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Abstract

Switching between windows on a computer is a frequent activity, but finding and
switching to the target window can be inefficient. This thesis aims to better un-
derstand and support window switching. It explores two issues: (1) the lack of
knowledge of how people currently interact with and switch between windows
and (2) how window switching can be supported better.

Having a good understanding of how users interact with windows is important
for informing the design of new and improved window management tools. How-
ever, there have been relatively few empirical studies of window manipulation on
commonly used operating systems, and those that do exist may no longer reflect
current use. To address this lack of knowledge a three week log-based longitudi-
nal study of window use by 25 participants was conducted using the custom-made
tool PyLogger, which recorded actual window switching behaviour.

However, the analysis of longitudinal log data, such as the data gathered by
PyLogger, is problematic as it is difficult to extract meaningful characterisations.
Therefore, this thesis also presents a visualisation tool called Window Watcher

that assists understanding and interpreting the low level event logs of window use
generated by PyLogger. Window Watcher’s design objectives are described, and
examples demonstrate the ways that it summarises and elucidates window use.

The results of the PyLogger study provide an empirical characterisation of in-
teraction with windows, and results include the following: (1) the participants had
fewer windows open and visible than in previous studies; (2) window switching is
a frequent activity; (3) several findings related to specific window switching tools,
including that acquiring a particular window by navigating through application-
grouped items on the Taskbar is slow, and that Alt+Tab is seldom used for re-
trieving anything other than the most recently used window; (4) an updated clas-
sification of stereotypical window management styles (pilers, maximisers, near
maximisers, and splatterers); and (5) there are strong window and application re-
visitation patterns. Finally, implications of the results of the log study for the
design of window switching tools are discussed.



The findings from the PyLogger study led to the development of a new window
switcher called SCOTZ (for Spatially Consistent Thumbnail Zones). SCOTZ is a
window switching interface which shows all windows grouped by application and
allocates more space to the most frequently revisited applications. The two design
objectives of SCOTZ are (1) to provide a spatially stable layout of applications and
windows, and (2) to support revisitation to recently and frequently used windows.
Additional design objectives are to support various display sizes, to support both
keyboard and mouse input, to provide possibilities for application launching and
to provide options for end-user customisation.

The design and features of SCOTZ are described, followed by theoretical and
empirical validation of its underlying design principles. Findings include that (1)
spatially stable layouts allow for faster acquisition of targets than recency and
random layouts, (2) the instability inevitably caused by size morphing does not
severely impact user performance, (3) size morphing leads to an overall perfor-
mance advantage because of the Fitts’ Law targetting time advantage of increased
target size, and (4) size morphing facilitates finding items because of guided

search. Also, findings from an empirical study demonstrate that SCOTZ yields
performance and preference benefits over existing window switching tools.

Finally, as SCOTZ employs a treemap algorithm to generate the layout of the
application zones the suitability of various treemap algorithms for the purpose of
SCOTZ is explored, particularly in terms of spatial stability. In previous work,
many different treemap algorithms have been proposed, often with the aim being
to optimise performance across several criteria, including spatial stability. How-
ever, none of the existing treemaps are stable when data updates, and when items
are added/deleted, and when many changes have taken place (i.e., the cumulative

effect of data changes). Therefore, this thesis introduces the novel ‘Hilbert’ and
‘Moore’ treemap algorithms, which are designed to achieve high spatial stability.
Their performance is theoretically assessed in comparison to other treemaps by
using various metrics, including a novel ‘location drift’ metric to better capture
spatial stability than the commonly used ‘distance change’ metric. The theoreti-
cal evaluation demonstrates that Hilbert and Moore treemaps perform well across
all stability metrics. An empirical study examines the validity and usefulness of
the location drift metric, showing that location drift can explain some effects on
user performance that distance change alone can not.
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Chapter I

Introduction

In recent years the computer has become a ubiquitous and, for many people,
essential piece of technology. It is no longer used by only an elite group of ‘tech-
savvy’ users, and many modern computers are easy to use with little to no training.

The user interface provides an understandable mechanism through which the
user can interact with the computer, and it ‘shields’ the user from having to deal
with the complex underlying hardware. User interfaces have evolved to a high
level of sophistication. This is in contrast to the early days of desktop comput-
ing, when the main interaction mechanism was the command line. In 1981, the
Xerox Star was the first commercially available computer that had a Graphical
User Interface (GUI), as opposed to the (typed) command line. The particular
style of interaction employed on the Xerox Star is often referred to as WIMP, for
Windows, Icons, Menus and Pointing. Windows allow multiple applications and
documents to be open concurrently. Put formally, windows are transient contain-
ers that hold an application, document, or any (hierarchical) combination of the
two, and windows can be opened, closed, moved and resized. Windows remain a
very prominent element in contemporary user interfaces.

The topic of this thesis is the interaction with these windows, and in particular
switching between them. In their daily computer use, users constantly switch be-
tween windows (i.e., make a different window the focal window) as they navigate
between documents and applications. Previous work has demonstrated that win-
dow switching is a frequent activity: in a three week longitudinal study, Hutchings
and Stasko (2004a) found a mean window activation time of 20.9 seconds, and a
median of a mere 3.77 seconds. Also, a study by Gaylin (1986) showed that win-
dow switching activities are far more frequent than window creation, deletion, or
geometry management.

Unfortunately, finding and switching to the target window can be inefficient.
Direct selection of the target window (by clicking on it with the mouse) is often
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Figure 1.1: Three windows in Windows XP.

not possible because the target window is not visible. In this case, or when the user
fails to notice that the target window is visible, a window switching interface needs
to be used. For example, see Figure 1.1: the Windows Media Player window can
not be switched to by clicking on the window itself; a window switching interface
such as the Windows Taskbar needs to be used to switch to this window. Even if
direct selection of the target window is possible it might not be desirable, e.g., on
large displays when the window is located far from the mouse cursor.

Figure 1.2: An overcrowded Alt+Tab window in Windows 7.

Many common window switching interfaces do not assist the user in finding
and selecting the target window. For example, window titles can become too trun-
cated to be readable if a window switching interface is very full. Also, small
window thumbnail previews might not be distinctive enough to differentiate be-
tween similar-looking windows (for example, see Figure 1.2). Another problem is
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that many window switching interfaces are not spatially stable, i.e., the locations
of window representations in the switching interface can change or are difficult to
anticipate. This instability hinders the development of spatial memory for item lo-
cations. When the user is not able to learn item locations due to an ever-changing
layout he/she will have to resort to a visual search through all the items, which
is often slow. For example, in the Windows Alt+Tab window (see Figure 1.2)
the positioning of windows, or the window representations, can be different from
switch to switch, hindering the development of spatial memory.

The goal of the current research is two-fold: (1) to further explore and charac-
terise how people switch between and organise windows and (2) to develop a new
window switching interface that specifically tries to exploit the characteristics of
window use, as well as provide a layout that is spatially stable. As window switch-
ing is such a common task, any small improvement of the speed of the interaction
can lead to large cumulative gains.

1.1 Research domain

The research in this thesis focuses on window switching on ‘regular’ one- or two-
monitor desktop settings. A wide variety of research and commercial window
switching tools are examined in Chapter 2, but the thesis particularly focuses on
the commercially dominant Microsoft Windows operating system.

1.2 Current situation

Unsurprisingly, many researchers have identified the need for better window or-
ganisation and switching tools (e.g., Bardram et al., 2006; Beaudouin-Lafon, 2001;
Bernstein et al., 2008; Chapuis and Roussel, 2007; Fono and Vertegaal, 2005;
Henderson and Card, 1986; Kandogan and Shneiderman, 1996; Kumar et al.,
2007; Oliver et al., 2008, 2006; Robertson et al., 2004, 2000; Smith et al., 2003;
Tashman, 2006; Xu and Casiez, 2010, reviewed later).

Recent commercial developments in window switching interfaces have for a
large part focused on richer presentations of windows, such as the addition of
window previews to the Windows Taskbar and Alt+Tab in Windows Vista. How-
ever, apart from these richer graphical depictions, such as the use of colour, drop
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shadows and transparency the computer desktop looks similar to the first WIMP
GUIs (van Dam, 1997) (see Figure 1.3). Also, although the visual fidelity of win-
dowing systems has been refined, the fundamental tools for window management
have changed little over decades of use.

(a) Xerox Star (b) Microsoft Windows 95

(c) Microsoft Windows 7

Figure 1.3: (a) The 1981 Xerox Star (Source: DigiBarn Computer Museum,
http://www.digibarn.com/stories/desktop-history/index.
html), (b) the 1995 Microsoft Windows 95 operating system and (c) the 2009
Microsoft Windows 7 operating system.

Having a good understanding of how people use current window switching
tools is critical for effective design refinement. However, there are few recent stud-
ies of what users actually do. Hutchings et al. (2004) and Hutchings and Stasko
(2004a) studied window management and display organisation, respectively, but
as these studies are several years old the results may no longer reflect current use
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as (1) the size and resolution of computer displays has changed, (2) multi-monitor
environments have become more widespread, and (3) tabbed application windows
and multi-document interfaces (which allow many documents to be encapsulated
within a single window) have become more prevalent.

Also, there are very few studies concerning the relative efficiency and effec-
tiveness of window switching tools. To date, analysis of current commercial meth-
ods for switching between windows is often anecdotal and sometimes conflicting.
For example, some label the ordering of window representations in the Alt+Tab
window as “very effective” (de Chiara et al., 2004, p. 366), but Alt+Tabbing is
also considered to be “tedious” (Grudin, 2001, p. 462).

1.3 Research objectives

The current research addresses two problems: (1) the lack of knowledge of how
people use, organise and switch between windows and (2) the inadequacy of cur-
rent window switching interfaces.

Knowing the needs and requirements of a user is an important determinant for
successful interface design. However, there is surprisingly little knowledge about
how users coordinate their work across windows, how they organise windows on
the screen and how they switch between windows. Without this knowledge it is
hard to redesign and improve window switching interfaces. Therefore, one of
the objectives of this research is to learn more about how people interact with
windows.

The second objective is to develop a window switching interface which ad-
dresses the needs of the user better than existing window switching interfaces.
This thesis identifies two problems with current window switching interfaces: a
lack of stability of window locations and a lack of connection to actual window
switching behaviour. The premise of this research is that window switching can
be made more efficient and effective by (1) providing a more stable organisation
of windows in the window switching interface so users can use quick gesture-like
target acquisitions and (2) basing the design of the window switching interface on
actual window switching behaviour.

5



1.4 Contributions

Longitudinal studies of window use are rare and those that do exist are already sev-
eral years old, and the results therefore most probably outdated. Therefore, this
thesis presents a longitudinal log study of window use. The analysis focuses on
various aspects, including revisitation patterns to windows and applications, the
methods people use to switch between windows, and how people organise win-
dows on their screen, including moving and resizing actions. Overall, this study
revealed several interesting window use patterns and behaviours, such as strong
revisitation, which inspired the design of the novel window switching tool SCOTZ

(Spatially Consistent Thumbnail Zones). The data is also potentially useful for
other developers of tools to support window use.

The log study was paired with the development of a visualisation tool called
Window Watcher. Window Watcher supports the extraction of meaningful charac-
terisations from the data. Window Watcher’s design objectives are generalisable
to other domains.

SCOTZ is a novel window switching interface, and its design draws on an
empirically derived characterisation of window switching as well as exploiting
human spatial memory. The layout of SCOTZ uses treemaps, and this thesis
presents several studies evaluating the performance benefits of layouts that em-
ploy treemaps. These experiments have led to general insights into the effects of
size morphing and (in)stability of visual layouts. Also, additional experiments
support and validate the underlying principles of SCOTZ and examine the effi-
ciency and effectiveness of two major commercial window switching interfaces
(Windows Taskbar and Windows Alt+Tab).

Finally, as SCOTZ uses a treemap for the layout of the elements in the in-
terface, this thesis proposes two new treemap algorithms. These algorithms are
described in detail and can therefore be used by other researchers and developers.

1.5 Publications related to this thesis

Some material in this thesis has previously appeared in peer-reviewed publica-
tions. An overview of all related publications is given here, as well as the chapters
from which material is used.
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Chapter II

Window Management Tools

This chapter presents an overview of the various tools that are available for win-
dow management (including window switching and organisation), both the ones
that are available in common operating systems and research tools.

2.1 Commercial window switching tools

Modern operating systems have several tools to support window switching in-
cluded by default. The two standard tools in Microsoft Windows are the Taskbar
and Alt+Tab, while Mac OS has the Dock, Command+Tab, and Exposé. This
section describes these tools, as well as empirical research related to them.

2.1.1 Microsoft Windows

The Taskbar

The Windows Taskbar is a narrow strip at the bottom of the screen (this is the
default position, the position can be modified by the user) and was first introduced
in the Microsoft Windows 95 operating system. The Windows Taskbar comprises
of a button to access the Start Menu, buttons for launching applications (‘Quick
Launch’, no longer present in Windows 7), buttons for all open windows and the
‘Notification Area’ (mainly used for status information). For convenience, when
‘Taskbar’ is used in this thesis it is meant to denote only the part of the Taskbar
with the window buttons.

On early versions of the Windows Taskbar (Windows 95 to Windows 2000)
the order of the Taskbar buttons was the same as the order in which the respec-
tive windows were opened, filling up the Taskbar from left to right. In Microsoft
Windows XP Taskbar button grouping was introduced. Taskbar button grouping
causes windows of the same application to always be next to each other on the
Taskbar (see Figure 2.1). Also, when available space on the grouped Taskbar
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becomes scarce windows of the same application are collapsed under one appli-
cation button (see Figure 2.2). This collapsing means that two clicks are required
to switch to a window rather than one: a click on the Taskbar button for the appli-
cation group first, then selecting the window.

Figure 2.1: The Windows XP Taskbar.

Figure 2.2: A collapsed button on the Windows XP Taskbar. The number (5) next
to the application title indicates how many windows are open for the application.

With the introduction of Microsoft Windows Vista thumbnail previews of the
windows were added to the Taskbar (see Figure 2.3). This can be expected to
benefit user performance, as people are better at recalling visual elements of files
than they are at recalling titles or file names (Blanc-Brude and Scapin, 2007).

Figure 2.3: The Windows Vista Taskbar (Source: http://www.microsoft.
com). Hovering over a Taskbar button reveals a thumbnail preview of the associ-
ated window.

The Microsoft Windows 7 Taskbar does not show application/window titles
(see Figure 2.4). The Windows 7 Taskbar only shows application icons, and these
icons can optionally be ‘pinned’ to the Taskbar so they are always in the same
location. Also, pinned application icons remain on the Taskbar even when there
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are no windows open for that application. In this case, clicking on the Taskbar icon
will launch the application. If there are several windows open for an application
these can be reached via a fanned out sub-menu which shows the window titles
and thumbnail previews of the window content (see Figure 2.4).

Finally, it is important to note that the Windows Taskbar is only shown on one
monitor (the primary monitor) when a multi-monitor setup is used. Czerwinski
et al. (2003) propose that the Windows Taskbar should, ideally, be stretched across
monitors on multi-monitor setups.

Figure 2.4: The Windows 7 Taskbar. Only application icons are shown, no ap-
plication/window names. Hovering over or clicking on an icon reveals thumbnail
previews and titles of all windows associated with the application.

Alt+Tab

In Microsoft Windows 3.1 the ‘Alt+Tab’ method for window switching was in-
troduced. Alt+Tab is a key combination for window switching: by pressing and
holding down the ‘Alt’ key and (repeatedly) pressing the ‘Tab’ key the user can se-
quentially step through a list of available windows1. Releasing Alt+Tab switches
to the window selected at that moment. With the introduction of the Microsoft
Windows Vista operating system the target window can be selected by using the
mouse to click on the desired window as well.

The ordering of the list of windows (or their representations) in the Alt+Tab
window is based on the z-ordering of windows. Z-order is similar to recency order,

1 From the Microsoft Windows 95 operating system and onward pressing Alt+Tab reveals a list
of all windows. In the early versions of Alt+Tab (in Microsoft Windows 3.1 and 3.11) pressing
Alt+Tab revealed a small rectangular window in the middle of the screen with only the icon and
the title of the next window in the z-ordering.
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and is the depth order of windows. A window that is on top of another window is
relatively higher up in the z-ordering. No two windows are on the same position
of the z-ordering; one window is always higher or lower than the other. When a
window is minimised it is sent to the bottom of the z-ordering. Windows Alt+Tab
cycles through the windows according to their position in the z-ordering; from
front (top) to back (bottom). By using Shift+Alt+Tab the user can cycle through
the windows in reverse order. Since the introduction of the Microsoft Windows
Vista operating system only the first six windows in the Alt+Tab representation
are shown by z-order, the others are listed alphabetically by application name.2

Figure 2.5: The Alt+Tab window in Windows XP.

