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Abstract. We introduce a novel evolutionary algorithm where the centralized or-
acle –the selection-reproduction loop– is replaced by a distributed system of Fate
Agents that autonomously perform the evolutionary operations. This results in a
distributed, situated, and self-organizing EA, where candidate solutions and Fate
Agents co-exist and co-evolve. Our motivation comes from evolutionary swarm
robotics where candidate solutions evolve in real time and space. As a first proof-
of-concept, however, here we test the algorithm with abstract function optimiza-
tion problems. The results show that the Fate Agents EA is capable of evolving
good solutions and it can cope with noise and changing fitness landscapes. Fur-
thermore, an analysis of algorithm behavior also shows that this EA successfully
regulates population sizes and adapts its parameters.

1 Introduction

Evolutionary algorithms (EAs) offer a natural approach to provide adaptive capabilities
to systems that are by nature distributed in a real or virtual space. Examples of such sys-
tems are robot swarms that have to adapt to some dynamically changing environment,
or a collection of adaptive software agents that provide services at different locations in
a vast computer network. Such systems are becoming more and more important, and so
is the need to make them evolvable on-the-fly. The problem is that traditional EAs with
central control are not suited for these kinds of applications.

In traditional EAs we can distinguish two entities: the population of candidate solu-
tions that undergo evolution and an omniscient oracle (the main EA loop) that decides
about all individuals and performs the evolutionary operators. In situated evolution in
general, and in evolutionary swarm robotics in particular, a single oracle has a num-
ber of drawbacks [11]. Firstly, it forms a single point of failure, secondly, it may limit
scalability as it may not be able to process all the information about the individuals
in a timely manner, and thirdly, it may not be reachable for certain individuals if the
distance exceeds the feasible (or cost effective) range of communication. The natural
solution would be a system with multiple, spatially distributed EA-oracles that pro-
vide sufficient coverage of the whole population. Furthermore, the inherently dynamic
circumstances in such applications require that the EA-oracles can adjust their own
settings on-the-fly [8].

The first objective of this paper is to introduce a system that combines two funda-
mental properties by design: 1) evolutionary operators are distributed and 2) the algo-
rithmic settings are self-regulating. The key idea is to decompose the EA loop into three
separate functional components, parent selection, reproduction/variation, and survivor
selection, and create autonomous entities that implement these components. We name



these entities Fate Agents after the ‘Moirai’ of Greek mythology. For a maximally mod-
ular system we define three types of Fate Agents, one for each EA component, and add
several Fate Agents of each type to the regular population of candidate solutions. These
Fate Agents control the evolution of both regular candidate solutions and other Fate
Agents in their direct surroundings. Because the Fate Agents also act on Fate Agents,
the population of Fate Agents evolves itself and the EA configuration becomes adaptive.

Obviously, an elegant design does not by itself justify a new system. The second
objective of this paper is an experimental assessment to answer three main questions:
1. Can this evolutionary system solve problems at all?
2. Can this evolutionary system cope with noise?
3. Can this evolutionary system cope with changing fitness landscapes?

Because the Fate Agents EA is new and has, to our knowledge, never been imple-
mented before, we are also interested in system behavior. Therefore, we also inspect
various run-time descriptors (e.g., the numbers of agents) that can help us understand
what happens during a run.

2 Related Work

Existing work can be related to our research from the angles of the two main properties
mentioned above: distributed, agent-based evolutionary operators and self-regulating
algorithmic settings. The latter is a classic theme in EC, often labelled parameter con-
trol or on-line parameter setting [2, 8]. In this context, our work is distinguished by the
novel Fate Agent technique to modify EA parameters and the fact that it can handle all
parameters regarding selection, reproduction and population size. This contrasts with
the majority of related work where typically one or two EA parameters are handled.
Furthermore, our system naturally handles population sizes, which is one of the tough-
est problems in EAs with autonomous selection [14].

The distributed perspective is traditionally treated in the context of spatially struc-
tured EAs [12], where the cellular EA variants are the closest to our system [1]. Never-
theless, there are important differences: spatially structured EAs are based on “oracles”
outside the population that do not change over time, while our Fate Agents operate
“from within” and –most importantly– undergo evolution themselves. The combina-
tion of spatial structure and parameter control has been studied in [5] and [4], where
each location in the grid space has a different combination of parameter values. These,
however, are all set by the user at initialization and do not change over time.

