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Abstract— To reduce the amount of data transfer in networked
systems, measurements are usually taken only when an event
occurs rather than periodically in time. However, this complicates
estimation problems considerably as it is not guaranteed that
new sensor measurements will be sampled. In order to cope with
such event sampled measurements, an existing state estimator is
modified so that any divergent behavior in estimation results will
be curtailed. To start, a general formulation of event sampling
is proposed, which is then used to set up a state estimator
combining stochastic as well as set-membership measurement
information according to a hybrid update: when an event occurs
the estimated state is updated using the stochastic measurement
received (positive information), while at periodic time instants
no new measurement is received (negative information) and the
update is based on knowledge that the sensor value lies within
a bounded subset of the measurement space. An illustrative
example further shows that the developed estimator has an
improved representation of estimation errors compared to purely
stochastic estimators for various event sampling strategies.

I. INTRODUCTION

Event-based state estimation is an emerging alternative to
classical, time-periodic estimators with many relevant appli-
cations in networked systems. In contrast to sampling periodi-
cally in time, event-based estimators employ an event sampling
strategy for triggering new measurements at instants of well
designed events. Two examples of event sampling are “Send-
on-Delta” [1], [2] and “Matched Sampling” [3] as illustrated
in Section III. Resource limitations of networked systems in
communication and energy are among the main motivations
for pursuing event-based estimation, since the event sampling
strategy employed aims to reduce the amount of measurements
exchanged. The additional value of event sampling is best
noticed in networked systems with (simplistic) sensors cap-
turing continuous or high frequency signal information, e.g.,
temperature and position sensors. The approach is unfavorable
in systems capturing complex, asynchronous sensory data,
such as object detection with cameras. Notice further that
employing event sampling will result in some extra compu-
tational power at the sensor and that, although measurements
arrive at instants of an event, estimation results are usually
required periodically in time. For example, serving as input to
a monitoring system or a periodic controller as it is depicted
in the networked system of Figure 1.

Therefore, the main issue in event-based state estimation
is finding a suitable approach for processing event sampled

Fig. 1. The considered networked system including an event-based estimator
and a time-periodic controller. Therein, y(te) denotes a measurement taken at
an event instant te, x(t) is the state at either an event instant or at a time-
periodic instant, and u(t) is the control action.

measurements while keeping stable estimation results period-
ically in time. Asynchronous estimation approaches can be
employed for solving this issue. Yet, it was shown in [4]
that they will have unstable behavior as merely sampled mea-
surements taken at the events are exploited for an estimation
update, while it is unknown whether new measurement will be
sampled at all. Moreover, additional measurement information
is available in between two events, since criteria for triggering
the next event can be turned into a set-membership property
of the sensor value when no new measurement is sampled
(negative information)1. Several event-based state-estimators
have been proposed that exploit this additional set-membership
information in a state update, yielding stable estimation results
for various event sampling strategies. See, for example, the
estimators proposed in [5], [6]. The main drawback of both
approaches is that they treat the set-membership measurement
information as a stochastic measurement and thereby, intro-
duce systematic approximations and incorrect models of the
estimation error. This issue can be solved by a set-membership
estimation approach instead of a stochastic one, e.g., [7]–
[9]. However, drawbacks of these approaches is their com-
putational complexity and the fact that sensor noise typically
follows a stochastic model.

To solve these issues, the estimation problem addressed in
this article employs a stochastic representation for modeling
noises and a set-membership representation for incorporat-
ing additional measurement information derived from event
sampling criteria. In particular, the goal of this article is

1Assuming that sensor information is captured continuously or at high rates.



to modify the combined stochastic and set-membership state
estimator proposed in [10], such that any type of event
sampling strategy is exploited for periodic estimation results.
To that extent, a mathematical description of event sampling
is introduced. This forms the basis for setting up a stable
event-based state-estimator according to a hybrid update. More
precisely, when an event occurs, the estimated state is updated
using the received measurement value, while at periodic time
instants the update is based on the inherent knowledge that
the sensor value lies within a bounded set used to define
the event. This bounded set and the hybrid update are key
for achieving asymptotic bounds on the modeled estimation
error. An illustrative case study further demonstrates that the
proposed event-based estimator has more realistic results on
modeled estimation errors compared to existing alternatives
for various event sampling strategies.

II. PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-
negative real numbers, integer number, and non-negative in-
teger numbers, respectively. Further, ZC := Z∩C, for some
C⊂ R. The null-matrix and identity-matrix of corresponding
dimensions are denoted as 0 and I, respectively. For a time-
varying signal x(t)∈Rn, let x(te) denote the value of x at the e-
th sampling instant te ∈R+. A transition-matrix At2−t1 ∈Rm×n

is defined to relate a vector u(t1) ∈Rm to a vector x(t2) ∈Rn,
i.e., x(t2) = At2−t1u(t1). The q-th element of a vector x ∈ Rn

is denoted with [x]q. The transpose, trace and inverse (when
it exists) of a matrix A ∈Rn×n are denoted as A>, tr(A), A−1,
respectively. The 2-norm of a vector x ∈ Rn is denoted as
‖x‖2. Given that A ∈Rn×n and B ∈Rn×n are positive definite,
denoted with A� 0 and B� 0, then A� B denotes A−B� 0.
Further, A� 0 denotes A is positive semi-definite.

The probability density function (PDF) of a random vector
x ∈Rn is denoted as p(x) and the conditional PDF of x given
y∈Rq is denoted as p(x|y). Further, E[x] and cov(x) denote the
expectation and covariance of x, respectively. If x is Gaussian
distributed, denoted as p(x) = G(x,µ,P), then µ := E[x] and
P := cov(x). Any G(x, x̂,P) can be represented by its unitary
sub-level-set Lx̂,P ⊂ Rn, yielding an ellipsoidal set defined as
Lx̂,P := {x|(x− x̂)>P−1(x− x̂)≤ 1}.

III. EVENT SAMPLING FOR STATE ESTIMATION

Consider a perturbed dynamic process described by a
generic discrete-time state-space model, for some Aτ ∈ Rn×n,
Bτ ∈ Rn×m, C ∈ Rl×n and sampling interval τ ∈ R+, i.e.,

x(t) = Aτ x(t− τ)+Bτ w(t− τ) , (1a)
y(t) =Cx(t)+ v(t) . (1b)

The state-vector x∈Rn is affected by the process noise w∈Rm

and the measurement y ∈Rl is subject to sensor noise v ∈Rl .
Both noise distributions are Gaussian, i.e.,

p(w(t)) := G(w(t),0,W ) and p(v(t)) := G(v(t),0,V ) ,

for some given W ∈Rm×m and V ∈Rl×l . Basically, the system
description in (1a) could be perceived as a discretized version

of a continuous-time process ẋ(t) = Fx(t) + Gw(t), where
Aτ := eFτ and Bτ := (

∫
τ

0 eFη dη)G.
The sensor employs an event sampling strategy for obtaining

the e-th event sampled measurement denoted as y(te). Mea-
surements are then used for estimating the state x. Usually,
an estimate of x is required periodically in time rather than at
the instants of an event, e.g., as input to a monitoring system
or a periodic controller. To accommodate both events as well
as periodic instants, let us define the two sets Te ⊂ R+ and
Tp ⊂R+ corresponding to all events and all periodic instants,
respectively. If τs ∈ R+ denotes the sampling time, then

Te := {te | e ∈ Z+} and Tp := {cτs | c ∈ Z+} .

The events te are generated according to a particular triggering
criterion defined by the employed event sampling strategy.
A detailed account on such triggering criteria for various
event sampling strategies is the topic of the next section,
followed by a section for deriving a set-membership property
y(t) ∈ H(e, t) on the sensor value in between two events
e and e− 1, for some H(e, t) ⊂ Rl . This latter property is
important as it gives additional sensor information when no
new measurement has been received and thus can be used
for improving and updating estimation results. See Figure 2
for a schematic setup of such an event-based state estimator
exploiting the fact that not receiving a new measurement
(negative information) still induces valuable information for
a state update, i.e., information that the measured value y(t)
is bounded by a known set.

Fig. 2. A schematic setup of the developed estimator, where measurement
information is dependent on the type of sample instant: at an event a new
measurement y(te) is received, while in between the two events e and e−1
one has the knowledge that the sensor value lies within a bounded set H(e, t).

Let us continue with some illustrative approaches for
sampling and how triggering criteria in case of event-based
sampling can be turned into a set-membership property.

A. Illustrative Approaches for Sampling
A straightforward approach is sampling periodically in

time, though aperiodic strategies have recently emerged as a
viable alternative. Event-based sampling is such an alternative,
for which some examples are Send-on-Delta and Matched
Sampling, as proposed in [1], [2], [11] and in [3], [12],
respectively. Typically, event sampling defines that triggering
a next event e ∈ Z+ depends on the current sensor value
y(t) ∈ Rl and previously sampled measurements y(te−c), for
all c< e. Let us present the event sampling strategies Send-on-
Delta and Matched Sampling in more detail, see also Figure 3
and Figure 4, before deriving a crucial property of (most) event
sampling strategies exploited by event-based state-estimators.



Fig. 3. An illustration of the triggering criteria for the event sampling strategy
Send-on-Delta. Note that criteria for the Send-on-Delta approach depend on
the previous measurement sample and some threshold ∆ ∈ R+.

