly, in the
second study, before we conducted a between-subjects experiment comparing an expla-
nation and a no-explanation condition, we tested for a learning effect of virtual training
in general. Again, we were not able to demonstrate a learning effect. In Section 5.1 and
5.2 we will describe the two experiments, and discuss possible reasons for not finding a
learning effect.

In the third study, described in Section 5.3, we explored whether our approach to
explainable agents can also be used for other purposes than training. Namely, we inves-
tigated the effects of the explanations on coordination in human-agent teams (Harbers
et al., 2011a).

5.1 Learning in firefighting training
In this section, we describe a within-subjects, repeated measurement experiment, testing
whether explanations generated according to our approach have an effect on trainees’
learning in virtual training.
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5.1.1 Method
Training task. The training task in the experiment was to deal with a fire aboard a
ship. We used CARIM, the virtual training system for onboard firefighting as described
in Section 4.1. CARIM is used to train the tasks of an Officer of the Watch (OW), who is
in charge of handling fire incidents aboard a navy frigate. From the Machinery Control
Room of the ship, the OW contacts his team, develops a plan to contend the incident,
gives orders, monitors the events, and adjusts plans if necessary.

Design. The experiment has a within-subjects design, in which understanding of the
tasks of an OW is measured twice, before and after the subject receive explanations
about agent behavior.

Subjects. The study was conducted with 10 subjects (5 male, 5 female) with an average
age of 25 (sd=3.5). The subjects had BSc or MSc education levels, and they were all
unfamiliar with the training task.

Materials. We recorded a virtual training session in CARIM in which the OW success-
fully dealt with a fire aboard a ship. The video takes about 15 minutes. We used a movie
instead of letting the subjects play a scenario because they had insufficient task and do-
main knowledge to finish a complete training session themselves. Moreover, the course
of a CARIM training scenario depends on the player’s actions, and by using a movie the
scenario was equal for all subjects.

Figure 5.1: The interface of the explanation application with a list of all actions (left) and an
explanation (right).

We developed an application through which the subjects could request explanations
about the virtual players’ actions (see Figure 5.1). These explanations were generated
according to the approach described in Chapter 3 and 4. The interface of the application
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showed a list with all actions of all players (including the OW) in chronological order.
By clicking on an action, the corresponding explanation appeared. Explanations can be
provided during the training or after the training in an after action review. An advantage
of providing explanations during the training is that the user receives guidance during
the session and can use the explanations immediately. However, pausing the scenario to
provide explanations may interrupt the flow of the game (video in this case), whereas pro-
viding explanations while the scenario continues could cause an overload of information
to the user. An after-action review allows the trainee to digest explanations calmly with-
out interrupting the scenario. Therefore, we chose to develop an application providing
explanations after the training was over.

We developed a test to measure a subject’s understanding of the training task. The
test contained 40 sentences of which the subjects had to indicate whether they were true
or false. Questions were for instance: “The leader attack team and the leader contain-
ment team see each other during the scenario” (true) and “Different attack teams are
extinguishing the fire simultaneously” (false).

Finally, we developed a questionnaire asking the subjects’ opinion on the quality and
usefulness of the explanations. The questionnaire contained five statements, and the and
subjects could indicate to what extent they agreed with the statements on a scale from
1 to 5, where 1 = completely disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 =
completely agree.

The materials used in this experiment, the video, explanation application and two
questionnaires, were all in Dutch. The examples used in this section and the questions
mentioned in the results section are thus translated from Dutch to English.

Procedure. First, the subjects watched the recorded training session in CARIM. They
were told to make sense of what they were seeing as good as possible, and that they would
have to answer questions about the domain and the tasks of an OW. After watching the
video, the subjects were asked to make the test with 40 multiple choice questions (pre-
test). Subsequently, they were instructed to request explanations about each and every
action of all virtual players’ except the OW. They had to click on the actions so that
they would be actively involved in requesting explanations. Then, the subjects were
administered the same 40-item test (post-test). Finally, the subjects were asked to give
their opinion on the quality and usefulness of the explanations.

5.1.2 Results
The first time the subjects were administered the test, the average number of errors was
11.8 (sd=3.2) out of 40, and the second time the average number of errors was 11.7
(sd=3.3). The difference is not significant (paired t(9)=0.14, p=0.90).

Table 5.1 shows the results of the final questionnaire, indicating the subjects’ opin-
ions. The first question was answered quite positive. In general, subjects indicated that
they understood what was happening in the movie. On average, the subjects were neutral
about the difficulty of the test. Results on the third and fourth question show that the sub-
jects did on average slightly disagree on the statements that the explanations helped to
understand the scenario and answer the questions. As a group, the subjects were neutral
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Statement Score
1. I understood what was happening in the movie. 3.9 (sd=1.2)
2. I found it easy to answer the true/false questions. 2.9 (sd=1.1)
3. The explanations helped to understand the scenario. 2.5 (sd=1.0)
4. The explanations helped to answer the questions. 2.5 (sd=0.8)
5. If I would train for OW, I would request explanations. 3.1 (sd=1.1)

Table 5.1: Average ratings on a 1-5 scale (n=10).

on whether they would make use of the possibility to request explanations if they would
train for OW.

5.1.3 Discussion
The goal of this experiment was to test whether explanations generated according to our
approach increase trainees’ learning. The results show that the explanations did not help
trainees to achieve a better understanding of the task. It is likely that these results are, at
least partly, explained by a limited usefulness of the explanations. Namely, besides that
the explanations did not lead to increased understanding, they were also not perceived as
being highly useful.

The results may have been influenced by the way the explanations were offered.
Namely, the explanations were provided after the entire video clip of the training ses-
sion, and not immediately following a virtual player’s action. It might be that an ex-
planation is more useful when provided immediately after an action, as the trainee will
better remember the context of the action. Though explanations may have a larger effect
when provided immediately after an action, several subjects remarked that viewing the
mere list of actions in the explanation application was helpful in understanding the sce-
nario (see Figure 5.1). It could be that a combination of explanations during a training
scenario and a summary of the played scenario afterwards is most preferable.

In a pilot session before the actual experiment, we asked three subjects to request
as many explanations as they liked. These subjects only requested a few explanations.
To test the effect of the explanations, we therefore instructed the subjects in the actual
experiment to request explanations for each and every action. This is possible in an ex-
periment, but in an actual application it is likely that trainees quit requesting explanations
when they are not perceived as being useful.

Some of the subjects remarked that not all answers could be literally derived from
the video and the explanations. This was done on purpose, however, to measure general
understanding of the task instead of the subjects’ memory. Remarkably, several of the
subjects said that they found the test easier when they made it a second time, but they
did not answer more questions correctly. An explanation may be that these subjects had
less difficulty in understanding the questions themselves the second time because they
got used to the terminology. So the questions seemed easier, but that was not because the
subjects had a better understanding of the domain.
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5.2 Learning in negotiation training
In this section we describe a study that investigates whether there is a learning effect of
virtual training with explainable agents (Broekens et al., 2011). The study was performed
in collaboration with the TU Delft, and as part of another research project, the virtual
training also involves emotion expressions of the agents. In order to be complete, we
will describe the questions and results related to emotion expression, but the focus is on
the role of explanation in virtual training.

There are several differences between this and the previous study. First, the domain
in this study is negotiation instead of onboard firefighting. Second, the subjects in this ex-
periment actually play a training scenario and interact with an explainable virtual agent,
in contrast to watching a video of a training session. Third, explanations are offered dur-
ing the training instead of afterwards. Our proposition is that virtual negotiation training
with an explainable agent improves negotiation skills.

5.2.1 Method
Domain and training task. Literature on negotiation distinguishes (1) a preparation,
(2) a joint exploration, (3) a bidding, and (4) a closing phase (Broekens et al., 2010b). The
preparation takes place before the negotiation partners meet, and involves the collection
of information about one’s own and the partner’s desires. In the exploration phase, the
negotiation partners start to explore each others’ wishes. Subsequently, in the bidding
phase the negotiation partners can make actual bids, and in the closing phase the partners
leave each other with or without an agreement.

A mistake often made by novices is that in the joint exploration phase, they only
explore preferences on issues, e.g., the height of a salary, and forget to ask about the
other’s interests, e.g., the need for money to pay the mortgage. It is important to learn
that by exploring someone’s interests, solutions on issues that are profitable for both
partners can often be found, e.g., a lower monthly salary but with a yearly bonus. The
training scenario we used in this study targets at helping trainees to become aware of the
importance of interests in achieving a good outcome of a negotiation.

Design. We performed a between-subjects experiment with an experimental and a con-
trol condition. The subjects in the experimental condition received virtual training with
explanations and emotion expressions, and the subjects in the control condition did not
receive virtual training. The subjects were randomly assigned to a condition.

Subjects. A total of 18 subjects (12 male, 6 female) with an average age of 27.0
(sd=4.0) participated in the experiment, 9 subjects in each condition.

Materials. We used a virtual training system for negotiation that has been developed
at the TU Delft in the context of a large research project on negotiation support sys-
tems (Hindriks and Jonker, 2008). The training scenario and the explanation capabilities
of the virtual agent were developed for this study in particular.
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Figure 5.2: Impression of the virtual negotiation training system. A translation of the Dutch text
in the thinking cloud is: “I want to reach a compromise on working hours, and you just proposed
to work 4 days but with the possibility of overtime work.”

The training scenario involves a negotiation about terms of employment. A human
player, the trainee, has the role of an employer, and a virtual agent is playing the candidate
employee. The trainee can interact with the agent by selecting a sentence from two to
four offered options (see Figure 5.2). The virtual agent communicates in natural speech,
pre-recorded by a professional voice actor. Furthermore, the agent is able to express
three basic emotions as feedback to the trainee’s selected response option: happiness,
sadness, and anger. Happiness signals a -for the virtual character- positive outcome of a
chosen option, sadness signals a potentially bad outcome, while anger signals an actual
bad outcome. The system keeps track of how often a trainee makes the agent happy,
sad, and angry in one session. These are the emotion counts. The training scenario was
reviewed and approved by a professional negotiator.

The training scenario focuses on the exploration phase of a negotiation. The trainee
and the character explore each others’ standpoints on four topics, i.e., contract type,
salary, working hours, and traveling time. The sentences that the trainee can select
throughout the scenario either address interests or issues. The issues and interests in
the scenario are based on a diary study in which 8 subjects were asked to keep track of
their negotiation for a new job or a new house. When all topics are explored, the trainee
constructs one complete bid by selecting a partial bid for each of the four topics. The
partial bids that the systems offers the trainee to select from, depend on his behavior in
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Figure 5.3: Part of the goal hierarchy of the negotiation agent.

the exploration phase. Only when the trainee completely explored the agent’s interests
on a topic, a partial bid leading to a win-win solution appears among the options. When
the trainee did not completely explore the agent’s interests on a topic, only options with
compromise agreements and no agreements appear. The value of the trainee’s complete
bid is expressed by a number between 0 and 8, representing the outcome utility of the
deal.

The agent was developed according to our explainable agent approach, and thus able
to explain its actions to the trainee. Figure 5.3 shows a part of the goal hierarchy of the
negotiation agent. Note that in this domain, the agent’s actions are all speech acts. The
action to reject a bid of more than 40 hours per week is for instance explained by the
goal to avoid working more than 40 hours per week, and the belief that the employer just
made an offer to work more than 40 hours per week.

In contrast to the previous study, we chose to offer explanations about agent behavior
during the training because they are most relevant at that time. A disadvantage of provid-
ing feedback during a training is that it can interrupt the flow of the scenario. We aimed
to avoid that by offering the explanations in a natural way, i.e., in the form of thinking
clouds (see Figure 5.2).

Procedure. Table 5.2 shows the procedures for both conditions. First, all subjects were
asked to answer four questions about their negotiation experiences, the negotiation ques-
tions. They rated their (1) daily life self-assessed negotiation skills, (2) negotiation liking,
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(3) self-assessed negotiation frequency, and (4) negotiation perseverance when negotiat-
ing. Rating was on a 5-point Likert scale.

Second, the subjects in the experimental condition played the negotiation scenario
with explanations and emotions, which we refer to by training. Subjects were instructed
to play as well as possible. This is the experimental manipulation.

Third, after the training, the subjects in the experimental group had to answer (5-
point Likert) questions on whether they understood the agent’s considerations, whether
the agent made clear what it wanted and thought, whether emotions played a role, and
whether the virtual agent expressed emotions. These four questions are called the per-
ception questions.

Fourth, we asked all subjects to watch five short recorded negotiation scenes and to
describe what happened during the scene. We call this the scenes with questions. The
subjects’ descriptions will be evaluated in future work by a professional negotiator on
how much they show negotiation proficiency. We thus cannot provide the results of this
measure here.

Fifth, all subjects ended the experiment playing the negotiation scenario without emo-
tion expressions and explanations, this is the test. Subjects were again asked to play as
well as possible. Explanations and emotions were omitted in this scenario to be able to
test the influence of emotion and explanation in training in future experiments.

Sixth, subjects in the control condition answered the perception questions after the
test. Thus, subjects in both groups answered the perception questions immediately after
the first time they did the negotiation scenario.

Measures. As outcome measures (dependent variables) we compared subjects perfor-
mance on the test between the experimental and control condition. We counted the
number of times the subject made the agent happy, sad, and angry (even though these
emotions were not expressed by the avatar in the test scenario) as well as recorded the
outcome utility of the deal (a number between 0 and 8). As mentioned above, future
work includes subjects’ scene descriptions coded by a professional negotiation expert.

Experimental condition Control condition
Negotiation questions Negotiation questions

↓
Training (expl+emo)

↓ ↓
Perception questions

↓
Scenes with questions Scenes with questions

↓ ↓
Test Test

↓
Perception questions

Table 5.2: Procedures in the experimental and control condition.
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5.2.2 Results

Table 5.3 shows the subjects’ performances on the training and test. To investigate our
proposition that virtual negotiation training with an explainable agent improves negoti-
ation skills, we first performed a within-subjects analysis (n=9) of the training using a
repeated multivariate analysis with as output variables the outcome utility and the emo-
tion counts (happy, angry and sad). The results showed that the subjects’ performances
were not significantly different for the training versus the test, thus no measurable learn-
ing effect of training (F(4, 5)=0.311, p>0.1). To further test our proposition, we then
performed a between-subjects analysis (n=18) comparing the performance on the test
between the subjects in the control and the experimental condition. This again did not
show a significant result (F(4, 13)=1.02, p>.1).

Exp. group Exp. group Control group
Training Test Test

Outcome utility 3.6 (sd=1.3) 4.3 (sd=1.9) 3.7 (sd=1.3)
Agent made happy 8.6 (sd=5.0) 10.8 (sd=4.5) 7.4 (sd=2.7)
Agent made sad 3.6 (sd=1.9) 5.6 (sd=2.2) 7.0 (sd=2.1)
Agent made angry 1.7 (sd=0.9) 1.2 (sd=1.0) 1.8 (sd=1.4)

Table 5.3: Average outcome utilities (0-8) and emotion counts of subjects in the experimental and
control group on the training and test.

In order to test whether explanations during negotiation affected the subjects’ un-
derstanding of the agent, we performed a multivariate between-subjects analysis (n=18)
with the condition (experimental versus control) as independent, and the scores on the
four perception questions as dependent variables. This showed a significant effect (F(4,
13)=3.45, p=0.04). Looking at the univariate effects on the four questions separately, we
found that the effect on whether emotion played a role was in the opposite direction of
what was expected. Namely, emotion played a more important role in the test (m=3.9)
than during the training (m=2.9) (F(1,16)=7.3, p=0.015), while during the training the
agent expressed emotions and during the test it did not. The effect on whether the agent
explained what he wanted was in the expected direction, i.e., higher (m=4.4) for the
training than for the test (m=3.8), (F(1,16)=3.27, p=0.89). Apparently, subjects tended
to understand agents showing their considerations and goals better than agents showing
no underlying thoughts.