Finally, our system can be related to meta-evolution [3], in particular the so-called
local meta-evolutionary approaches [10] (not the meta-GA lookalikes). Work in this
sub-domain is scarce, we only know about a handful of papers. For instance, [10] pro-
vides a theoretical analysis, [6] demonstrates it in GP, while [9] eloquently discusses
computational vs. biological perspectives and elaborates on algorithms with an artifi-
cial chemistry flavor.

3 The Fate Agents Evolutionary Algorithm

Our Fate Agents EA is situated in a (virtual) space where agents move and interact. The
evolving population consists of two main types of agents: passive agents that represent



candidate solutions to the problem being solved and active Fate Agents that embody EA
operators and parameters. Fate Agents form evolving populations themselves because
they act not only upon candidate solutions but also upon each other. This makes the
Fate Agents EA entirely self-regulated. By design, Fate Agents have a limited range
of perception and action: they can only influence other agents within this range. Con-
sequently, the evolutionary process is fully distributed as there is no central authority
that orchestrates evolution but different parts of the environment are regulated by dif-
ferent agents. Below we describe the agent types and functionalities and subsequently
the algorithm’s main cycle.

Candidate Solution Agents are the simplest type of agent: they only carry a genome
which represents a solution to the given problem. The fitness of a candidate solution
agent is the fitness of its genome according to this problem. In a swarm robotic applica-
tion, for example, we could have working robots and Fate robots; the principal problem
would then be to evolve controllers for the working robots. The candidate solutions
would be the controllers in the working robots encoded by some appropriate data struc-
ture and the corresponding fitness would be based on the task the working robots have
to solve. To solve an abstract function optimization problem, the candidate solutions’
genome would be no different from that in a regular EA, but the candidate solution
would be situated in and move about a virtual space, along with the Fate Agents. In
general, we assume that candidate solution agents are able to move. However, they are
passive in the algorithmic sense, being manipulated by Fate Agents.

Fate Agents personify and embody evolutionary operators: parent selection, varia-
tion/reproduction and survivor selection. Fate Agents have a limited range of operation
so that each one can act only within its local neighborhood. Fate Agents themselves
form an evolving population, hence they require a measure of fitness. We experimented
with various approaches, such as (combinations of) measures like diversity, average
and median fitness; we found that the use of the best candidate solution fitness in the
area yields the best results. Thus, the fitness of a Fate Agent is set to the fitness of
the fittest candidate solution in its neighborhood. There are three types of Fate Agents,
each responsible for different evolutionary operators: cupids select and pair up parents,
breeders create offspring while reapers remove agents to make room for new ones. Note
that they perform these operations not only on candidate solutions but on each other as
well, e.g. cupids make matches between cupids, reapers kill breeders, etc.

Cupids realize parent selection by determining who mates with whom. The selec-
tion procedure is the same for all kinds of agents. A cupid creates lists of potential
parents by running a series of tournaments in its neighborhood. The number of tourna-
ments held for each type of agent depends on two values: the number of agents of that
type in the cupid’s neighborhood and a probability that this type of agent is selected.
The latter probability is different for each distinct cupid and subject to evolution in the
cupid strain. The tournament sizes also evolve. Thus, a cupid’s genome consists of four
real values representing the selection probabilities for each agent type and one integer
for tournament size.

Reapers realize survivor selection indirectly, by selecting who dies. The selection
mechanism of reapers is identical to that of cupids (with the difference that reapers’



tournaments select the worst of the candidates). Reapers’ genomes also consist of four
selection probabilities for the different agent types and a tournament size. In earlier
versions of the algorithm we tried different mechanisms for cupids and reapers. One
approach was allowing a cupid/reaper to examine each and every agent in its neighbor-
hood and make a separate decision whether to select it or not. That selection decision
was facilitated by a simple perceptron using various measures of the agent and its sur-
roundings as input. The weights and the threshold of the perceptron evolved. We found
this representation to be overly complicated and results suggested mostly random se-
lection. A variation of the selection scheme we currently use was to also evolve the
probability that the winner of a tournament would actually be selected. Results sug-
gested that this probability had no effect, possibly because the size of the tournament
already provides sufficient control of selection pressure.