Fig. 4. An illustration of the triggering criteria for the event sampling strategy
Matched Sampling. Note that criteria for the Matched Sampling approach
depend on the Kullback-Leibler divergence DKL(·||·) and a threshold ∆∈R+.

1) Send-on-Delta: The event sampling strategy Send-on-
Delta, proposed in [1], [2], [11], defines the criterion for
triggering a next event te, as follows:

te = inf{t > te−1 | ‖y(t)− y(te−1)‖2 > ∆} , for some ∆> 0 .

Suppose that the previously sample measurement was
y(te−1) = 3 and that ∆ = 1. Then, the next event instant for
taking a new measurement sample occurs when the sensor
value y(t) either crosses 2 or 4. As such, with Send-on-Delta it
is guaranteed that the current sensor value y(t) lies within a set
characterized by ±∆ around the previously sampled y(te−1).
This further implies that the event triggering criteria of Send-
on-Delta can be rewritten by introducing a subset H(e, t)⊂Rl

in the measurement space, i.e.,

te = inf{t > te−1 | y(t) 6∈H(e, t)} , (2)

H(e, t) =
{

y ∈ Rl | ‖y− y(te−1)‖2 ≤ ∆

}
. (3)

2) Matched Sampling: The event sampling strategy
Matched Sampling, proposed in [3], [12], defines the criterion
for triggering a next event te as

te = inf
{

t > te−1 | DKL

(
p1(x(t))||p2(x(t))

)
> ∆

}
,

for some ∆ > 0. Herein, DKL (·||·)∈R+ denotes the Kullback-
Leibler divergence of the PDFs p1(x(t)) and p2(x(t)). The

PDF p2(x(t)) represents a prediction of x(t) based on the esti-
mation result at te−1, while p1(x(t)) corresponds to an estimate
of x(t) that is obtained by updating the prediction p2(x(t)) with
the current sensor value y(t). Suppose that the sensor employs
an asynchronous Kalman filter to estimate x(t) and let the
estimation results at the previous sample instant te−1 be char-
acterized by the Gaussian PDF G (x(te−1), x̂(te−1),P(te−1)).
Then, for a given interval τ := t− te−1, the predicted p2(x(t))
and updated p1(x(t)), yields

p1(x(t)) := G
(
x(t),θ1(t),Θ1(t)

)
,

p2(x(t)) := G
(
x(t),θ2(t),Θ2(t)

)
,

(4)

where,

Θ2(t) := Aτ P(te−1)A>τ +BτWB>τ ,

θ2(t) := Aτ x̂(te−1) ,

Θ1(t) :=
(
Θ
−1
2 (t)+C>V−1C

)−1
,

θ1(t) := Θ1(t)
(
Θ
−1
2 (t)θ2(t)+C>V−1y(t)

)
.

An explicit expression of the Kullback-Leibler divergence for
the two Gaussian PDFs p1(x(t)) and p2(x(t)) of (4) was
derived in [13], i.e.,

DKL

(
p1(x(t))||p2(x(t))

)
:= α(t)+

1
2
(
θ1(t)−θ2(t)

)>
Θ
−1
2 (t)

(
θ1(t)−θ2(t)

)
,

α(t) :=
1
2
(

log |Θ2(t)| |Θ1(t)|−1 + tr
(
Θ
−1
2 (t)Θ1(t)

)
− l
)
.

In addition, note that the event triggering criteria for
Matched Sampling can be rewritten into a criterion similar
to (2) by redefining the set H(e, t). A characterization of this
set was already derived in [3], [12] as the ellipsoidal set

H(e, t) = LCθ2(t),Φ(t) , (5)

Φ(t) := 2
(
∆−α(t)

)(
V−1CΘ1(t)Θ−1

2 (t)Θ1(t)C>V−1)−1
.

In fact, a generalization of triggering criteria employed by any
event sampling strategy is introduced in the next section based
on this measurement “event” set H(e, t).

B. A Set-membership Property for Event Sampling

The above examples indicate that triggering the e-th event
sample is based on the current sensor value y(t) and a bounded
Borel set H(e, t)∈Rl in the measurement space. The latter set
denotes a collection of all allowable values that y(t) may take
at any t > te−1. As such, generating the next event instant te,
given te−1, can be generalized as

te := inf{t > te−1 | y(t) 6∈H(e, t)} . (6)

Further, requiring y(te−1)∈ int(H(e, t)) ensures that te > te−1,
i.e., two consecutive events are not simultaneously triggered.
An example of H[e, t] is depicted in Figure 5. Note that
Figure 5 as well as the illustrative sampling approaches pre-
sented in Section III-A demonstrate that (most) event sampling
strategies satisfy the following property, see also [14]:



Proposition III.1 Let y(t) be sampled with an event strategy
similar to (6). Then, y(t) ∈H(e, t) holds for any t ∈ [te−1, te).

