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Abstract— State fusion is a method for merging multiple
estimates of the same state into a single fused estimate.
Dealing with multiple estimates is one of the main concerns
in distributed state estimation, where an estimated value of the
desired state vector is computed in each node of a networked
system. Most solutions for distributed state estimation currently
available assume that every node computes an estimate of the
(same) global state vector. This assumption is impractical for
systems observing large-area processes, due to the sheer size of
the process state. A feasible solution is one where each node esti-
mates a part of the global state vector, allowing different nodes
in the network to have overlapping state elements. Although
such an approach should be accompanied by a corresponding
state fusion method, existing solutions cannot be employed as
they merely consider fusion of two different estimates with
equal state representations. Therefore, an empirical solution
is presented for fusing two state estimates that have partially
overlapping state elements. A justification of the proposed
fusion method is presented, along with an illustrative case study
for observing the temperature profile of a large rod, though a
formal derivation is future research.

I. INTRODUCTION

State fusion is a method to merge multiple estimates of the
same state vector into a single fused estimate. Such methods
are beneficial in applications related to distributed state
estimation. Typically, those applications consider a process
that is being observed by multiple (local) subsystems, also
called nodes, which are equipped with their own sensor,
radio and CPU. Each node computes a local estimate of the
process’ state by combining its own measurement with data
received from neighboring nodes, which could be either their
local measurement or their local state estimation result (as
computed by the neighbor). See, for example, solutions on
distributed state estimation proposed in [9], [1], [8], [11] and
the illustrative networked system in Figure 1.

The technology focus of this article will be on distributed
state estimation, where nodes share their local state estimate,
i.e., mean and covariance. A node can then improve its
estimation result by merging its current local estimate with
the estimates received from other nodes. Typically, merging
of multiple state estimates is done via consensus methods,
e.g., [17], [16], or via state fusion methods, e.g., [7], [4],
[13]. The advantage of fusion solutions over consensus
methods is that fusion will take the covariance (uncertainty)
of the original estimates explicitly into account and thereby,
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Fig. 1. Illustrative setup of a distributed Kalman filter, where each
node i shares its local estimation result pi(x), as it is determined by its
Kalman filtering algorithm. The detailed estimation scheme adopted by each
node further indicates that local estimation results are fused with shared
estimation results computed by neighboring nodes (in this example node j).

can reduce the covariance after fusion. However, where
consensus methods are able to merge estimated means that
have partially overlapping state elements, e.g., [15], fusion
solutions require that the original estimates have an equal
state representation. Note that, when distributed state esti-
mation is considered, this latter statement implies that each
node computes a local estimate of the global process’ state
vector. This requirement is undesirable, especially for large-
area processes, such as climate, traffic, and the power grid,
which have millions of state elements. Instead, a feasible
approach is obtained by dividing the process into smaller
subprocesses according to the spatial distribution of the
nodes in the system (allowing overlap). Then, each node
observes a local state vector containing a subset of the
elements in the global state vector. Accordingly, solutions
on decentralized control were established in [6], [14], though
similar results on distributed state estimation based on fusion
are still missing.

To solve this issue, a state fusion method is derived
for merging two estimates with partly overlapping state
elements. In addition, it is assumed that the cross-correlation
of the original state vectors is unknown. This assumption
is necessary as keeping track of cross-correlations between
the different local estimates in a distributed state-estimator
is impractical for a large-scale networked system. Further,
for clarity of the proposed fusion solution, the considered
estimates are characterized by Gaussian distributions.

II. PRELIMINARIES

R, R+, Z, and Z+ define the set of real numbers, non-
negative real numbers, integer numbers, and non-negative
integer numbers, respectively. For any C ⊂R, let ZC := {c ∈
Z|c ∈ C}. The notation In and 0n×m are used to denote an



n× n identity matrix and an n×m null-matrix (or -vector),
respectively. The transpose and inverse of a matrix A∈Rn×n

are denoted as A> and A−1, respectively, while λq(A) denotes
the q-th eigenvalue of A. Further, {A}i, j ∈ R denotes the
element on the i-th row and j-th column of A. Given that
A,B ∈ Rn×n are positive definite, denoted with A � 0 and
B� 0, then A� B denotes A−B� 0.