Breeders realize reproduction and variation by producing a child for a given couple
of parent agents. For all kinds of agents the breeder performs both recombination and
mutation. Breeders, as opposed to cupids and reapers, have different mechanisms for
acting upon themselves and upon other agent types. In general, a breeder is given two
parents by a cupid in the neighborhood and applies averaging crossover to produce one
offspring and then Gaussian/creep mutation (in our experiments) on that offspring. A
breeder’s genome consists of three values: the mutation step sizes for candidate solu-
tions, cupids and reapers. Thus, mutation of these agents evolves in the breeder popula-
tion. Mutation step sizes for breeders are mutated according to the following rule taken
from Evolution Strategies’ self-adaptation:

σt+1 = σte
τN(0,1)

The reason for this distinction is that if breeders’ mutation step sizes were also to evolve
then these values would be used to mutate themselves. Trial experiments showed that
this approach leads to a positive feedback loop that results in exploding values. Note,
that the implementation of the breeder depends on the application: the crossover and
mutation operators must suit the genomic representation in the candidate solutions. An
earlier version of the breeder was designed with the intention to control as much of the
reproduction process as possible. The breeders’ genome consisted of mutation rates,
mutation sizes and different parameters of crossover if applicable. It also included meta-
mutation values that were used to mutate the previous values. There were three layers
in a breeder’s genome: the lower level consisted of values involved in the variation of
candidate solutions and other Fate Agents while the upper levels were used to variate the
lower layers (and thus the breeders themselves). Results showed that this approach was
too complex and inappropriate for evolution, especially since upper level mutation step
sizes had a rather minor short-term effect on the fitness of candidate solution agents.
The main cycle In the experiments for this paper, we used the Fate Agent EA to solve
abstract function optimization problems, so we had to devise a virtual space and opera-
tions for movement. Obviously, applications in a swarm robotics or ALife setting would
come with predefined space and movement, and parts of the cycle presented here would
be superfluous.

All the agents, both candidate solutions and Fate Agents, are situated in the same
spatially structured environment, a torus shaped grid. Each cell can either be empty or
occupied by exactly one agent. The algorithm makes discrete steps in two phases.



The first phase takes care of movement. For these experiments, we have simply
implemented random movement by randomly swapping contents between two neigh-
boring cells with a certain probability.

In the second phase evolutionary operators are executed. First, both cupids and
reapers make their selections. Subsequently, offspring is produced in iterations as fol-
lows: in each iteration, a cupid with available parents and a free cell in its neighborhood
is randomly chosen. A breeder is randomly selected from the neighborhood of the se-
lected cupid and it is provided with the parents that are then removed from the cupid’s
list. The breeder produces a single child which is then placed in the empty cell. This
procedure is repeated until there are no cupids with remaining selected agents and un-
occupied cells in their neighborhood.

When offspring production has completed, reaping is performed: reapers are acti-
vated in random sequence until there are no reapers left with non-empty selection lists.
Notice that during each reaping iteration, a reaper kills only one agent (of any type).
Hence, a reaper can kill and be killed in the same reaping iteration. When reaping is
complete, the evolutionary phase is concluded and the algorithm starts a new cycle. The
overall algorithm cycle is presented in Algorithm 1.

The random sequence and individual actions of cupids and reapers during off-
spring production and reaping approximate a distributed system with agents acting au-
tonomously and concurrently. It might seem unorthodox that selection by the reapers
is performed before offspring are produced, meaning that unfit offspring are allowed
to survive and possibly reproduce. Our motivation for this order of operators is to give
Fate Agents a ‘free pass’: before a Fate Agent is considered for removal it should have
the chance to act upon its neighborhood at least once, so that its evaluation will closer
reflect its true fitness. The designed order does give this free pass to Fate Agents (at
least to cupids and breeders).

4 Experimental Setup

We conducted several experiments to validate our algorithm from a problem solving
perspective and to observe its runtime behavior. To this end we used the test functions
from the BBOB2012 test suite from the GECCO 2012 black box optimization contest,
because they are well designed and proven by several other research groups 1. Further-
more, we experimented on the Fletcher & Powell function, because it is very hard to
solve but its landscape can be easily redefined for the tests on changing fitness functions.
We performed three sets of experiments:
A As a proof-of-concept that the algorithm generally works and is capable of problem

solving and self-regulation we used 6 functions: BBOB2012 f3, f20, f22, f23, f24,
and the Fletcher & Powell. We allowed the algorithm to run for 500 generations.

B To see if the algorithm can cope with noise we used 6 other BBOB2012 functions:
f122, f123, f125, f126, f128, f129 and let the algorithm run for 1000 generations.

C To examine how well the system can recover from and adapt to sudden cataclysmic
changes we ran tests on the Fletcher & Powell function randomizing its matrices
every 250 generations. Here we allowed the algorithm to run for 2000 generations.