Proposition III.1 formalizes the inherent measurement knowl-
edge of event sampling, i.e., not receiving a new measurement
for any t ∈ [te−1, te) implies that y(t) is included in H(e, t).
Furthermore, since the employed event sampling strategy is
given, one can derive a characterization of H(e, t) prior to
the event instant te. Yet, it should be noted that different
event sampling strategies will result in different measure-
ment “event” sets H(e, t). Nonetheless, it is exactly this
set-membership property of event sampling that gives the
additional measurement information used to perform a state
update not only at instants of an event but also periodically in
time when no new measurement is received.

Fig. 5. An example of H[e, t]⊆R2 in the measurement-space at time t ≥ te−1,
where [y]q denotes the q-th element of y ∈ R2. In addition, the collection of
event sets for all t > te−1, i.e., ∪t>te−1H(e, t), is illustrated as well.

IV. THE ESTIMATION PROBLEM AND EXISTING SOLUTIONS

Before alternative solutions for processing event sampled
measurements are presented, let us state the estimation prob-
lem in more details. The estimator should be able to exploit the
event sampled measurement, from any event sampling strategy,
so that estimation results can be computed periodically. This
means that the sample instants of the estimator are the com-
bination of both event and periodic time instants, for which
T :=Te∪Tp is introduced. The main challenge is to cope with
the hybrid nature of measurement information available, i.e.,
• at the instants t ∈ Te of an event, a new measurement

value y(t) =Cx(t)+ v(t) is received;
• at periodic time instants t ∈ Tp, the measurement infor-

mation is a property that the sensor value lies within a
bounded subset, i.e., y(t) ∈H(e, t) see Proposition III.1.

Any estimator developed should thus be able to incorporate
both stochastic and set-membership measurement information.
This further implies that, apart from an estimated mean
x̂(t) ∈ Rn, estimation results will contain a stochastic part
characterized by an error-covariance P(t) ∈ Rn×n and a set-
membership part characterized by the error-set X(t)⊂ Rn.

Existing solutions related to asynchronous estimation, e.g.,
[7], [9], [15], perform a prediction of x(t) at periodic time
instants t ∈ Tp when no new measurement is received. These
solutions either select a stochastic representation for their
estimation results or a set-membership characterization. Fur-
thermore, it was shown in [4] that a diverging behavior of the

error-covariance P(t) will occur (or of the error-set X(t)). To
curtail this diverging behavior, one should exploit the inherent
measurement information provided by Proposition III.1 and
update the estimation results at all sample instants t ∈ T.
Although an existing solution that employs this idea was
proposed in [5], the considered (stochastic) estimator is es-
pecially designed for the event sampling strategy Send-on-
Delta and scalar measurements. An extension towards any
event sampling strategy has been proposed in [6]. Yet, the
estimator turns the set-membership measurement information
into a stochastic approximation of the sensor value. As such, a
pure derivation of a combined stochastic and set-membership
state estimator suitable for event sampling is still missing.

V. AN EVENT-BASED STATE ESTIMATOR WITH
NEGATIVE INFORMATION

The preceding considerations unveiled that a desired esti-
mator takes account for the hybrid nature of event-triggered
and time-periodic measurement information. In order to handle
measurements affected by stochastic sensor noise, while at the
same time exploit the set-membership property of Proposi-
tion III.1, the sensor model in (1b) is extended to an implied
measurement z(t), for some ellipsoidal set L0,E(t) ∈ Rl , i.e.,

z(t) =C x(t)+ v(t)+ e(t) (7)
where v(t) = G(v(t),0,V ) and e(t) ∈ L0,E(t).

Besides the sensor noise v(t), an unknown but bounded
error e(t) has been introduced to capture the set-membership
property explained in Proposition III.1 (present at periodic
time instants). The expression in (7) indicates that the sensor
noise and bounded error are characterized by a covariance
matrix V ∈ Rl×l (see Section III) and an ellipsoidal shape
matrix E ∈Rl×l , respectively. It is important that this implied
measurement is equivalent to model (1b) at the instant of
events, i.e., z(t) = y(t) and thus e(t)∈ /0 for all t ∈Te, while at
periodic time instants t ∈ Tp the variables Cx(t) and e(t) 6∈ /0
will follow a characterization depending on the employed
event sampling strategy so to exploit “negative information”,
i.e., that the sensor still provides information even when no
event is triggered. Note that at these periodic time instants the
noise covariance V remains the same as in the original sensor
model (1b). In contrast, specific values of the ellipsoidal shape
matrix E � 0, modeling e(t) ∈ L0,E(t) 6∈ /0, should be derived
from the current event triggering criterion, which is illustrated
later in this section. First, the estimator shall be explained.