From Microsoft Windows 95 to Windows XP Alt+Tab showed icons only
and the window title was only shown for the currently selected window (see Fig-
ure 2.5). Since Microsoft Windows Vista the Alt+Tab window also shows small
window previews (see Figure 2.6), but the window title is still only shown for the
currently selected window.

Figure 2.6: The Alt+Tab window in Windows 7.

Finally, Microsoft Windows Vista also introduced an enriched version of Alt+Tab
called ‘Flip 3D’ (see Figure 2.7). The functionality of Flip 3D is identical to that

2 http://blogs.msdn.com/b/oldnewthing/archive/2008/07/01/8673981.
aspx, accessed 8 November 2010
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of Alt+Tab (which is sometimes referred to as ‘Flip’), but the difference is that the
windows are shown in a full-screen stacked 3D view.

An advantage of Alt+Tab is that it allows for very quick retrieval of the most
recently used window. However, a disadvantage is that sorting windows by z-order
is spatially unstable: the ordering of the window representations will be different
from switch to switch if the z-ordering of the windows changes. Also, it is unclear
how well users understand and can anticipate z-order.

Figure 2.7: Flip 3D in Windows Vista (Source: http://www.microsoft.
com).

2.1.2 Mac OS

The Dock

The Mac OS X operating system, released in 2001, included a new feature called
‘the Dock’ (see Figure 2.8). By default, the Dock shows only applications icons,
not individual windows, and application names are only shown when the mouse
cursor hovers over the icon. Users are also able to add documents to the Dock
manually. Windows are added to the Dock only when they are minimised. Run-
ning applications are indicated by a small light (Mac OS X v10.5) or dot/triangle
below the icons (earlier Mac OS X versions). When an application icon on the
Dock is clicked all windows belonging to that application will be brought to the

13

http://www.microsoft.com
http://www.microsoft.com


foreground. The Dock has a so-called fish-eye effect; target sizes dynamically ex-
pand as the mouse cursor is closer to them, as can bee seen around the third icon
in Figure 2.8.

Figure 2.8: The Mac OS Dock in Mac OS X v10.5 (Source: http://
support.apple.com).

Command+Tab

Command+Tab on Macintosh operating systems is similar to Windows Alt+Tab,
but the most important difference is that Command+Tab shows applications only,
not all windows. When an application is selected using Command+Tab, all win-
dows belonging to that application will be brought to the foreground.

Exposé

With the release of Mac OS X v10.3 a new window switching tool called Ex-
posé (see Figure 2.9) was introduced. When activated, Exposé smoothly shrinks
all windows so that they can be simultaneously viewed on the screen. Exposé
provides different function keys for either showing all windows or just the win-
dows for the current application (for example, when multiple PDF documents are
opened). The spatial location of each window in the overview is influenced by its
most recent location on the screen. While this relative positioning may assist users
in visually seeking windows in the overview, the locations are not spatially stable
between invocations if the locations of the windows change, and consequently the
locations are unpredictable.

In 2010 Logitech introduced an Application Switcher functionality which works
similar to Exposé.
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Figure 2.9: Mac OS X’s Exposé, showing all open windows on the screen simul-
taneously (Source: http://support.apple.com).

2.1.3 Empirical evaluations

Analysis of the efficiency and effectiveness of current commercial methods for
switching between windows is often anecdotal. For example, some previous work
deems the ordering of windows in Alt+Tab to be “very effective” (de Chiara et al.,
2004, p. 366), but Alt+Tabbing is considered “tedious” by others (Grudin, 2001,
p. 462). There are very few studies that evaluate the use, efficiency and/or ef-
fectiveness of the common commercially available window switching interfaces
in a formal manner. Alt+Tab is found to be relatively fast when the number of
windows is small (Kumar and Winograd, 2007), but performance decreases as the
number of windows increases. Users make more errors when using the Windows
Taskbar than when using Mac’s Exposé, which may be due to the smaller target
sizes on the Windows Taskbar (Kumar and Winograd, 2007).

Ramos et al. (2006) studied accessing occluded content in 2D drawings and
introduced two novel techniques to access occluded objects. These two tech-
niques, called ‘Tumbler’ and ‘Splatter’, are very similar to Windows Flip 3D and
Mac’s Exposé. Therefore, the results found by Ramos et al. (2006) are meaningful
to examine in this context. Tumbler shows all objects in a 3D stacked view (like
Windows Flip 3D), while Splatter (temporarily) separates the group of objects
by ‘splattering’ them over the screen (like Mac’s Exposé). An empirical study
found a performance advantage of Splatter over the baseline control (a list with
all objects by z-order), but no performance advantage for Tumbler.
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2.2 Task-based approaches

Several studies indicate that people constantly multi-task and interleave various
tasks during the work day (Bannon et al., 1983; Czerwinski et al., 2004; Dra-
gunov et al., 2005; González and Mark, 2004). This is reflected in window use
and management. For example, a ‘writing a paper’ task might contain a spread-
sheet window, a statistical analysis package window, and a document into which
the results are typed. Task switching occurs for several reasons (Bannon et al.,
1983; Card and Henderson, 1987), such as users being reminded to do something
else while performing a certain task, timesharing, practical limitations (like run-
ning out of file space), interruptions, and shifting to another project. Overall, task
switching is less frequent than window switching (which takes place every 20.9
seconds on average, see Hutchings et al., 2004), but nevertheless a frequent ac-
tivity: Czerwinski et al. (2004) found an average of 50 task shifts per week. The
results in Czerwinski et al. (2004) inspired the development of GroupBar (Smith
et al., 2003, reviewed later).

Many tools have been developed to support task management and switching
by grouping windows by task. The underlying assumption is that users benefit
from the close proximity (spatial or temporal) of grouped items.

The Rooms system (Henderson and Card, 1986; Card and Henderson, 1987)
was the first switching interface that allowed users to manually partition space
for different tasks by creating virtual desktops, or, workspaces. In Rooms, each
‘room’ is related to a different task, and the user can switch between tasks by
going through (virtual) ‘doors’.

Task Gallery (Robertson et al., 2000) is 3D task-based window switcher.
Tasks appear as if they are artwork hung on the walls of a 3D virtual art gallery.
In Task Gallery, a window can not appear in multiple tasks, something which is
possible in the (similar) Rooms system.

GroupBar (Smith et al., 2003) is a modification of the Windows Taskbar that
allows users to group windows into tasks. Clicking on one of these ‘task buttons’
causes all window belonging to that task to be restored and brought to the fore-
ground. Task creation and management is manual and can be done by clicking
and dragging items to or between groups. For example, users can drag a win-
dow button onto another button, which combines these two windows into a group,
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and dragging a window button onto an existing group adds the window to the
group. A user study reveals performance benefits as well as subjective preference
of GroupBar over the (traditional) Windows Taskbar.

Activity-Based Computing (Bardram et al., 2006) also aims to support par-
allel work activities. Rather than working with a certain file or application, or-
ganisation is centred around the activity of the user, like tasks. Activity-Based
Computing also offers a wide range of options to collaborate with other people.
Activity-Based Computing allows the user to place any combination of windows
into an activity, and these activities are placed on an ‘activity bar’ (similar to the
Windows XP Taskbar) at the top of the screen. Ctrl+Tab switches between tasks
(i.e., suspends one task and resumes the other), while Alt+Tab can still be used to
switch between windows within one task. The authors evaluated Activity-Based
Computing using a combination of methods, including think-aloud tasks, a ques-
tionnaire and an interview. The response from users was generally favourable,
however, some fundamental issues were raised as well. Users struggled, in par-
ticular, with the lack of support for assigning the same window to more than one
activity. The authors note that designing the system such that window can be clas-
sified under more than one task is problematic to achieve in “a simple manner”.

With Scalable Fabric (Robertson et al., 2004) users can place individual win-
dows, or groups of related windows, in the periphery of the screen. Windows
placed in the periphery are made smaller to allow for enough space for the cen-
tral focus region, in which the current window, or group of windows, is placed.
Scalable Fabric is fully manual, and does not allow for a window to be placed in
multiple tasks simultaneously. Nevertheless, it allows for users to be creative in
their placement of windows in the periphery, so users can choose more ‘fuzzy’ ar-
rangements (as done implicitly in Taskposé; Bernstein et al., 2008). Results from
a user study suggest that users prefer Scalable Fabric over the Windows Taskbar,
but details of this study are not described in Robertson et al. (2004).

Push-and-pull switching (Xu and Casiez, 2010) implicitly identifies tasks.
Push-and-pull switching analyses window overlap and, based on the premise that
users try to avoid or minimise the amount that windows belonging to the same
tasks overlap, places window that do not overlap in the same group. An evaluation
reveals that push-and-pull switching generates large performance benefits over
other common window switching methods (direct click, the Windows Taskbar
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and Alt+Tab). A draw-back of push-and-pull switching is that it is most likely less
suitable for smaller displays, where most or all windows overlap (hence resulting
in ‘task groups’ of one window each), or for users who tend to maximise all/most
of their windows.

Taskposé (Bernstein et al., 2008) uses a fuzzy approach to defining tasks,
using spatial proximity to illuminate task-based window relationships: windows
that are frequently temporally adjacent drift closer to one another and those that
are temporally distant drift apart. The size of the window representations reflects
window importance, as determined by the WindowRank algorithm. Using the
WindowRank algorithm a window becomes more important as other (important)
windows switch to it often. The rationale behind Taskposé is that while task-
based grouping of window in a switching interface can be beneficial, the creation
of such groups is often problematic. First of all, it takes time, and second, some
windows might be hard to classify, which Bernstein et al. (2008, p. 231) demon-
strate with the following example: “[...] consider a user who visits Amazon.com

to purchase books for his child’s birthday but gets distracted by a related item and

starts browsing other items on the site instead. Should we still call this activity

the buying a birthday book task? Should we instead put it in a catch-all distracted
task?” Therefore, rather than the “binary” approach that many task-based win-
dow switchers employ (either a window is in a task, or it is not; Bernstein et al.,
2008), Taskposé’s approach is “fuzzy”. As a consequence, tasks are an emergent
property in Taskposé, rather than explicitly constructed. The authors performed
a week-long longitudinal evaluation of Taskposé. Participants reported that they
found Taskposé most useful when the Window Taskbar had become very full as
a result of many windows being open. None of the users ever reported Taskposé
becoming too full or overcrowded. Finally, the authors report a lack of stability of
the interface, as well as a lack of options for customisation.

With WindowScape (Tashman, 2006) the user can place window miniatures,
which can be used for switching to windows, on the desktop, and these miniatures
remain in spatially stable locations. Unfortunately, as these miniatures are on
the desktop, they are often obscured by other windows. Therefore, WindowScape
offers the possibility to temporarily bring the miniatures to the foreground without
affecting the layout of the windows. WindowScape also implicitly supports task
management by taking photograph-like snapshots of the window/screen layout
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whenever the user expands one or more miniatures, or miniaturises one or more
windows. These snapshots are placed on a time-line at the top of the screen and
can later be returned to. The author acknowledges that this time-line is unstable.

SWISH (Oliver et al., 2006) is an algorithm to create a list of related windows
based on semantic and temporal information. Semantic features are determined
by looking for shared words in the window title, temporal proximity is determined
by keeping track of the order in which windows are switched to. This semantic
and temporal information is then used to build a list of related windows.

RelAltTab (Oliver et al., 2008) uses the SWISH algorithm to change the or-
dering of windows in Microsoft Windows Alt+Tab. In a user study, two RelAltTab
prototypes were compared to the standard Alt+tab ordering as it is implemented
in, among others, Windows XP. In one RelAltTab prototype the first three items
are shown according to z-order, identical to the ‘standard’ Alt+Tab. Next, win-
dows that are semantically related to the current foreground window are shown,
followed by the ones that are temporally related, then followed by the rest of the
windows according to z-order. In the second RelAltTab prototype the standard z-
ordering is maintained, but colour indicates semantic and temporal relatedness of
certain windows to the foreground window. Also, numbered key bindings allow
the user to switch to semantically related windows more quickly. A user study re-
vealed that the second prototype leads to faster window switching times than the
standard Alt+Tab for some tasks, but prototype one was slower than the other two
methods for some other tasks. Also, prototype two led to higher user satisfaction
ratings than the others.

In general, there are several problems associated with task-based grouping of
windows, first of all related to whether the interface requires manual management
of tasks or provides automatic task identification and management. Manual clas-
sification of windows into tasks (as implemented in GroupBar, Activity-Based
Computing, Scalable Fabric and Task Gallery) means that users must carry out
explicit actions to gain potential benefits and it creates additional cognitive over-
head for the user (Kaptelinin, 2003; Dragunov et al., 2005). Automatic grouping of
windows into tasks, however, is risky, because it might not match with the users’
classification. The primary limitations of such automatically adaptive systems are
that they can incorrectly predict the user’s intention and that users can fail to un-
derstand or anticipate the system’s adaptation (Shneiderman, 1997). When this
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happens users must resort to a time-consuming visual search of candidate targets.

Another design issue for window switchers that use a task-based grouping is
the fact that a window might be used in several tasks, i.e., some windows are
likely not to be ‘task-specific’ at all. For example, generic applications, such as
a web browser or an e-mail client are likely to be used across tasks, rather than
in one specific task. If a task-based window switcher only allows for exclusive
grouping (i.e., a window can only be associated with one task, e.g., GroupBar,
Scalable Fabric, Task Gallery) the user is sometimes forced to make ‘impossible’
choices, or open multiple windows for these applications, which some users find
unnatural or difficult: “[still] trying to get used to having multiple internet win-

dows open” (Smith et al., 2003, p. 40). Conversely, some windows might not
be associated with a specific task at all, but some task-based window switching
interfaces nevertheless ‘enforce’ a classification. This is reported in Bardram et
al. (2006, p. 219): “[the] worst thing? Well [...] if you have to put everything

into activities, then you need to constantly consider ‘where does this one belong’.

In many situations something just appears quickly and then you start up some

application and do some things in it. [...]”.

2.3 Window organisation

In most common operating systems windows will usually be (partially) overlap-
ping each other (Myers, 1988). This overlap means that windows low in the z-
order are often (completely) obscured by other windows, and can therefore not be
reached directly (by clicking on the relevant window using the mouse). Also, it
implies that the user has to continuously switch back and forth between windows
when the task at hand requires information from, or interaction with two or more
windows (Baudisch and Gutwin, 2004).

In window management research two distinct solutions to this problem can
be identified: (1) leaving the window positions ‘as is’, but assisting users in ac-
cessing and revealing occluded content and (2) rearranging windows such that
multiple windows are visible simultaneously, e.g., by tiling all windows. This di-
chotomy between overlapping and tiling approaches was already observed in the
1980’s (Bly and Rosenberg, 1986; Myers, 1988). The following sections review
the research related to these two approaches.
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2.3.1 Support for interacting with overlapping windows

Researchers who investigate techniques for interacting with overlapping windows
often do this in the context of copying or moving objects between windows (e.g.,
Dragicevic, 2004; Chapuis and Roussel, 2007; Faure et al., 2009), as this is a typi-
cal example where the user quickly and briefly needs to switch between windows.
Because of the nature of this interaction, Dragicevic (2004) argues that (1) re-
arranging windows such that they are next to each other requires too much effort,
and (2) switching back and forth between the windows by means of a window
switching interface is too cumbersome.

Many proposed techniques for dealing with overlapping windows draw on
analogies with paper, such as rotating and peeling/rolling back occluding win-
dows (Beaudouin-Lafon, 2001; Chapuis and Roussel, 2007; Dragicevic, 2004).