Finally, we performed a correlation analysis of the negotiation questions with the
negotiation performance (see Table 5.4). The analysis showed that only the correlation
between self-reported negotiation frequency and the number of times the subject made
the agent sad was significant, while the correlations between frequency and utility as well
as the number of times the subject made the agent happy approached significance. This
indicates that performance on the virtual reality simulation depends on actually doing
negotiations in real life showing convergent validity of the training.
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Utility Happy Sad Angry
Skill 0.070 0.050 0.069 -0.361

0.782 0.844 0.786 0.141
Liking 0.163 0.246 -0.151 -0.290

0.519 0.326 0.550 0.243
Frequency 0.418 0.443 -0.498 -0.204

0.085 0.066 0.036 0.416
Perseverance 0.289 0.174 0.080 -0.357

0.245 0.489 0.754 0.146

Table 5.4: Pearson correlations (on top) and significances (below) between measured performance
and perceived subjects’ negotiation behavior (n=18).

5.2.3 Discussion

Our results show that, even if a virtual training is setup in a rigorous way (expert eval-
uation of scenario, based on case studies of subjects, validated affective expressions,
validated explanation method, a simple scenario setup with only one training goal), it is
hard to show measurable effects of virtual training alone. We give five reasons that could
explain this finding.

First, we used a relatively small number of subjects (n=18), and the results may be
caused by a lack of power. Second, there is evidence in education literature that learn-
ing from pure exploration is less efficient than from guided exploration (Kirschner et al.,
2006). We did not provide additional instructions to the subjects because we were primar-
ily interested in the effects of the training itself. Third, subjects were asked to perform
as good as possible in both the training and the test. It may be, however, that during the
test, the subjects explored other possibilities than in their first session. Thus, they may
have explored more in the test instead of trying to optimize their performance. When
their training performance was already quite good, this exploration may have suppressed
a possible within-subjects effect. Fourth, the analysis of five negotiation scenes before
the test may have influenced the subjects’ test performance in a positive way. This in-
fluence may have overshadowed the effect of the training. Fifth, our external negotiation
expert has not yet analyzed the textual replies on the questions about the movie scenes.
It is well possible that there is a measurable effect here.

We have provided five reasons that may explain the lack of measuable effects of
virtual training alone. To determine which of them explain(s) our results, more research
is needed.

5.3 Team coordination

The previous two studies investigated the effects of explanations on learning. In contrast
to those, the study described in this section tests the effects of BDI-based explanations
about agent behavior on coordination in human-agent teams. Humans easily adapt their
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behavior to entities with other cognitive abilities than their own. For instance, most
people automatically choose simpler words when they talk to children than when they
talk to adults, and many people are able to interact well with their pets even though those
cannot speak at all. Also in human-agent interaction, the key of good interaction is not
that the other, the agent in this case, acts as human-like as possible. Instead, agents should
facilitate humans’ adaptation to them by being transparent and observable (Bradshaw
et al., 2011). Knowing more about an agent, e.g., its capabilities, goals, and intentions,
allows humans to understand and predict the agent’s behavior better, and to adapt their
own behavior to that of the agent more easily. Therefore, we believe that explanations
about agent behavior can improve coordination in human-agent teams.

This idea links to the teamwork-centered approach when designing autonomous sys-
tems, called coactive design, proposed by Johnson et al. (2011). According to the coac-
tive design approach, the design of autonomous agents should be led by the underlying
interdependence of the joint activity in the human-agent system. In other words, under-
standing of the agents’ joint activities should be used to shape the implementation of
agent capabilities. When human-agent teams have to perform tasks that involve a large
amount of coordination, it is important that the human(s) can understand and predict
the behavior of the agent(s). Therefore, in such situations, agents should be capable of
providing explanations that increase human understanding in their behavior.

To test the effects of explanations on human-agent coordination, the BlocksWorld for
Teams (BW4T) testbed for team coordination was used (Johnson et al., 2009). In BW4T,
a team of players has to perform a joint task in a virtual environment, and the performance
of the team strongly depends on the level of coordination among the players. BW4T
allows for games with human-human, agent-agent, and human-agent teams of variable
sizes. Our proposition is that human-agent teams perform better on the BW4T task when
agents explain their behavior.

5.3.1 Method
Design. The experiment has a within-subjects design with an explanation and a no-
explanation condition. In the explanation condition, the subjects cooperate with an agent
explaining its behavior, and in the no-explanation condition, subjects cooperate with an
agent that does not explain its behavior. The order of the two conditions, explanation and
no-explanation were assigned counter-balanced to the subjects, to correct for possible
learning effects from the first to the second trial.

Subjects. A total of 16 subjects (male = 14, female = 2) with an average age of 27
(sd=3.5) participated in the experiments.

Materials. In the BW4T coordination test-bed1, the team’s goal is to deliver a sequence
of colored blocks in a particular order as fast as possible. A complicating factor is the
that players (human or agent) cannot see the blocks from every position, and they cannot
see each other. Figure 5.4 displays a screenshot of a BW4T game session, showing the

1The BW4T test-bed has been developed at the Florida Institute for Human and Machine Cognition (IHMC)
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environment in which the players have to search for blocks. The left picture displays all
blocks and players in the game, and the right picture shows what one player can see. A
player can only see the blocks in a room when he is inside that room. The status bar
below the Dropzone (gray area) shows which blocks need to be delivered.

Figure 5.4: Simulator view (left) and player view (right). The blocks that need to be delivered are
respectively orange, light green, dark purple, light blue, dark green and red. Bot0 in the right hall
is holding an orange block and bot1 in room C2 is holding a light green block.

To deliver a block successfully, a player has to pick up a block of the right color and
drop it in the Dropzone. A player can only carry one block at a time. When a player drops
a block of the wrong color in the Dropzone or any block in a hall, the block disappears
from the game. Human players can perform actions in the environment through a menu
that appears on a right mouse-button click. The menu offers options to go to a place
(room, hall or Dropzone), pick up a block, drop a block and send messages.

A team’s performance on the BW4T task is measured by the speed of completing
the task. Time of task completion is the dependent variable in the experiment. BW4T
is designed such that the task involves a large amount of interdependence among the
players, and requires coordination to achieve a good performance. For instance, it is
inefficient when one player is searching in a room that has just been checked by another.
And if a player is going to deliver a particular block, the others should not do that as well.
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To coordinate, players can send messages to each other, which appear in the chatbox
below the Dropzone. Players can inform others about what they do, where they are and
what they see. Furthermore, players can see the same status bar. So when a player
delivers a block of the right color, the other players will know. Finally, only one player
can be inside a room or the Dropzone at the same time. When a player tries to enter a
room that is occupied, a red bar appears indicating that someone is inside.

For this study we designed a cooperative agent, which assumes that other players are
cooperative as well. The agent displays the following behavior. It starts to check rooms
and once it knows about a block that can be delivered, it starts to deliver that block. The
agent uses information about blocks in rooms received from other players. When another
player announces that he is going to check a particular room, the agent will not check
that room. When another player tells that he is going to deliver a block, the agent will
start to search or deliver the next block in the sequence. The agent is able to deal with
humans that vary their strategy, make mistakes, and forget to tell things. Namely, the
agent revises its plans when a room contains other blocks than it expected, and when the
agent holds a block that is not needed anymore, it will drop the block in a room.

As the aim of this study is to explore the effect of explaining agent behavior on coor-
dination in human-agent teams, we need to be able to manipulate the agent’s communi-
cation behavior. Inspired on the KaOS policy framework (Bradshaw et al., 2003), we use
policies to regulate the agent’s behavior. This is practical because it avoids changing the
agent’s programming code in order to adapt its communication behavior. We distinguish
the following three communication policies.

• Inform other players about your observations
• Inform other players about your actions
• Provide explanations for your actions

The first policy entails that if the agent observes something in the virtual environment,
it sends a message to inform all other players about its observation. Such messages are,
for example, ‘Room A1 contains a pink block and a dark blue block’ and ‘Room B2
is empty’. The second policy prescribes that if the agent performs an action, it has to
send a message to inform all other players about it. Messages informing about actions
are for instance ‘Im going to Room C1’, ‘I picked up a red block’ and ‘I just dropped a
gray block’. The third policy prescribes the agent to explain an action, that is, to provide
the underlying goal of that action. Examples explanations for actions are ‘I am going to
Room B3 to search for an orange block’ and ‘I am going to Room C2 to deliver a light
green block’.

Note that explanations only contain a goal (generated by algorithm G+1), and no
beliefs (which could be generated by algorithm B+1). In this context, the agent’s beliefs
are its observations, and the agent’s communication about its beliefs are controlled by
a separate communication policy, i.e., the first policy. We believe that it is important
to separate the communication about beliefs and goals in this application because that
allows the agent to inform players about its observations when they are made, and not
just when explaining an action.

BW4T is implemented in Java and offers a basic agent class in which a BW4T agent’s
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behavior can be implemented. At the TU Delft, a connection between BW4T and the
BDI-based (Belief Desire Intention) programming language GOAL (Hindriks, 2009) has
been established, which also allows for the implementation of BW4T agents in GOAL.
Following our explainable agent approach, we implemented our BW4T agent in GOAL
so that it was able to explain its behavior in terms of the goals and beliefs underlying its
actions.

Procedure. The subjects received an explanation of the BW4T task and how to direct
their ‘bot’. Subsequently, they had to play a familiarization session, in which they had
to deliver three blocks on their own. This session was included to make sure that the
subjects understood the game, knew how to control their bot, and to give them time to
think about their strategy in the actual trials. No agent participated in the training session
yet, to prevent that it would shape the subjects’ expectations about the agents in the trial
sessions.

For the two trial sessions, subjects were instructed to perform the task with the agent
as a team, as fast as possible. They were told that the agent could show any kind of be-
havior, e.g., not search in the right places or not take the subject’s messages into account,
but that the agent would not lie to them. In both trial sessions, the human-agent team
delivered six blocks of different colors. The colors and positions of the blocks differed
per session, but the total traveling distance to deliver all blocks was the same. After both
sessions, the subjects were asked to fill in a short questionnaire.

5.3.2 Results

The time of completing the BW4T task was used as a measure for team performance. In
the explanation condition, the average time (n=16) to complete the task was 596 seconds
(sd=118), and in the no-explanation condition the average time was 593 seconds (sd=81).
These averages are obviously not significant (paired t(15)=0.07, p=0.95).

We also examined whether there was a learning effect from the first to second session.
The average time (n=16) to complete the sessions was 617 seconds (sd=118) for the first
session, and 572 seconds (sd=76) for the second session. These results show that the
subjects completed the task faster in the second session than in the first session, but the
difference is not significant (paired t(15)=1.2, p=0.26).

In the questionnaire administered after each session, we asked subjects to judge their
own, the agent’s, and their common performance on a scale from 1 to 7. Table 5.5 shows
the averages in both the explanation condition (EX) and the no-explanation condition
(NE).
Although the average rated performance is higher in the explanation condition than in
the no-explanation condition, statistical analysis shows that these differences are not sig-
nificant (paired t(15)=0.4, p=0.67; paired t(15)=0.9, p=0.36; paired t(15)=0.8, p=0.41,
respectively).

In order to investigate how well subjects evaluate performance, we calculated the
correlations between the self-evaluations in Table 5.5 and the actual team performances.
Surprisingly, the subjects’ self-evaluations have a low or even negative correlation with
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EX NE
I was effectively performing the task 5.9 (sd=0.7) 5.8 (sd=1.1)
The agent was effectively performing the task 6.0 (sd=1.3) 5.5 (sd=1.3)
We were effectively performing the task as a team 5.7 (sd=1.6) 5.1 (sd=1.7)

Table 5.5: Estimations of performance on a 1-7 scale (n=16).

the actual performances. Three of the negative correlations are significant (α=0.05): eval-
uated human performance and actual team performance in the no-explanation condition
(R=-0.49), evaluated agent performance and actual team performance in the explanation
condition (R=-0.50), and evaluated team performance and actual team performance in the
explanation condition (R=-0.55). The results show that subjects make better estimates of
their own performance in the explanation condition, and better estimates of the agent’s
and the team’s performance in the no-explanation condition.

In the questionnaire we also asked the subjects to judge how well they understood the
actions and motivations of the agents, and how well the agents seemed to understand their
actions and motivations. The results in Table 5.6 show that the subjects in the explanation
condition had a significantly better idea of what the agent was doing than subjects in the
no-explanation condition (paired t(15)=2.4, p=0.030). Though the other results are not
significant, for all questions understanding was on average rated higher in the explanation
than in the no-explanation condition (paired t(15)=0.3, p=0.74; paired t(15)=0.5, p=0.65;
paired t(15)=0.7, p=0.47, respectively).

EX NE
I had a good idea of what the agent was doing 6.1 (sd=1.0) 5.1 (sd=1.4)
The agent seemed to have a good idea of what I was

doing 5.8 (sd=1.1) 5.7 (sd=1.0)
I understood the reasons behind the agent’s behavior 5.9 (sd=1.2) 5.7 (sd=1.5)
The agent seemed to understand the reasons behind

my behavior 5.6 (sd=1.0) 5.3 (sd=1.9)

Table 5.6: Average understanding of behavior on a 1-7 scale (n=16).

Finally, we asked subjects if the agent provided too little, just enough, or too much in-
formation. In the explanation condition, one subject indicated that the agent provided too
little information, and all other subjects indicated that the agent provided just enough in-
formation. A chi-square goodness of fit test shows that the result is significant (χ2=26.4,
p<0.001). In the no-explanation condition, ten subjects indicated that the agents pro-
vided too little information, while six subjects indicated that the provided information
was just enough. This result is significant as well (χ2=9.5, p=0.009). Thus, in gen-
eral subjects preferred the amount of information in the explanation condition over the
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amount of information in the no-explanation condition.

5.3.3 Discussion
We found no significant differences between human-agent team performance in the ex-
planation and the no-explanation condition. Therefore, the results do not support our
proposition that explanations about agent behavior improve human-agent team perfor-
mance. The experience of the subjects, however, was affected by the agent’s explana-
tions. The subjects’ ratings of their idea of what the agent was doing was significantly
higher in the explanation condition than in the no-explanation condition. Furthermore,
a significant number of subjects believed that the agent in the no-explanation condition
provided too little information, whereas a significant number of subjects indicated that
the agent in the explanation condition provided just enough information.

With a larger number of subjects, more of the results obtained from the questionnaire
may have been significant. Namely, all ratings were, on average, higher for the expla-
nation condition than for the no-explanation condition, both concerning self-evaluations
on performance as understanding of each other’s actions. It is not probable that the dif-
ference in performance on both conditions will become significant if tested with a larger
number of subjects, since the performances on both conditions are rather similar.

There are several possible explanations for the similar team performances on both
conditions. We provide five of them. First, subjects may have lost time in processing the
agent’s explanations, which then was compensated by a more efficient task completion.
The robots in BW4T move slowly on purpose to provide players sufficient time to com-
municate, and think and process information. However, at some points in the game many
actions have to be done at once (enter a room, go to a block, pick up a block, go to the
Dropzone, and communicate about your actions) despite of the slow speed of the robots.
Thus, at those time points, processing explanations may lead to time loss.

Second, the subjects may have anticipated a cooperative agent. Though we told them
that the agent could perform any behavior, several of the subjects reported that their
strategy was to behave as if the agent was cooperative until they would find out otherwise.
With such a strategy, explanations do not contribute to a quicker adaptation to the agent’s
behavior as the subject’s initial behavior already makes the right assumptions about the
agent’s behavior. It would be interesting to conduct an experiment with a less cooperative
or capable agent, e.g., one that cannot process certain messages or is colorblind, to see if
explanations help subjects to adapt quicker to the gaps in the agent’s capabilities.