The underlying idea is to compute a state estimate x̂(t)
that simply minimizes the (maximum possible) mean squared
error (MSE) in the presence of both stochastic and set-
membership uncertainties. The developed estimator, which is
referred to as EBSE-NI (Event-Based State Estimator with
Negative Information), is based on the approach presented
in [10]. The error associated to the state estimate x̂(t) is
composed of a stochastic and a set-membership component,
for some covariance matrix P(t)∈Rn and error-set X(t)⊂Rn,



i.e.,

x̂(t)− x(t) = x̃stoc(t)+ x̃set(t) ,

such that p(x̃stoc(t)) = G
(
x̃stoc(t),0,P(t)

)
and x̃set(t) ∈ X(t).

In line with the introduced error variable e(t) in (7), let X(t) be
ellipsoid, i.e., X(t) := L0,X(t) and is assumed to be centered at
zero for some ellipsoidal shape matrix X(t)� 0. Further, since
the set-membership error is non-stochastic and independent
from stochastic errors, the according MSE yields

E
[(

x̂(t)− x(t)
)>(x̂(t)− x(t)

)]
= E

[(
x̃stoc(t)

)>(x̃stoc(t)
)]︸ ︷︷ ︸

=trace
(

P(t)
) +

(
x̃set(t)

)>(x̃set(t)
)︸ ︷︷ ︸

≤trace
(

X(t)
)

≤ trace
(
P(t)+X(t)

)
.

(8)

Thus, the MSE is bounded by trace
(
P(t)+X(t)

)
. The esti-

mator proposed in [10] forms the basis of the EBSE-NI, as
it minimizes exactly this bound. Contrary to standard Kalman
filtering, the estimate x̂(t) is not only associated to an error-
covariance P(t) but also to a shape matrix X(t).

A. Filtering

As it is done in standard Kalman filtering, the EBSE-NI can
be initialized with a prior estimate x̂(0) and error-covariance
P(0), while X(0) can be set to zero. At an instant t, let x̂(t−)
denote the current (prior) estimate with error matrices P(t−)
and X(t−) that is to be combined with a measurement z(t)
related to the model (7). A linear estimator

x̂(t) = K1x̂(t−)+K2z(t) (9)

is desired that minimizes the MSE bound in (8). The estimator
must not be biased since a bias η(t) would increase (8) by the
positive value ‖η(t)‖2. Consequently, this implies K1 = I−KC
with K = K2. For a yet-to-be-determined gain K, the posterior
error-covariance yields

P(t) = (I−KC)P(t−)(I−KC)>+KV K> , (10)

and the posterior ellipsoid matrix is given by

X(t) = 1
1−ω

(I−KC)X(t−)(I−KC)>+ 1
ω

KEK> . (11)

The parameter ω ∈ (0,1) in (11) guarantees that the shape
matrix X(t) corresponds to an outer ellipsoidal approximation
of two ellipsoidal sets each characterized by the shape matrices
(I−KC)X(t−)(I−KC)> and KEK>, respectively. According
to [10], it can be shown that the Kalman gain is given by

K =
(

P(t−)C>+ 1
1−ω

X(t−)C>
)
·(

C P(t−)C>+ 1
1−ω

C X(t−)C>+V + 1
ω

E
)−1

.
(12)

Hence, a one-dimensional convex optimization problem for
ωopt ∈ (0,1) remains to be solved that minimizes the posterior
MSE bound in (8), e.g., with the aid of Brent’s method.

Remark V.1 The derived gain (12) embodies a systematic
and consistent generalization of the standard Kalman filter for
additional unknown but bounded uncertainties. Accordingly,
K in (12) reduces to the standard Kalman gain in the absence
of set-membership errors, i.e., X(t−) = 0 and E = 0.

Remark V.2 The employed estimator is closely linked to split
covariance intersection [16] when X(t) and E are considered
to be covariance matrices of stochastic errors with unknown
correlations. Furthermore, the sum of the error matrices can
be rewritten to

P(t)+X(t) =
(

ω
(
ωP(t−)+X(t−)

)−1

+(1−ω)
(
(1−ω)V +E

)−1
)−1

,

which can be utilized to determine ωopt that minimizes the
right-hand side bound in (8). Hence, the special cases ωopt = 0
or ωopt = 1 only occur if X(t−) or E are zero matrices.