Chapuis and Roussel (2007) observe that user interest is not by definition
the window that is clicked in. For example, a window is sometimes only used to
(quickly) copy something, after which the user wants to return to the window of
primary interest, where the item/text is pasted. The techniques proposed by Cha-
puis and Roussel (2007) detect which window is of interest based on the location
of the mouse cursor, and either (temporarily) roll back occluding windows or
change the stacking order of the windows to bring that particular window to the
top of the z-order. The rolling back technique in Chapuis and Roussel (2007) is
similar to the work by Dragicevic (2004), who reports on a technique where an
overlapping window is partially folded away to reveal underlying objects. The
study by Faure et al. (2009) proposes, among others, a technique to control the
stacking order of layers of non-overlapping windows, similar to the re-stack tech-
nique by Chapuis and Roussel (2007) and the window switching technique in Xu
and Casiez (2010).

A different solution to address the problems with overlapping windows is
to make the top window(s) semitransparent. However, as the traditional tech-
nique for achieving such transparency (alpha blending) can render window con-
tent poorly legible, Baudisch and Gutwin (2004) propose a technique called ‘multi-
blending’, which is aimed at preserving the most relevant features of both fore-
ground and background content.
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2.3.2 Support for displaying multiple windows

Several novel window management tools provide support for displaying multiple
windows on the screen simultaneously. When such a layout is used a direct click
in a window is possible relatively often, thus eliminating the need for a external
widget like a window switching interface.

Elastic Windows (Kandogan and Shneiderman, 1996, 1997) is a system that
aims to tile all open windows on the screen in a hierarchical space-filling manner.
Kandogan and Shneiderman (1996) argue that overlapping window techniques
causes too much (cognitive) load for the user, and that users could benefit from
having all windows visible on the screen simultaneously. Also, they argue that
their technique provides a close analogy with an actual desk layout, as Malone
(1983) found that people like to organise their desk spatially. With the Elastic
Windows system windows automatically accommodate for changes in the size of
other windows: increasing the size of a window automatically causes the other
windows to shrink, while utilising all screen estate.

Tiling windows is not possible on smaller screens (Myers, 1988), as suffi-
cient screen estate is required to display all windows simultaneously. Therefore,
techniques have been developed to allocate sufficient space to the focal window,
while shrinking, moving, or only partially showing other windows. Hutchings and
Stasko (2002) propose techniques (expanding and shoving windows) that allocate
a large amount of screen space to the current focal window, while preserving (but
shrinking and moving) the visible portions of all other windows. Window snip-
ping (Hutchings and Stasko, 2004b) shrinks windows by ‘snipping’ them such that
only the relevant region of the window (as defined by the user) is visible. Win-
cuts (Tan et al., 2004) also allows for partial content of multiple windows to be
visible on the screen simultaneously, similar to window snipping (Hutchings and
Stasko, 2004b), except that the ‘cuts’ by Tan et al. (2004) can not be interacted
with, while the ‘snips’ by Hutchings and Stasko (2004b) are interactive.

Another solution to display multiple windows at the same time is to not nec-
essarily show all windows, but only the relevant windows for the task at hand.
Haraty et al. (2009) propose AdWiL (Adaptive Windows Layout Manager), which
automatically detects which task the user is working on and generates appropriate
window layouts for the windows involved in this task (AdWiL automatically de-
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termines window importance and relatedness). Once the system has determined
several appropriate layouts, it displays a small preview of the candidate layouts in
the corner of the screen and the user can select to apply a layout.

2.3.3 Comparing overlapping and tiled approaches

The results found by Chapuis and Roussel (2007) show an efficiency advantage of
rolling back occluding windows and automatic restacking of windows over lay-
outs where the windows are either overlapping (without any additional techniques)
or non-overlapping (such as tiled views). Also, the results show an efficiency ad-
vantage of non-overlapping over overlapping (without any additional techniques)
layouts. This latter result is similar to the finding from the empirical study by Kan-
dogan and Shneiderman (1997), which reveals performance benefits of the (tiled)
Elastic Windows system over a layout with overlapping windows. Also, Hutch-
ings and Stasko (2007) provide an evaluation of ‘snipping’ window behaviour in
multi-monitor environments and find space and time efficiency gains compared to
an overlapped approach.

Finally, other work suggests that the suitability of certain window management
techniques depends on the task at hand. Bly and Rosenberg (1986) found that tiled
layouts are more suitable (in terms of faster performance) for tasks that require
little window manipulation (such as scrolling), while overlapping windows are
more suitable for tasks that require a lot of window manipulation (e.g., when the
window content does not automatically adapt to the window’s shape and size).

2.4 Eye-gaze input

Some window switching research is focused on the development of systems that
respond to eye-gaze, like EyeWindows (Fono and Vertegaal, 2005) and EyeEx-
posé (Kumar et al., 2007) which is based on Exposé.

With the EyeWindows (Fono and Vertegaal, 2005) system all windows are
displayed simultaneously, similar to the Elastic Windows system by Kandogan
and Shneiderman (1996). The user selects a window by looking at it and pressing
an activation key (e.g., the space bar), after which the window is dynamically
enlarged, and the surrounding windows accommodate this change by shrinking
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proportionally. Fono and Vertegaal (2005) demonstrate that their EyeWindows
system outperforms an Exposé-like system (that used mouse input).

EyeExposé (Kumar et al., 2007) functions like Mac OS X’s Exposé, except
that it responds to eye-gaze rather than requiring mouse input. In an evaluation
EyeExposé was found to be slower than Alt+Tab when four windows were open,
but faster when 12 were open. The evaluation found no significant difference
between EyeExposé and Exposé.

The different results of the evaluations of EyeWindows and EyeExposé (Eye-
Windows outperforms Exposé, while EyeExposé does not, even though EyeWin-
dows and EyeExposé are quite similar systems) is probably due to subtle differ-
ences in experimental procedure: in the EyeExposé study participants were able
to keep one hand on the mouse, but they were unable to do so in the EyeWindows
study, as typing was required between the window switches. This means that the
response times for the Exposé condition in the EyeWindows study was increased
by the time it took to move a hand from the keyboard to the mouse.

24



Chapter III

Related Work

This chapter reviews various work related to window switching. First, an overview
of previous work on how people interact with windows is provided. This includes
window switching, display space management and the use of large displays and
multi-monitor setups. Next, this chapter presents an overview of work related to
visual search, spatial cognition, and motor skills.

3.1 Studies of window use

This section examines research related to (1) window switching (for details about
particular tools people can use to interact with windows including window switch-
ing tools, see Chapter 2), (2) display management (e.g., how people organise win-
dows on the screen), and (3) large displays and multi-monitor setups.

3.1.1 Switching between windows

Switching between windows is a very common task. A study by Gaylin (1986)
showed that window switching activities are far more frequent than window cre-
ation, deletion, or geometry management. Hutchings et al. (2004) found that the
average time any window is active is a mere 20.9 seconds and that the median
activation time is 3.77 seconds.

Studies that investigate how people switch between windows are rare. Hutch-
ings et al. (2004) found a relationship between the method used for switching
between windows and the number of monitors a user has; users that have multiple
monitors are more likely to use a direct window action (such as a click on the
target window or minimising the top window) and less likely to use the Windows
Taskbar to switch between windows. The authors suggest that multiple monitor
users use the Windows Taskbar less often to switch between windows because the
user has to traverse a large distance to reach it.
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A longitudinal log study by Mackinlay and Royer (2004) identifies ‘window
thrashing’ behaviour: “the rapid manipulation of windows caused by limited dis-

play resource” (p. 1). The authors identify a “time-multiplexing” strategy, where
the user rapidly switches between windows that cover 100% of the monitor. Con-
versely, “space-multiplexing” is a strategy where the user frequently changes the
size of windows, for example, to reveal content of an underlying window. Time-
multiplexing is more common than space-multiplexing, which is most probably
due to the fact that space-multiplexing requires windows to be resized, which the
authors note is an ‘expensive’ task. Finally, the authors note that ‘window thrash-
ing’ is probably less common on multi-monitor setups, as window thrashing is
indicative of the display being (too) small.

3.1.2 Display space management

In this section, research related to how many windows users have open and visi-
ble, how these windows are arranged on the screen, and how much space is left
‘empty’ is reviewed.

In terms of how many windows users have open, Smith et al. (2003) report
that single monitors users on average have 4 windows open at once, dual monitors
users 12 windows and triple monitor users 18 windows. However, a window that
is open is not necessarily visible. For example, it can be in a minimised state or
be obscured by other windows. Hutchings et al. (2004) logged the windowing
activities of 39 people for a three-week period. They report that single monitor
users on average have 3.5 windows visible on the screen, users of small multiple
monitor setups (less than 3 million pixels of screen estate) 4.1 windows, and users
of large multiple monitor setups (more than 3 million pixels of screen estate) 6.8
windows. Also, 78.1% of the time users had eight or more windows open.

Hutchings and Stasko (2004a) interviewed twenty computers users about their
management of display space. The authors identify three different window man-
agement styles: maximisers, who maximise most of their windows, near maximis-

ers, who manually resize windows to almost full size, while leaving some space
unoccupied for either the desktop or smaller windows such as instant messaging
systems, and careful coordinators, who have many windows visible simultane-
ously and hardly ever maximise windows.
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Chapter 2 discussed the dichotomy between overlapping and tiled approaches
to window management. Hutchings and Stasko (2004a) report that people hardly
ever tile their windows. This finding, that people usually employ a overlapping
window management technique (rather than tiling), stresses the importance of
adequate window switching tools.

Hutchings et al. (2004) report a correlation between the total amount of screen
space and the amount of time with empty space: if there is more screen estate
available, people more often leave some of this space uncovered. However, the
authors found no correlation between display type (single monitor, small multiple
monitor setup, or large multiple monitor setup) and the amount of empty space.

Finally, Hutchings and Stasko (2004a) identify several other window manage-
ment behaviours, such as intentional hiding of windows to reduce distractions and
for privacy-related reasons, and a relationship between input device and manage-
ment of screen space (e.g., when there is limited space for the mouse to move).

3.1.3 Large displays and multi-monitor setups

Computer users use increasingly larger monitors, and multi-monitor setups are
becoming increasingly more common (Bi and Balakrishnan, 2009). Also, the
observation that common monitor setups cover only 10% of the visual field of
users (Grudin, 2001) has inspired some researchers to investigate the usefulness
of large and very large displays (Bi and Balakrishnan, 2009). Therefore, this
section examines the research related to large displays and multi-monitor setups.

Grudin (2001) investigated how people use multi-monitor setups by means
of a field study, including observations of the work space and interviews, of 18
users. His findings indicate that on dual monitor setups the secondary monitor
is used for secondary tasks, and for peripheral awareness. In other words, each
monitor serves a specific function, rather than all screen estate being treated as
if it were one large monitor. This is related to the observation that dual monitor
setups do not lend themselves well to spanning a window across two monitors, as
the bezels interrupt the displays space. Indeed, Grudin (2001) reports that users
rarely straddle a window across both monitors. However, this separation between
monitors is not necessarily bad, because, as the author points out, it facilitates
partitioning of the workspace. Finally, participants in Grudin (2001, p. 462)
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indicate that a dual monitor setup helps them to “[escape] from the need to Alt-

Tab”, as multiple windows can be viewed simultaneously.

Results similar to the study by Grudin (2001) were found by Bi and Bala-
krishnan (2009). They report that dual monitor users often do not distribute their
activities equally across both monitors, with 71% of mouse events taking place on
one monitor and 29% on the other. One monitor is used as the focal region and the
other monitor as the peripheral region; the focal region is used for primary tasks
(e.g., document writing), where users spend the most of their time on, and the pe-
ripheral region is used for secondary tasks. A typical example of such a secondary
or peripheral window is the email inbox. Hutchings et al. (2004) found that the
window containing the e-mail application is (1) invisible less often, (2) fully visi-
ble more often, and (3) active when fully visible less often for multi-monitor users
compared to single monitor users.

Large displays and multi-monitor setups have several advantages for the user:
(1) large displays have been shown to increase awareness of secondary tasks and
assist multitasking (Bi and Balakrishnan, 2009; Czerwinski et al., 2006) and (2)
users perform tasks quicker on large and multi-monitor displays compared to
single-monitor setups (Czerwinski et al., 2003; Kang and Stasko, 2008).

However, there are disadvantages to large displays and multi-monitor setups.
For example, windows can pop up in unexpected places, and placement of win-
dows requires more attention to ensure they do not cross bezels (Bi and Bala-
krishnan, 2009; Czerwinski et al., 2006). Some dual monitor users report that
they find the head movement required to shift attention from the primary to the
secondary monitor uncomfortable, and distal access to windows and icons can be
problematic on large displays (Bi and Balakrishnan, 2009).

Finally, Hoffmann et al. (2008) studied window switching on large screen set-
ups, and locating the window receiving focus in particular. For example, switch-
ing to a window using Alt+Tab will bring that window to the foreground, but its
x,y-coordinates do not change. Therefore, the user can have trouble locating the
window that received focus, as it is sometimes outside the region where the user
is focusing. Hoffmann et al. (2008) demonstrate that highlighting the target and
presenting graphical trails to the target alleviate this problem.
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3.2 Visual search

When looking for a specific button on the Windows Taskbar or a window in Mac’s
Exposé the user has to search for it. Put formally, visual search is the process of
finding a target among a field of distractors (or non-targets).

If none of the items in a layout stands out, the average time to find an item
in a set of N items is N

2
, because on average the target will have been found

after half the items have been inspected (Neisser et al., 1964). For example, this
has been found to be the case when people search in a phone book or computer
menus (Lee and McGregor, 1985). If the items are arranged evenly and coherently
visual search tends to be top to bottom and left to right. For less structured views
the search tends to be much more random (Wickens, 1992). Also, research using
eye-tracking devices reveals that people have little memory for what items they
have already inspected during a visual search, often returning to areas that have
previously been searched (Snowden et al., 2006).

Figure 3.1: Visual pop-out: the blue dot stands out between the orange dots.

However, visual search is not purely a top-down process, where a person has
the target in mind and then sets off to (linearly) search for it (Wickens et al., 1998).
Bottom-up processes, where the visual stimulus influences the search process,
take place as well. For example, this is the case if one of the items ‘pops out’.
Certain features of an item can make it stand out between other (non-target) items
(for example, see Figure 3.1). This ‘pop-out’ effect can dramatically reduce search
time. Colour, size and brightness are among the many factors that can make an
item pop out (Treisman, 1986).

Feature integration theory (Treisman and Gelade, 1980) can explain the effect
referred to as ‘visual pop-out’. Feature integration theory proposes that there are
two stages in visual search, a pre-attentive parallel stage (called the feature search)
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followed by a more selective serial stage (called the conjunction search). Pop-out
is believed to take place in the pre-attentive stage. For example, when looking
for a blue item between orange distractors, this proves to be a very easy task:
the blue item ‘pops out’ visually. The response time does not depend upon how
many distractors there are, hence this is called a parallel search, where many items
are analysed at the same time. For more complex searches, like when multiple
features (e.g., colour, size, orientation) are combined, the search is believed to be
serial, where paying attention to each element in turn is required. In this case, the
response time increases when the number of distractors is increased.

(a) (b)

Figure 3.2: Guided search: it is much easier to find the blue square in (a) than it
is to find the square in (b).

Some regard the distinction between serial and parallel search in feature inte-
gration theory as too simplistic (Snowden et al., 2006), as explained here:

“It is a curious feature of these models that the parallel processes seem to

have very little influence on the subsequent serial processes. In the standard

feature integration model, the parallel processes can identify targets on the

basis of a single feature. However, if they do not find a target, none of the

information that they have gathered is used by the serial processes, even if

that information might be useful.” (Wolfe et al., 1989, pp. 419-420)

Wolfe et al. (1989) therefore propose a guided search model, which is an extension
of feature integration theory, but elaborate this model with the notion that during
the pre-attentive stage of analysing a scene, selecting appropriate objects for the
second stage of analysis (the more advanced processing of the scene) is already
guided. For example, attention can already be guided to an appropriate subset of
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all items during the pre-attentive stage, decreasing the overall response time. For
example, see Figure 3.2: it is much easier to find the blue square in see Figure 3.2a
than it to find the square in see Figure 3.2b, as colour is a guiding attribute. Wolfe
and Horowitz (2004) provide an overview of which attributes are believed to guide
attention.

Figure 3.3: Two icons that look very similar, both in terms of shape and colour.
Finding either one of them (in a set of icons) is hard when the other is present as
a non-target, because of the high target/non-target similarity.