Third, the task may involve too much random variability obscuring the effect of the
manipulation. Some of the subjects, for instance, reported that they mistook one color for
another (e.g., yellow and light green), which caused a serious delay in task completion.
Other subjects said that they changed their strategy after the first trial, e.g., they let the
agent deliver all blocks. Furthermore, though the blocks are evenly spread over the rooms
in different trials, there is a luck factor involved in finding the right blocks. This factor
can be decreased by letting the team deliver more blocks, but adding blocks also gives
the subjects more time to learn the agent’s behavior, which decreases the expected effect
of providing explanations. In conclusion, noise factors like these may have wiped out the
effects of explanation on team performance.
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Fourth, the task may be too simple to show an effect. In most situations, the rationale
behind the agent’s behavior can be deduced from its actions.

Fifth, the agent always explained its actions by the goals they aimed to achieve. The
advantage of such explanations is that they are immediately derivable from the mental
state of a BDI agent. Possibly, when extending the agent’s explanation capabilities, e.g.,
by adding information about the agent’s strategies, the explanations would become more
useful and have a bigger effect on team performance.

5.4 Discussion
The three studies in this chapter show no effects of explanations about agent behavior on
learning from virtual training (Section 5.1 and 5.2) or on team coordination in human-
agent teams (Section 5.3). We provided possible reasons for that in the discussion sec-
tions of each study. In addition to these reasons provided per study, we discuss some
overall findings and observations of the three studies here.

First, we would like to remark that it is not only difficult to show the effect of expla-
nations in virtual training on learning, it is even hard to demonstrate the effects of virtual
training on learning in general. Though virtual training is often reported as being effec-
tive, rarely are such systems tested for a clear learning effect (however, for an exception
see Graesser et al., 2005). For instance, there are several accounts of virtual training for
negotiation that involve emotions and/or explanations (e.g., Core et al., 2006a,b; Cas-
sell and Bickmore, 2003; Reilly and Bates, 1995; Traum et al., 2003, 2008), but it is not
demonstrated if and when such systems actually produce a learning effect in the trainees.

Second, we made two observations that could indicate that explanations in virtual
training are useful. The first observation is as follows. In the third study we tested the ef-
fect of an agent’s explanations on coordination in human-agent teams. We observed that
explanations are especially important when a human starts to cooperate with an agent.
Subjects reported that, in the beginning, they paid much attention to the agent’s expla-
nations in order to understand its behavior. Later in the process, they already knew how
the agent would behave, and the explanations became less important. This observation
supports the use of explainable agents in virtual training. Namely, trainees are usually
novices in the training domain and still have to learn how to cooperate or deal with the
other players they will encounter. The explanations are thus provided at a moment they
can be most useful.

Our second observation is the following. In the third study we also observed that the
agent’s explanations affected the subjects’ experiences in a positive way. The subjects
better understood the agent’s actions when they explained their behavior, and they were
also more satisfied with the amount of information the agents provided when they ex-
plained their behavior. We did not formally ask the subjects, but it could be the case that,
even though no effects on learning are found, trainees may enjoy training more when vir-
tual agents explain their behavior. This may lead to increased motivation and prolonged
training time, which would be a reason to add explanation capabilities to agents in virtual
training.

Third, we provide two remarks about the way in which explanations were offered
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to the trainees. Namely, though we focus on the content of explanations about agent
behavior in this thesis, in a validation study of an explainable agent approach for virtual
training choices about the way explanations are offered have to be made. Our first remark
concerns the timing of explanation provision. An important difference between the first
and the last two studies is that in the first study, explanations were offered after the
training session was over, and in the last two studies, they were offered immediately
following actions. It seems that the type of explanation influences the preferred timing.
For instance, explanations that explain an agent’s strategy, may be more relevant after the
trainee has seen more of the agent’s behavior than just a single action. In our approach, in
contrast, actions are explained by the goals and beliefs of an agent at that time. Therefore,
the explanations are probably more useful when offered immediately after the actions.

Our second remark related to explanation provision concerns on whose initiative ex-
planations are provided. In a pilot of the first study, explanations were only provided
on request of the trainee. However, the three subjects we tested did not request many
explanations. As trainees may not always be aware that an explanation could help them,
it seems better to provide them on the initiative of the system, like in the second and third
study. In the second study, we used thinking clouds. In the third study, the explanations
were actually part of the agent’s communication behavior, instead of a separate facility.
None of the subjects reported any problems or issues with the way explanations were pro-
vided in these studies, and both ways seem to be a nice solution to provide explanations
without interrupting the training session.

5.5 Chapter conclusion
In this chapter we have not been able to demonstrate the usefulness of explanations of
agent behavior on performance, i.e., learning in virtual training and team coordination.
However, taking all the issues raised in the discussion sections into account, we cannot
conclude that the explanations are not useful either. Based on our experiences and obser-
vations during the studies, however, we believe that the explanations become more useful
when agents take the perspectives of other agents more into account. This is supported by
the CARIM evaluation study in Chapter 4, in which subjects most of the time indicated
that they preferred explanations that involved a goal or belief attributed to another agent.
In the next chapter, we will further explore this possibility.
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Theory of mind-based
explanations

In this chapter we will investigate how to equip agents with a theory of mind. A the-
ory of mind is a ‘theory’ about other agents’ minds. In other words, someone with a
theory of mind has the ability to attribute mental states such as beliefs, intentions, and
desires to others in order to understand, explain, predict or manipulate others’ behavior
better. By extending explainable agents with a theory of mind, they will become able
to use assumptions about the mental states of other agents in explanations about their
own behavior. We believe that this will improve the usefulness of their explanations for
trainees.

Typical mistakes that occur during incident management include (1) giving incom-
plete or unclear instructions, (2) forgetting to monitor task execution, and (3) failing to
pick up new information and quickly adapt to it. Many of these errors involve situations
in which people make false assumptions about others’ knowledge or intentions. The
tendency to attribute incorrect knowledge and intentions to others appears in stories of
professionals (Flin and Arbuthnot, 2002), but it is also a well described phenomenon in
general in cognitive sciences (Nickerson, 1999; Keysar et al., 2003). Thus, in order to
create interesting learning situations, virtual agents should have the ability to (fail to) take
others’ assumed knowledge and intentions realistically into account. Moreover, to help
trainees to learn from such situations, they should be able to include assumed knowledge
and intentions of others in explanations about their behavior. This is especially important
in teamwork (Yen et al., 2004), i.e., when players are dependent on each others’ actions
for achieving their own tasks.

In this chapter we will first provide an example of a training scenario to illustrate
the use of agents with a theory of mind in virtual training. Subsequently, we provide an
overview of theory of mind literature. Then, we introduce two ways to model an agent
with a theory of mind, and perform a simulation study in which the two approaches are
compared. Next, we discuss two extensions to the BDI-based programming language
2APL that facilitate the implementation of agents with a theory of mind. We end this
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chapter with an overview of related research and a conclusion.

6.1 An example training scenario
The present example is part of a virtual training scenario for on-board firefighting (the
scenario is inspired on the CARIM system, discussed in sections 4.1 and 5.1). The trainee
plays the role of H-Officer, the person in command when there is a fire aboard of a navy
frigate. Besides the trainee, two other players are involved, an A-Officer and an E-Officer,
played by intelligent agents. The H-Officer leads the incident management from the
Technical Center of the ship. His tasks involve assessing the situation, developing a plan,
instructing other officers, monitoring task execution, and adapting plans if necessary. The
E-Officer is also located at the Technical Center and is responsible for the electricity at
different compartments of the ship. The A-Officer leads the fire attack at the location
of the incident and can only use water in compartments where the electricity has been
switched off. The H-Officer can communicate with all officers and vice versa, but there
is no direct communication between the E-Officer and A-Officer possible.

In the optimal situation, if there is a fire, the E-Officer switches off the electricity
in the right compartments and reports this in person to the H-Officer. Subsequently,
the H-Officer broadcasts the message to the ship, and the A-Officer orders his team to
attack the fire with water. As a result, the fire will be extinguished, which the A-Officer
reports to the H-Officer. In this scenario course, the agents understood each others’ and
the trainee’s goals, and acted proactively to support each other. The trainee received
positive feedback in the form of a good end result, and explanations of the agents can
even increase his understanding of the played session. For instance, the E-Officer may
explain that he switched off electricity to ensure that the A-Officer could safely attack
the fire with water. By such explanations the trainee learns not only which, but also why
certain procedures have to be followed.

When trainees start training with scenarios, they are expected already to have knowl-
edge about the procedures in the domain, e.g., the division of tasks, and where to find
information. In the beginning, it will be challenging for them to apply this knowledge
in a realistic scenario in which all agents act as they should. Agents may even help the
trainee when he fails to undertake required actions, e.g., by giving advice. For example,
the trainee may fail to broadcast the E-Officer’s message. In such a case, it might be
useful if the E-Officer advices the trainee to broadcast the message or if the A-Officer
asks the trainee whether the electricity has been switched off. The trainee will become
aware of his omission and no longer delay the fire attack. A useful explanation for the
A-Officer’s action could be that it believed that the trainee would know about the status
of the electricity.

At a later stage, when the trainee can easily play a scenario in which all agents act
as they should, the scenario can be made more challenging. For more advanced trainees,
mistakes of virtual agents can create interesting learning situations. The E-Officer could
for example fail to switch off electricity, forget to report to the trainee, or switch off
electricity in a wrong compartment. The trainee is challenged to correct the agents,
for instance by asking the E-Officer whether he already switched off electricity. An
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explanation of the E-Officer’s failure could be that he believed that the A-Officer did not
plan to use water for his fire attack.

Though the given situation is a simple one, several capabilities are required to provide
training as described above. The intelligent agents should be able to attribute mental
states to others, know when to help the trainee, make believable mistakes, and explain
their own actions by sharing their assumptions about other agents’ states. In the example,
interaction plays an important role and the different agents (including the trainee) are
dependent on each other for successful task execution. In order to generate and explain
the behaviors in the example, the agents have to be aware of the others’ tasks and the
consequences of their actions for others. In other words, the agents need some theory
about the other agents’ mental states: a theory of mind.

6.2 Background: theory of mind
To understand the social world around them, people interpret others’ and their own ac-
tions in terms of mental states. A theory of mind is the ability to understand others as
intentional agents, and to interpret their minds in terms of intentional concepts such as
beliefs and desires, e.g., R believes that M intends him to persuade A that p. The term
‘theory of mind’ originates from Premack and Woodruff’s famous paper ‘Does the chim-
panzee have a theory of mind?’ (1978). Since then, the term has also been used in other
research disciplines to denote the ability to explain and predict one’s own and others’
behavior. Namely, besides biologists, researchers in the neurosciences, psychology, and
philosophy have been involved in theory of mind research as well.

Humans are not born with a fully developed theory of mind, but acquire one during
their childhood. The false-belief task (Wimmer and Perner, 1983) is often used by de-
velopmental psychologists to determine whether someone has a fully developed theory
of mind. To test whether a child passes the task, an experimenter puts an object in a
box in presence of the child and another person. The other person leaves the room and
when she is gone, the experimenter puts the object in a different box. When the person
returns the child is asked where she will look for the object. The child fails if it answers
that the person will look in the second box. Though the child knows that the object is
in the second box, to pass the task it should be able to understand that the other person
did not see that the object was replaced and thus will look in the first box. Experiments
demonstrate that children obtain the ability to perform this task well around the age of
four years old (see, e.g., Wimmer and Perner, 1983).

A second contribution of psychology to theory of mind research are studies about
the absence of a theory of mind, also called mind-blindness, with autists (Baron-Cohen,
1995). A mind-blind person has difficulties to determine the intentions of others and
lacks understanding of how his behavior affects others.

Though psychologists studied theory of mind acquirement and theory of mind im-
pairment, most of them did not focus on the question how a fully developed theory of
mind in adults works. Philosophers, in contrast, are focusing on exactly this question.
Currently, the debate involves two prominent accounts on human, adult theory of mind:
theory-theory and simulation theory. According to theory theorists (see, e.g., Carruthers,
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1996), people have an implicit theory of the structure and functioning of the human mind.
This theory involves a set of concepts, e.g., beliefs, desires, and plans, and principles
about how these concepts interact, e.g., people act to fulfill their desires. This theory
allows us to understand, explain, and predict our own, and other people’s behavior. The
mental states attributed to others are unobservable, but knowable by intuition or insight.
Theory-theory relates to folk psychology, which refers to the way humans think that they
reason (Bratman, 1987). Namely, humans use concepts such as beliefs, goals, and inten-
tions to understand and explain their own and others’ behavior.

Simulation theory (e.g., Goldman, 1992; Gordon, 1996) was proposed as an alterna-
tive to theory-theory. According to simulation theorists, theory of mind is the ability to
project ourselves into another person’s perspective, i.e., attribute beliefs and goals to the
other, and simulate his or her mental activity with our own capacities for practical rea-
soning. Thus instead of a theory, theory of mind is a kind of knowledge that allows one
to mimic the mental state of another person. In order to simulate another’s mental pro-
cesses, it is not necessary to categorize all the beliefs and desires attributed to that person
as such. In other words, it is not necessary to be capable of complete introspection.

Whether human theory of mind follows the theory-theory or simulation theory ap-
proach cannot be determined by just observing human adult behavior. Therefore, philoso-
phers became interested in theory of mind development and took different views on
it (Carruthers and Smith, 1996). According to some theory theorists, acquiring a the-
ory of mind is a matter of maturation of an innate module, which happens automatically.
Others think it is instantiated through social interactions. According to simulation theo-
rists, the ability to simulate is innately given. Children only have to learn which of their
mental states to vary when simulating, in order to adopt the right perspective.

There are several proposals for a mix of theory-theory and simulation theory (e.g.,
Heal, 1996; Perner, 1996). Simulation theory is defended on grounds of simplicity. Ac-
cording to simulation-theorists, simulation is more efficient than acquiring a complete
theory. For these reasons, some adherers of theory-theory admit that at least some form
of simulation must take place when people reason about others, and incorporate simula-
tion aspects into a theory-theoretic account. Though this makes theory-theory acceptable
for some, others remain convinced that simulation forms the basic mechanism of theory
of mind. Critics of simulation theory however argue that in order to simulate, it must be
known what to simulate and for that a theory is needed. This resulted in approaches stat-
ing that others’ behavior is predicted by simulation, but in addition, a body of theoretical
knowledge is needed to govern these simulations.

6.3 Two ways to model agents with a theory of mind

In this section, we present a theory-theory and a simulation theory approach for modeling
agents with a theory of mind. We also discuss the implementation of both approaches in
existing BDI-based agent programming languages.
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Figure 6.1: Architecture of a BDI agent with a theory of mind based on theory-theory.

6.3.1 A theory-theory approach

Folk psychology, in which behavior of others is understood in notions like beliefs, de-
sires, and intentions, forms the basis of both the theory-theory account of theory of mind
and BDI-based agent programming (see Section 2.2). Therefore, a BDI language is a
logical choice for the implementation of an agent with a theory of mind based theory-
theory.

The upper part of Figure 6.1 shows the general architecture of a BDI agent. In order
to add a theory of mind ability based on theory-theory, beliefs about other agents can
be added to an agent’s own belief base. In Figure 6.1 this is shown by the box below
the general BDI architecture. Besides its own beliefs, the agent may have beliefs with
mental concepts attributed to other agents, e.g., beliefs about attributed beliefs and goals
of agent A1 and A2 like in the figure. The belief A1(B(φ)), for instance, represents that
the agent believes that agent A1 believes φ, and A2(G(ψ)) that the agent believes that
agent A2 has goal ψ. An agent’s behavior is determined by its goals and beliefs. Thus,
when an agent has beliefs about other agents, its behavior is also based on the believed
beliefs and goals of others.