Given the random-vectors x ∈ Rn, y ∈ Rm, then the mean
and auto-covariance of x are denoted as E[x] and cov(x),
respectively, while cov(x,y) denotes the cross-covariance
of x with y. More precisely, cov(x) := E[xx>]−E[x]E[x>]
and cov(x,y) := E[xy>]−E[x]E[y>]. Further, the terms un-
correlated, correlated, and fully correlated are introduced
according to their definition proposed in [3].

Definition II.1 Let x ∈ Rn and y ∈ Rm be random vectors.
Then, (i) x and y are uncorrelated if E[xy>] = E[x]E[y>];
(ii) x and y are correlated if y=Ax+z holds for some random
vector z∈Rm uncorrelated with x and some A∈Rm×n; (iii) x
and y are fully correlated if y= Ax holds for some A∈Rm×n.

The Gaussian function (shortly noted as Gaussian) of vec-
tors x,µ ∈Rn and matrix Σ ∈Rn×n is denoted as G(x,µ,Σ).
If G(x,µ,Σ) is a probability density function (PDF) of a
random vector x, then µ := E[x] and Σ := cov(x), where
Σ � 0 is symmetric. Further, any Gaussian G(x,µ,Σ) can
be represented by its (ellipsoidal) level-set Eµ,Σ ⊂Rn, which
is defined as Eµ,Σ := {x|(x−µ)>Σ−1(x−µ)≤ 1}.

III. PROBLEM FORMULATION

Let us consider two nodes i and j. Node i computes an
estimate of the locally desired state x∈Rnx , i.e., pi(x), while
node j computes an estimate of a (partially) different locally
desired state y ∈ Rny , i.e., p j(y). Both local estimates are
described with a Gaussian distribution, for some suitable
mean x̂i, ŷi and covariance Xi and Yi, i.e.,

pi(x) := G(x, x̂i,Xi) and p j(y) := G(y, ŷ j,Yj).

To characterize the fact that x and y have partially overlap-
ping state elements, let us introduce the three random vectors
u ∈ Rnu , v ∈ Rnv , and w ∈ Rnw , having no overlapping state
elements, such that the following holds:

x :=
(

u
v

)
and y :=

(
u
w

)
. (1)

Estimation results of pi(x) imply that node i has a Gaussian
estimate of u and v locally, introduced as pi(u) = G(u, ûi,Ui)
and pi(v) = G(v, v̂i,Vi). Similarly, node j has a Gaussian es-
timate of u and w locally, introduced as p j(u) = G(u, û j,U j)
and p j(w) = G(w, ŵ j,Wj). Then, for some suitable cross-
correlations Qi and R j, one can observe that

x̂i =

(
ûi
v̂i

)
, Xi =

(
Ui Qi
Q>i Vi

)
, (2a)

ŷ j =

(
û j
ŵ j

)
, Yj =

(
U j R j
R>j Wj

)
. (2b)

Therein, Qi represents the cross-correlation of the random
vectors u and v as determined by node i, while R j represents
the cross-correlation of u and w as determined by node j.

In the considered application of distributed state estimation
node i and node j operate in a larger networked system. This
means that although both nodes estimate u, note that node j
could have determined p j(u) using information not available
to node i. Hence, node i can still exploit unique information
about u available in the estimate of node j, so to improve
its own local estimate by fusing its current estimation result
pi(x) with the estimate p j(y) of node j. Let us denote the
estimation result obtained after fusing pi(x) with p j(y) as
the (Gaussian) fused estimate p f (x) = G(x, x̂ f ,X f ), for some
mean x̂ f and some covariance X f .

The main objective of this article is to find a fusion
solution for merging two partially overlapping estimates
pi(x) and p j(y) into a single fused estimate p f (x). To
increase practical feasibility of the proposed solution for
distributed state estimation one cannot assume that the cross-
correlation of x and y is available, as this would impose
strict requirements impractical for real applications. Existing
fusion solutions further assume that the original state vectors
have an equal state representation. Although they could be
used for fusing the partial estimates pi(u) and p j(u), they do
not consider the fact that improving the partial estimate of u
in node i yields an improvement of the estimate of v as well
(via the cross-correlation Qi = cov(u,v)). To solve this issue,
a novel fusion solution is proposed that will convert p j(y)
into an estimate of x, after which standard fusion solutions
for equal state vector representations can be employed.