In both feature integration theory and guided search, dissimilarity of the target
to the non-targets plays an important role. Not surprisingly, it has been found that
finding a target becomes harder when the target/non-target similarity increases
(also see Figure 3.3) or the non-target/non-target similarity decreases (Duncan and
Humphreys, 1989). Indeed, research has shown that icons sets with icons distin-
guishable on a few features help users in their search (Byrne, 1993). Even more,
icons sets with icons that largely contain all the same features or the same com-
binations of features, are found to perform worse than blank icons (Byrne, 1993)
(text descriptors of the items were also available in this study). However, with the
nearly infinite number of computer icons available nowadays it seems impossible
that none share (a lot of) features with another icon. Therefore, Lewis et al. (2004)
propose a system that automatically generates distinctive icons. Meanwhile, the
development of commercial window switching interfaces has moved toward more
rich visual representations of windows (see Chapter 2).

In all, if a window switching interface relies on users performing a (linear)
visual search for the target, efficiency can be expected to be low. However, if a
user knows or has a correct expectancy of where the target will be, this reduces
or even eliminates the need for visual search (Parasuraman, 1986). One way to
achieve this is by keeping items in spatially stable locations, so the user has the
opportunity to learn item locations. The importance and the effects of spatial
stability are reviewed in the next section.
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3.3 Spatial cognition

Spatial cognition is the overlapping term for learning, knowing, revising and re-
membering information about our spatial environment. We know the route to
work, the place where we put our keys and where to find the coffee in the super-
market. However, changes in our environment can disrupt this spatial knowledge:
a renovation of the supermarket will lead to a painstaking search along the aisles
until you find your favourite brand of coffee again. This not only applies to the
built environment around us, but also the desktop environment on your computer.
You know where the icon for launching your web browser is, and any disruptions
to this can be frustrating and will slow you down as you now need to search for
the icon (also see previous section).

Figure 3.4: Desk organisation.

The closest analogy in the physical environment to the desktop computer
metaphor is workspace and desk organisation. Malone (1983) conducted a study
of how people organise their desks (see Figure 3.4). Malone (1983) found that the
spatial location of ‘piles’ of documents is particularly relevant for the user. Several
studies (e.g., Barreau and Nardi, 1995) found that people prefer location-based
finding on the computer desktop as well. However, despite parallels between the
desktop environment on the computer and an actual desktop, there are also large
differences in terms of how they are and can be used. A stack (or pile) of windows
can be viewed as being similar to a stack of books and papers on your desk, yet
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it does not afford the same interactions. While on the actual desktop an item can
easily be pulled from the middle of the pile, and the user can quickly ‘peek’ at
an item in the pile by lifting the items on top of it, the (standard) GUI desktop
does not afford these types of behaviours. Some interfaces have been developed
to make the GUI desktop behave more like a ‘real’ desktop (e.g., Agarawala and
Balakrishnan, 2006).

For window switching interfaces, providing a layout that is spatially stable
could greatly benefit user performance. The positive effects of spatial constancy
on user performance have been recorded since the first interface design guidelines.
Hansen (1971) stated that operations can be optimised by supporting display iner-
tia (spatial stability in item placement) because doing so facilitates predictability
and supports the use of muscle memory. Many subsequent studies have demon-
strated superior performance of spatially stable interfaces over a wide variety of
alternatives. For example, Teitelbaum and Granda (1983) examined the impact of
fixed versus unstable positions of various widgets on a computer screen, such as a
text entry regions. Slower reaction times were found for the non-constant user in-
terface. In general, fixed stable item placement allows users to decide about item
locations, with performance characteristics that increase logarithmically with the
number of items (Cockburn et al., 2007). This is in contrast to searching for items
in unstable displays, the time of which linearly increases with the number of items.

Several studies have found that users are able to learn the locations of a large
number of items in a user interface when the locations do not change. For exam-
ple, Cockburn et al. (2007) used a ‘frost-brushing’ interface, which successfully
‘forced’ users to learn item locations. This is similar to the findings by Ehret
(2002), who found that when items had less representative labels, users learnt
their locations better. Another example can be found in a series of studies us-
ing an interface for organising web pages called Data Mountain (Robertson et al.,
1998; Czerwinski et al., 1999). In the first study, participants were requested to
place 100 snapshots of web pages in a desktop 3D environment and perform some
retrieval tasks. After a few months, in which participants had not seen their lay-
out, they were again given several retrieval tasks in the same layout they created
months before. The retrieval times were not significantly slower than in the initial
study. Users were also presented with a view where the thumbnail images were
replaced with blank icons. After an initial drop in reaction times, users were soon
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equally fast in retrieving the web pages in the ‘thumbnail-off’ view. This result
indicates that people can learn the location of large numbers of items.

Finally, some studies have demonstrated a statistical interaction between the
representativeness of the icon or label and reliance on information about the loca-
tion of the icon (Moyes, 1994; Ehret, 2002): the less representative, or the more
abstract, an icon or label is, the more users rely on knowledge about the location
of the icon. This suggests that participants do not remember location well when
they can rely on recognition instead (Moyes, 1994). Ehret (2002), in contrast,
demonstrated that users learn locations regardless of representation, but that the
speed and accuracy of spatial learning is aided by abstract representations which
‘force’ users to attend closely to spatial location in the absence of other cues.

3.4 Motor skills

Many window switching interfaces allow for mouse-input by clicking on the target
item. The time it takes the user to point to an item is mathematically captured
by Fitts’ Law (1954). Fitts’ Law is a well-known and thoroughly tested rule of
target acquisition time. Fitts’ Law states that the time required to move to a target
(movement time, MT) is a function of both the width of the target (W) and distance
to the target (amplitude, A). More precisely, the following relationship has been
proposed and validated (MacKenzie and Buxton, 1992):

MT = a+ b× log2(
A

W
+ 1) (3.1)

The logarithmic term in Equation 3.1 is called the ‘index of difficulty’ (ID)
and it is expressed in ‘bits’. There are several alternative formulations for Fitts’
Law, where the ID is calculated differently. For example, the original Fitts’ Law
paper (Fitts, 1954) uses 2×A/W rather than A/W + 1 (MacKenzie and Buxton,
1992). MacKenzie and Buxton (1992) show that the formulation shown in Equa-
tion 3.1 has the advantage that the index of difficulty is always positive. Negative
ID values result in negative movement time predictions, which is clearly unde-
sirable. The fact that several different variations of Fitts’ Law are used for HCI
research is viewed as problematic by some researchers (Drewes, 2010).
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In Equation 3.1, a and b are empirically derived constants, and vary with the
type of pointing device (e.g., mouse, track-ball), the control-display gain (the ratio
of movement of the device to movement of the proxy on the screen), and individ-
ual user differences. The values for a and b are typically empirically derived by
presenting users with a pointing task for different values of A and W. When fitting
a straight line through the observed values for movement time, a and b are the
intercept and the slope of the line, respectively. Once the values for a and b have
been derived, Equation 3.1 can be used to predict movement times.

The original application of Fitts’ Law was only for one-dimensional targets.
However, targets on the computer screen will usually be two-dimensional, render-
ing the target width (W) ambiguous. MacKenzie and Buxton (1992) show that a
good interpretation of target width (W) of two-dimensional rectangular targets is
to take the smallest of the height and width of the target.

Some research has focused on the Fitts’ Law acquisition time of dynamically
expanding targets (McGuffin and Balakrishnan, 2002), demonstrating that even
target expansion that only takes place when 90% of the distance to the target
has already been travelled still leads to improved acquisition times. Interestingly,
other research has shown that this beneficial effect even exists by just making the
target look bigger while not increasing its actually (clickable) area (Cockburn and
Brock, 2006).

When acquiring a target at the edge or in the corner of the screen the user
can (intentionally) ‘overshoot’ the target, resulting in movement times lower than
predicted by Fitts’ Law (Farris et al., 2001).

Setting aside specifics about the values of a and b and the most appropriate
way of determining ID, the general ‘gist’ of Fitts’ Law is as follows: the larger
and/or the closer the target, the quicker it can be acquired.
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Chapter IV

PyLogger and Window Watcher:
Tools for Studying Window Use

Having a good understanding of window use is critical for design refinement,
yet there are few recent studies of what users actually do. Studies of window use
are difficult for two reasons. First, gathering data about window use can be diffi-
cult, as automated log based analysis is preferential, but developing such software
can be complex. Second, recording data at the keystroke or system level creates
very large log files, which are difficult to analyse and interpret (Ivory and Hearst,
2001; Beauvisage, 2009; Hilbert and Redmiles, 1999).

This chapter describes the logging tool PyLogger and the visualisation tool
Window Watcher, with which data regarding window use, such as the number of
windows, how windows are arranged on the screen and how users switch between
windows can be gathered and analysed. This approach, which combines quantita-
tive statistics and visualisations, is supported by Perer and Shneiderman (2008).

PyLogger is a client-side logging tool and is currently designed for the Mi-
crosoft Windows XP and Vista operating systems. PyLogger requires no user
input during use, nor any modifications to the users’ system. Window Watcher is
a data visualisation tool that helps to interpret the low level event logs generated
by PyLogger. Window Watcher affords a variety of valuable insights into the spa-
tial and temporal aspects of window use. The tool can, for example, ‘replay’ all
window actions.

This chapter first describes the architecture and implementation of PyLogger,
including some examples of how to use Python to extract window events. Next,
the features of Window Watcher are described, including examples of the ways
that it summarises and elucidates window use.

The results of the longitudinal study that was conducted using PyLogger are
presented in Chapter 5.
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4.1 Contributions and findings

• a description of the architecture and implementation of the logging tool
PyLogger;

• examples of how to use Python to expose the Windows API and GUI, and to
capture the low level keyboard and mouse events in Windows, which should
be useful for researchers wishing to replicate or update this study;

• features of the visualisation tool Window Watcher, and examples of how a
visualisation tool like Window Watcher can expose aspects of window use,
which should inspire other researchers with similar data sets.

4.2 Data collection methods

Methods to collect data about people’s behaviour include automated logging of the
behaviour, observing the behaviour, or asking people about their behaviour (so-
called self-reports) by means of a questionnaire or interview. For the purpose of
studying window use, however, automated logging of the behaviour is preferential
for several reasons.

First, automated logging of behaviour can be easily deployed over longer pe-
riods of time. Such longitudinal analysis is often desirable because individuals
patterns of behaviour change as they move between tasks and external pressure
levels, meaning that a short ‘snapshot’ of interaction is likely to misrepresent real
behaviour. Also, in general, individual or short snapshots are not very informative
for exploring window use, as these behaviours are often only interesting when
they are viewed in context. For example, the individual act of switching to a win-
dow is not informative, but the finding that a user does this every x seconds is.
Longitudinal analysis allows for findings to be explored in the context of what
happened before and next (Pettigrew, 1990). Longitudinal analysis can also catch
rare events which might have been missed in shorter studies.

Second, automated recording of the behaviour facilitates large sample sizes,
something which direct observation or interviews, for example, do not facilitate.
These large sample sizes are necessary because users differ widely in their work
practices (e.g., tidy versus chaotic desktops, both real and virtual). Users also
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differ widely in the display technologies used (e.g., large multi-monitor environ-
ments versus small laptop screens), again necessitating large sample sizes with a
variety of different display types.

Third, automated logging can provide precise statistics, including exact tim-
ings (Holzinger, 2005). Previous studies have already found that window switch-
ing is very common, with the median time a window is active being only several
seconds (Hutchings et al., 2004). Automated logging can accurately keep track of
these frequent events.

Fourth, log-based analysis is non-obtrusive, which is important as any distur-
bance could lead to false results (Holzinger, 2005), e.g., the user behaving in a
different way than he/she normally does.

Though automated logging is preferential for the current type of study, a down-
side is that little to nothing can be extracted about the context of observed be-
haviour, or the (subjective) user experience (Alexander et al., 2008).

Two other common data collection methods, observational studies and self-
reports, are less suitable for the current type of research. Observational methods,
though able to provide information about the context of behaviour, are impracti-
cal for large-scale and long-term deployment. Also, some properties of windows
on the screen, such as the relative position of obscured windows, can only be ex-
tracted by querying the system, not by observation. Furthermore, observational
methods are obtrusive, and it is easy for the observer to lose concentration or miss
events (Preece et al., 2007). Self-reports, in particular questionnaires, could be
distributed to a large user population and are not obtrusive. However, such self-
reports of behaviour are potentially unreliable. Unless behaviours are extremely
rare or of high importance, it is unlikely for people to have detailed and/or ac-
curate memories of them (Schwarz, 1999; Tourangeau, 2001), and memory for
computing events is no exception to this (Czerwinski and Horvitz, 2002). Also,
people are often not even aware of the way they perform mundane and day-to-day
activities (such as window use), as they run off without much conscious aware-
ness (Roediger, 1990).
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4.3 Visualisation tools

Powerful tools are required to explore and analyse the often voluminous log files
generated by automated logging (Preece et al., 2007). One key strategy to assist
the analysis of large data sets is to use visualisations (Card et al., 1999). Visuali-
sations tools can help to gain insights into behaviour, observe certain behavioural
patterns (Keim, 2002; Shneiderman, 2002) and reveal data patterns that would
otherwise have been impossible or difficult to find (Card et al., 1999; Gray et al.,
1996). Also, visualisations can inspire the analysis, leading to “answering ques-

tions you didn’t know you had” (Plaisant, 2004, p. 111).
In the specific context of how people interact with computers, visualisations

have proven very useful in studying how people navigate in and between web-
sites (Chi, 2002; Cugini and Scholtz, 1999; Eick, 2001; Hong and Landay, 2001).
Also, visualisations of interactions with windows and/or the screen have proven to
be intuitive and powerful, as can be seen in the visual depiction of mouse events
in Bi and Balakrishnan (2009) and Atterer et al. (2006).

4.4 PyLogger

This section describes PyLogger, a client-side logging tool for Microsoft Win-
dows XP and Vista that records information about window use in an unobtrusive
manner. To effectively capture all aspects of window use, a logging tool designed
for this purpose needs to be able to do the following:

• record information about all windows, including their position and state
(e.g., minimised);

• recognise changes in the focal window: (a) a new window becoming the
focal window or (b) the focal window changing size/position;

• record low-level user actions such as key presses and mouse button clicks.

PyLogger records when a new window gets focus and what action caused
it (e.g., a click on a Taskbar button, or launching an application using a Quick
Launch button). It also records when the focal window is moved or resized. Every
time a change is recorded PyLogger logs all windows’ position and state.
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PyLogger is written in Python 2.6, and it uses the Python for Windows pack-
age1 to expose the Windows API and GUI to Python and the PyHook package2 to
wrap low-level mouse and keyboard hooks in the Windows Hooking API.

To be able to use PyLogger, users do not have to make any changes to the com-
puter other than to install PyLogger itself; PyLogger is launched at system start-up
and placed in the system tray. PyLogger has not been found to conflict with any
other software, including firewalls and spyware/virus scanners. No participants in
the study reported an impact of PyLogger on their computer’s performance.

Log files are saved in text format (txt) and are therefore viewable and editable
in most common document editors. To minimise disk space and to prevent data
loss if the output file is corrupted, the output text file is compressed (zip) at the
end of each day and a new output file opened.

The following sections describe how PyLogger accesses window information,
detects change in the focal window and records user actions.

4.4.1 Accessing window information

Figure 4.1 shows how to expose the full list of currently open windows, including
the window handle (a unique numerical identifier), the window title, the window
rectangle (the x,y-coordinates of the top-left and bottom-right corners of the win-
dow), the window owner and the window class. Most windows are not owned by
another window; a typical example of a window that is usually owned by another
window is a dialog box (such as the ‘Save as...’ dialog box). Window class helps
to determine the application, but not all window class names are straightforward
(e.g., Microsoft Word 2003 windows have class name ‘OpusApp’).

Without the IsWindowVisible check in the windowEnumerationHandler method
many redundant windows are included in the list. These are (system) windows that
are never visible for the user, and therefore not relevant for the current study.

The enumerate function EnumWindows returns all windows ordered by their
position in the z-order, from top to bottom, which is also used in the Alt+Tab
window (see section 2.1.1). Finally, minimised windows have the negative x,y-
coordinates -32000, -32000.