Besides beliefs about others’ beliefs and goals, the agent must have a theory about
how these elements interact. For instance, to predict someone’s behavior, an agent needs
to be able to make combinations of believed beliefs and goals, and derive new believed
(sub-)goals, plans or actions. In this theory-theory-based agent model, the rules accord-
ing to which the elements combine are also added as beliefs to the agent’s belief base.
In other words, beliefs that make combinations between beliefs about another agent’s
beliefs and beliefs about that agent’s goals are added. Such a belief is for example if (
A1(B(φ)) and A1(G(ψ)) ) then A1(P(α)), meaning that if the agent believes that agent A1
believes φ and has goal ψ, one can assume that agent A1 will execute plan α. With these
beliefs, the agent is able to predict and explain other agents’ behavior. To do so, the agent
does not use its own practical reasoning power (the reasoner in Figure 6.1), but instead,
it uses its epistemic reasoning power for making inferences of its beliefs (the epistemic
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reasoner is part of the agent’s belief base, and is not explicitly shown in the figure).

6.3.2 A simulation theory approach

The essence of simulation theory is that an agent uses its own reasoning power to reason
about other agents, and thus not all of the other’s reasoning steps have to be incorporated
in a theory. Figure 6.2 shows a schematic picture of a theory of mind model based on
simulation theory. Like in the theory-theory model, the agent has a reasoner that deliber-
ates over the content of its mental state. Besides a representation of its own mental state,
the agent has representations of mental states attributed to other agents (dashed boxes).
The agent can take its own decision-making system off-line, and start deliberating with
the mental state of another agent to make predictions about its behavior. In other words,
it applies its own reasoner to the attributed mental states.

Figure 6.2: Architecture of an agent with a theory of mind based on simulation theory.

Simulationists argue that in order to have a theory of mind, one does not need to
have access to all reasoning rules according to which the other is reasoning. Radical
simulationists even claim that the mental state of the other agent does not necessarily
have to be organized in terms of beliefs and goals (Gordon, 1996). Therefore, in Figure
6.2 we did not specify how a mental state is represented. To connect to our BDI-based
approach for explainable agents, however, we will assume that an agent’s mental state is
specified in terms of beliefs, desires, and intentions. This is shown in the boxes outside
of the agent’s internals.

The architecture in Figure 6.2 can best be implemented in BDI-based agent program-
ming language that allows for modularity, e.g., Jack (Busetta et al., 2000), Jadex (Braubach
et al., 2005), GOAL (Hindriks, 2007), or modular 2APL (Dastani, 2009). In all of these
languages, modularization is considered as a mechanism to structure an individual agent’s
program in separate modules. In this context, thus, a module is the specification of a men-
tal state: beliefs, goals, plans, and intentions. In modular languages, each mental state,
the agent’s own and those attributed to other agents, can be represented in a separate mod-
ule. By using modules, the same practical reasoner can be used to reason with different
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mental states without interferences among them. If an agent wants to make a prediction
about someone else’s behavior, it just applies its reasoner to the assumed mental state of
that agent. The agent thus reasons with another agent’s mental concepts as if they are
its own. The agent can use its assumptions about the other agent as input for its own
reasoning process and let its actions depend on them.

6.3.3 Discussion
The two approaches just presented can both be implemented in a BDI-based agent pro-
gramming language. For the TT approach, any BDI-based language can be used, and
for the ST approach only those that allow for modularity. The most important difference
between the TT and ST approach is the way to reason with attributed beliefs and goals.
In the TT approach an epistemic reasoner is used, and in the ST approach a practical
reasoner.

On the one hand, it is an advantage of the ST approach that a practical reasoner can
reason with attributed beliefs, goals, and reasoning rules immediately, and the same men-
tal state representations can be (re)used as ‘normal’ mental states and attributed mental
states. In the TT approach, in contrast, ‘normal’ mental state representations have to be
transformed to a different representation in order to reason with them as attributed mental
states, which provides extra work for the programmer.

On the other hand, a reasoning process on an attributed mental state should have a
result that the agent can use in its own reasoning process, e.g., a belief in its belief base.
In the TT approach, the attributed mental states are already represented by beliefs and no
extra action is needed. In the ST approach, however, an extra action is needed to update
the agent’s own belief based with the result of a reason process on an attributed mental
state. This makes the agent program more complex.

6.4 Simulation study
In this section we describe a study which evaluates agents with (1) no theory of mind,
(2) a theory of mind based on theory-theory, and (3) a theory of mind based on sim-
ulation theory. There is no common methodology for validating models representing
human behavior. First, because not much attention has been paid to the validation of
human behavior representation models and the field is still immature (Harmon et al.,
2002; Van Doesburg, 2007). Second, there are different model types which each require
their own validation (Young, 2003). Third, three different perspectives can be distin-
guished (Van Doesburg, 2007).

The first perspective is that of the end user. Currently, most models are evaluated by
their intended use, that is, from the perspective of the end user (Chandrasekaran and
Josephson, 1999). In this study we will consider the user perspective by examining
whether the different agents are able to generate the behavior and explanations required
for the user.

Besides the perspective of the end user, human behavior representation models can
also be viewed from a psychological perspective. The psychological perspective consid-
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ers how well the generation of human behavior in agents matches the generation of actual
human behavior. We will not consider the psychological perspective, as the agents in vir-
tual training systems do not have to generate behavior that is as human as possible. The
agents should behave human-like, but they may e.g., make more errors than an average
human if that serves a learning goal. Moreover, as discussed in Section 6.2, there is no
agreement on how the human theory of mind works.

The third perspective to evaluate human behavior representation models is the de-
veloper’s perspective, which concerns the effectiveness and efficiency of model creation.
In the discussion, we will take the developer perspective into account. There are stan-
dard works for the assessment of software quality, e.g., the IEEE Standard 1061 (IEEE,
1998), but these are not specialized for human behavior representation models. There-
fore, instead of using a standard method, we will discuss our own experiences with the
implementation of the agents in the case study.

6.4.1 Methods
In order to compare agents with different theory of mind models, we used training sce-
narios specifying which behavior the agents should perform. For the study, we specified
three variants of the training scenario described in Section 6.2: (1) an optimal, (2) a sup-
porting and (3) a challenging version. In the optimal scenario nothing goes wrong, in
the support scenario the trainee makes mistakes and the agents give support, and in the
challenge scenario the agents make mistakes due to an incorrect theory of mind. Besides
the agents’ actions in the scenario, we also specified the corresponding explanations. The
different scenarios will be described in more detail later in this section.

All three scenarios involved three agents: an A-Officer, an E-Officer, and a trainee
(playing the H-Officer). Three versions of the A-Officer and E-Officer agents were im-
plemented: agents with no theory of mind (NT), agents with a theory-theory of mind
(TT), and agents with a simulation theory of mind (ST). We implemented the agents in
such a way that they would generate the actions and explanations in the specified scenar-
ios as much as possible. The implementation of the agents will also be discussed in this
section.

After specifying the scenarios and implementing the agents, we run different simula-
tion sessions with the agents. In the last part of this section we provide an overview of
the different simulation runs. In the simulations, for an agent to perform well, its actions
and explanations in the simulations should match the actions and explanations specified
in advance.

Scenario specification

Table 6.1, 6.2, and 6.3 show the specification of the events and agents’ actions and expla-
nations in the optimal, support, and challenge scenario, respectively. In all three tables,
the left column shows the actions and events of that scenario in chronological order,
and the right column shows the desired explanations for actions of the A-Officer and E-
Officer. A, E, and H refer to A-Officer, E-Officer, and H-Officer, mes(ne) stands for the
message there is no electricity in compartment 37, mes(e) stands for the message there is
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electricity in compartment 37, and mes(fe) stands for the message the fire in compartment
37 is extinguished.

Actions / events Explanations
Alarm: fire in comp 37
E switches off elect. comp 37 then A can ext. fire with water
E reports mes(ne) to H then H can broadcast mes(ne)
H broadcasts mes(ne) -
A enters comp 37 to ext. the fire in comp 37
A ext. fire with water no electricity in comp 37
Fire extinguished
A reports mes(fe) to H then H can broadcast mes(fe)
H broadcasts mes(fe) -

Table 6.1: Actions, events and explanations in the optimal scenario.

In the first scenario, none of the agents made a mistake. In the second scenario, the
H-Officer, that is to be played by the trainee agent, forgets to broadcast the message
that the electricity has been switched off in compartment 37. The E-Officer supports
the H-officer by advising him to do so. Later, the H-Officer again forgets to broadcast
a message. Then the A-Officer advices him to inform the crew that the fire has been
extinguished. In the third scenario, the E-Officer and the A-Officer both make one error.
The E-Officer does not switch of electricity in compartment 37 by itself, the H-Officer
explicitly has to order him to do so. The A-Officer forgets to update the H-Officer when
the fire has been extinguished.

Actions / events Explanations
Alarm: fire in comp 37
E switches off elect. comp 37 then A can ext. fire with water
E reports mes(ne) to H then H can broadcast mes(ne)
Nothing happens
E advices H: broadcast mes(ne) then A can ext. fire with water
H broadcasts mes(ne) -
A enters comp 37 to ext. the fire in comp 37
A ext. fire with water no electricity in comp 37
Fire extinguished
A reports mes(fe) to H then H can broadcast mes(fe)
Nothing happens
A advices H: broadcast mes(fe) then crew will be informed
H broadcasts mes(fe) -

Table 6.2: Actions, events and explanations in the support scenario.
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Actions / events Explanations
Alarm: fire in comp 37
Nothing happens
H asks E about elect. comp 37 -
E reports mes(e) to H H asked about elect. comp 37
H orders E: switch off elect. -
E switches off elect. comp 37 H ordered to switch off elect.
E reports mes(ne) to H then H can broadcast mes(ne)
H broadcasts mes(ne) -
A enters comp 37 to ext. the fire in comp 37
A ext. fire with water no electricity in comp 37
Fire extinguished
Nothing happens
H asks A about status fire -
A reports mes(fe) to H H asked about status fire
H broadcasts mes(fe) -

Table 6.3: Actions, events and explanations in the challenge scenario.

Agent implementation

To develop the agents, we used our explainable agents approach as described in this
thesis. For the implementation of the NT and TT agents we used 2APL, and for the
implementation of the ST agents we used modular 2APL. In section 6.5, we will discuss
the implementation of agents with a theory of mind ability in more detail, and propose
two extensions to modular 2APL, to make the language more appropriate for developing
agents with a theory of mind.

NT agents. Figure 6.3 shows a goal hierarchy of the E-Officer agent without a theory
of mind. The boxes represent the agent’s goals and the ovals represent its beliefs. The
E-Officer’s main goal is to manage the electricity in the ship, which is divided into the
subgoals (1) to switch off electricity and (2) to report to the H-Officer that the electricity
has been switched off. The beliefs in the hierarchy denote when the subgoals become
active.

We made a similar goal hierarchy of the A-Officer with no theory of mind and imple-
mented both NT agents 2APL. Initially, the NT E-Officer agent has the following mental
state.

Goals:
manageE

Reasoning rules:
manageE | comp(X,fire) <- switchOffE(X)
manageE | comp(X,noE) <- reportToH(noE)
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Figure 6.3: E-Officer agent without a theory of mind.

At the start of the scenario, the agent has one goal, managing the electricity, two reason-
ing rules, and no plans or beliefs. Only once the agent obtains the belief that there is
a fire in compartment X or that it switched off the electricity in compartment X, it will
generate plans.

Though the NT agents can perform actions that have a positive effect on others’ task
execution, the agents’ reasoning does not involve possible mental states of other agents.
Information about other agents is thus implicitly present in the NT agents’ mental states.

TT agents. To develop agents with a theory of mind (both TT and ST), we extended the
NT agents with a theory of mind ability. Figure 6.4 shows that a theory of mind ability,
theory-theory-based or simulation theory-based, delivers extra beliefs due to theory of
mind reasoning. By that, the adoption conditions for subgoals change. Namely, the con-
ditions of goals which achievement have effect on other agents’ task execution, involve
believed mental concepts about the others. In the example, the E-Officer only switches
off electricity in a compartment if it believes that someone else intends to use water to
extinguish a fire in that compartment.

Figure 6.4: E-Officer agent with a theory of mind.

The implementation of theory of mind reasoning differs for TT and ST agents. For
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TT agents, we implemented their theory of mind in their belief base. The following
2APL code shows part of the E-Officer’s theory of mind about the A-Officer in its belief
base. Note that in 2APL, an agent’s belief base is a Prolog program.

Beliefs:
a_off(g,extinguishFire).

a_off(b,comp(X,noE)).
a_off(b,comp(X,fire)).

a_off(p,attackFire(X,water):-
a_off(g,extinguishFire),
a_off(b,comp(X,noE)),
a_off(b,comp(X,fire)).

The first line of code represents a belief about a goal attributed to the A-Officer, the
second and third beliefs are attributed beliefs, and the fourth belief incorporates a rea-
soning rule telling which plan the A-Officer will probably adopt when it has these beliefs
and goal. In other words, the E-Officer believes that the A-Officer will attack a fire in
compartment X with water, when the electricity in that compartment has been switched
off.

The E-Officer uses its theory of mind ability when predictions about the A-Officer’s
behavior will influence its own choices. This can be accomplished by adding extra belief
checks its reasoning rules. The E-Officer’s first reasoning rule then becomes as follows.

Reasoning rules:
manageE | (comp(X,fire) and

a_off(p,attackFireWithWater)) <-
switchOffE(X)

The belief a_off(p,attackFireWithWater)) is added to the belief check of the
reasoning rule.

The TT agents have a first order theory of mind, which means that their theories of
mind do not involve other agents’ theories of mind. Thus, the agents have no beliefs
like ‘I believe that agent A believes that I have goal Y’. In this scenario, it was not
necessary to implement agents with a second or higher order theory of mind. Though
human reasoning rarely involves more than two theory of mind depth levels (Mol et al.,
2005), in theory it is possible to let modules own other modules until an arbitrary depth.

ST agents. Like TT agents, ST agents are based on NT agents, but extended with a
theory of mind (see Figure6.4). The difference between TT and ST agents is that the
theory of mind ability of ST agents is implemented by using modules. We implemented
the A-Officer and E-Officer agent based on simulation theory in modular 2APL (Dastani,
2009). A modular 2APL multi-agent program consists of one or more modules. Each
module specifies a set of beliefs, goals, plans, and practical reasoning rules. When the
multi-agent program is executed, one or more of these modules are identified as the spec-
ification of the initial state of individual agents. In other words, the indicated modules
specify the beliefs, goals, plans, and reasoning rules of agents before their deliberation
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processes have started. Whereas modules specify a particular mental state, an agent is
a deliberative process that continuously perceives its environment, updates its state, and
reasons about its state to decide which action to perform.

During its execution, an agent can instantiate a (pre-specified) module by the action
create(mod-name,mod-ident). The agent owns the modules it instantiated and can per-
form several operations on them. Namely, the agent can update a module’s goal base and
belief base, query a module’s goal base and belief base, execute a module, and release
a module. When a module is executed, a 2APL deliberation process on the module in-
stance is started and continues until a pre-specified stopping condition is fulfilled. It is
possible that during its execution, the module instance creates new module instantiations
itself, which it then owns. During the execution of a module, all processes in the owning
module (the module instance that performed the execute action) are suspended.

The following modular 2APL code represents the E-Officer’s plan for creating, up-
dating and executing a module with a theory of mind of the A-Officer.