IV. FUSION OF PARTIALLY OVERLAPPING STATES

The proposed solution for fusing pi(x) with p j(y) is
presented in two steps. Firstly, it is assumed that there
exists a solution for converting p j(y) into an estimate of x.
This “converted” estimate is characterized by the Gaussian
PDF p j(x) = G(x, x̂ j,X j), for some suitable mean x̂ j and
covariance X j. Standard fusion solutions for merging two
estimates pi(x) and p j(x) with an unknown cross-correlation
can thus be employed, though two will be presented here.
Secondly, the main contribution of this article is presented,
which is a solution for an estimate of x based on information
available to node j, i.e., converting p j(y) into p j(x).

A. State fusion with unknown correlations

The two estimates for fusion are both characterized by a
Gaussian distribution of x, i.e.,

pi(x) = G(x, x̂i,Xi) and p j(x) = G(x, x̂ j,X j).

Numerous methods for fusing two estimates of the same
state x are available. However, when cross-correlation be-
tween these estimates is not given, the remaining fusion
methods still applicable are found in [7], [2], [18], [13].
Basically, these methods compute the fused estimate p f (x) =
G(x, x̂ f ,X f ) of pi(x) and p j(x) by considering a worst case
cross-correlation scenario. Two methods are presented here:
a popular method known as “Covariance Intersection”, see



[7], and an improved fusion method resulting in a smaller
covariance (uncertainty) after fusion known as “Ellipsoidal
Intersection”, see [12].

Covariance Intersection is an early developed state fusion
method and still widely used today. The method determines
the fused estimate as a convex combination of pi(x) and
p j(x), for some ω ∈ R[0,1], and defines the fused mean x̂ f
and covariance X f as follows:

X f :=
(
ωX−1

i +(1−ω)X−1
j
)−1

,

x̂ f := X f
(
ωX−1

i x̂i +(1−ω)X−1
j x̂ j

)
.

(3)

Popularity of this fusion method led to numerous approaches
for determining ω , see, e.g., [5], [2], [4], [10]. However, a
drawback of Covariance Intersection is that the uncertainty
after fusion does not decrease, i.e., X f � Xi and X f � X j are
not satisfied. This issue was solved by Ellipsoidal Intersec-
tion, which is presented, next.

Ellipsoidal Intersection starts by finding an explicit ex-
pression of the (unknown) cross-correlation, which is then
used for merging independent parts of pi(x) and p j(x) via
algebraic fusion formulas. The (unknown) cross-correlation
is part of a newly introduced Gaussian estimate based on
information that pi(x) and p j(x) share (mutual). As such, let
us introduced a mutual covariance Γ ∈Rnx×nx and a mutual
mean γ ∈Rnx . With these newly introduced mutual variables,
the algebraic fusion formulas for finding the fused mean x̂ f
and covariance X f , yield

X f =
(
X−1

i +X−1
j −Γ

−1)−1
,

x̂ f = X f
(
X−1

i x̂i +X−1
j x̂ j−Γ

−1
γ
)
.

(4)

The mutual mean γ and mutual covariance Γ are determined
via an eigenvalue decomposition, i.e., Σ = SDS−1, which is
denoted as [S,D] = eig(Σ) for a positive definite Σ ∈ Rn×n,
a diagonal D ∈ Rn×n and a rotation matrix S ∈ Rn×n. As
such, let us introduce the matrices Di,D j,Si,S j ∈ Rn×n via
the eigenvalue decompositions

[Si,Di] = eig(Xi) and

[S j,D j] = eig(D
− 1

2
i S−1

i X jSiD
− 1

2
i ).

Then, explicit expressions of γ and Γ, for some ς ∈R+, yield

DΓ = diag
(

max[1,{D j}1,1], · · · , max[1,{D j}n,n]
)
,

Γ = SiD
1
2
i S jDΓS−1

j D
1
2
i S−1

i ,

γ =
(
X−1

i +X−1
j −2Γ

−1 +2ς Inx

)−1×(
(X−1

j −Γ
−1 + ς Inx)x̂i +(X−1

i −Γ
−1 + ς Inx)x̂ j

)
.