1 http://coco.gforge.inria.fr/doku.php?id=bbob-2012



Algorithm 1 The Fate Agent EA algorithm
generation← 0;
while generation ≤ maxGeneration do

doMovement;
for all Cupid c do

c.SelectParents;
cupids.Add(c);

end for
for all Reaper r do

r.SelectDeaths;
reapers.Add(r);

end for
while cupids.NotEmpty do

c← cupids.GetRandomCupid;
if c.HasNoFreeCell ∨ c.SelectedParents.Empty then

cupids.Remove(c);
else

b← c.GetRandomNeighborBreeder;
cell← c.GetRandomFreeCell;
a← b.Breed(c.GetParents);
cell.placeAgent(a);

end if
end while
while reapers.NotEmpty do

r← reapers.GetRandomReaper;
if r.agentsToKill.Empty then

reapers.remove(r);
else

r.killAgent;
end if

end while
generation← generation + 1;

end while

For the spatial embedding we used a 100×100 grid where each cell can either be empty
or occupied by only one agent (thus there is a maximum of 10000 agents). The grid is
initialized by filling all cells with random agents of random type with the following
probabilities: 0.0625 for each Fate Agent type and 0.8125 for candidate solutions. Ran-
dom movement is implemented by swapping the contents of two neighboring cells with
probability 0.5 for each edge. Fate Agents have a neighborhood of radius 5 cells. All
our experiments are repeatable, since we offer the code of the Fate Agent EA and the
experiments through the webpage of the second author. 2

We emphasize that the purpose of these experiments is not to advocate the Fate
Agents EA as a competitive numeric optimizer but only to demonstrate its ability to

2 See http://www.few.vu.nl/˜gks290/downloads/PPSN2012Fate.tar.gz
for the whole source code.



solve problems and investigate its dynamics and self-regulating behavior without time
consuming robotics or ALife experiments. The numeric test suite was used merely as a
convenient testbed for evolution, thus a comparison with benchmarks or BBOB cham-
pions would be out of context.

5 Does it work?

The results in section A in Table 1 show that the Fate Agents EA is indeed able to solve
problems, achieving good fitness on almost all BBOB test functions and a reasonably
high fitness for the very difficult FP problem. Good success ratios are also achieved for
two noiseless and three noisy functions.

Fig. 1. Example of system recovery, fitness
vs. time, experiment C, run 4

Section B of Table 1 demonstrates that
our system is able to cope with noise very
well: it achieves high fitness for all problems
and a good success ratio for three out of six
noisy functions. As was explained in Sec-
tion 4 the purpose of the experiments is not
to propose the Fate Agents EA as a numeric
optimizer, thus, we will not examine its per-
formance on BBOB any further or determine
how competitive it is.

Finally, based on the results of experiment
set C, we can give a positive answer to the
third question we posed in Sec. 1: Fig. 1 presents the best fitness over time for an
example run. The sudden drops in fitness mark the points in time when the matrix of
the FP problem is randomly changed, drastically changing the fitness landscape. As
can be seen, the system recovers from this catastrophic change, although it does not
always succeed. In general, 24 out of 30 runs exhibited at least one successful recovery
while, in total, we observed an equal number of successful and unsuccessful recoveries.
It should be noted that the FP problem is very hard and the time provided between
changes is quite short (250 generations). Nevertheless, results show that the Fate Agent
EA does possess the ability to cope with radical change even though the design has no
specific provisions for that purpose.

Table 1. Performance results for experiment sets A and B in terms of Average Best Fitness
normalized between 0 (worst) and 1 (optimal), Average number of Evaluations to Best fitness
achieved, Success Rate (success at 0.999 of normalized fitness) and Average number of Evalua-
tions to Success (only successful runs taken into account).

Set A - Static Noiseless Set B - Static Noisy
ABF AEB SR AES ABF AEB SR AES

F&P 0.53 289682 0.0 - f122 0.99 207857 0.03 240684
f3 0.87 223341 0.76 228440 f123 0.99 130996 0.96 131425
f20 0.73 210527 0.03 266631 f125 0.99 131383 0.0 -
f22 0.90 309865 0.8 328891 f126 0.99 126342 1.0 126342
f23 0.90 204382 0.0 - f128 0.97 172836 0.40 195561
f24 0.05 247797 0.0 - f129 0.99 137674 0.76 135225



6 System behavior

One of the most important aspects of the system’s behavior is that the population sizes
for the different types of agents are successfully regulated. They reach a balance quite
different to the initialization ratios (see Section 4) very quickly while no agent type be-
comes extinct or dominates the population even though there are no external limitations
imposed. This is a very interesting result on its own right, since regulating population
sizes in EAs with autonomous selection is an open issue [14]. An example run is shown
in Fig. 2. Agent numbers are initialized to default values but populations soon converge
and maintain a balance throughout the run. All runs across experiment sets demonstrate
similar population dynamics.