1 http://sourceforge.net/projects/pywin32/

2 http://sourceforge.net/projects/pyhook/
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1 from win32gui import IsWindowVisible, GetWindowText,
GetWindowRect, EnumWindows

2
3 def windowEnumerationHandler(hwnd, windowList):
4 if IsWindowVisible(hwnd) > 0:
5 title = GetWindowText(hwnd)
6 rectangle = GetWindowRect(hwnd)
7 owner = GetWindow(hwnd,4)
8 clss = GetClassName(hwnd)
9 windowList.append((hwnd, title, rectangle, owner, clss))

10
11 def getWindowList():
12 windowList = []
13 EnumWindows(windowEnumerationHandler, windowList)
14 return windowList

Figure 4.1: Using the win32gui module to enumerate all windows.

4.4.2 Detecting change

PyLogger uses a polling loop to check whether the focal window has changed ev-
ery 100 milliseconds. A change in the focal window is defined as another window
becoming the focal window, or the size/position of the focal window changing.
Using the threading module this is very easy to implement, see Figure 4.2.

1 from threading import Timer
2 def pollingLoop():
3 checkTopWindow()
4 t = Timer(0.1, pollingLoop)
5 t.start()

Figure 4.2: Using the threading module to create a polling loop.

Whenever the polling loop detects a change the output method is called, which
appends the following information to the output text file:

• The date and time of the event;

• What happened that triggered the logging tool to respond (either a new focal
window was detected or the focal window changed size and/or position);

• The lastAction value (see next section);
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• How many windows are open (including minimised windows);

• Information about the focal window: window handle, window title, window
position, window owner and window class;

• A list of all windows in z-order, with the following information about the
windows: window handle, window title, window position, window owner
and window class.

4.4.3 Recording user actions

PyLogger continuously keeps track of mouse button clicks and keystrokes and
stores the last user action it has ‘seen’ in the lastAction variable (i.e., the lastAction

variable is constantly overwritten at each user action). Next, if a window focus
change or window move/resize is detected this lastAction value will usually be the
action that triggered the change (some inaccuracy is inevitably introduced as the
polling loop only checks for change every 100 milliseconds).

PyHook is used to hook into these low-level actions (for an example of how
to hook left mouse button clicks, see Figure 4.3). Some examples of the values
the lastAction variable can have are ‘keyboard [‘Alt’, ‘F4’]’ (the key combination
Alt+F4) and ‘left [216, 768]’ (the left mouse button was clicked at screen coordi-
nates (216, 768)). When the user clicks on a Taskbar button event.WindowName

is ‘Running Applications’ (in the English version of Microsoft Windows).

1 import pythoncom, pyHook
2
3 def OnMouseLeftDown(event):
4 lastAction[0] = ’left’
5 lastAction[1] = [event.Position[0],event.Position[1]]
6
7 hm = pyHook.HookManager()
8 hm.MouseLeftDown = OnMouseLeftDown
9 hm.HookMouse()

10 pythoncom.PumpMessages()

Figure 4.3: Using the pyHook module to keep track of left mouse button clicks.
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4.5 Window Watcher

The goals for the visualisation tool Window Watcher are to visualise (1) spatiotem-
poral, (2) spatial and (3) temporal data aspects, as well as (4) user actions. These
four goals are specific for the type of data Window Watcher is designed to analyse,
i.e., window use data.

Spatial data is of interest, because screen real estate is precious and limited.
Even with large multi-monitor environments, users can need more display space
than there is available. To learn more about how users distribute windows across
this space Window Watcher must, therefore, support spatial representations. Space
in this context is a three dimensional concept. Windows are explicitly positioned
in 2D space by the user by manipulating their position and size. Windows also
move in depth, with most of this occurring implicitly as a side effect of bringing a
window into focus: for each window brought to the foreground, several windows
may be implicitly moved deeper on the z-axis.

Temporal representation of data is relevant as previous work suggests that
‘window thrashing’ occurs (Mackinlay and Royer, 2004), with users executing
frenetic short term bursts of window management. This suggests that there is a
strong temporal aspect to window use.

The following sections describe how Window Watcher visualises spatiotempo-
ral, spatial and temporal window use data, as well as user actions. The examples
are all actual data samples, gathered with PyLogger (note that colour is exten-
sively used in Window Watcher, so many of the figures are unavoidably poor when
viewed in grey-scale).

4.5.1 Spatiotemporal data

Window Watcher can replay logged events. This approach is similar to the study
by Uehling and Wolf (1995) (who studied interaction with a particular application
rather than with the screen ‘as a whole’, as is the case in the current study) . The
‘playback’ window provides a view of the full extent of the user’s display space.
During playback, the content of the logged user’s display is continuously updated
to reflect changes in their windowing state.

The size and shape of the playback window reflects the total amount of screen
estate the user has available, i.e., a setup with two monitors with 1680×1050
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pixels resolution placed side by side is shown as one ‘unified’ 3360×1050 pixels
area in the playback window, albeit scaled down. Figure 4.4 shows such a user
who has two screens, both with a resolution of 1680×1050 pixels. The logged
user’s main screen is on the left side, as indicated by the solid red bar along the
bottom which represents the Windows Taskbar. All windows (and the Windows
Taskbar) are shown in their actual locations.

Figure 4.4: An example of the playback window.

Window z-order is essentially the ‘depth’ of windows on the screen. Z-order
is a critical notion for some window switching tools: for instance, successive
Alt+Tab presses traverse windows in their z-order. Window Watcher uses colour
to display the window z-order. The top window is dark red (hot), and the window
with the lowest z-order is dark blue (cold). The desktop background is displayed
in white. The window that currently has focus is indicated by a black border.

The playback window also shows application names for most common ap-
plications (e.g., email clients, Microsoft Office tools, web browsers, etc.). For
windows where Window Watcher is unable to identify the application the unique
identification code for the window (the window handle) is shown.

Window use data can be played back in real-time, but for data files that span
several weeks this is not a realistic option. Linear speed up is not feasible because,
although long periods of inactivity can be compressed to a reasonable rate, periods
of high activity are played back too rapidly to be of use. Therefore, with linear
speed up of playback detailed information about the nature of window interaction
can be lost, such as the burst-like characteristic of window use activities.

A time conversion mechanism is applied as follows: If the time between two
events is small, the playback is slowed down, and if the time between two events
is large the playback is sped up by an algorithmically determined factor. The
algorithm converts the time between two events as follows: if the time t between
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Figure 4.5: Actual time between events and the playback time in seconds using
the conversion described in this chapter (dotted line is real time playback). Note
both x and y scales are logarithmic.

two events is smaller than a lower bound (4 seconds) the playback time is the
square root of t, if the time t between two events is larger than the lower bound the
playback time is log2t. This conversion is shown in Figure 4.5. The conversion
leads to the desired effect: slowing down small values and speeding up (very)
large values. Optionally, this time transformation can be scaled by introducing a
multiplication factor to speed up or slow down the replay.

(a)

(b)

Figure 4.6: Heatmaps for two different users.
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4.5.2 Spatial data

Window Watcher keeps track of which parts of the screen are covered by a window
and to what depth. This information is shown in a heatmap. The heatmap conveys
the popularity of certain parts of the screen. Also, it can help to identify certain
use patterns. For example, Figure 4.6 shows heatmaps of two days of data for two
different users, both of whom use dual 1680×1050 monitors. The user shown in
Figure 4.6a has a clear preference for the left screen, while the user in Figure 4.6b
uses both more or less equally. Also, the user in Figure 4.6a often has a window
maximised in the left screen, while the user in Figure 4.6b does not maximise
windows often.

Figure 4.7: Two plots of the number of non-minimised windows over one hour.

4.5.3 Temporal data

An example of a temporal summarisation is shown in Figure 4.7. Here, the num-
ber of non-minimised windows over one hour is plotted for two different par-
ticipants. The top plot shows gradual increases and decreases in the number of
non-minimised windows, while the bottom plot shows sudden increases and de-
creases in the number of non-minimised windows. This temporal behavioural
pattern is immediately visible when plotting the data over time, but might have
been missed when, for example, merely looking at the average number of non-

47



minimised windows for each hour. In particular, these temporal plots visualise
and help to identify episodes of window thrashing, described by Mackinlay and
Royer (2004) as short periods of rapid window manipulation.

Figure 4.8: The location of mouse clicks is portrayed with a cyan circle, suggest-
ing the method used to switch windows (in this case, the Windows Taskbar).

Figure 4.9: A scatter plot and two histograms visualising the locations of mouse
clicks (Windows Taskbar clicks omitted).

4.5.4 User actions

Window Watcher portrays the method used to switch windows by using a cyan dot
to display the location of mouse clicks during window switching. Figure 4.8, for
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example, shows a snapshot of the playback window when the user switches to the
Thunderbird window using the Windows Taskbar.

Figure 4.9 shows a summary statistics plot, revealing the location of a range
of mouse clicks made by one user. The histograms show how many mouse clicks
have occurred in the adjoining ‘band’ of pixels (vertical or horizontal). Clicks on
the Taskbar have been removed (as this would lead to a strongly skewed histogram
along the bottom x-axis). This visualisation, combined with the playback window,
reveals an interesting behavioural pattern. Even when the user has a large portion
of the Firefox window visible (see Figure 4.8), he/she often clicks on the title bar
of the window to switch to this window (see Figure 4.8 and 4.9), even though a
click anywhere in the window would bring the window to the focus.

4.6 Conclusion

For the design of novel interaction techniques information about current user be-
haviour is invaluable information. The description of PyLogger presented in this
chapter should help and stimulate other researchers to develop similar software,
which in turn can be used to gather additional information about the way users
interact with their computer.

Statistical summaries, which can be easily extracted form the data generated
by PyLogger, are useful, but it is the combination of quantitative statistics with
visual replays that has proven most useful in the analysis of the data gathered in
the PyLogger study (see Chapter 5).

Window Watcher is designed for, and only usable with, data generated by Py-

Logger. Plaisant (2004) observes that this phenomenon of visualisations being
highly domain-specific is common. Nevertheless, some of Window Watcher’s de-
sign features, such as the time manipulation algorithm and heatmaps, will be gen-
eralisable to other domains as well, for example, scrolling (time manipulation)
and menu use (heatmaps).

In general, Window Watcher has proven useful even when it was still in the
very early (and not very sophisticated) phases of development. Even a very crude
and ‘sketchy’ version of the ‘playback’ window in particular revealed many in-
teresting avenues to explore, which had not made themselves apparent from the
log data (a clear example of the “answering questions you didn’t know you had”
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noted by Plaisant, 2004, p. 111). Therefore, I feel it is advisable for any researcher
working with similar user data to (at the very least) produce such a visualisation,
which should not take much time or effort, in particular when care is taken that
the data generated by the logging tool is of a usable format to be ‘ported’ to a
visualisation.
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Chapter V

An Empirical Characterisation of Window Use

To “know thy user” is a classic admonition in user interface design (Hansen,
1971; Preece et al., 2007). Having a good understanding of how users interact
with windows is important for informing the design of new and improved window
management tools. However, there have been relatively few empirical studies of
window manipulation on common operating systems. Hutchings et al. (2004) and
Hutchings and Stasko (2004a) studied window management and display organi-
sation, respectively, but as these studies are several years old the results may no
longer reflect current use. Three reasons for suspecting a change in behaviour
from previous studies are the increased size and resolution of computer displays,
the widespread use of multi-monitor environments, and the increased popularity
of tabbed applications.

Chapter 4 introduced and described PyLogger and Window Watcher. A group
of volunteers was asked to install PyLogger for three weeks. This chapter presents
the findings of this study, categorised by six aspects of window use: (1) the num-
ber of open windows, including how many windows are non-minimised and vis-
ible, as well as how often applications have multiple windows associated with it,
(2) window switching, including frequency of switching and the tools people use
for window switching, (3) the efficiency and use of the three most common tools
for switching between windows, (4) display space management, (5) revisitation
to applications and windows and (6) window geometry management actions, such
as moving and resizing.
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5.1 Contributions and findings

• an empirical characterisation of interaction with windows;

• differences between single and dual monitor users in terms of the number
of open, non-minimised and visible windows, and the discovery that partic-
ipants had fewer windows open and visible than in previous studies;

• window switching is a very frequent activity;

• acquiring a particular window by navigating through application-grouped
items on the Taskbar is slow, and Alt+Tab is seldom used for retrieving
anything other than the most recently used window;

• an updated classification of stereotypical window management styles (pil-
ers, maximisers, near maximisers and splatterers);

• strong application and window revisitation patterns;

• implications for the design of window switching tools.

5.2 Definitions

The term display space management captures the user’s manipulation of the dis-
play space, including how many windows there are, what the window states are,
and the location of windows on the screen (including position in the z-ordering).
Display space management is usually a manual process, but automatically gener-
ated dialog boxes and pop-up windows are an exception. There are four window
states: minimised, fully visible, partially visible and hidden (see Figure 5.1). All
windows are either minimised or non-minimised (minimising a window is some-
times also referred to as iconifying). Non-minimised windows are either visible
or hidden. Window (in)visibility has consequences for how the window can be
reached. To make a hidden window the focal window a window switching in-
terface, such as the Windows Taskbar or Alt+Tab must be used, while (partially)
visible windows can be acquired by a mouse click in the window. It is not possible
for the user to visually identify whether a window is minimised or hidden; in both
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cases the window is not visible (PyLogger is able to differentiate between these
states). However, it does have consequences for how the window can be reached:
windows that are occluded by other windows can be reached by minimising or
closing occluding windows, but minimised windows can only be reached by us-
ing a window switching interface.

Figure 5.1: A classification of different window states.

5.3 Participants and procedure

Twenty-five people participated, all university students or employees. Age ranged
from 21 to 61 years old, with a mean of 31 years old. Reported computer use
ranged from 25 to 90 hours per week, with a mean of 49 hours. Two participants
installed the software on two computers they regularly used; for the analysis the
largest of the two data sets was used, i.e., the computer they used most. Seven
participants used Windows Vista, the others used Windows XP. Nine users used
a single monitor setup, nine users had a dual-monitor setup and seven users had
a mix of both (e.g., a laptop that is sometimes extended with an extra monitor).
However, of these users using a mix of monitor setups, five used a particular setup
more than 80% of the time, and these users were classified accordingly.

Participants were able to stop the logging at any time and received instructions
on how to do this. Also, participants were shown where log files were stored on
their computer, and were told that they could removes any files at any time. Partic-
ipants had the right to withdraw from the study at any time, including withdrawal
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of any information provided (none chose to do so). After the logging period Py-

Logger was removed from the participants systems and participants completed a
questionnaire about PyLogger and window use.

5.4 Number of windows

The more windows are open, the more problems can be expected with finding
and switching to the correct window. Therefore, the first step of the analysis is
to study the number of windows and their respective states. For example, a high
number of open windows, but a low number of non-minimised windows might de-
clutter the screen, but does not alleviate the problem of finding the correct window.
Similarly, information about the number of visible windows is relevant, as it tells
something about how ‘crowded’ the screen is. Lastly, as some window switching
tools group windows by application, statistics about how many windows are open
per application are informative.

(a) (b) (c)

Figure 5.2: Boxplots of the number of open windows, the number of non-
minimised windows and the number of visible windows, split by monitor setup.

5.4.1 Open windows

On average, users had 8.5 windows open (SD=4.6). However, such a ‘compound’
statistic is dependent on the ratio of single to dual monitors users in the study, as
evident from the results found by Smith et al. (2003) and Hutchings et al. (2004).
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Therefore, it is vital to analyse these two groups of users separately, as shown in
Figure 5.2. Two things are apparent from Figure 5.2a: (1) dual monitor users have
more windows open than single monitor users, (2) there are two ‘extreme’ users
(one single monitor user and one dual monitor user) with an exceptionally high
number of open windows. These two findings are examined in more detail in the
following sections.

Single and dual monitor users

On average, single monitor users have 5.9 windows open (SD=2.4), while dual
monitors users have 11.1 windows open (SD=4.9). This difference is significant
(p<.001, Mann-Whitney U test). However, it is not clear whether the amount of
screen estate also influences the number of windows open, or whether the key
determinant of the number of open windows is the number of screens (regardless
of the size of these screens). Figure 5.3 shows the relation between screen estate
(expressed as the numbers of pixels) and the total number of open windows. Cor-
relation analysis fails to find significant correlations between screen estate and the
numbers of open windows for both single monitor users (p=.3) and dual monitor
users (p=.1). It seems that while the number of screens does influence the num-
ber of windows a user has open, the size of these screens does not matter much.
However, the absence of a significant correlation could be due to restriction of
range; all users in the current study used a regular laptop computer or desktop
setup, meaning that no users with very small or large screens were included.