A suitable value of ς follows: ς = 0 if |1−{D j}q,q|> 10ε ,
for all q ∈ Z[1,n] and some ε ∈ R>0, while ς = ε otherwise.
The design parameter ε supports a numerically stable result.

This completes a brief description of two state fusion
methods that can be employed for fusing pi(x) with p j(x).
Yet, note that only pi(x) is available to node i, while p j(x) is
not and should be derived from the received estimate p j(y).
Such a derivation is presented in the next section.

B. Converting an estimate of y into an estimate of x

Node i receives the estimation result p j(y) of another
node j in the network. Note that this received PDF is an
estimate of the local state vector y, while node i computes
an estimate of a different state vector x, i.e., pi(x). Yet, these
two local state vectors have partially overlapping elements
represented by the random vector u. Section IV-A indicates
that a fusion result p f (x) can be obtained from pi(x) and
p j(y), when the Gaussian PDF p j(y) is converted into a
corresponding Gaussian PDF of x introduced as p j(x). A
solution for establishing the variables of p j(x) is presented,
next, for which we recall the following notation:

p j(x) = G(x, x̂ j,X j), x =
(

u
v

)
, (5)

p j(y) = G(y, ŷ j,Yj), y =
(

u
w

)
,

where, ŷ j =

(
û j
ŵ j

)
, Yj =

(
U j R j
R>j Wj

)
.

This section derives explicit expressions for the estimation
variables x̂ j and X j based on the available PDF p j(y).
The main idea of the proposed solution is to exploit a
property of the previously presented fusion methods: coping
with an unknown correlation of pi(x) and p j(x) is done
by assuming the “maximum” correlation possible. When
considering the converted p j(x), then this property allows
that any information about x not available in p j(y), i.e., the
state elements collected in v, can be “copied” from pi(x). As
such, the following reasoning for finding p j(x) is followed:

Principle IV.1 The converted p j(x) and its original p j(y)
are fully correlated regarding their shared random vector u,
while, simultaneously, p j(x) and pi(x) are fully correlated
with respect to their shared random vector v.

1) A solution for the converted mean: The above principle
is instrumental in finding a solution for the converted PDF
p j(x). Let us start by deriving an expression of converted
mean x̂ j in (5).

Lemma IV.2 Let pi(x) and p j(y) of (2) be given. Further, let
p j(x) of (5) be constructed from p j(y) and pi(x) according to
Principle IV.1. Then, it holds that

x̂ j =
(

û j
v̂i

)
.

Proof: Let us introduce uii,ui j,u j j ∈ Rnu , vii,vi j ∈ Rnv

and w j j ∈Rnw , such that pi(x) = p
((uii

vii

))
, p j(x) = p

((ui j
vi j

))
and p j(y) = p

(( u j j
w j j

))
. Then, the lemma is proven in case

both E[ui j] = E[u j j] and E[vi j] = E[vii] hold. Applying the
property that p j(x) and p j(y) are fully correlated with respect
to their shared random vector u (see Principle IV.1) implies
that ui j = Inuu j j (see Definition II.1) and thus E[ui j] =
E[u j j]. The statement that E[vi j] = E[vii] can be proven in
a similar way from the property that p j(x) and pi(x) are
fully correlated with respect to their shared random vector
v, which completes this proof.



2) A solution for the converted covariance: Next, an
expression is derived for the remaining variable X j in (5). In
line with the reasoning of Lemma IV.2, one could employ
the straightforward characterization X j =

(
U j Z
Z> Vi

)
, for some

suitable cross-covariance Z ∈ Rnu×nv . However, as U j is
obtained from p j(y) and Vi from pi(x), there is no clear
solution on how to determine this cross-covariance Z.

Therefore, an alternative (empirical) approach is proposed
for finding an expression of the converted covariance X j.
To that extent, let us introduce a transformation matrix
T ∈ Rnx×nx satisfying two items.
• After transformation, pi(T x) has Inx as covariance,

which further implies that the transformed estimation
results of u and v according to pi(x) are uncorrelated;

• T
(

U j 0
0 0

)
T> results in

(
Ũ j 0
0 0

)
, where U j,Ũ j ∈ Rnu ,

implying that the covariance cov(u) determined by p j(y)
is entirely described by Ũ j after the transformation.