As indicated earlier, the filtering step of the EBSE-
NI depends on the two different types of measurement
information at the two different types of sampling instants:

1) Event triggered instant: When an event is triggered at
t = te, i.e., t ∈ Te, the current measurement is instantaneously
disclosed to the estimator. In this case, no set-membership
uncertainty e(t) is present, i.e., L0,E(t) = /0 and thus E = 0 and
z(t) = y(te). Hence, (7) coincides with the original model (1b).
The gain K in (12) can be simplified to

K =
(

P(t−)C>+X(t−)C>
)
·(

CP(t−)C>+CX(t−)C>+V
)−1

, ∀t ∈ Te

which corresponds to the parameter value ω = 0. Therefore, no
numerical optimization is required. In particular, the posterior
shape matrix X(t) in (11) becomes

X(t) = (I−KC)X(t−)(I−KC)>, ∀t ∈ Te .

It can be expected that the value of this shape matrix
is significantly decreased at the event instants, since no
set-membership uncertainty is ascribed to z(t).

2) Periodic time instant: Set-membership uncertainty
comes into play whenever no measurement is received by
the estimator. Proposition III.1 states that the actual measure-
ment lies in a set H(e, t), which is the only measurement
information available, i.e., y(t) = Cx(t) + v(t) ∈ H(e, t). A
characterization of H(e, t) for the discussed Send-on-Delta
and Matched Sampling strategies has been derived in (3)
and (5), respectively. Now, instead of the actual but unknown
measurement y(t), the estimator relies on the implied mea-
surement z(t) = y(t)+ e(t). Therein, e(t) has been introduced
so to model the set-membership property y(t) ∈ H(e, t), due
to which a realization of e(t) ∈ L0,E(t) will depend on H(e, t).
Note that apart from attributing a set-membership error to
z(t), the stochastic noise in model (7) has to be taken into



consideration as well as the event triggering criteria is based on
the noise sensor reading y(t) rather than Cx(t). Consequently,
the estimator must take both v(t) and e(t) into account. Let
us illustrate the implied measurement z(t) for the considered
sampling strategies, next
• Send-on-Delta: The true measurement lies in the neigh-

borhood of y(te−1), i.e., ‖y(t)− y(te−1)‖2 ≤ ∆. More
precisely, y(t) lies in a ball of radius ∆ around y(te−1)
and can thus be characterized by an ellipsoidal set with
an ellipsoidal shape matrix E = ∆2I. Hence, the estimator
can conduct a filtering step with the last received mea-
surement z(t) = y(te−1) when the corresponding measure-
ment error z(t)− y(te−1) = v(t)+ e(t) is composed of a
stochastic part v(t) and set-membership part e(t) ∈ L0,E .

• Matched Sampling: Again, the last event-triggered infor-
mation at te−1 is utilized. The estimate x̂(te−1), which was
updated with the last event-triggered measurement, is pre-
dicted to current time t according to x̂(t−) = Aτe x̂(te−1).
The time-periodic filtering step is then carried out with
z(t) = Cx̂(t−). The measurement error z(t)−Cx̂(t−) =
v(t)+ e(t) now comprises the additional set-membership
component e(t) ∈ L0,E , where E = Φ is given by (5).

For both discussed sampling strategies, the time-periodic mea-
surements are associated to a stochastic and a set-membership
error term. The gain K in (12) can then be determined in order
to compute the posterior mean x̂(t) in (9), error-covariance
P(t) in (10), and error ellipsoid matrix X(t) in (11).

B. Prediction

The Kalman prediction step is carried out by means of
the process model (1a). An estimate x̂(t− τ) at the periodic
sampling instant t−τ is transformed to a prior estimate x̂(t−)
at instant t according to

x̂(t−) = Aτ x̂(t− τ) .

The zero-mean process noise w(t − τ) only affects the pre-
dicted error-covariance, which yields

P(t−) = Aτ P(t− τ)A>τ +BτWB>τ .

In contrast to a standard Kalman filter, also the corresponding
error ellipsoid matrix has to be updated, i.e.,

X(t−) = Aτ X(t− τ)A>τ . (13)

Evidently, the predicted parameters can be computed in closed
form and the prediction step only differs from the standard
Kalman filter by the additional equation (13).

VI. ILLUSTRATIVE CASE-STUDY

The effectiveness of the developed EBSE-NI is illustrated in
terms of its estimation error in a 1D object tracking example.
The process model in line with (1) is a double integrator, i.e.,

x(t) =
[

1 τ

0 1

]
x(t− τ)+

[ 1
2 τ2

τ

]
a(t− τ) ,

y(t) =
[
1 0

]
x(t)+ v(t) .