Plans:
create(a_off, a_off);
a_off.updateBB(comp(X,noE));
a_off.execute(B(planAoff(Y)));
Update(comp(X,noE),planAoff(Y))

The first action creates an instantiation of the module a off which also has the name a
off. The second action updates the instantiation with the belief comp(X,noE). Then,
the module a off is executed till the stopping condition B(planAoff(Y)) is satis-
fied, i.e., the belief planAoff(Y) can be derived from the module’s belief base. The
variable Y can have different values, representing a prediction of what the A-Officer’s
will do. During this execution, the execution of the agent owning the module, the
E-Officer, is paused. In the last line of code, the result of the execution is updated
to the agents own belief base, e.g., resulting in the belief a_off(comp(X,noE),
planAoff(attackFireWithWater)), which means that if the A-Officer believes
that the electricity is switched off, he will attack the fire with water. Similar to TT agents,
the E-Officer agent uses its theory of mind when the adoption of goals for switching off
electricity depend on beliefs with predictions about the A-Officer’s behavior.

Like the TT agents, the ST agents also have a first order theory of mind. We used the
implementation of the NT agents to give the ST agents attributed mental states. The ST
A-Officer’s theory of mind modules contained the NT E-Officer’s mental states and vice
versa. Also for ST agents holds that it is possible to implement agents with second or
higher order theory of mind.

Simulation runs

We ran several simulations to test whether the implemented agents were able to generate
the actions and explanations specified in the three scenarios. Each agent type (NT, TT
and ST) played each scenario (optimal, support and challenge) once, so in total nine (3x3)
simulations were run. The A-Officer and E-Officer were always of the same type in one
simulation run (both NT, both TT or both ST) because a combination of different agent
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Specified behavior Actual behavior
Actions NT TT ST
E switches off elect. comp 37 √ √ √

E reports mes(e) to H √ √ √

A enters comp 37 √ √ √

A ext. fire with water √ √ √

A reports mes(f) to H √ √ √

Explanations NT TT ST
then A can ext. fire with water X √ √

then H can broadcast message(e) X √ √

to ext. the fire in comp 37 √ √ √

no electricity in comp 37 √ √ √

then H can broadcast message(f) X √ √

Table 6.4: Desired and actual behavior of the NT, TT and ST agents in the optimal scenario.

types (e.g., NT and ST) would not have influenced the results. To run the challenging
scenario, we adapted the implementations of the A-Officer and E-Officer agents so that
they would make mistakes.

All characters in the scenarios were played by agents, and there were no humans
involved in the simulations. Therefore, it was not needed to create a visualization of
the agents and their environment. However, to simulate the three scenarios, besides the
A-Officer and E-Officer, a trainee and an environment were needed.

We implemented two versions of the trainee agent in 2APL. A trainee agent making
mistakes was used for the support scenario, and one not making mistakes was used to
run the optimal and the challenge scenario. Both versions of the trainee agent consisted
of some rules reasoning rules, had no theory of mind, and could not give explanations.

The role of the environment was minimized in the scenarios. The only two events
in the environment in all three scenarios are a fire alarm and the extinction of the fire.
Therefore, instead of implementing a separate environment, we represented the events in
the belief bases of the agents. All agents believed that there was a fire in compartment
37 at the beginning of each simulation run. And the A-Officer’s action to command its
team to attack a fire with water led to addition of the belief extinguishedFire to its belief
base. We thus assumed that actions could not fail.

6.4.2 Results
During each simulation run, A-Officer and E-Officer’s actions and explanations were
logged, and these logs were compared to the specified scenarios. For each of the three
scenarios, three simulations were run (with NT, TT and ST agents). Table 6.4, 6.5, and
6.6 show the results of the optimal scenario, support scenario, and challenge scenario,
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respectively.
The left columns of Table 6.4, 6.5, and 6.6 show a part of the desired actions and

explanations in the specified scenarios. The last three columns show whether the agents’
actions and explanations did (√) or did not (X) match the specified ones. The tables only
show actions and explanations of the A-Officer and E-Officer, as those were the agents
to be evaluated. Events, and actions of the H-Officer are not displayed.

The results show that all of the agents’ actions matched the specified ones. In all
nine simulations we found that the agents’ actions in the simulation matched the speci-
fications for 100%. Thus, independent of whether the agents had a theory of mind and
which theory of mind model, they were all able to display the specified actions, including
support actions and making mistakes due to an incorrect theory of mind.

The results in also show that the explanations of the agents with a theory of mind,
the TT and ST agents, matched all of the specified explanations. The agents were able
to incorporate beliefs and goals of others in their explanations. The explanations of
the agents without a theory of mind, the NT agents, did not always match the specified
ones. The NT agents only gave explanations in terms of their own beliefs and goals. For
some actions these explanations matched the specified ones (e.g., the third and fourth
explanation in Table 6.4), but they did not when the actions had consequences for other
agents (e.g., the first two explanations in Table 6.4). Thus, agents with a theory of mind
were able to explain the consequences of their actions for other agents, also for support
actions and mistakes, and agents without a theory of mind were not.

Specified behavior Actual behavior
Actions NT TT ST
E switches off elect. comp 37 √ √ √

E reports mes(e) to H √ √ √

E advices H: broadcast mes(ne) √ √ √

A enters comp 37 √ √ √

A ext. fire with water √ √ √

A reports mes(f) to H √ √ √

A advices H: broadcast mes(ne) √ √ √

Explanations NT TT ST
then A can ext. fire with water X √ √

then H can broadcast message(e) X √ √

then A can ext. fire with water X √ √

to ext. the fire in comp 37 √ √ √

no electricity in comp 37 √ √ √

then H can broadcast message(f) X √ √

then crew will be informed X √ √

Table 6.5: Desired and actual behavior of the NT, TT and ST agents in the support scenario.
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Specified behavior Actual behavior
Actions NT TT ST
E reports mes(e) to H √ √ √

E switches off elect. comp 37 √ √ √

E reports mes(e) to H √ √ √

A enters comp 37 √ √ √

A ext. fire with water √ √ √

A reports mes(f) to H √ √ √

Explanations NT TT ST
H asked about elect. comp. 37 √ √ √

then A can ext. fire with water X √ √

then H can broadcast message(e) X √ √

to ext. the fire in comp 37 √ √ √

no electricity in comp 37 √ √ √

then H can broadcast message(f) X √ √

Table 6.6: Desired and actual behavior of the NT, TT and ST agents in the challenge scenario.

6.4.3 Discussion
The results show that agents with a theory of mind (TT and ST) have advantages over
agents without a theory of mind (NT). Though all three agent types generated equal be-
havior, the agents with a theory of mind were able to give explanations involving other
agents’ assumed mental states, and the agents without a theory of mind were not. Con-
cerning observable agent behavior (including explanations), there was no difference be-
tween the theory-based and the simulation-based approach, and there are no reasons to
assume that the outcome would be different for other scenarios. Thus, from a user per-
spective, there is not preference of one approach over the other.

For a developer, however, there are differences between TT and ST agents. A first
observation concerns the reuse of code. When implementing the theory of mind of a
TT agent, we had to translate the BDI representation of its mental state to a Prolog
representation, and practical reasoning rules to epistemic reasoning rules. Namely, a TT
agent’s theory of mind is about a BDI agent, but represented only by beliefs. For the
implementation of an ST agent, we did not have to make such a translation. Instead, we
could reuse the code of one agent to implement the theory of mind of another. Though
the extra work of implementing TT agents compared to ST agents was not much in our
case study, the advantage of reuse of code increases with more complex agent models.
As a first finding, it may thus be concluded that concerning the reuse of code, the ST
approach is preferred over the TT approach.

A second finding involves the introduction of errors related to theory of mind use into
the agent models. The introduction of single errors was comparably easy to implement
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Figure 6.5: The improved architecture of a BDI agent with a theory of mind based on simulation
theory.

in both agent models. However, in the TT approach we could only include errors individ-
ually, whereas in the ST approach it was possible to introduce some structural errors. A
structural error is for example that an agent does not take its theory of mind about another
agent into account at all, or that an agent bases its behavior on a theory of mind of the
wrong agent. Also on this point, the ST approach is preferred over the TT approach.

We implemented the ST agents for the simulation study in modular 2APL. In the
next section we will discuss two problems we encountered during the implementation of
the ST agents. And as none of the existing modular BDI-based agent programming lan-
guages offers a solution for these problems, we also introduce two extensions to modular
2APL that overcome these issues.

6.5 Extending Modular 2APL
The simulation study in the previous section showed that an approach based on sim-
ulation theory is preferred over an approach based on theory-theory. We argued that
agents with a theory of mind based on simulation theory can best be implemented in a
BDI-based agent programming language that allows for modularity. Namely, modularity
makes it possible to represent the agent’s own BDI state and each BDI state attributed to
another agent in a separate module, and the same reasoner can be applied to each module.

We developed the ST agents in the simulation study according to the model shown
in Figure 6.2, and implemented them in modular 2APL as described in Subsection 6.4.1.
A disadvantage of this approach is that when an agent uses its theory of mind ability, it
makes updates to and reasons directly with the attributed mental state of another agent.
It could be, however, that the changes made to the attributed mental state in this process
should be made undone. For instance, when the agents wants to predict what the other
agent will do by adding belief a (and not b) and by adding belief b (and not a). A way
to achieve this is by letting the agent reason with a copy of the attributed mental state,
as shown in Figure 6.5. After the agent has reasoned with the cloned attributed mental
state, it can decide whether it wants to change to the actual attributed mental state.

A second disadvantage of the current version of modular 2APL is that it is not pos-
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sible to test a plan base, whereas to predict another’s agents actions, one would like to
check its plan base. It is possible to ensure that when a plan is adopted in an attributed
mental state, also an update is made to the belief base (it is possible to check a module’s
belief base in modular 2APL). However, this leaves a lot of responsibility to the program-
mer to make sure that the right updates to belief bases are made and no actual actions
are executed in the environment. An easier way is if the agent could directly check a
module’s plan base.

Module cloning and plan testing was not possible in modular 2APL as originally pro-
posed (Dastani, 2009), and neither in any of the other modular BDI-based programming
languages, e.g., Jack (Busetta et al., 2000), Jadex (Braubach et al., 2005), GOAL (Hin-
driks, 2007). We therefore extended modular 2APL with two functionalities: module
cloning and plan testing.

6.5.1 Module cloning and plan testing
To extend modular 2APL with module cloning, we added the action clone(mod-name,mod-
ident), which is quite similar to the action create(mod-name,mod-ident). Like the create
action, the clone action creates a new module instantiation with the name mod-ident.
The difference between both actions is that the create action can instantiate pre-specified
modules, and the clone action can create an instantiation of an already instantiated mod-
ule at any time. A cloned module contains the mental state of the instantiated module
(with the name mod-name) at the time the clone action was executed. This mental state
may differ from mod-name’s initial mental state, i.e., its mental state at the time it was
instantiated, due to actions performed on mod-name. The clone action can only be per-
formed by an agent or module instance (created by the agent) which already owns an
instantiated module (mod-name). The new module instantiation is owned by the agent or
module that created it. The owning module can perform the same actions on a module
that was instantiated by a clone action as on a module that was instantiated by a create
action (updating, querying, executing, etc.).

When a cloned module is executed, similar to created modules, all processes in the
owning module are suspended. Theory of mind reasoning is thus not more expensive in
terms of computation than running a 2APL agent without modules. The deliberation pro-
cess returns to the owning module when a given stopping condition is reached, and if not
the stopping condition is not reached, the created or cloned module remains in control. It
is the programmer’s responsibility to specify these stopping conditions correctly so that
control goes back to the owning module when desired. When a module is used to reason
with an attributed mental state, no actions of the cloned module should be executed. Also
here, it is the programmer’s responsibility to choose the stopping condition such that no
actions can be executed before it is reached. This is made possible by plan testing.

To summarize, the clone action makes it possible to reason with an attributed mental
state and query it afterwards, while saving the mental state prior to the reasoning. The
use of cloning related to theory of mind will be illustrated with an example in the next
section.

The second function we added to modular 2APL is plan testing. Plan testing can be
used to specify the stopping condition of an execute action. In the original version of
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modular 2APL the stopping condition ϕ in the execute action m.execute(ϕ) can only be
a goal test or a belief test. With the addition of plan testing, ϕ can also be a plan or an
action. That makes it possible to specify stopping conditions that ensure that the control
goes back to the owning module before any action is executed.

Plan testing also makes it possible to query a module’s plan base. In the original
version of 2APL, the owner of a module instance m can access the belief base and goal
base of that module through the actions m.B(ϕ) and m.G(ϕ), respectively. In the extended
version of modular 2APL, the owner of a module instance m can also access the plan base
of a module through the action m.P(α). This plan test succeeds if there is at least one
plan of which the first action matches the specified one (ϕ). With a plan query action,
the owner of a module can test which action the module would execute in a following
deliberation step. In the next section we will show how this enables an agent to predict
the behavior of other agents.

6.5.2 Illustration
We illustrate the extended modular 2APL by showing part of the implementation of the
E-Officer from the on-board firefighting training scenario in Section . The agent is im-
plemented in the extended version of modular 2APL, including module cloning and plan
testing. The E-Officer is located at the Technical Center of the navy ship, and from there,
manages the electricity in the whole ship. Initially, the E-Officer attributes the following
mental state to the A-Officer, which is the leader of the attack team.

Goals:
lead(attack_team)

PG-rules:
lead(attack_team) <- fire(X) and electricity(X,off) |

send(team,instruct,l,o,instruct(extinguish(fire)))

The code below Goals represents that the A-Officer’s goal is to lead the attack team.
The code below PG-rules means that if the commander has the goal to lead the attack
team, and the beliefs that there is a fire in compartment X and the electricity in that
compartment is switched off, the A-Officer will instruct his team to extinguish the fire.
A 2APL send-action has five parameters: receiver, speech act, language, ontology, and
content. In this example only the first and last parameter are of importance.

The part of the E-Officer’s own mental state that is relevant in this example is the
following.

BeliefUpdates:
{ true } Update(X,Y) { prediction(X,Y) }

Beliefs:
fire(37).

Goals:
manage(electricity)
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PG-rules:
manage(electricity) <- fire(X) |

{
a_officer.updateBB(fire(X));
clone(a_officer,a_officer_clone);
a_officer_clone.updateBB(electricity(X,off));
a_officer_clone.execute(P(sendaction(_,_,_,_,_)));
a_officer_clone.P(sendaction(_,_,_,_,Message));
Update(a_officer,Message);
release(a_officer_clone)

}

The E-Officer has the belief fire(37), i.e., there is a fire in ship compartment 37, and the
goal manage(electricity). Consequently, the reasoning rule with the belief fire(X) and
goal manage(electricity) in its head and guard will apply (the X is substituted by 37),
and the plan in the body of this rule will be executed. The plan consists of the following
actions.

• Update the mental state attribution of the A-Officer with the belief fire(37) because
the agent assumes that the A-Officer also believes that there is a fire, e.g., because
there was a public announcement.

• Clone the attributed mental state of the A-Officer to predict what the A-Officer will
do when the electricity in compartment 37 is switched off.

• Update the cloned module with the belief electricity(37,off).

• Execute the cloned module until it fulfills the stopping condition P(sendaction( ,
, , , )), meaning that it has a communication action in its plan base.

– When the clone is executed, a deliberation process on the attributed mental
state of the A-Officer starts. As the beliefs fire(37) and electricity(37,off)
have been updated to the mental state, the PG-rule in the cloned module will
apply and the action to instruct the team members to extinguish(fire) will
be added to the plan base. Once this has happened, the stopping condition
P(sendaction( , , , , )) is fulfilled and the control goes back to the agent own-
ing the cloned module, the E-Officer.

• Query the attributed mental state clone about the first action in the plan base
(sendaction( , , , ,Message)).

• Update the content of the send action (Message) to the E-Officer’s belief base. In
this case, the action will result in the addition of the belief prediction(a officer,
extinguish(fire)).