More precisely, let us introduce the transformed state

x̃ := T x with x̃ =
(

ũ
ṽ

)
, (6)

for some ũ ∈ Rnu and ṽ ∈ Rnv . Then, the following assump-
tion, which will be satisfied later this section, should hold:

Assumption IV.3 There exists a transformation T ∈Rn×n of
full rank, such that T XiT> = Inx and T

(
U j 0
0 0

)
T> =

(
Ũ j 0
0 0

)
.

Next, the same transformation is applied on X j for finding
a solution of this converted covariance X j via its transformed
covariance T X jT>. To that extent, let us recall the two
main rules of Principle IV.1 characterizing the converted
PDF p j(x) and translate their implication to T X jT> as the
covariance of p j(x̃), i.e.,

Rule 1: The converted p j(x) and original pi(x) are fully
correlated regarding their shared random vector v;

Impl. Rule 1 implies that p j(x̃) should be fully correlated
with pi(x̃) on those parts that correspond to the
“pre-transformed” random vector v. Note that this
rule will be satisfied when p j(x̃) and pi(x̃) are
fully correlated on all parts, which further gives
the following result for their covariance matrices:

T X jT> = T XiT> = Inx . (7)

Rule 2 The converted p j(x) and its original p j(y) are fully
correlated regarding their shared random vector u;

Impl. Rule 2 implies that p j(x̃) should be fully correlated
with the “pre-transformed” p j(y) on those parts that
correspond to the “pre-transformed” random vector
u. Note that

(
Ũ j 0
0 0

)
introduced in Assumption IV.3

yields a covariance matrix where Ũ j is the repre-
sentation of U j after transformation, while U j is
the covariance of the “pre-transformed” u as deter-
mined by the original p j(y). Hence, satisfying this
second rule by p j(x̃) implies that its corresponding

covariance T X jT> is similar to
(

Ũ j Z̃ j

Z̃>j Ṽ j

)
, for some

Z̃ j ∈ Rnu×nv and Ṽj ∈ Rnv×nv . The value of Z̃ j and
Ṽj is found in the implication for satisfying Rule 1,
i.e., in (7), yielding Z̃ j = 0nu×nv and Vj = Inv and
thus

T X jT> =

(
Ũ j 0nu×nv

0nv×nu Inv

)
. (8)

The above solution on the transformed covariance T X jT>

is based on the two rules stated in Principle IV.1. Hence, the
result in (8) can be used to derive the following characteri-
zation of the converted covariance

X j := T−1
(

Ũ j 0nu×nv

0nv×nu Inv

)
T−>. (9)

A solution for the transformation matrix T is presented in
the next lemma, for which the rotation matrices Si, S̃ j ∈ Rnx

and the diagonal matrices Di, D̃ j ∈ Rnx are introduced via a
standard and an alternative eigenvalue decomposition1:

[Si,Di] = eig(Xi),

[S̃U j , D̃U j ] = eig∗
(

D
− 1

2
i S−1

i

(
U j 0
0 0

)
S−>i D

− 1
2

i

)
.

(10)

Lemma IV.4 Let the covariance matrices Xi ∈ Rnx and
U j ∈ Rnu be given and let Si, S̃U j , Di and D̃U j suit (10). Then,
the transformation matrix satisfying Assumption IV.3, yields

T = S̃−1
U j

D
− 1

2
i S−1

i . (11)

Proof: The proof is presented by substituting T of (11)
and verify (i) T XiT> = Inx and (ii) T

(
U j 0
0 0

)
T> =

(
Ũ j 0
0 0

)
.

(i) Since Si and Di are the result from the eigenvalue
decomposition eig(Xi), i.e., Xi = SiDiS−1

i = SiDiS>i , one

obtains that D
− 1

2
i S−1

i XiS−>i D
− 1

2
i = Inx . Further, since S̃U j is

a rotation matrix, S̃−1
U j

D
− 1

2
i S−1

i XiS−>i D
− 1

2
i S̃−>U j

= Inx holds,
which is equivalent to T XiT> when T follows (11).
(ii) The alternative eigenvalue decomposition in (10), i.e.,
denoted with eig∗(·), gives that T

(
U j 0
0 0

)
T> = D̃U j . Since

eig∗(·) arranges the eigenvalues on the diagonal of D̃ j in
descending order, see footnote, and since it was based on
a transformation of

(
U j 0
0 0

)
with a full rank transformation

matrix T , a total of nv eigenvalues in D̃U j are zero. Or stated
differently, each element in D̃U j is zero except for the first
set of diagonal elements {D̃U j}1,1 until {D̃U j}nu,nu and thus

D̃U j = T
(

U j 0
0 0

)
T> is of the following form:

(
Ũ j 0
0 0

)
.