Extreme values

Regarding the extreme values (data points larger than 3 SD’s above the mean)
shown in Figure 5.2a, it is important to note that a high number of open windows
does not necessarily mean the screen is cluttered. Figure 5.4 shows a represen-
tative Window Watcher (see Chapter 4) snapshot for the dual monitor user with a
very high mean number of open windows (24). This user maintains a ‘neat’ (but
deep) pile of windows, normally with the top one maximised, and uses one of the
two monitors almost to the exclusion of the other. Even though this user has 29
windows open (and 11 non-minimised) at this particular moment, the screen does
not look cluttered.
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Figure 5.3: Scatterplots showing the total number of windows by screen estate,
split by single and dual monitor use. Stars indicate the extreme values also shown
in Figure 5.2a.

Figure 5.4: Playback window for a user with a very high number of open windows,
but a maximised window obscuring them.

5.4.2 Non-minimised windows

Figure 5.2b show the number of non-minimised windows, split by monitor setup.
Dual monitor users have more non-minimised windows than single monitor users;
single monitor users have 4.2 non-minimised windows on average (SD=1.2), while
dual monitors users have 7.2 non-minimised windows (SD=2.1). This difference
is significant (p<.001, Mann-Whitney U test). These results are partially simi-
lar to the statistics regarding the total number of open windows, presented in the
previous section: the results once again reveal a difference between single and
dual monitor users, but the two ‘extreme’ users (in terms of the number of open
windows) are no longer identifiable in the statistics regarding the number of non-
minimised windows. The latter issue is explored further in the following section.
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Extreme values

The two users with a very high number of windows open (see Figure 5.2a) do not
have a very high number of non-minimised windows. This suggests that a ‘coping
strategy’ when the number of open windows is high is to minimise many of these
windows. Figure 5.5 shows this effect: the more windows a user has open, the
smaller the proportion of windows that is non-minimised (r=-.6, p<.001).

Figure 5.5: Scatterplot showing the percentage of non-minimised windows by
total number of windows. Stars indicate the extreme values also shown in Fig-
ure 5.2a.

5.4.3 Visible windows

Figure 5.2c show the number of visible windows, split by monitor setup. Dual
monitor users have more visible windows than single monitor users; single mon-
itor users have 1.7 visible windows on average (SD=0.2), while dual monitors
users have 4.1 visible windows (SD=1.5). This difference is significant (p<.001,
Mann-Whitney U test).

5.4.4 Applications and windows

Several common window switching interfaces, including the Microsoft Windows
Taskbar, group windows by application. This grouping has potential efficiency
benefits when there are multiple windows associated with an application, because
the user can focus his/her search for a specific window on the relevant application
group. An analysis of how often there is more than one window associated with
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an application reveals that 71.1% of open applications have only one window as-
sociated with it, or, vice versa, 28.9% of open applications have more than one
window associated with it (also see Figure 5.6a). Put differently, 53.3% of win-
dows belong to an application that has more than one window associated with it
(also see Figure 5.6b).

(a) (b)

Figure 5.6: (a) Percentage of applications with one, two, three, four or more than
four windows open and (b) percentage of windows that belong to an application
with one, two, three, four or more than four windows open.

These results show that it can be beneficial to group window by application:
more than half of the windows belong to an application that has more than one
window associated with it. By grouping these windows together according to
application they become easier to find as users can limit the search for the window
to the region of the screen (or window switcher) where this particular application
is located.

5.5 Window switching

There are three ways a new window can become the focal window, i.e., a window
switch: a switch between (already open) windows, opening a new window and
closing a window (causing the window below that window in the z-ordering to be-
come the focal window). This section examines the frequency of window switch-
ing, as well as which methods are used for these three types of window switching.
This information is important for the development of new window switching and
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management tools. For example, is there a difference between how often dual and
single monitor users switch between windows? Does the method people use to
switch between windows relate to the number of windows they have open? Is ap-
plication launching common, or are most new windows that are opened additional
windows for an application that is already open?

5.5.1 Frequency

Across all users, a window switch takes place 515 times per day, on average.
However, these window switches are far from uniformly distributed across the day.
Figure 5.7 shows the cumulative frequencies for window activation times ranging
from 0 to 60 seconds. All activation times smaller than 200ms were removed, as
these are most likely artifacts of the logging procedure, or, if anything, too short
to grab the attention of the user. The analysis reveals a median window activation
time of 4.3 seconds, as indicated in Figure 5.7. This is similar to previous work
which found that the average time any window is active is a 20.9 seconds and that
the median activation time is 3.77 seconds (Hutchings et al., 2004).

Figure 5.7: Cumulative frequencies of window activation times.

The ‘compound’ statistic of 515 switches per day is more informative when
split by type of window switch; a switch between windows, opening a new win-
dow and closing a window. Switching between open windows is the most common
type of window switch, accounting for 42% of window switches, and opening and
closing window each account for 29% of window switches.
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Single and dual monitor users

Results presented earlier in this chapter revealed large differences between single
and dual monitor users regarding the number of open, non-minimised and visi-
ble windows. Therefore, this section analyses whether similar differences can be
found in terms of the frequency of window switching. Figure 5.8 shows statis-
tics regarding the number of switches between windows, the number of windows
opened and the number of windows closed per day, split by monitor setup. Single
monitor users switch between windows 150 times per day (SD=96), on average,
dual monitor users 270 times per day (SD=114), which is a significant difference
(p<.01, Mann-Whitney U test). The difference between single and dual moni-
tor users in terms of opening and closing windows is less pronounced and not
significant (p=.1), with single monitor user opening a window 134 times per day
(SD=96), and dual monitor users 156 times per day (SD=47). Similarly, single
monitor users close a window 136 times per day (SD=95), and dual monitor users
157 times per day (SD=53), the difference between which is not significant (p=.2).

(a) (b) (c)

Figure 5.8: Boxplots of the number of switches between windows, the number
of windows opened and the number of windows closed per day, split by monitor
setup.

The results in the previous paragraph show that dual monitor users switch
between windows more often than single monitor users. However, there could be
a confounding factor as dual monitor users have more windows open, as shown
in Figure 5.2a: possibly, the number of open windows, rather than the number of
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monitors, influences how often users switch between windows Figure 5.9 shows
the relationship between the mean total number of windows and the mean number
of window switches per day, split by single and dual monitor use. Correlation
analysis fails to find a significant correlation between the total number of windows
and number of window switches for both single monitor users (p=.7) and dual
monitor users (p=.7).

Figure 5.9: Scatterplots showing the mean number of visible of windows and the
mean number of window switches per day, split by single and dual monitor use.

The results in section 5.4 showed that dual monitor users have more win-
dows open, non-minimised and visible compared to single monitor users, but this
does not explain why they also switch between these windows more often. Fig-
ure 5.9 suggests that the higher frequency of window switching for dual moni-
tors users can not simply be attributed to these users having relatively more win-
dows open. Rather, the main determinant seems to be the number of monitors.
A possible explanation for the higher frequency of window switching found for
dual monitor users is that they are more likely to multitask, as previous work has
found that users of multi-monitor displays multitask more often than single dis-
play users (e.g., Truemper et al., 2008).

5.5.2 Methods used for switching between windows

Figure 5.10 shows which methods people use to switch between windows. In this
section the use of the three most common methods are analysed in more detail.

Figure 5.10 suggests that the Windows Taskbar and a direct click are equally
popular methods (38.9% and 36.8%, respectively), but some qualification is in
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order. Similar to previous work (Hutchings et al., 2004), the results show that
dual monitor users use a direct click more often than single monitor users, but
use the Windows Taskbar less often (see Figure 5.11). The following paragraphs
analyse the use of the three most used methods for switching between windows (a
direct click, the Taskbar and Alt+Tab) in more detail.

Figure 5.10: Methods participants used for switching between windows and their
relative use. Click in previous implies a mouse click in the window that had focus
before the window switch, e.g., clicking a hyperlink in an email message which
causes a switch to the browser window.

Direct click

Similar to the previous section, which found that how often a user switches be-
tween windows is related to the number of monitors, but not to the number of
windows, it is interesting to examine whether the discrepancy between single and
dual monitor users in terms of their use of a direct click can mainly be attributed
to the number of monitors, or whether the number of visible windows also plays
a role. It is reasonable to suspect a relationship between the number of visible
windows and the use of a direct click, as (partial) window visibility is required to
be able to use a direct click. Figure 5.12 shows the relation between the number of
visible windows and the use of a direct click. The results show that the more win-
dows are visible, the more a direct click is used (r=.8, p<.01 for single monitor
users and r=.6, p<.05 for dual monitor users).
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Figure 5.11: Relative use of a direct click, the Taskbar and Alt+Tab by single and
dual monitor users. Error bars represent +/- 1 SE.

Taskbar

As a direct click is used more as there are more windows visible, it seems likely
that the reverse is true for the use of the Taskbar. Figure 5.13 shows the relation
between the number of visible windows and the use of the Taskbar. The results
indeed show that the more windows are visible, the less the Taskbar is used (r=-.7,
p<.05 for single monitor users and r=-.6, p<.05 for dual monitor users).

Figure 5.12: Scatterplots showing the number of visible of windows and the rela-
tive use of a direct click, split by single and dual monitor use.
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Figure 5.13: Scatterplots showing the number of visible of windows and the rela-
tive use of the Taskbar, split by single and dual monitor use.

Alt+Tab

The third most common method for switching between windows is Alt+Tab (8.1%).
There is no difference between single and dual monitor users in terms of the use
of Alt+Tab (see Figure 5.11). Whether someone is an Alt+Tab user or not (only
participants who used Alt+Tab for more than 1% of their windows switches are
considered to be Alt+Tab users) does not depend on the number of monitors he/she
uses: 4 out of 11 single monitor users are Alt+Tab users, 6 out of 12 dual moni-
tor users are Alt+Tab users. This contrasts the (informal) observation by Grudin
(2001, p. 462) that dual monitor users “[escape] from the need to Alt-Tab.”

While previous studies have found a correlation between the number of hours
per week someone uses a computer and the use of keyboard shortcuts (Peres et al.,
2004, 2005), a similar analysis of the results from the current study does not find
such a relationship for the use of Alt+Tab, with the mean number of hours per
week someone uses a computer being 47 for Alt+Tab users, and 50 hours for
users that do not use Alt+Tab.

Finally, it is possible that users with a high number of windows open are more
likely to use Alt+Tab, as the two other main alternatives, a direct click and the
Windows Taskbar, are less likely to be possible or practical when the number
of windows is high (as it is less likely that the target window is visible, and the
Taskbar can become overcrowded when the number of windows is high). How-
ever, Figure 5.14 shows that this is not the case; there is no correlation between
the total number of window and the use of Alt+Tab (p=.9).
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Figure 5.14: Scatterplot showing the total number of windows and the relative use
of the Alt+Tab.

5.5.3 Methods used for opening windows

Figure 5.15 shows the relative use of various methods to open a new window. In
this section, the three most common methods are analysed in more detail. Also,
the results are analysed in terms of whether the new window was one for an al-
ready open application or whether a new application was launched.

Figure 5.15: Methods participants used for opening windows and their relative
use. Click in previous implies a mouse click in the window that had focus before
the window switch, e.g., clicking a hyperlink in an email message resulting in a
(new) browser window opening.
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Click in previous window

The most common method for opening a new window (41.0%) is a click in the
previous window (see Figure 5.15). Two examples of this are (1) clicking on
a hyperlink or attachment in an e-mail message and (2) clicking on a ‘mailto:’
hyperlink in a browser window.

System

The second most common cause for a new window opening is a system action
(19.6%), i.e., not user-generated. This is a possible interruption for users, dis-
tracting them from their current task. Previous work has identified that programs
such as email applications and instant messengers indeed commonly interrupt the
user from his/her current task (Adamczyk and Bailey, 2004), and these interrup-
tions are a widely studied research area (e.g., Adamczyk and Bailey, 2004; Bailey
et al., 2001; Cutrell et al., 2000; Mark et al., 2005; Oulasvirta and Saariluoma,
2006). Iqbal and Horvitz (2007) provide a thorough field study of interruptions
and resuming tasks, including the frequency of interruptions and how long it takes
the user to return to the original task.

Keyboard

The third most common method for opening a new window is a keyboard action
(16.6%). This may seem surprising as keyboard-based methods are relatively
unpopular for switches between windows (see Figure 5.10). Analysis reveals that
a prevalent case is opening a ‘Find’ dialog box using ‘Ctrl’ +‘F’.

New window or new application?

In the majority of cases (81%) where the user opened a new window this was a
new window for an application that was already active. In the remaining minority
of cases a new application was launched. Therefore, the low percentages for the
use of Start Menu and Quick Launch in Figure 5.15 are slightly misleading in the
sense that they are an artifact of application launching being an infrequent task.
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5.5.4 Methods used for closing windows

Figure 5.16 shows the relative use of various methods for closing windows. The
most common method is a mouse click (59.7%) in the window, i.e., clicking on the
‘x’ button in the top right corner of the window. The second most common cause
for a window closing is a system action (23.7%). Typical examples are ‘copy’ and
‘sending message’ (for e-mail applications) dialogs that automatically close when
the action is completed.

Figure 5.16: Methods participants used for closing windows and their relative use.

5.6 Tools for switching between windows

This section analyses some properties specific to the three most popular meth-
ods for switching between windows (the Taskbar, a direct click and Alt+Tab) in
more detail. In particular, the efficiency of the various Taskbar buttons types (un-
grouped, grouped and collapsed), window visibility when a direct click is used
and the position of the target window in the Alt+Tab ordering are studied.

5.6.1 Windows Taskbar

The Windows Taskbar is prone to becoming overcrowded when the number of
open windows is high. There is a mechanism in Microsoft Windows XP and
Vista that automatically deals with this overcrowding; Taskbar button grouping.
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Taskbar button grouping causes windows of the same application to always be
next to each other on the Taskbar (see Figure 5.17b). This is in contrast to an
ungrouped Taskbar, where Taskbar buttons are simply in the same order as the
respective windows were opened (see Figure 5.17a). Furthermore, when Taskbar
button grouping is enabled windows of the same application are collapsed under
one application button when available space on the Taskbar becomes scarce (see
Figure 5.17c). When windows are collapsed under an application button on the
Taskbar two mouse clicks are required to switch to a window rather than one; a
click on the application button on the Taskbar first, then selecting the window in
a sub-menu.

(a) Ungrouped

(b) Grouped by application

(c) Collapsed by application

Figure 5.17: Three Windows XP Taskbar button states.

For each of the participants in the current study, it was noted whether Taskbar
button grouping functionality was turned on or off. The majority of users had
this option turned on (this is the default setting); only six participants had turned
this option off. Some of the users who had turned off Taskbar button grouping ex-
pressed a very strong dislike of the grouping functionality of the Windows Taskbar
in the post-study interview. These participants disliked the collapsing of Taskbar
buttons in particular for two reasons: (1) it prohibits them seeing all available
windows just by glancing at the Taskbar, and (2) two steps are required to switch
to a window that is listed under a collapsed Taskbar button.

An analysis of the time a window had focus until a switch to another win-
dow has been completed using a Taskbar button reveals that the three different
states of the Taskbar buttons (ungrouped, grouped or collapsed) affect window
switching time. The average time a window has focus until a switch using an
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ungrouped Taskbar button is made is 9.8 seconds (calculated using the geometric
mean as described in Sauro and Lewis (2010) as the distribution of times is posi-
tively skewed). When a grouped, but non-collapsed button is used this time is 8.1
seconds. This suggests a beneficial effect of grouping Taskbar buttons of the same
application; it is 1.7 seconds faster to switch to another window using a Taskbar
button when it is grouped by application. However, this time advantage disap-
pears when a collapsed Taskbar button is used; the average time a window has
focus until a switch using a collapsed grouped Taskbar button is completed is 12.2
seconds. This is 2.4 seconds slower compared to the ungrouped Taskbar button,
and 4.1 seconds slower compared to a grouped (but non-collapsed) Taskbar but-
ton. Statistical analysis reveals that all these differences are significant (p<.001,
Kruskal-Wallis test with post-hoc pairwise comparisons). These results suggest
that acquiring a particular window when it is listed under a collapsed grouped
Taskbar button is slow (even slower than using an ungrouped Taskbar button), but
that grouped non-collapsed Taskbar buttons do have an efficiency advantage.