• Release the cloned module.
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Figure 6.6: Screenshot of the 2APL development environment.

In order to obtain social behavior, the E-Officer’s actions should depend on whether
it has the belief prediction(a officer,extinguish(fire)) or not. For instance, the E-Officer
decides to switch off electricity in compartment 37 so that the A-Officer’s team will start
extinguishing the fire. Social explanations can then easily be generated; the E-Officer’s
action, switching off electricity, can be explained by its belief that the A-Officer’s team
will then start to extinguish the fire.

Figure 6.6 shows a screenshot of the 2APL development environment during the ex-
ecution of the E-Officer agent. The left panel visualizes the agent’s modules: the mental
state attributed to the A-Officer (commander) and a clone of it (commanderClone). The
panels at the right side of the figure show the E-Officer’s own beliefs, goals, and plans in
its Beliefbase, Goalbase, and Planbase, respectively.

6.6 Related work

An agent with a theory of mind has the ability to form models about other agents’ mental
states. These models can in turn contain models of other agents, which can contain mod-
els of other agents, etc. This is a form of recursive modeling, which was first introduced
by Gmytrasiewicz and Durfee (1995).

The theory of mind ability discussed in this chapter focuses on forming and using at-
tributions of beliefs, goals and plans of single agents. There are several executable theory
of mind models which capture other aspects. For instance, Scasselati (2002) described
an account of theory of mind for robots which focuses on gaze behavior, Peters (2005)
introduced a theory of mind approach for conversation initiation in virtual environments,
and Boella and Van der Torre (2004) presented an approach involving the attribution of
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mental attitudes to groups instead of single agents.

Sindlar et al. (2011) proposed a nonmonotonic reasoning mechanism that can be
incorporated into BDI agents, allowing them to reason about observed behavior to infer
others beliefs or goals. They show how the behavior-generating rules of agents can be
translated into a nonmonotonic logic programming framework, and provide a formal
analysis of their approach.

Bosse et al. (2011) introduced a formal BDI-based agent model for theory of mind,
and showed its use in modeling social manipulation, animal cognition and virtual char-
acter behavior. Like the approaches presented in this chapter, Bosse et al. represent
both the mental state of the attributing agent and its mental state attributions in terms of
beliefs, desires and intentions. In Bosse et al.’s approach, agents reason about attributed
mental concepts (in contrast to reasoning with attributed mental concepts as if it are one’s
own). This corresponds to the theory-theory approach described in this chapter. Agents
in Bosse et al.’s approach do not use their own reasoning power for reasoning with at-
tributed mental concepts, like the agents based on simulation theory as presented in this
chapter.

PsychSim is a simulation tool for modeling interaction between agents with a theory
of mind (Pynadath and Marsella, 2005). PsychSim agents have a decision-theoretic world
model, including beliefs about their environment and recursive models of other agents.
Where the models presented in this chapter are based on a BDI model, the PsychSim
agents are based on quantitative models of uncertainty and preferences. The PsychSim
approach thus involves less symbolic representations of agents’ mental states and is there-
fore less appropriate for explanation purposes than the BDI-based approaches presented
here.

Laird (2001) introduced an account of theory of mind with the goal to add anticipation
to a Quakebot. In Laird’s approach, an agent creates an internal representation of what
it thinks the enemy’s internal state is, based on its observation of the enemy. The agent
then predicts the enemy’s behavior by using its own knowledge of tactics to select what
it would do if it were the enemy. As in the simulation theoretic approach presented in
this chapter, the agent reasons as if it were the other. The Quakebot in Laird’s approach
is implemented in Soar, which is not BDI-based. Again, BDI agents like presented in
this chapter are more appropriate for the generation of folk psychological explanations
than Soar agents.

Aylett and Louchart (2008) presented an account of intelligent agents with theory of
mind which is based on simulation theory. The agents are implemented in the emotion-
ally driven agent architecture FAtiMA, in which agents assess the emotional impact of
events in the world around them when deciding on their own actions. The agent’s own
mind is used to simulate what other agents might feel as a result of a possible action, and
based on that the agent determines its own actions. The difference between this approach
and the simulation-based approach presented in this chapter is that the first focuses more
on the emotional impact of behavior, and the latter focuses mostly on intentional behav-
ior.
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6.7 Chapter summary
In this chapter, we introduced two approaches for modeling agents with a theory of mind,
based on the theory-theory and the simulation theory of mind. We performed a simulation
study to compare agents with no theory of mind (NT), a theory-theory of mind (TT) and
a simulation theory of mind (ST) in an actual training scenario. It was found that all
agent types were able to display the specified behavior, but only the agents with a theory
of mind were able to provide explanations in which others’ mental states were involved.
From the perspective of the end user, there is no difference between the two theory of
mind approaches, but from a developer’s perspective, the simulation theory has several
advantages over the theory-theory approach. Namely, the simulation theoretic approach
makes it easier to introduce realistic errors in agent behavior due to an impaired theory
of mind, and it promotes the reuse of code. Finally, we introduced two extensions to
modular 2APL which makes the language more appropriate for implementing agents
with a theory of mind based on simulation theory.
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Discussion

In this thesis we proposed a new approach to explaining agent behavior in virtual training.
Our approach differs from other accounts to explaining agent behavior by connecting the
generation and explanation of behavior (Section 1.1). Most existing approaches propose
explanation components that are independent from specific agent behavior representa-
tions and virtual training systems. Such explanations components need to be provided
with new behavior representations each time they are used in a different application.
In our approach, in contrast, virtual agents and their explanation capabilities are co-
developed. Namely, agent behavior is represented in such a way that the behavior rep-
resentations can be used for both the generation and the explanation of behavior, i.e., an
explanation-friendly behavior representation. Such explanation-friendly behavior repre-
sentations are an advantage, since they save developers from representing agent behavior
twice.

To develop our explainable agent approach, we performed a literature study (Chapter
2), worked out a BDI-based model for explainable agents (Chapter 3), and performed
evaluation studies to determine explanation algorithms (Chapter 4). Despite this rig-
orous approach, we have not been able to demonstrate a positive effect of the agents’
explanations on trainees’ learning (see Sections 5.1 and 5.2). However, such effects have
neither been reported for other approaches explaining agent behavior in virtual training,
i.e., approaches in which the generation and explanation of behavior are not connected.

The goal of our research was to develop agents with explanation capabilities in a more
efficient way than previous approaches, which produce explanations that are at least as
good as those in other approaches. In this chapter, we will discuss the advantages and
disadvantages of our approach regarding the development process of explainable agents.
Subsequently, we discuss four application domains of explainable agents, of which two
have not been mentioned before in this thesis. We discuss under which circumstances
the applications benefit most from the advantages of our approach. Finally, we provide
a broader perspective on explanations of agent behavior, aiming to support the develop-
ment of explainable agents.
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7.1 Advantages and disadvantages of our approach
An advantage of our approach is that the behavior of explainable agents is represented in
an efficient way. The distinguishing feature of our approach for developing explainable
agents is that the generation and explanation of behavior are connected. In the intro-
duction, we argued that if agents are modeled in an explanation-friendly way, an agent’s
behavior representation can also be used to explain its behavior. The reuse of behavior
representations is more efficient than building separate behavior representations both in
the training system and the explanation component, as is done in most other approaches.

A possible disadvantage of our approach is that the information needed for the gen-
eration of behavior may not match with the information needed for the explanation of
behavior. Namely, our approach requires representations of agent behavior that contain
sufficient information for both the generation and explanation of behavior. In the agents
we modeled for our studies, the elements needed for the generation of behavior not al-
ways matched elements needed for the explanation of behavior. On the one hand, some
of the elements in a goal hierarchy needed for the generation of agent behavior were not
useful as explanations. On the other hand, the information that was useful in explana-
tions was not always present in the goal hierarchies. We will illustrate both cases with an
example, and also suggest a way to overcome this disadvantage for both cases.

Figure 7.1: Information needed for generation, but not for explanation of behavior.

Figure 7.1 shows two examples of goal hierarchies with elements that are needed for
the generation of behavior, but that are not useful in an explanation. The explanation
algorithm B+1, explaining an action by the beliefs directly above it, usually generates
useful explanations (Chapter 4). However, in the parts of goal hierarchies depicted in the
figure, the beliefs above the actions do not contain useful information for a trainee. The
left part of the figure shows a goal with an all relation to its actions, meaning that all of
the actions need to be performed in order to achieve the goal. For the generation of be-
havior it is important that there are beliefs that show which actions have been performed
to avoid that the agent performs the same action over and over again. Applying the com-
mon explanation algorithm B+1 to this goal hierarchy, however, generates uninformative
explanations like ‘I put eggs in the bowl because I have not added eggs’. Similarly, the
right part of the figure shows an example with a goal of type seq. The beliefs in this goal
hierarchy are used to ensure that the actions are executed in the right order, but algorithm
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B+1 generates explanations like ‘I collect my equipment because I have not collected my
equipment’.

A way to overcome this disadvantage is to select proper explanation algorithms. In
both examples, the beliefs above the actions are needed to let the agent perform the
right behavior. Therefore, these beliefs should not be removed from the goal hierarchy.
Instead, explanation algorithms should be used that select other elements that yield more
useful explanations.

Figure 7.2 shows an example of the opposite situation, that is, elements that are useful
in an explanation, but that are not needed for the generation of agent behavior. In the
goal hierarchy at the left side, information about the mental states of other agents is only
implicitly present (Chapter 6, Figure 6.3). The agent can act as if it has a theory of mind,
but it cannot explain its behavior in terms of attributed mental concepts. An explanation
of this agent would for example be: ‘I switched off electricity in compartment 37 because
there is a fire in compartment 37’.

A way to overcome this disadvantage is to add extra information to the goal hier-
archy. The right side of the figure shows a goal hierarchy of an agent with a theory of
mind ability (Chapter 6, Figure 6.4). This agent is able to reason with mental concepts
attributed to other agents, shown by the belief added to its goal hierarchy. This agent
cannot only act, but also explain its actions in terms of attributed mental concepts, e.g.,
‘I switched off electricity in compartment 37 because there is a fire in compartment 37,
and if there is no electricity in compartment 37, the A-Officer can attack the fire with
water’. This example shows that if not all information needed in explanations is present
in an agent’s goal hierarchy, extra information can be added to it.

Figure 7.2: Information needed for explanation, but not for generation of behavior.

To summarize, the advantage of our approach is that developers do not have to be
represent agent behavior twice. This saves work. The disadvantage of our approach is
that developers may have to overcome problems due to a mismatch between the infor-
mation needed for explanation and for the generation of behavior. This requires extra
work.

In conclusion, there is a trade-off whether the additional effort of developing a behav-
ior model that meets the demands for generating useful explanations is worth the bene-
fits. When it is well possible to represent an agent’s behavior in an explanation-friendly
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way, our approach saves the endeavor of representing all explanations separately. How-
ever, when it requires a great deal of effort to make a behavior representation model
explanation-friendly, it might as well be a good option to represent the explanations sep-
arately and freely choose an agent’s behavior representation model. Whether the benefits
of our approach outweigh its costs will depend on the requirements of the application
in which explainable agents are needed. In the next section, we discuss under which
circumstances and for which application domains our approach is particularly useful.

7.2 Application domains of explainable agents
We have developed our approach for explainable agents in the context of virtual train-
ing. In addition, we explored whether explainable agents can enhance coordination in
human-agent teams (Section 5.3). In the present section, we will discuss under what cir-
cumstances our approach is useful in these two application domains. We also introduce
two new application domains in which our approach to developing explainable agents
can be useful.

Virtual training. Our approach is especially useful when explainable agents are used
for more than one training scenario. When the virtual characters’ behavior is not repre-
sented by intelligent agents, a complete scenario script needs to be specified in order to
create a new scenario, including the behavior of the virtual characters in each possible
situation. However, when the virtual characters’ behavior is represented by intelligent
agents, a new scenario can be created by changing the initial circumstances or the events
in the scenario. The intelligent agents should be able to deal with these new circum-
stances, and a new scenario will unfold. Moreover, when these agents are equipped with
explanation capabilities according to our approach, they are able to explain their behavior
in these new scenarios without further effort. In other approaches to explainable agents,
this would require making new behavior representations in the explanation component.

We provide two examples of when it is useful to use agents in multiple scenarios.
First, agents can be reused when the same task is being trained by different training sce-
narios. Second, agents can be used for training of different tasks in the same domain. For
instance, agents playing the role of firefighters may be needed in a training scenario for
a leading firefighter, but also in a training scenario for a police officer. In both examples,
explainable agents developed according to our approach keep their explanation capabili-
ties in different scenarios. When explainable agents are used in more than one scenario,
the extra initial investments in agent development can become worth the benefits later.

Human-agent teams. Also in human-agent teams, our explainable agents approach is
most useful when the agents are used in multiple situations. For example, agents can be
part of teams with different constellations (humans and agents) and have different roles
or tasks in a team. When the agents are modeled according to our approach, they keep
their explanation capabilities in these different situations.

Our approach to explainable agents is most beneficial when agents are used in multi-
ple situations. This matches well with the observation that explanations of agent behavior
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in human-agent teams are especially useful when the human does not know (yet) how the
agent(s) in the team behave(s). Explanations help the human to learn the reasons behind
the agent’s actions. When a human interacts with an agent for some time without re-
ceiving explanations, he will learn the rules according to which the agent behaves and
start to understand the reasons for its behavior after some time. Once the human has
already learned about the agent’s behavior, there is less or no need to explain the agent’s
behavior. Thus, when someone has not had the opportunity yet to learn about an agent’s
behavior, explanations contribute to increased understanding of the motivations behind
the agent’s actions. With such understanding, it will be easier to coordinate one’s own
actions to that of the agent. Therefore, our approach to explainable agents is particularly
useful in human-agent teams where explanations are most important.

Debugging. Explanations about agent behavior may be useful for the debugging of
agent programs. Debugging agents concerns detecting and solving errors (bugs) in agent
programs. Bugs can be divided into syntactic and semantic bugs. When an agent pro-
gram has a syntactic bug, e.g., a typo, it cannot be compiled and the location of the bug
can easily be detected. Semantic errors are usually harder to detect than syntactic errors
because they do not hinder the compilation of the agent program. However, when the
agent program is run, the agent displays undesired behavior and the cause for this behav-
ior is sometimes hard to find. Our approach to explainable agents can contribute to the
detection of semantic bugs in BDI agent programs by providing explanations for why the
agent shows certain behavior.

Social simulation. Our approach to explainable agents may be also valuable in agent-
based social simulations (Harbers et al., 2010c). Social simulations provide the opportu-
nity to investigate the relation between the behavior of individuals and emerging social
phenomena like crowd behavior, cooperation, and reputation. To understand the social
phenomena that arise in a simulation, not only the macro processes should be studied,
but also the behavior of the single agents. For instance, a crowd can start to move be-
cause all agents are running towards a particular place or because they are all following
one leader. A second example is cooperation, which may emerge because agents behave
in an altruistic or in an self-interested way. Explainable agents can help to obtain such
insights into individual agents’ behavior in social simulations.

Social simulations are used to investigate social interactions, and often, it is not
known beforehand how the agents in a social simulation will behave. Therefore, it is
difficult to build an explanation component which has no access to the internal state of
an agent. Preferably, explanations about behavior are directly derived from the agents’
behavior representations (for an example about animal behavior, see, e.g., Van der Vaart
and Verbrugge, 2008).