The state vector x(t) combines the object’s position and speed.
Further, a(t) = 1

30 t ·cos( 1
10 t) denotes the object’s acceleration,

while only the position is measured in y(t). Since acceleration
is assumed unknown, the process model in (1) is characterized
with a process noise w(t) := a(t). As |a(t)| ≤ 0.9, for the simu-
lated period t < 25 seconds, a suitable covariance in line with
[17] is cov(a(t)) = 1.1 resulting in an unbiased distribution
p(w(t)) with covariance W = 1.1. Further, the sampling time
is τs = 0.1 seconds and the sensor noise covariance is set to
V = 2 ·10−3. The object’s true position, speed, and acceleration
are depicted in Figure 6.
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Fig. 6. The position, speed, and acceleration of the tracked object.

The proposed event-based state-estimator with negative
information (EBSE-NI) combining stochastic and set-
membership measurement information is compared to an
existing event-based state estimator (EBSE) presented in [6]
limited to stochastic measurements. Both estimators start
with the initial estimation results x̂(0) =

(
0.1 0.1

)> and
P(0) = 0.01 · I, while X(0) = 0 is chosen as the initial
ellipsoidal shape matrix for the proposed EBSE-NI. Next, the
measurement information of both EBSEs is characterized.

EBSE-NI
Measurement information of the proposed EBSE-NI is repre-
sented by the implied measurement z(t) = y(t)+ e(t), where
y(t) is the actual measurement value and e(t) ∈ L0,E is
bounded by the ellipsoidal set L0,E(t) characterized by the
shape matrix E(t)∈R+ (a scalar value). In case of an event in-
stant t ∈Te the measurement y(te) is received and one obtains
that z(t) = y(te), i.e., e(te) ∈ /0 and E(t) = 0. At periodic time
instants t ∈ Tp one has the information that y(t) ∈ H(e, t),
where H(e, t) depends on the employed sampling strategy.
This ellipsoidal set H(e, t) can be characterized with a “mass”-
center, yielding an estimate of y(t), and an ellipsoidal error-set
resulting in an characterization of e(t)∈L0,E(t) and thus of the
shape matrix E(t). A suitable characterization of y(t) and E(t)
for the two employed event sampling strategies presented in
Section III given Φ(t) as introduced in (5), yields

SoD: z(t) = y(te) , E(t) = 0 , ∀t ∈ Te,

z(t) = y(te−1) , E(t) = ∆
2 , ∀t ∈ Tp,

MS: z(t) = y(te) , E(t) = 0 , ∀t ∈ Te,

z(t) =CAt−te−1 x̂(te−1) , E(t) = Φ(t) , ∀t ∈ Tp.



EBSE
Measurement information of the EBSE presented in [6] is rep-
resented by a Gaussian PDF, i.e., p(y(t)) = G

(
y(t), ŷ(t),R(t)

)
for some (estimated) measurement value ŷ(t) and covariance
matrix R(t). Then, a standard (aperiodic) Kalman filtering
routine can be performed for updating the estimation results
by considering ŷ(t) as the measurement value and V +R(t) as
the sensor noise covariance matrix. In case of an event instant
t ∈ Te the measurement y(te) is received and one obtains that
ŷ(t) = y(te) and R= 0. At periodic time instants t ∈Tp one has
the information that y(t)∈H(e, t), which is then turned into a
particular value for ŷ(t) and R(t). A suitable characterization
of ŷ(t) and R(t) for the two employed event sampling strategies
presented in Section III given Φ(t) as introduced in (5), yields

SoD: ŷ(t) = y(te) , R(t) = 0 , ∀t ∈ Te,

ŷ(t) = y(te−1) , R(t) =
3
4

∆
2 , ∀t ∈ Tp,

MS: ŷ(t) = y(te) , R(t) = 0 , ∀t ∈ Te,

ŷ(t) =CAt−te−1 x̂(te−1) , R(t) =
1
4

Φ(t) , ∀t ∈ Tp.

Figure 7 until Figure 10 depict the actual squared estima-
tion error, i.e., ‖x̂(t)− x(t)‖2

2, in comparison to the modeled
estimation error, i.e., tr(P(t)) for the alternative EBSE and
tr(P(t)) + tr(X(t)) for the proposed EBSE-NI. The results
depicted were obtained after averaging the outcome of 1000
runs of the considered simulation case study.
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Fig. 7. Simulation results for Matched Sampling in combination with the
proposed EBSE-NI exploiting stochastic and set-membership information. The
real squared estimation error ‖x̂(t)− x(t)‖2

2 is depicted versus the modeled
(bound) of the estimation error tr(P(t))+ tr(X(t)).