5.6.2 Direct click

To be able to use a direct click to switch to a window the target window has
to be at least partially visible. This section calculates how much of the target
window was visible when a switch to it was made using a direct click on the
window. This visibility is expressed as percentage; the part of the window that
is visible divided by the total window size (see Figure 5.18). For the majority of
switches (57.5%) the target window was not or hardly visible (0 to 10% visibility),
meaning that a direct click is not possible or very improbable, as is indeed shown
in Figure 5.19. However, even when the target window is (almost) completely
visible (90 to 100% visibility) another method rather than a direct click is still
used for 26.4% of window switches.

5.6.3 Windows Alt+Tab

Alt+Tab is a key combination for window switching. By pressing and holding
down the ‘Alt’ key and (repeatedly) pressing the ‘Tab’ key the user can sequen-
tially step through a list of available windows. Releasing the Alt+Tab switches
to the window selected at that moment. The ordering of the list of windows (or
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Figure 5.18: An example of window visibility: window A is 100% visible, win-
dow B is approximately 75% visible.

Figure 5.19: Target window visibility, direct click versus all other methods.

their representations) when Alt+Tab is used is based on the z-ordering of windows
(for more details, see Section 2.1.1). This section analyses the use of Alt+Tab in
terms of the position of the target window in the Alt+Tab ordering. Note that the
position is always in the range [1, number of windows] (position 0 is the window
that has focus).

For 63% of all window switches the target item is on position 1 in the z-ordered
list of windows, and for 18% of switches it is on position 2. This means that in
all, the target window is likely to be near the front of the Alt+Tab list; the mean
position of the target item in the Alt+Tab list is 1.9. The mean position of the target
window when Alt+Tab is used is 1.25, which shows that Alt+Tab is mainly used
for switching to the most recently used window, not traversing much further along
the list of windows (also see Figure 5.20). As across all users and all methods for
switching between windows the average position of the target window in the z-
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Figure 5.20: Position of the target window in the z-ordering of windows, Alt+Tab
versus all other methods.

ordering is 1.9 this suggests that Alt+Tab could be an attractive option for almost
any window switch. However, people mainly use it to just go back to the most
recently used window, not traversing any further down the list of windows.

Possibly, people find it too difficult to select windows further down the Alt+Tab
list as (1) a (long) sequence of key presses is needed, which users might find cum-
bersome, and (2) there is a risk of ‘overshooting’ the target window (which then
needs to be corrected by stepping backwards through the list by using the key com-
bination Shift+Alt+Tab). Window Vista addresses these problems by introducing
the possibility to select a window in Alt+Tab by clicking on the icon/thumbnail
using the mouse. Out of the seven Windows Vista users in the current study two
were Alt+Tab users. These users predominantly used the keyboard to select the
target window in Alt+Tab, not the mouse (they use the keyboard 99.8% and 95.7%
of the time, respectively).

Another possible explanation for the under-utilisation of Alt+Tab for selecting
a window at position 2 or further is that people might find it hard to anticipate
or understand the order of items in the Alt+Tab window. While it is relatively
easy to remember which window you used most recently, and will therefore be at
position 1 in the Alt+Tab ordering (unless the window has been minimised), it is
is increasingly harder to remember which window you have used second to last,
third to last, fourth to last, and so forth.
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5.7 Display space management

The statistics regarding the number of open, non-minimised and visible windows
in section 5.4 do not tell the full story. Informal replay of the data using Window

Watcher (see Chapter 4) revealed several distinct window management styles. To
capture this difference in how users distribute windows across the screen, this
section analyses the different window management styles of users by introducing
a novel classification of window management styles, which is an extension of a
previous classification by Hutchings and Stasko (2004a). Also, the amount of
empty space, i.e., space that is not covered by any window, is examined in more
detail.

5.7.1 Window management styles

As noted in the Section 3.1.2, the study by Hutchings and Stasko (2004a) identifies
three different window management styles: maximisers, who maximise most of
their windows, near maximisers, who manually resize window to almost full size,
while leaving some space unoccupied for either the desktop or smaller windows
such as instant messaging systems, and careful coordinators, who have many win-
dows visible simultaneously and hardly ever maximise windows.

Such a taxonomy of window management styles can help to inform the future
design of window management and switching tools by (1) guiding the develop-
ment of specific tools to support these styles or (2) helping designers to ensure
that novel tools are at the very least compatible with these styles.

However, Figure 5.21 illustrates some of the shortcomings of the classification
by Hutchings and Stasko (2004a).

(a) Many windows visible (b) Many windows occluded

Figure 5.21: Two abstract examples of different window management styles.
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Figure 5.21 shows two different management styles that, following the defi-
nitions in Hutchings and Stasko (2004a), would be problematic to classify, while
analysis of the data from the current study (using Window Watcher) reveals that
these two styles are common. The user in Figure 5.21a ‘splatters’ the windows
all over the screen and many windows are (partially) visible, while the user in
Figure 5.21b ‘piles’ windows on top of each other. The definitions by Hutchings
and Stasko (2004a) are problematic for the classification of these two styles for
two reasons. First, the style portrayed in Figure 5.21a would qualify as careful

coordinator following the definitions by Hutchings and Stasko (2004a), but this
‘splattering’ style seems too ‘haphazard’ to really be appropriately described as
careful coordinating, which seems to suggest some sense of careful organisation.
Second, the style portrayed in Figure 5.21b would qualify as none of the styles as
defined in Hutchings and Stasko (2004a); only one window is maximised (ruling
out maximiser), the user leaves no space unoccupied for the desktop or smaller
windows (ruling out near maximiser), but 50% of windows is not visible (ruling
out careful coordinator).

The observations that (1) data about how windows are arranged on the screen
provides information about users that window statistics alone can not convey and
(2) the classification of window management styles by Hutchings and Stasko
(2004a) is in need of some updating to fully capture the observed common win-
dow management styles in the current study inspired modifications of the styles
identified by Hutchings and Stasko (2004a).

The goals of this updated classification are to provide mutually exclusive and
exhaustive categories that are able to discriminate between the two common win-
dow management styles shown in Figure 5.21. The classification retains the max-

imisers and near maximisers categories from the study by Hutchings and Stasko
(2004a), but replaces the problematic careful coordinator style with a piler and a
splatterer style, as follows:

• Piler: Most (>50%) non-minimised windows are not visible (as these are
completely occluded by other windows).

• Splatterer: Most (>50%) non-minimised windows are (partly) visible.
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• Maximiser: A subset of pilers with the one window visible on the screen,
while leaving hardly any or no space on the desktop visible (<10%).

• Near maximiser: A subset of pilers with the one window visible on the
screen, while leaving some space on the desktop visible (>10%).

The following sections present the results of the analysis of window manage-
ment styles for single and dual monitor users. All data is analysed on a per day
basis: if the results show a user to use a certain window management style 75%
of the time, it means that the user was recorded using this style 75% of the days
that data was logged.

Single monitor users

Figure 5.22 shows that most single monitor user have a clear preference for one
management style, and in most cases this is piling (maximising and near max-
imising are specific types of piling, as described above). This is not surprising, as
single monitors do not lend themselves very well to splattering, as screen estate
is limited. Only participants 3 and 5 do not have a clear preference for the piling
style.

Figure 5.22: Observed window management styles for all single monitor users in
the study, analysed per day.
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Dual monitors users

As (1) Grudin (2001) observed that dual monitors users hardly ever straddle win-
dows across monitors, and (2) it is possible that dual monitor users employ a
different window management style on each monitor, the window management
practices of dual monitor users were analysed on a ‘per monitor’ basis.

Figure 5.23: Observed window management styles for all dual monitor users in
the study, analysed per day and split by primary and secondary monitor (the pri-
mary monitor is defined as the monitor that shows the Windows Taskbar).

Figure 5.23 shows the results of the analysis of window management style for
dual monitor users. From Figure 5.23 several observations can be made. First,
similar to single monitor users, dual monitor users often have a clear preference
for one management style on each monitor, but this can be different between mon-
itors. For example, participant 18 prefers piling windows on the primary screen,
but splatters windows on the secondary screen (see Figure 5.24). This behaviour
seems to reflect the informal remark made by a dual monitor user in the study by
Bi and Balakrishnan (2009, p. 1010): “I just throw all the non-primary applica-

tions to the secondary monitor, and do not care much about the layout.” Second,
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Figure 5.24: A representative window layout for user 18.

dual monitor users are rarely maximisers. Third, there are three dual monitor users
(15, 16 and 19) who splatter their windows on both monitors. These three users
all had two identical monitors, set to identical resolutions. Figure 5.25 shows a
representative screen layout for user 15. Previous work (Grudin, 2001) suggests
that a dual monitor setup is rarely or never treated as one large screen (i.e., the
monitor serve clearly different purposes and windows are never straddled across
screen), and it seems that these ‘dual monitor splatterers’ conform to this.

Figure 5.25: A representative window layout for user 15.

5.7.2 Empty space

Screen estate that is not covered by any window is empty space. Empty space
reveals the desktop, which often contains (shortcuts to) applications and docu-
ments. By keeping a part of the desktop visible these items are easily accessible.
Also, some new window management techniques rely on the availability of empty
space (e.g., Hutchings and Stasko, 2002). Therefore, it is interesting to analyse
the amount of empty space users keep.

Overall, both single and dual monitor users do not have a large amount of
empty space (5.8% for single monitor users and 14.9% for dual monitor users),

76



but there are some differences. While the mean amount of empty space is not
very different for single and dual monitor users, single monitor users have no
empty space at all 88.4% of the time, but dual monitor users only 20.9% of the
time. Additional analysis of the total time that less than 20% of total available
space is empty (similar to the analysis in Hutchings et al. (2004)) reveals that dual
monitor users do not leave a large portion of space uncovered, as 71.7% of the
time less than 20% of available space is empty.

5.8 Revisitation patterns

This section presents data describing revisitation patterns, both to windows and
to applications. Strong revisitation patterns have been identified in several areas
of computer use (e.g., Alexander and Cockburn, 2008; Tauscher and Greenberg,
1997; Greenberg and Witten, 1993; Cockburn et al., 2007), and interfaces that ex-
plicitly support this revisitation have proven very succesful (e.g., Alexander et al.,
2009). Therefore, if revisitation to applications and windows is common, this is an
interesting avenue to explore for the development of window management tools.

5.8.1 Window revisitation

This section studies whether some windows are revisited more often than others,
and how common revisiting recently used windows is.

Figure 5.26: Percentage of window switches to percentage of windows for each
participant, showing strong window revisitation.
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Frequency

The average number of distinct windows per day ranges from 6 to 847 and has
a cross-participant mean of 143 (SD=67). It is important to note however that
many of these are dialog boxes and (temporary) pop-up windows; which are of a
highly transient nature and, therefore, revisitation to these is therefore extremely
rare. When dialog boxes and (temporary) pop-up windows are excluded from the
analysis the average number of distinct windows per day ranges from 4 to 606
with a cross-participant mean of 59 (SD=32).

Figure 5.27: Visualisation of window revisitation; two windows are revisited very
often, but many windows are hardly ever revisited.

An analysis of how often participants revisited windows per day, i.e., return-
ing to a window that is already open, finds that 55% of windows (excluding di-
alog boxes and pop-up windows) are never revisited, i.e., they are opened, used,
and closed again. A typical example of this type of window is an e-mail com-
position window. The analysis of window that are revisited at least once shows
frequent revisitation; 80% of switches between windows is to 37% of windows
(cross-participant mean). Figure 5.26 shows that this pattern of revisitation is
very consistent across participants.

A visualisation of window switching makes these revisitation patterns clearly
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visible. Figure 5.27 shows a visualisation1 of a representative day of switches be-
tween windows of an average (in terms of switches per day and number of open
windows) user in a graph structure. The vertices are windows labelled by their
window handle, which is a unique identification number. The (font) size of the
vertices represents how often the window was switched to/from. The edges repre-
sent switches between windows, the thicker the edge the more the user switched
from window A to window B (note that the edges are directional). In Figure 5.27
it is immediately apparent that a few windows are revisited a lot, but many are
rarely revisited (Figure 5.27 excludes windows that are never revisited).

Figure 5.28: Percentage of switches sorted by recency of the target window, for
each participant.

Recency

On average, 57% of switches (SD=9%) is to the most recently used window.
Across participants this percentage ranges from 41% to 76% (also see Figure 5.28).

5.8.2 Application revisitation

This section describes long term revisitation patterns to applications. While many
windows are transient, existing only for immediate work requirements (such as

1 Visualisation generated using IBM Research’s Many Eyes application: http://www-958.
ibm.com/software/data/cognos/manyeyes/
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Figure 5.29: Percentage of switches to the ten most frequently switched to appli-
cations for each participant.

a window containing an email message during its composition) applications are
relatively stable. For many tasks, such as ‘check my email inbox’, the user’s target
is likely to be the application (e.g., Outlook) rather than a specific window, so an
application-based analysis is potentially informative.

Therefore, this section analyses revisitation to applications for the duration
of the study. For each participant the total number of switches to the ten most
switched to applications was calculated, ranked by frequency, and converted to a
percentage of their total application switches. Figure 5.29 shows this data for each
participant. It is clear that a few applications are switched to a lot, and a lot are
used relatively little.

When this data is converted to Pareto principle data, similar to the analysis in
the previous section, the results show that 80% of switches is to 2 to 11 applica-
tions, with a cross participant mean of 6 applications.

Analysis of the most revisited application per participant reveals that these
are a browser (12 participants), e-mail client (4), IDE (3), file explorer (2), doc-
ument editor (2), file sharing application (1), and a graphics editor (1). This is
similar to previous work, which found that Internet applications grab 63% of the
users’ time (Beauvisage, 2009), and the majority of that time is spent using a web
browser (Beauvisage, 2009; Bi and Balakrishnan, 2009).
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5.9 Window geometry management

This section analyses the window geometry management actions by users. Win-
dow geometry management comprises of moving window and resizing windows.
A previous study by Gaylin (1986) showed that window geometry management
is far less frequent than window switching. As displays are getting larger and
multi-monitor setups are becoming increasingly more popular, one could expect
that window geometry management becomes more common, as people have more
space available, and therefore might spend more time arranging their windows
across this space.

Figure 5.30: Boxplots showing the number of manual move and resize actions per
day, split by monitor setup.

Figure 5.30 shows statistics regarding manual move and resize actions, not
those automatically done by the system. Though dual monitor users move and
resize windows more often than single monitor users, window geometry man-
agement is, in general, quite uncommon, similar to the results in Gaylin (1986).
Single monitor users, on average, move a window 8.3 times per day (SD=5.4),
and resize a window 3.6 times per day (SD=1.7). For dual monitor users these
statistics are 14.8 (SD=6.7) and 6.5 (SD=2.1), respectively.

For an explanation of why users do not move and resize their windows very
often, an analogy with the organisation of ‘actual’ desktops can be drawn. Mal-
one (1983) studied the organisation of (office) desks, and were able to clearly
identify ‘neat’ and ‘messy’ organisational styles. In the current study, there are no
participants that seem to be particularly ‘neat’ and spend a lot of time managing
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Figure 5.31: A browser window with poor usability due to the horizontal scrollbar
at the bottom.

the place and location of their windows. There are several plausible explana-
tions of why people do not engage in window geometry management often. First,
there is not much additional benefit in window geometry management. Unlike
the ‘normal’ desk in your office, where the organisation has long-term effects and
benefits, window geometry parameters will be lost every time you restart your
computer. Therefore, investing (a lot) of time in window management could be
seen as a waste of time and effort. Second, there are only limited benefits to be
gained from window geometry management, in particular resizing your windows.
Unlike an office desk, where the amount of space to stack, pile and organise is
abundant, the computer desktop has limited space available. Furthermore, many
applications need a minimum amount space to be usable. For example, a browser
window showing a Google results page will get a horizontal scrollbar if it is not
at least 640 pixels wide, severely affecting readability of the results, and usabil-
ity in general (see Figure 5.31). Therefore, although windows can theoretically
be resized to any size, only a subset of those sizes are actually practical. Third,
some researchers (e.g., Ahlström et al., 2009) have suggested that window geom-
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etry management, and resizing windows in particular, is too error-prone, as the
window border that has to be ‘grabbed’ for resizing actions is quite narrow. A few
efforts have been made to improve window manipulation techniques. Ahlström
et al. (2009) investigated several novel resizing techniques including a border-
crossing technique where the user does not have the ‘grab’ the small border to
select it, but moves the mouse across the border to automatically ‘latch on’ (also
see Accot and Zhai, 2002) and a technique using a scaled down proxy window
(with the same aspect ratio as the actual window). Ahlström et al. (2009) found
that these new resizing techniques were all less error-prone than the traditional
click-and-drag method.