Some social patterns can be modeled adequately by a few simple if-then rules only,
e.g., the flocking behavior of birds (Reynolds, 1987). The behavior of such agents can
be explained by their rules and interaction with the environment. The modeling of other
social phenomena requires more complex agents that, besides merely reactive behavior,
also display proactive behavior. The behavior of such agents is more variable, and harder
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to predict and understand. In particular in simulations with proactive agents, the simi-
larities or contradictions in the explanations of different agents can help to understand
the overall processes. To achieve increased understanding of social phenomena in multi-
agent based simulations, the explanations of individual agents need to be aggregated into
one, more global explanation. That, however, is beyond the scope of this thesis.

7.3 A more general view on explaining agent behavior
In the first section of this chapter we showed that an agent’s behavior representation does
not always contain the information that is needed for the explanation of its behavior.
Therefore, in our approach the purpose of explaining an agent’s behavior needs to be
taken into account in its design. Though it is impossible to represent all explaining fac-
tors of an agent’s actions in its behavior representation model, it is possible to choose
a behavior representation in such a fashion that most elements in the representation can
be used for explanation as well. In this section, we take a more general perspective on
explaining agent behavior based on the literature study in Chapter 2 and our own experi-
ences. We will propose five different ways to explain an agent’s action, and we will also
distinguish different contexts of explanation. Compared to Malle’s framework (Malle,
1999) and Atkinson’s argumentation scheme (Atkinson et al., 2006) (Chapter 2) we dis-
tinguish more different explanation types. This broader perspective aims to support the
design process of explainable agents by making developers aware of different possible
explanations for an action.

7.3.1 Five questions
To explain an agent’s action in various ways, we introduce five questions that each ad-
dress a different aspect of the action. The general question asking for an action’s expla-
nation, Why did you perform this action?, thus contains the following five subquestions.

• What goal did you try to achieve?
• Why do you want to achieve that goal?
• Why does this action achieve that goal?
• Why did you perform the action at this particular time point?
• Why did you perform this action and not another?

The first question considers the goal behind an action, or in other words, it refers to
the desired effects of the action. An explanation is, for instance, ‘I called a friend to wish
him a happy birthday’. Both Malle’s and Atkinson’s frameworks distinguish goals as an
explanation or argumentation type.

The second question, ‘why do you want to achieve this goal?’, concerns the reasons
behind a goal. For instance, ‘I called my friend because I know that he appreciates phone
calls for his birthday’. In Malle’s framework such explanations are called causal history
explanations, and they are similar to values in Atkinson’s scheme. In a goal hierarchy, a
goal above a goal provides a reason for a goal.
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The third question, ‘why does this action achieve that goal?’, can be answered by
domain knowledge such as terminology or the function of a tool that is used in the action.
The domain knowledge required in our example is rather common, but an explanation of
this type would be: ‘I called my friend because calling someone allows one to talk to that
person’. This category is not distinguished in the frameworks by Malle and Atkinson.

The fourth question concerns the timing of an action. Possible answers to this ques-
tion are the event that triggered the action, or the events that made it possible to perform
the action. In our example such an explanation could be: ‘I called my friend because
today is his birthday’. The timing of an action can be categorized as a reason such as
distinguished in Malle’s framework.

The fifth question asks why this particular action was performed and not another.
The answer may concern multiple possibilities, e.g., ‘I called my friend because I did
not have the time to visit him’, or preferences, e.g., ‘I called my friend because I believe
that calling is more personal than sending an email’. Explanations referring to the capa-
bilities of the actor are similar to the enabling factors in Malle’s framework. Malle has
no separate category for preferences. Explanations with preferences are more similar to
values in Atkinson’s scheme.

7.3.2 Contexts of explanation

We distinguished five questions, but often there are multiple possible answers to these
questions. For instance, I leave a note at your desk because I want you to find it, but
also because I want to remind you of something. Both explanations in the example con-
tain a goal. To account for different possible explanations of the same type we introduce
the notion of an explanation context. Examples of explanation contexts are the following.

• Physical context
• Psychological context
• Social context
• Organizational context
• Etc...

A physical context of explanation refers to explanations in terms of positions of
agents and objects, and physical events in the environment. A psychological context
refers to characteristics of the agent such as personality traits, emotions, preferences, and
values. A social context refers to aspects such as mental states attributed to other agents,
and trust in others. An organizational context refers to an agent’s role, its tasks, its power
relation to others, procedures, rules, and norms. The two explanations for putting a note
at your desk, ‘so you will find it’ and ‘to remind you of something’, are given in a physi-
cal and social context, respectively.
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Figure 7.3: The negotiation agent modeled in a procedural context.

7.3.3 Illustration

In this section we will illustrate the presented view with an example of an explainable
agent for virtual negotiations training (Section 5.2). The agent has the role of a candidate
employee in a negotiation about terms of employment. In the training scenario, the candi-
date employee and the employer (played by the trainee) explore each other’s preferences
regarding working hours, contract type, and salary, and then the employer makes a bid.
The agent’s behavior is represented twice, by two different goal hierarchies. The goal
hierarchies represent equal behavior, but are modeled in different explanation contexts
and thus yield different explanations. The example clearly shows the relation between
behavior representation and explanation.

Figure 7.3 shows the first version of the goal hierarchy of the candidate employee
agent. Note that only the agent’s goals and actions (in gray) are displayed, and not its
beliefs. The actions in the hierarchy can be explained by their underlying goals. For
instance, the action to propose 40 hours per week is explained by the goal that you want
to explore each other’s wishes on working hours because you want to explore all wishes.
The acceptance of a bid is explained by the goal that you want to go through the bidding
phase. Though the goal hierarchy properly and clearly represents the agent’s behavior,
these explanations seem quite useless for training. When viewed in the perspective of
different explanation contexts, this goal hierarchy can be seen as modeled in a procedural
context. To generate useful explanation, however, a more psychological perspective is
needed.

Figure 7.4 shows another version of the goal hierarchy that takes the agent’s personal
preferences and goals into account. The actions (gray) in this model are the same as in the
first one. But though both models generate exactly the same behavior, the explanations
of the actions are different. In the new model, for instance, the action to propose 40 hours
per week is explained by the goal that you want to work with a maximum of 40 hours
per week because you want to have enough time to prepare your trip. And the action of
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Figure 7.4: The negotiation agent modeled in a psychological context.

accepting a good bid is explained by the goal that you want to make a world trip in a
year. These explanations seem more useful than the previous ones.

7.3.4 Chapter summary
We presented a more general view on the explanation of agent behavior by showing dif-
ferent ways and contexts to explain actions. With an example we showed how a partic-
ular behavior representation affects the resulting explanations. Being aware of different
explanation types and contexts can help developers in making design choices that yield
explanation-friendly representations of agent behavior, e.g., choosing an appropriate con-
text for the objective and adding information to the model when necessary. This should
result in agents providing useful explanations in their intended application.

In the presented view, we distinguish more ways to explain actions than Malle’s
framework (Malle, 1999) and Atkinson’s argumentation scheme (Atkinson et al., 2006)
(Chapter 2). In future work, user studies could be performed to further develop the per-
spective into an empirically evaluated framework for explaining agent behavior.





Chapter 8

Conclusion

In this thesis we have presented an approach for developing explainable agents for virtual
training. The research aim of this thesis, introduced in the first chapter, was to investigate
how to help trainees to learn from virtual training by BDI agents that explain their own
behavior. In this final chapter we will examine to what extent the proposed approach
contributes to this research aim. For that, we will answer the research questions and
present the main contributions of this thesis. Subsequently, we will provide an overview
of different directions for future work.

8.1 Main contributions
In the introduction we phrased two questions to guide the research of this thesis (Subsec-
tion 1.2.1). In this section we will first provide two concise answers to these questions,
and then elaborate on the contributions by providing an overview per chapter.

8.1.1 Answering the research questions
The first research question is as follows.

“What explanations about agent behavior can help trainees to learn from
virtual training?”

This question has been answered in three different steps. Literature, described in Chapter
1 and 2, shows that (simulated) human behavior is usually explained and understood from
a folk psychological perspective, that is, in terms of beliefs, goals, plans, and other mental
concepts. In Chapter 4, we investigated which types of folk psychological explanations
potential users of virtual training systems consider most useful. We found that, in general,
explanations with a combination of the trigger belief and the goal of an action were
preferred. More specific guidelines for providing explanations can be found in Section
4.4. In Chapter 5, we tested whether these explanations help trainees to learn form virtual
training. We have not been able to demonstrate significant effects of the explanations on
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learning, but subjects reported to understand the behavior of agents better when these
explained their behavior.

The second research question is as follows.

“How can we develop explainable BDI agents that help trainees to learn
from virtual training?”,

This question has mostly been addressed in Chapter 3. In that chapter, we described how
explainable agents can be developed by constructing a goal hierarchy, implementing the
goal hierarchy as a BDI agent, and adding an explanation module with explanation al-
gorithms to the BDI agent. In Chapter 6, we showed how explainable agents can be
extended with a theory of mind, making them able to provide explanations in terms of
goals and beliefs attributed to other agents. In Chapter 7, we gave a more general per-
spective on how to make design choices when developing explainable agents.

8.1.2 Contributions per chapter
Chapter 2 provides an overview of literature that is relevant for this thesis. The overview
involves literature on explanation, BDI-based programming, feedback in virtual training,
and agent-based virtual training.

In Chapter 3, we presented a way to develop explainable agents based on folk psy-
chology. We first described how to construct a goal hierarchy with the goals, adoption
conditions of goals, and actions of a particular agent. We then showed how such a goal
hierarchy can be implemented as a BDI agent. Next, we described how BDI agents can
be extended by an explanation module that can store an agent’s actions and reasoning
steps and generate explanations for actions. We proposed five explanation algorithms
generating different types of BDI-based explanations, e.g., an action can be explained by
its goal, the circumstances that triggered the action, or the state that will be achieved by
executing the action.

In Chapter 4, we described three studies investigating which explanation types are
considered most useful for learning from virtual training. We used instructors (Section
4.1), novices (Section 4.2) and experts (Section 4.3) as subjects in the domains of on-
board firefighting, firefighting and cooking, respectively. We found that, in general, peo-
ple prefer action explanations that contain a combination of the belief that triggered the
action and the goal that is achieved by the action. We also proposed some more specific
guidelines for the explanation of agent behavior.

Our next step was to test how explanations generated according to our approach af-
fected performance. Chapter 5 describes two studies that aimed to investigate the effects
of our explanations on learning from virtual training, in the domains of onboard fire-
fighting and negotiation, respectively. Since we found no effects of virtual training on
learning in general, however, we were neither able to demonstrate an effect of explana-
tion on learning. Still, subjects in the second study indicated that the agent’s explanations
increased their understanding in the motivations behind its behavior (Section 5.2). In a
third study, we investigated the effects of our explanations on coordination in human-
agent teams. We found no effect of the explanations on team performance, but the expla-
nations affected user experience in a positive way (Section 5.3).



Conclusion 125

In Chapter 6, we extended our explainable agents approach by equipping BDI agents
with a theory of mind. Theory of mind refers to the ability to attribute mental states such
as beliefs and goals to others, and based on that, make predictions about their behavior.
We compared two theories about theory of mind, theory-theory and simulation theory,
and developed an executable model for BDI agents with a theory of mind based on sim-
ulation theory. By providing explainable agents with a theory of mind ability, we made
them capable of providing explanations in terms of goals and beliefs attributed to other
agents.

The last contribution of this thesis comprised a general discussion on explainable
agents, provided in Chapter 7. In this chapter, we examined the advantages and disadvan-
tages of our approach, and discussed possible application domains of explainable agents.
Furthermore, we provided a general perspective on explaining agent behavior, including
an overview of possible explanation types and contexts. This perspective aims to support
the development of explainable agents by guiding design choices when representing an
agent’s behavior.

8.2 Future work
We already made some suggestions for further research at several places in this thesis.
In this section, we give an overview of five main directions for future research. The
directions involve the research fields of agent technology, human-computer interaction,
learning sciences, and cognitive sciences.

Our first suggestion for future work is to make BDI agents able to involve new abil-
ities and properties in explanations about their behavior. In our work, we showed how a
BDI agent can be extended with a theory of mind ability, enabling the agent to explain
its behavior by goals and beliefs attributed to other agents (Chapter 6). Likewise, BDI
agents can be extended with other abilities and properties, e.g., emotions, personality
traits and cultural awareness, so that they can use these properties in explanations about
their behavior. Currently, several directions are being explored. Agents are extended,
for instance, with emotions (Steunebrink et al., 2010), policies (Bradshaw et al., 2003),
norms (Tinnemeier et al., 2009), norm-aware behavior (Doniec et al., 2008), cultural
awareness (Mascarenhas et al., 2009), stress (Heuvelink, 2009), and social responsible
behavior (Xu et al., 2007). Future research can investigate how these extensions, besides
generating more realistic agent behavior, can be used to generate more realistic explana-
tions about agent behavior.

A second direction for further research is that of user-specific explanations. In this
thesis we focused on generating useful explanations for trainees in general. In other
words, we investigated what explanations should be provided when there is no informa-
tion available about a specific trainee. In virtual training, however, it is often possible to
build a user profile while the user interacts with the system. This profile could be used
to improve the usefulness of the explanations for that user. For instance, if a trainee re-
quests an explanation for an action a second time, it is probably more useful to explain
that action in another way than providing the same information again. Moreover, users’
preferences for specific explanation types may be discovered over time.
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A third direction for future research is to explore the use of explainable agents in
applications other than virtual training. Section 5.3 of this thesis already describes a
study in which our approach to explainable agents was applied to coordination in mixed
human-agent teams. Furthermore, in Section 7.2 we mentioned debugging and social
simulations as possible applications for explainable agents. Future work could deter-
mine requirements on explainable agents specific to these applications, and examine the
agents’ value in these contexts.

A fourth direction concerns the evaluation of explainable agents. In Chapter 5, we
concluded that it is not easy to demonstrate an effect of explainable agents on learning,
and more in general, to demonstrate an effect of virtual training on learning. In current
research, many virtual training systems have been proposed, but not so many have been
evaluated. We believe that the evaluation of virtual training should receive more atten-
tion. A possible approach is to use techniques developed for the evaluation of training in
general to develop proper evaluation methods for virtual training systems and explainable
agents in virtual training.

Our fifth suggestion for future research concerns the development of a theory on
the explanation of agent behavior. In Chapter 7, we proposed a general perspective on
explanations about agent behavior, where agent behavior is assumed to be similar to hu-
man behavior. We distinguished more explanation types than Malle’s framework (Malle,
1999) and Atkinson’s argumentation scheme (Atkinson et al., 2006) for explaining hu-
man behavior (see Chapter 2). The proposed view may be a first step towards a more
comprehensive theory on the explanation of agent behavior.

8.3 Closing
This thesis is inspired by and builds upon the research of many others. With the work
presented in this thesis we aim to contribute to research in the fields of agent technology,
explanation and virtual training, and hope that our work will also be of use for others.
Moreover, we hope to support future trainees in their learning from virtual training. We
started this thesis with the following fragment of a training scenario.

When you are called for a fire in a house, you and your four team members
get into a fire engine and drive to the location of the incident as quickly as
possible. Once arrived, you see smoke coming out of a house, people are
standing dangerously close by and from the distance a siren is approaching.
You have to assess the situation quickly, make an attack plan and instruct
your team. Subsequently, while discussing with a policeman where to block
the road, you see that your first two team members, against your instructions,
enter the house through the back instead of the front door. The next moment,
a woman tells you in panic that her dog is still inside the house...