To summarize, let us present an example of how one
could implement the proposed solution for finding the mean
x̂ j and covariance X j of the converted PDF p j(x). The
algorithm differs in computing X j from the derivation above,
since it assumes a general eigenvalue decomposition where
eigenvalues are not necessarily obtained in descending order.

1The alternative eigenvalue decomposition denoted as [S̃, D̃] = eig∗(A), for
some suitable A, computes its result in such a way that the diagonal elements
{D̃}1,1 · · ·{D̃}n,n correspond to the eigenvalues in descending order, i.e.,
{D̃}1,1 = λmax(A) and {D̃}n,n = λmin(A).



[x̂ j,X j] = stateConversion(x̂i,Xi, ŷ j,Yj)

% compute some initial transformation matrices

Tu,y =
(
Inu 0nu×nw

)
; Tv,x =

(
0nv×nu Inv

)
;

[Si,Di] = eig(Xi);
% compute the converted mean

û j = Tu,yŷ j; v̂i = Tv,xx̂i;

x̂ j =

(
û j
v̂i

)
;

% compute the converted covariance

[SU j ,DU j ] = eig

((
Tu,yYjT>u,y 0nu×nv

0nu×nv 0nv×nv

))
;

ϒ = 0nx×nx ;

{ϒ}q,q =

{
1 if {DU j}q,q = 0,

{DU j}q,q else,
∀q ∈ Z[1,nx]

X j = SiD
1
2
i SU j ϒS−1

U j
D

1
2
i S−1

i .

The above algorithm converts the PDF of node j, i.e., p j(y),
into an estimate of x, i.e., p j(x). The desired fused estimate
p f (x) is then computed by merging pi(x) with the converted
p j(x). In the illustrative example presented, next, Ellipsoidal
Intersection is employed for fusing pi(x) and p j(x).

V. ILLUSTRATIVE EXAMPLE

The proposed fusion method for unequal but overlapping
state vectors is assessed in a distributed Kalman filtering
example. The benchmark process is heat conduction in a rod,
see Figure 2, which starts at a temperature of 300 K before
being heated and cooled at different positions. The network
of 5 nodes aims to reconstruct the temperature profile.

Fig. 2. An illustration of the considered setup for estimating the temperature
profile of a rod via a network of 5 nodes.

The rod is divided into 100 segments and thus, the
temperature Tq of each segment q is to be estimated. Details
on specific values of the heat conduction process are omitted
for brevity, though a mathematical representation of process
dynamics is obtained by modeling the temperature value Tq
at a sample instant k+1, for some k ∈ Z+, as follows:

Tq[k+1] = 0.17Tq−1[k]+0.66Tq[k]+0.17Tq−1[k]+dq[k],

for all q ∈ Z[1,100]. The random variable dq[k] represents
process noise and is introduced to model the fact that neither
heating nor cooling values are available to the system. A
suitable characterization of this random variable, yields

p(dq[k]) = G(dq[k],0,30) ∀q ∈ Z[1,100],∀k ∈ Z+.

The rod is heated at segment 50 with 15 W and cooled
with −10 W at segments 30 and 70. Further, both ends of
the bar are stabilized at a temperature of 300 K. Nodes of the
networked system are placed at segment 10, 30, 50, 70 and
90, where any two neighboring nodes share local data. Each
node measures the temperature value of its own segment,
while it estimates the temperature profile of a particular local
area of the bar. More precisely, the local state vector θi and
local measurement zi, for all nodes i ∈ Z[1,5], yield

θ1 =
(
T1, . . .T40

)
, z1 = T10 + s1,

θ2 =
(
T1, . . .T60

)
, z2 = T30 + s2,

θ3 =
(
T20, . . .T80

)
, z3 = T50 + s3,

θ4 =
(
T40, . . .T100

)
, z4 = T70 + s4,

θ5 =
(
T60, . . .T100

)
, z5 = T90 + s5.