Figure 7 and Figure 8 depict the estimation results of the
proposed EBSE-NI and the alternative EBSE, respectively,
when Matched Sampling is employed as the event sampling
strategy. Although it is not pointed out in the figures, it is
worth mentioning that the proposed EBSE-NI triggered a
total amount of 31 events (on average), while the alternative
EBSE triggered 40 events (on average). Still, the real squared
estimation error of both EBSEs considered is comparable.
Hence, the proposed EBSE has similar estimation results
with fewer events triggered, due to which less measurement
samples are required saving communication resources. Yet,
the main advantage of the proposed EBSE-NI is the modeled
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Fig. 8. Simulation results for Matched Sampling in combination with the
alternative EBSE exploiting stochastic information, only. The real squared
estimation error ‖x̂(t)−x(t)‖2

2 is depicted versus the modeled (bound) of the
estimation error tr(P(t)).
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Fig. 9. Simulation results for Send-on-Delta in combination with the
proposed EBSE-NI exploiting stochastic and set-membership information. The
real squared estimation error ‖x̂(t)− x(t)‖2

2 is depicted versus the modeled
(bound) of the estimation error tr(P(t))+ tr(X(t)).
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Fig. 10. Simulation results for Send-on-Delta in combination with the
alternative EBSE exploiting stochastic information, only. The real squared
estimation error ‖x̂(t)−x(t)‖2

2 is depicted versus the modeled (bound) of the
estimation error tr(P(t)).

bound on the estimation error. Figure 7 indicates that this
modeled bound is conservative when the proposed EBSE-
NI is employed, which is not the case for the alternative
EBSE depicted in Figure 8. This means that the EBSE-NI
gives a better guarantee that the real estimation error stays
within the bound as it is computed by the estimator. Such
a property is important when estimation results are used for
control purposes, since control stability of a networked system



relies on such a property.
Figure 9 and Figure 10 depict the estimation results of

the proposed EBSE-NI and the alternative EBSE, respec-
tively, when Send-on-Delta is employed as the event sampling
strategy. Since this event sampling strategy does not depend
on previous estimation results but merely on the previous
measurement sample, the events for both estimators were
triggered at the same time instants giving a total of 115 events.
Note that this is an increase of events by a factor of 3 to 4
when compared to the EBSEs in combination with Matched
Sampling. Yet, this increase of events and thus of measurement
samples is not reflected in a corresponding decrease of esti-
mation errors. Further, similar conclusions can be drawn from
the estimation results with Send-on-Delta when comparing
Figure 9 and Figure 10. Again, the squared estimation error
of the two considered EBSEs is comparable and the main
advantage of the proposed EBSE-NI is in the modeled bound
yielding a better guarantee on the real estimation error.

Therefore, a fair conclusion of the proposed EBSE-NI is
that similar estimation errors are achieved when compared to
a state-of-the-art alternative estimator, although the modeled
estimation error of the proposed EBSE-NI is a far better bound
on real estimation errors. As such, the proposed EBSE is
advantageous in networked control systems where estimation
results are being used by a (stabilizing) controller.

VII. CONCLUSIONS

In networked systems, high measurement frequencies may
rapidly exhaust communication bandwidth and power re-
sources when sensor data must be transmitted periodically to
the state estimator. The transmission rate can significantly be
reduced if an event-based strategy is employed for sampling
sensor data. “Send-on-Delta” and “Matched Sampling” have
been discussed as examples of such strategies. The estimation
system can perform a measurement update whenever an event
is triggered, i.e., a new measurement is received. However,
estimation algorithms are, in general, intended to compute
and provide estimates periodically. Of course, the time gap
between events can simply be bridged by prediction steps,
but additional knowledge then remains untapped: as long
as no event is triggered, the actual measurement does not
fulfill the event-sampling criterion, which has been called
negative information. For the considered sampling strategies,
the corresponding criteria can directly be translated into set-
membership information. Although sensors are commonly
modeled to be purely affected by a stochastic error, the
negative information at periodic time steps is related to a
second set-membership uncertainty. With a recently proposed
combined stochastic and set-membership Kalman filter, both
types of uncertainties can be incorporated. In simulations,
this estimator provides reliable error bounds and has been
compared to a purely stochastic approach, where the set-

membership has been represented by a probability density and
the error has then been underestimated.

Prospective research focuses also on unreliable networks,
where delays and packet losses have to be taken into ac-
count. Delayed state filtering techniques may then have to
be combined with event-based strategies. It is also possible
to introduce a weighting parameter between the stochastic
and set-membership errors. This parameter may contribute
to reducing the overall estimation uncertainty. So far, only
stochastic systems and sensors have been considered. With
the combined stochastic and set-membership Kalman filter,
also unknown but bounded errors affecting sensor readings and
control inputs, such as discretization and linearization errors,
can be treated.
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