The approach presented in this thesis allows for the development of agents that can ex-
plain their own behavior, also in terms of mental states attributed to others. With such
agents, it is possible to implement the scenario unfolding as follows.
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You wonder whether you should let your other two team members attack the
fire because you are not sure what the first two are doing, or let them search
for the dog. You believe that there must be a reason for the first two to deviate
from their plan, and quickly decide to instruct the second two to go through
the front door, check if the dog is at that side of the house, and if it is not,
attack the fire. Somewhat later all team members are back with the dog. The
fire has been extinguished. When you ask the first two team members why
they entered the house through the back door, they answer: “We believed
that we heard a dog barking at the back of the house and wanted to save
it, and we believed that you would send the other team to the front door to
extinguish the fire.”
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Summary

Computer games are more and more often used for training purposes. These virtual
training games are exploited to train competences like leadership, negotiation and social
skills. In a virtual training session, a human trainee interacts with one or more virtual
characters playing the trainee’s team members, colleagues or opponents. To learn from
virtual training, it is important that the virtual characters display realistic human behavior.
This can be achieved by letting human players, e.g., instructors or co-students, control
the virtual game characters. Another way is to let intelligent software agents generate the
behavior of virtual characters automatically. Using intelligent agents instead of human
players allows trainees to train independently, where and wherever they want.

A potential problem of using intelligent agents in virtual training is that trainees do
not always understand the behavior of the agents. For instance, virtual team members
(played by intelligent agents) that do not follow the instructions of their leader (played by
the trainee) may have misunderstood the instructions, or disobey their leader on purpose.
After playing the scenario, the trainee does not know whether he should communicate
clearer, be more persuasive, or give better or safer instructions. This problem can be
solved by letting virtual agents explain the reasons behind their behavior. When a trainee
can ask its virtual team members, colleagues or opponents to explain the motivations for
their actions, he is are given the opportunity to understand played scenarios and his own
performance better. This thesis is about explaining agent behavior in virtual training,
and proposes a way to generate explanations of the behavior of virtual agents in training
games automatically.

There already exist several approaches to explaining agent behavior in virtual train-
ing. In initial proposals, agent actions were often explained by mere physical properties,
e.g., an agent’s position or its health. However, psychological research shows that people
usually explain and understand human (or human-like) behavior in terms of mental con-
cepts like beliefs, goals and intentions. In more recent approaches to explaining agent
behavior in virtual training, the explanations also include an agent’s mental properties,
such as its goals and intentions.

Existing approaches that provide explanations including an agent’s mental properties
are all application-independent explanation components. That means that they can be ap-
plied to different training systems. Each training system uses its own ways to represent
agent behavior, e.g., by a neural network or a collection of if-then rules. It rarely hap-
pens that an agent’s goals and intentions are explicitly represented in a training system.
In order to develop an explanation component that can provide explanations including
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an agent’s mental properties, developers have to add the goals and motivations for the
agent’s actions manually. Thus, agent behavior is represented both in the training system
and in the explanation component.

In this thesis, we propose an approach that saves developers from representing agent
behavior twice. The approach is not application-independent, but instead, integrates the
development of agents and their explanation capabilities. By exerting control over the
development of agents in virtual training, we can ensure that an agent’s behavior rep-
resentations contain all information needed to explain its actions. We use a BDI-based
(Belief Desire Intention) agent programming language to represent the behavior of agents
in virtual training. The behavior of a BDI agent is represented by beliefs, goals, plans,
and intentions, and its actions are determined by a reasoning process on its mental con-
cepts. Thus, the mental concepts that are responsible for the generation of an action can
also be used to explain that action.

The thesis describes how to develop agents that can explain their actions in a BDI
programming language. First, a goal hierarchy should be constructed with the agent’s
main goal at the top, its subgoals below that, and its actions at the bottom of the hierar-
chy. Adoption conditions in the hierarchy specify when a (sub)goal or action is adopted.
Second, the goal hierarchy should be implemented as a BDI agent. Goals and adoption
conditions in the hierarchy are represented as goals and beliefs in the agent, respec-
tively. Third, the BDI agents should be extended by an explanation module that stores
the agent’s actions and reasoning steps, and can generate explanations for these actions.
We propose several explanation algorithms that generate different types of explanations.
For example, an action can be explained by its goal, the circumstances that triggered the
action, or the state that will be achieved by executing the action.

Since our approach to explainable agents can generate different explanation types,
we performed three user studies to investigate which explanation types are considered
most useful for learning from virtual training. We used instructors, novices and experts
as subjects in the domains of onboard firefighting, firefighting and cooking, respectively.
We found, among other things, that people generally prefer explanations that contain a
combination of (1) the belief that triggered the action and (2) the goal that is achieved
by the action. In the thesis we introduce several guidelines for the explanation of agent
behavior that were based on the results of the studies.

The thesis describes three studies that validate the proposed approach. In all three
studies it was tested how explanations generated according to our approach affected
performance. Two of the studies investigated the effects of explanations on learning
from virtual training, in the domains of onboard firefighting and negotiation, respec-
tively. Since we found no effects of virtual training on learning in general, we were
neither able to demonstrate an effect of explanation on learning. However, subjects in
the second study indicated that the agent’s explanations increased their understanding in
the motivations behind its behavior. In a third study, we investigated the effects of expla-
nations on coordination in human-agent teams. We found no effect of the explanations
on team performance, but subjects better understood the agents behavior and preferred
the amount of information provided by the agent when the agent explained its behavior.

In one of the first three studies, we found that instructors often prefer explanations
containing predictions about the behavior of other agents. In order to provide such ex-
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planations, we extended our explainable agent approach by equipping the agents with a
theory of mind. Theory of mind refers to the ability to attribute mental states such as
beliefs and goals to others, and based on that, make predictions about their behavior. By
providing explainable agents with a theory of mind ability, they become capable of pro-
viding explanations in terms of goals and beliefs attributed to other agents. We compared
two philosophical theories about theory of mind, theory-theory and simulation theory, on
their appropriateness for modeling explainable agents with a theory of mind. We found
that the theories could generate equally useful explanations, but that agent models based
on simulation theory are more efficient to develop. Therefore, we developed an exe-
cutable model for BDI agents with a theory of mind based on simulation theory.

The thesis ends with a discussion of the advantages and disadvantages of our ap-
proach, and provides several suggestions for future research. The main conclusions of
this thesis are that (1) BDI agents can be used to generate explanations about their own
actions in terms of goals, beliefs, and plans, (2) explanations generated according to
our approach can increase understanding of an agent’s behavior, and (3) our approach is
particularly useful when the explainable agents are reused in different training scenarios.





Samenvatting

Computerspellen worden steeds vaker gebruikt om mensen te trainen. Zulke virtuele
trainingsspellen worden bijvoorbeeld ingezet voor het trainen van leiderschap, onderhan-
delen en sociale vaardigheden. De trainee krijgt in een trainingssessie meestal te maken
met één of meerdere virtuele teamleden, collega’s of tegenstanders. Om van virtuele trai-
ning te leren is het belangrijk dat deze virtuele personages realistisch menselijk gedrag
vertonen. Er zijn twee manieren om dat te bereiken. Ten eerste kunnen mensen de vir-
tuele personages aansturen, bijvoorbeeld instructeurs of medestudenten van de trainee.
Ten tweede kunnen intelligente software agenten het gedrag van de virtuele personages
automatisch genereren. Een voordeel van het gebruik van intelligente agenten in plaats
van menselijke spelers is dat trainees zo zelfstandig kunnen trainen, waar en wanneer ze
maar willen.

Een mogelijk probleem bij het gebruik van intelligente agenten in virtuele training
is dat trainees het gedrag van de agenten niet altijd goed begrijpen. Er zijn bijvoorbeeld
verschillende redenen waarom virtuele teamleden (gespeeld door intelligente agenten)
de instructies van hun leider (gespeeld door de trainee) niet opvolgen. Het kan zijn
dat ze zijn instructies niet goed hebben begrepen, maar het kan ook zijn dat ze hem
expres niet gehoorzamen. Na het spelen van een scenario weet de trainee dan niet of
hij duidelijker moet communiceren, overtuigender moet zijn of veiligere instructies moet
geven. Dit probleem kan worden opgelost met virtuele agenten die hun eigen gedrag
verklaren. Als een trainee zijn virtuele medespelers kan vragen waarom ze iets doen,
krijgt hij de mogelijkheid om het gedrag van anderen en daarmee zijn eigen prestaties
beter te begrijpen. Dit proefschrift gaat over het verklaren van agentgedrag in virtuele
training en stelt een benadering voor waarin virtuele agenten automatisch verklaringen
voor hun gedrag genereren.

Er bestaan reeds verschillende benaderingen voor het verklaren van agentgedrag in
virtuele training. In de eerste benaderingen werden de acties van agenten vaak verklaard
door fysieke eigenschappen van een agent, bijvoorbeeld zijn positie of gezondheid. Psy-
chologisch onderzoek laat echter zien dat menselijk gedrag meestal wordt begrepen en
verklaard in termen van mentale concepten zoals doelen, overtuigingen en intenties. In
meer recente benaderingen voor het verklaren van agentgedrag in virtuele training be-
vatten verklaringen ook mentale eigenschappen van agenten, zoals hun doelen en hun
intenties.

De huidige benaderingen voor het verklaren van agentgedrag (acties van agenten
worden verklaard door mentale eigenschappen) bestaan allemaal uit onafhankelijke ver-



146 Samenvatting

klaringscomponenten. Dat betekent dat de component die verklaringen genereert op ver-
schillende trainingssystemen toegepast kan worden. Elk trainingssysteem heeft zijn ei-
gen manier om agentgedrag te representeren, bijvoorbeeld met een neuraal netwerk of
met een verzameling van als-dan regels. Het komt zelden voor dat de doelen en in-
tenties van een agent expliciet in een trainingssysteem gerepresenteerd zijn. Om toch
verklaringen met mentale eigenschappen te genereren, moeten de ontwikkelaars van be-
staande benaderingen de doelen en intenties voor de acties van een agent handmatig aan
de verklaringscomponent toevoegen. Op die manier wordt agentgedrag dus twee keer
gerepresenteerd, in het trainingssysteem en in de verklaringscomponent.

In dit proefschrift stellen we een benadering voor waarbij het gedrag van een agent
slechts éénmaal gespecificeerd hoeft te worden. De benadering levert geen verklarings-
component op die aan verschillende trainingssystemen kan worden gekoppeld. In plaats
daarvan worden agenten en hun verklaringscapaciteiten juist gezamenlijk ontwikkeld.
Door het gedrag van agenten in virtuele training zelf te representeren kunnen ontwikke-
laars ervoor zorgen dat alle informatie die nodig is voor het verklaren van acties al in de
gedragsrepresentaties van de agenten aanwezig is. Dit bespaart ontwikkelaars de moeite
om agentgedrag nogmaals te representeren in een verklaringscomponent. In onze bena-
dering maken we voor het representeren van agentgedrag gebruik van een BDI program-
meertaal (Belief Desire Intention). Het gedrag van een BDI agent wordt gerepresenteerd
door doelen, overtuigingen, plannen en intenties. De acties van een BDI agent worden
bepaald door een redeneerproces met zijn mentale concepten. Op die manier kunnen de
mentale concepten die verantwoordelijk zijn voor de generatie van een actie ook worden
gebruikt om diezelfde actie te verklaren.

Dit proefschrift beschrijft hoe agenten die hun gedrag kunnen verklaren worden ont-
wikkeld in een BDI programmeertaal. Eerst moet er een doelhiërarchie worden gemaakt
met bovenaan in de hiërarchie het hoofddoel van de agent, daaronder zijn subdoelen
en helemaal beneden in de hiërarchie zijn acties. Met adoptiecondities kan worden ge-
specificeerd onder welke omstandigheden een (sub)doel of actie moet worden aangeno-
men. Daarna wordt de doelhiërarchie geı̈mplementeerd als een BDI agent. De doelen
en adoptiecondities in de hiërarchie worden respectievelijk gerepresenteerd als doelen en
overtuigingen in de agent. Ten slotte wordt de BDI agent uitgebreid met een verklarings-
module. De verklaringsmodule slaat alle acties en redeneerstappen van de agent op en
kan er vervolgens verklaringen voor genereren. We stellen een aantal verklaringsalgo-
ritmes voor die verschillende types verklaringen genereren. Een actie kan bijvoorbeeld
worden verklaard door het doel dat met de actie bereikt wordt, de omstandigheden die de
aanleiding waren voor de actie, of de staat die bereikt wordt door de actie uit te voeren.

Aangezien onze benadering verschillende soorten verklaringen kan genereren, heb-
ben we drie studies gedaan om uit te zoeken welke soorten als meest nuttig worden
beschouwd voor het leren van virtuele training. De deelnemers in de drie studies wa-
ren instructeurs, beginners en experts en de domeinen waren brandbestrijding aan boord,
brandbestrijding en koken. We hebben onder andere gevonden dat mensen over het al-
gemeen een voorkeur hebben voor verklaringen met (1) een overtuiging over de omstan-
digheden die de aanleiding waren voor de actie en (2) het doel dat met de actie wordt
bereikt. Op basis van de resultaten worden in dit proefschrift een aantal richtlijnen voor
het verklaren van agentgedrag voorgesteld.
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Het proefschrift beschrijft een tweede reeks van drie studies die de voorgestelde be-
nadering valideren. Dit is gedaan door te onderzoeken hoe de verklaringen prestatie
beı̈nvloeden. Twee van de studies hebben de effecten van verklaringen op het leren van
virtuele training onderzocht. De domeinen van de virtuele trainingen in deze studies
waren brandbestrijding aan boord en onderhandelen. Aangezien we geen effecten van
virtuele training op leren hebben kunnen aantonen in deze studies zijn er ook geen ef-
fecten van verklaringen op leren gevonden. De deelnemers van de tweede studie gaven
echter aan dat de verklaringen van de agent hun inzicht in de motivaties voor zijn gedrag
vergrootte. In een derde studie hebben we de effecten van verklaringen op coördinatie
in mens-agent teams onderzocht. We hebben geen effect van de verklaringen op team-
prestatie gevonden, maar deelnemers begrepen het gedrag van de agent beter wanneer
hij zijn gedrag verklaarde. Verder vonden deelnemers de hoeveelheid informatie die de
agent hun verschafte beter wanneer hij zijn gedrag verklaren.

Uit een van de studies uit de eerste reeks bleek dat instructeurs vaak een voorkeur
hebben voor verklaringen voor acties die voorspellingen over het gedrag van anderen
bevatten. Om zulke verklaringen te kunnen genereren hebben we onze benadering uit-
gebreid door de agenten te voorzien van een theory of mind. Theory of mind is het ver-
mogen om mentale concepten zoals overtuigingen en doelen aan anderen toe te schrijven
en op basis daarvan voorspellingen te doen over hun gedrag. Met een theory of mind
kunnen agenten verklaringen genereren in termen van doelen en overtuigingen die ze
aan anderen toeschrijven. Filosofische literatuur beschrijft twee theorieën over theory of
mind: theorie-theorie en simulatietheorie. We hebben deze twee theorieën met elkaar
vergeleken wat betreft hun geschiktheid voor het modelleren van agenten met een theory
of mind. Uit deze vergelijking bleek dat de verklaringen die op basis van beide theorieën
gegenereerd werden even nuttig waren, maar dat het ontwikkelen van agentmodellen
efficiënter is wanneer ze gebaseerd zijn op simulatietheorie. We hebben daarom een uit-
voerbaar model voor BDI agenten met een theory of mind ontwikkeld dat gebaseerd is
op simulatietheorie.

Het proefschrift eindigt met een discussie over de voor- en nadelen van onze be-
nadering en verschaft een aantal suggesties voor verder onderzoek. De belangrijkste
conclusies van dit proefschrift zijn dat (1) BDI agenten kunnen worden gebruikt voor het
genereren van verklaringen over hun eigen acties in termen van doelen, overtuigingen en
plannen, (2) verklaringen gegenereerd volgens onze benadering het begrip in het gedrag
van een agent kunnen verhogen, (3) onze benadering met name geschikt is wanneer de
agenten gebruikt worden voor verschillende trainingsscenarios.
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