The random variables si, for all i∈Z[1,5], represent measure-
ment noise and are stochastically characterized as follows:

p(si[k]) = G(si[k],0,0.1), ∀i ∈ Z[1,5],∀k ∈ Z+.

Note that local state vectors are denoted as θi, for all i ∈ Z+

rather than x and y used to explain the proposed the state
fusion solution. The main reason for adopting this notation is
to reduce confusion, as the representation of x and y changes
per node and per received estimate.

Two different types of distributed Kalman filtering ap-
proaches are assessed. A schematic setup of their estimation
algorithm per node is depicted in Figure 3.

• LKF is an approach where nodes exchange their local
measurements. As such, apart from its own measure-
ment zi, node i receives (at most) the local measure-
ments zi−1 and zi+1, which can be processed via a
standard Kalman filtering algorithm for computing an
estimate of localized state θi.

• DKF is the proposed approach in line with Figure 1.
As such, neighboring nodes share their locally com-
puted estimate, due to which node i receives (at most)
estimates of θi−1 and θi+1 from the corresponding
neighboring nodes. These are merged with its own
estimate θi via the proposed fusion method to compute
a fused estimate of the same localized state θi.

Fig. 3. An illustrative setup of the local algorithm performed by each node i
according to the two distributed Kalman filtering approaches assessed. Note
that neighboring measurements zi−1 and zi+1 and neighboring estimates
pi−1(θi−1) and pi+1(θi+1) are only available to node i if these nodes exists.
As such, node 1 will not receive z0 neither p0(θ0), since there is no node 0.



Figure 4 and Figure 5 show the temperature profile as
estimated by nodes 2 and 4 after 1200 s for both the LKF and
the proposed DKF approach, respectively. Apart from a slight
difference between the two approaches in estimation error,
their main difference is in the agreement of the temperature
value at those segments that are both estimated by node 2 and
well as by node 4, i.e., segments 40 until 60. In case of the
LKF, Figure 4 shows that node 2 and node 4 do not agree on
the temperature value of these segments. This is due to the
fact that neighboring nodes share their local measurement.
As such, node 2 receives the temperature value at segments
10, 30, and 50 and is not able to reconstruct the decaying
temperature after segment 50. Similarly, node 4 receives the
temperature value at segments 50, 70, and 90 and is not able
to reconstruct the decaying temperature before segment 50.
This difference in the estimated temperature value of over-
lapping segments is solved in the DKF by exchanging local
estimates (rather than local measurements) and employ the
proposed fusion method. In that case, although node 4 has
a measured temperature value from segment 70 only, it also
receives the estimated temperature profile of node 3. This
latter profile includes information on the temperature value of
segment 30, since node 3 receives the local estimation result
of node 2. It is exactly this progression of information from
neighbor to neighbor to neighbor etc. that enables node 4
to reconstruct the decay in temperature before segment 50.
Similarly, node 2 can reconstruct this decay as well.

Such benefits of the DKF approach would not be possible
with an alternative fusion method than the one proposed in
this article, as they require that each node computes a local
estimate of the entire temperature profile, i.e., T1 until T100.

1 20 40 60 80 100
298

299

300

301

302

303

segment

T
em

pe
ra

tu
re

real
node 2
node 4

state elements node 2 state elements node 4

Fig. 4. The LKF results of the temperature profile estimated by node 2,
i.e., between the segments 1 and 60, and the temperature profile estimated
by node 4, i.e., between the segments 40 and 100.
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Fig. 5. The DKF results of the temperature profile estimated by node 2,
i.e., between the segments 1 and 60, and the temperature profile estimated
by node 4, i.e., between the segments 40 and 100.

VI. CONCLUSIONS

This article proposed a fusion solution for merging two
different estimates that have overlapping state elements,
while each estimate has a unique part as well. Existing fusion
methods assume that the two different state estimates before
fusion have the same state representation and could thus not
be employed directly. Yet, to make use of these existing
fusion methods, a solution was presented that turns one of the
original estimates into a converted estimate of similar state
representation as the other original estimate. An important
assumption made for this conversion is that the employed
fusion method is able to cope with unknown correlations. The
main line of reasoning of the proposed fusion solution has
been presented along with an empirical justification, which
makes a mathematical argumentation of the fusion approach
necessary future work.
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