Fig. 2. Example of population breakdown
over time, experiment A f22, run 12

Considering self-adaptation in EAs, one
of the basic expectations is the adaptation of
the size of search steps (the mutation step
size σ in terms of evolution strategies). In our
system, the mutation of agents is controlled
by the breeder agents. The breeders’ genome
includes mutation step sizes for every other
agent type. Fig. 3 presents examples of three
different behaviors observed in breeder pop-
ulations. Each graph illustrates the best and
mean fitness of the candidate solution popu-
lation and the mutation step size applied to
candidate solutions averaged over the whole breeder population. Case (a) is an example
of typical evolution with mutation size slowly converging to zero as the search con-
verges to the optimum. Case (b) demonstrates a successful response of the breeders to
premature convergence to a local optimum: after around 100 generations the search gets
stuck and the breeder population reacts with a steep increase of the mutation size which
helps escape and progress. Case (c) shows a failed attempt to escape a local optimum,
even though breeders evolve high mutation sizes after the search is stuck.

Note that mutation sizes are correlated to the average fitness, not to the best fitness.
This is reasonable considering that Fate Agents have a limited range and are unaware
of global values. In all cases, the mutation size converges to zero as soon as the whole
population converges (mean fitness becomes equal to the best fitness). This implies that
the system has the ability to respond and escape local optima as long as there is still
diversity available but is unable to create new diversity after global convergence, as is
the case in Fig. 3(c).

Finally, we made an interesting observation related to spatial dynamics: results show
that, on average, cupids consistently have better fitness than reapers. Both agent types
are evaluated according to the fittest candidate solution in their neighborhood and both
agent types have the same range for these neighborhoods. We conclude that reapers are
usually found in areas with less fit individuals while cupids frequent areas with fitter
individuals. Since movement is random, this effect can only be the result of cupids’
selection probabilities: cupids in ‘bad’ areas consistently evolve a preference for select-
ing reapers while cupids in ‘good’ areas develop a preference for selecting even more
cupids. Furthermore, reapers almost always have very high preference for killing other



(a) typical (A, f24, run 10) (b) successful (A, f3, run 13) (c) failed (A, f23, run 5)

Fig. 3. Three examples of breeders’ evolution and response to premature convergence. Lines rep-
resent best fitness (solid), mean fitness (dotted) and mutation step size for candidate solutions
(dashed) over time.

reapers and, consequently, low ages (they mostly survive only one generation).3 This
implies that cupids in bad areas create ‘reaper explosions’ that eradicate low-fitness
candidate solutions and also clean up after themselves as reapers select each other.

7 Conclusions and Future Work

Motivated by specific challenges in evolutionary swarm robotics, we introduced the
Fate Agents Evolutionary Algorithm. It forms a new type of distributed and self-regulating
EA where algorithmic operators are implemented through autonomous agents placed in
the same space where the candidate solutions live and die. This provides a natural so-
lution to the problems of the limited range and scalability a single oracle based EA
would suffer from. Compared to alternative solutions where evolutionary operators are
embodied in the robots [13, 7] Fate Agents offer increased controllability for experi-
menters and users. Furthermore, our Fate Agents are not only operating on candidate
solutions, but also on themselves. Hence, a Fate Agents EA has an inherent capability
to regulate its own configuration.

Because proof-of-concept experiments with (simulated) robots would have taken
very much time, we performed the first assessment of this new EA with synthetic fit-
ness landscapes. To this end, we conducted experiments to explore our system’s prob-
lem solving ability and self-regulating behavior on challenging numerical optimization
problems. Results showed that the Fate Agents EA is capable of solving these problems
and of coping with noise and disruptive changes. Furthermore, it successfully regulates
population sizes and adapts its parameters.

In conclusion, the Fate Agents EA is a new kind of evolutionary algorithm that
deserves further research from a number of angles. These include 1) applications in
collective adaptive systems, such as swarm and evolutionary robotics (comparisons
with other on-line on-board evolutionary mechanisms); 2) as a new paradigm for self-
adapting EAs . Furthermore, though it may seem contradictory to our initial motivation,
our results indicate that the Fate Agents EA may also deserve further investigation as a
numeric function optimizer.

Acknowledgments The authors would like to thank Istvan Haller and Mariya Dzhor-
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3 These observations are true for almost every run we conducted. Due to lack of space we cannot
present relevant graphs.
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