5.10 Comparison to previous studies

It is interesting to compare the results from the current study to the results found
in previous studies, because the most recent empirical studies of window use and
management are several years old. The most comprehensive study of window
management is by Hutchings et al. (2004). Hutchings et al. (2004) found that
single monitor users on average have 3.5 windows visible on the screen, users
of small multiple monitor setups (less than 3 million pixels of screen estate) 4.1
windows, and users of large multiple monitor setups (more than 3 million pixels
of screen estate) 6.8 windows. Using the same definitions, the current study finds
1.7, 2.4 and 4.7 visible windows for these groups of users, respectively. Further-
more, Hutchings et al. (2004) find that 78.1% of the time users have eight or more
windows open. Similar analysis of the results in current study reveals the partici-
pants have eight or more windows open only 47.1% of the time. In terms on the
time users have no empty space visible most of the results in the current study are
similar to those found in Hutchings et al. (2004), with exception of the amount of
time single monitor users have no empty space. While Hutchings et al. find that
single monitor users have no empty space 48.0% of the time, in the current study
this is 88.4%.

Overall, there are several large differences between the results in the current
study and those reported in Hutchings et al. (2004). Summarizing, the current
study finds a lower number of open windows and a lower number of visible win-
dows for all users, and significantly less time with no empty space for single
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monitors users. The difference cannot be adequately explained by different par-
ticipants’ demographics; in the study by Hutchings et al. participants were all
researchers in a sub-discipline of Computer Science, and in the current study al-
most all participants were either university students or employees in Computer
Science as well.

Figure 5.32: Mozilla’s Firefox web browser with four tabs open.

One possible explanation for the discrepancy is the increased popularity of
tabbed applications (see Figure 5.32). Tabbed interfaces eliminate the need to
have multiple windows open to, for example, have two web pages open concur-
rently. A recent study (Dubroy and Balakrishnan, 2010) found a strong prefer-
ence for the use of tabs over separate windows among Mozilla Firefox users. The
Mozilla Firefox web browser made opening a link in a new tab rather than a new
window the default behaviour with the introduction of Mozilla Firefox 2 in 2006,
and Windows Internet Explorer introduced tabbed browsing in version 7, also re-
leased in 2006. Another explanation for the difference between the results found
in the current study and Hutchings et al. (2004) is the increased multi-functionality
of applications. For example, a web browser is no longer exclusively used for
surfing the web, but also for instant messaging (e.g., through facebook.com or
gmail.com) and even document creation and editing (e.g., through Google Docs).
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5.11 Implications for the design of window switching tools

5.11.1 Number of windows

People have fewer windows open nowadays compared to a few years ago, which
can most probably be attributed to the increased popularity of tabbed applications.
However, this does not mean support for window switching is trivial or not im-
portant. Computer users have a large number of windows open, ranging up to a
mean number of 24 open windows for one participant in the current study. The
number of window switches exceeds 500 per day for several participants in the
current study. Also, the results show that dual monitor users have more windows
open and visible, and switch between windows more often than single monitor
users. With the increased popularity of multi-monitor setups this means that good
support for window switching becomes increasingly more important.

5.11.2 Window management styles

Piling and splattering are two very different window management styles. Po-
tentially, different window management tools and window switching techniques
might be more suited for one style or the other. For example, splatterers might
benefit from more support for tiling windows. Splatterers have many windows
visible simultaneously, but not all windows necessarily have a large portion visi-
ble. For splatterers, support for tiling might help to de-clutter their workspace. Pil-
ers rely more on window switching tools like the Windows Taskbar and Alt+Tab,
and might benefit from having more information about the position of (obscured)
windows in the z-ordering.

5.11.3 Grouping by application

The results in the current study suggest that it is beneficial to group windows
of the same application in a window switching interface. However, when this
grouping implies that window switching now involves an extra step (in the case of
the Windows Taskbar, first selecting the application button) performance benefits
of grouping windows by application disappear completely and window switching
becomes even slower compared to the ungrouped counterpart.
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With the ‘heaviest’ collapsed Taskbar button user in the current study using
a collapsed Taskbar button 40 times a day the inefficiency stemming from the
collapsing technique might seem like a trivial problem. However, with the in-
troduction of Windows 7 all Taskbar buttons are always collapsed by application
by default. With the number of window switches using the Taskbar running into
several hundreds per day this could mean a large productivity loss and potential
source of frustration.

5.11.4 Z-ordering

The results regarding the low position of the target window in the z-ordering sug-
gest that Alt+Tab could be an attractive method for nearly every window switch.
Nevertheless, users only seem to use it for switching back to the previous win-
dow, not traversing any further down the list of windows. Possibly, people do
not understand the ordering of windows in the Alt+Tab window, or, if they do
understand, making rapid predictions about the position of the window takes too
much cognitive effort. Potential solutions are visual aids to enhance knowledge
of windows’ positions in the z-ordering or a different ordering of windows in the
Alt+Tab window.

5.11.5 Support for revisitation

The revisitation patterns observed in the current study suggest that supporting
revisitation should be a design consideration for windows switching tools. More
specifically, this support should allow users to quickly identify previously and
commonly revisited windows in a switcher’s display. Unfortunately, none of the
current standard window switching tools explicitly support revisitation.

5.12 Conclusion

The study presented in this chapter gained valuable information about window
use, including how people organise windows on the screen and when and how
various window switching tools are used. These findings have important implica-
tions for the design of window switching interfaces.
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Chapter VI

Supporting Window Switching with SCOTZ:
Design and Implementation

The results presented in Chapter 5 showed that users often have many win-
dows open and that switching between these windows is a very frequent task. It
also identified several problems with current window switching interfaces, such as
the finding that acquiring a particular window by navigating through application-
grouped items in the Taskbar is slow. In general, current interface methods for
window switching have changed relatively little since early graphical user inter-
faces: clicking on a window brings it into focus, as does selecting the window
from a spatial iconic representation (e.g., the Windows Taskbar) or from a recency
list (e.g., the Windows Alt+Tab display).

This chapter describes the design of a new window switcher called SCOTZ
(for Spatially Consistent Thumbnail Zones). The first key design objective of
SCOTZ is to provide a spatially stable layout of applications and windows. By
providing a spatially stable layout users can make rapid decisions about the lo-
cation of windows in the switching interface, reducing or even eliminating the
need for visual search. Stability of window placement is achieved by grouping
windows by application in spatially stable application zones (i.e., the application
zones remain in stable positions, even when the computer has been restarted).

The second key design objective of SCOTZ is to support revisitation to fre-
quently and recently accessed windows. The log analysis of real window and
application switching presented in Chapter 5 showed that revisitation (returning
to previously and/or often used windows and applications) is a frequent activity
in computer use. Therefore, SCOTZ aims to improve the efficiency of switching
to frequently and recently accessed windows. Switching to frequently accessed
windows is supported by assigning more space to the most frequently switched to
applications, thereby making them easier to find and quicker to select, and recently
used windows are quickly accessible by retaining the functionality of Alt+Tab.
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Additional objectives are to support various display sizes, to support both key-
board and mouse input, to provide possibilities for application launching and to
provide options for end-user customisation.

This chapter describes the design objectives in more detail (the why), and how
SCOTZ achieves these objectives (the how). Chapter 7 will examine the two key
features of SCOTZ (spatial stability and size morphing) in more detail, and pro-
vide an evaluation of SCOTZ and two common window switching interfaces.

6.1 Contributions and findings

• a description of the design objectives of SCOTZ and their theoretical foun-
dations;

• a description of SCOTZ, including how it achieves the design objectives.

6.2 Design objectives

In this section, the two key design objectives (stability of the layout and support
for revisitation) and the four additional objectives (support for various display
sizes, support for keyboard and mouse input, support for application launching
and options for end-user customisation) of SCOTZ are explained, including how
related work provides support for the validity and usefulness of these objectives.

6.2.1 Stable layout

Spatial location memory is a person’s memory of where objects are in space. It
is well developed and can be extremely fast: studies have shown that items can
be found in time proportional to the logarithm of the size of the set in stable
layouts, which is much faster than the linear search time needed for unorganised
sets (Cockburn et al., 2007). This fast performance is enabled by spatial stability,
that is, items remaining in the same location over time. This idea has been known
since the first interface design guidelines (Hansen et al., 1984). Many studies have
demonstrated superior performance for spatially stable interfaces in comparison to
a wide variety of alternatives (e.g., Teitelbaum and Granda, 1983). Also, several
studies have found that users are able to learn the locations of a large number
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of items in a user interface when the locations do not change (Czerwinski et al.,
1999; Cockburn et al., 2007). Applying the idea of spatial stability in a window
switcher implies that windows and applications should not move in the switcher’s
display. Within a work session, this design approach has clear advantages: since
revisitation is strong (see Chapter 5), people will quickly learn the locations of the
most frequently used windows. Spatial stability offers similar advantages across
work sessions.

6.2.2 Support for revisitation

Chapter 5 identified strong window revisitation patterns, both temporal (users of-
ten switch back to previously used windows) and frequential (some windows are
revisited more often than others). Explicit facilitation of this revisitation could
lead to efficiency gains. Revisitation patterns have been identified in other ar-
eas of computer use as well, such as revisitation of certain regions within docu-
ments (Alexander and Cockburn, 2008), web site visits (Tauscher and Greenberg,
1997), command use (Greenberg and Witten, 1993) and menu use (Cockburn
et al., 2007). Interfaces to support this revisitation have proven very success-
ful (e.g., Alexander et al., 2009). Also, how to best support revisitation to web
pages has been extensively studied (e.g., Kellar et al., 2006; Obendorf et al., 2007;
Milic-Frayling et al., 2003; Cockburn et al., 2002, 2003; Kaasten and Greenberg,
2001). In general, systems to support revisitation usually support revisitation to re-
cently used items (e.g., Alexander et al., 2009), frequently used items (e.g., Cock-
burn et al., 2007), or a combination of both (e.g., Kaasten and Greenberg, 2001).
The results of Chapter 5 indicate that support for revisitation to both frequently
and recently used windows can be beneficial.

6.2.3 Support for various display sizes

Modern display sizes range from very small (netbooks or tablet PCs) to very large
and/or multi-monitor setups. Even ‘everyday’ setups can differ greatly in terms of
the amount of screen estate (see Chapter 5). A window switching interface should
ideally be suited for many different display sizes. On small screens navigational
and functional controls, such as controls for switching between tasks can take up
precious space. This leads to a difficult balancing act between allocating enough
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space for the content to be displayed, while allowing enough space for the con-
trols needed to interact with this content (Kamba et al., 1996). One proposed so-
lution to this problem is the use of semi-transparent widgets (Kamba et al., 1996;
Kärkkäinen and Laarni, 2002) and avoiding constantly displaying widgets that are
only used occasionally as they take up too much space (Kärkkäinen and Laarni,
2002). On large displays, accessing items across large distances is difficult and
time-consuming (Robertson et al., 2005; Czerwinski et al., 2006). Such ‘distal
access’ could be avoided by, for example, placing controls in close proximity to
the user’s current mouse cursor position. As a design guideline, it is desirable that
window switching tools support a wide range of display sizes.

6.2.4 Support for keyboard and mouse input

The log study in Chapter 5 showed that most users relied on mouse input for
window switching, but that some users prefer keyboard-based methods, such as
Alt+Tab. Apart from an inherent personal preference for a certain input device,
convenience could influence the choice of input device (e.g., using the mouse
when a coffee cup is held in the other hand, or using Alt+Tab when typing to
avoid repositioning the hands). Also, the suitability of various pointing devices
has been found to depend on the type of task (MacKenzie et al., 1991) and whether
the input device is used with the preferred or non-preferred hand (Kabbash et al.,
1993). As a design guideline, it is desirable that next generation window switching
tools continue to support flexibility in input devices.

6.2.5 Support for application launching

In current interfaces, application launch facilities are largely partitioned from win-
dow switching tools (with the Microsoft Windows 7 Taskbar being a notable ex-
ception as applications can be ‘pinned’ to the Taskbar), yet these user activities are
closely related. For example, to perform a search on the Internet the user needs to
acquire a browser window. If the user starts by searching for a browser window
they will be unsuccessful if no browser windows are active, necessitating a second
action, i.e.,launching the browser. Alternatively, if the user begins by launching
the application, they will often gain a superfluous window (when others were al-
ready available) adding to their window management load. By providing a single
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interface mechanism for application launching and window switching the user no
longer needs to consciously consider what to do (launch the application or switch
to the window?) in order to be able to fulfill their current goal.

6.2.6 Options for end-user customisation

It is impossible to design a system that suits all users in all situations (MacLean
et al., 1990), but providing options for end-user customisation can alleviate this
problem, as users can select settings that suit them for their specific task. End-
user customisation is an umbrella term for adaptations the user can make to a
software application, such as how the application looks, behaves and how to inter-
act with it, without the need to write code, with changes that are persistent across
sessions (Mackay, 1991). End-user customisation is driven by a variety of moti-
vations (Blom, 2000), such as the personal goals of the user, accommodation for
individual differences, or personal preference. Options for end-user customisa-
tion can reduce interface complexity (Bunt et al., 2007; Stuerzlinger et al., 2006),
because users can select a subset of functionalities that is most useful for them.
In terms of purely aesthetic customisations, users have the need to personalise
their computing space, and personalisation is important for the overall user expe-
rience (Tractinsky and Zmiri, 2005). Summarising, options for end-user customi-
sation are important for the acceptance of a system, its usability and the overall
user experiences and should therefore be available in new window switching in-
terfaces.

6.3 SCOTZ

This section describes the new window switcher SCOTZ1 (see Figure 6.1) and
how it achieves the various design objectives identified in the previous section.

SCOTZ (Spatially Consistent Thumbnail Zones) groups windows by applica-
tion in spatially stable application zones. Such semantically coherent and spatially
grouped layouts have been shown to lead to very good performance in recalling
item locations (Niemela and Saariluoma, 2003), and layouts that use grouping
by semantic similarity lead to lower search times than ungrouped/random lay-

1 SCOTZ is available for download at http://www.cosc.canterbury.ac.nz/scotz
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Figure 6.1: SCOTZ using the squarified treemap algorithm, showing seven appli-
cations and six windows.

outs (Halverson and Hornof, 2008). Also, as previous work has found that people
can find items in a labelled hierarchy faster than in an unlabelled one (Hornof,
2001), SCOTZ shows the application icon and name in each application zone.
The application zones’ size and position are retained when the computer restarts,
thereby providing a layout that is stable within sessions as well as between ses-
sions. Spatial stability is applied in a hierarchical fashion: applications are given
stable zones in the switcher display, since these change slowly over the long term;
and within each zone, the application windows used in the current work session
are placed in stable spatial locations. Also, the application-based organisation
provides an initial guide to the location of a new window as it quickly narrows
the users search space: rather than having to search the whole display, users can
quickly dismiss the majority of candidates by homing in on the appropriate appli-
cation zone.

Additionally, size morphing is applied to these application zones. Size mor-
phing enables frequent targets to be enlarged to enhance their visibility and to
reduce pointing time. Also, using a morphing layout allows the introduction of
new items. The size morphing implemented in SCOTZ is (abstractly) shown in
Figure 6.2; the more often an application is switched to, the bigger the size of
the application zone becomes. Another example is shown in Figure 6.3. Applica-
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tion zone sizes are an exact reflection of how many times these applications are
switched to; if application ‘A’ is switched to twice as often as application ‘B’,
application zones ‘A’ is twice as big (in terms of surface area) as application zone
‘B’. Figure 6.1 shows an actual SCOTZ window in full-screen mode with seven
application zones and six windows.

The following sections describe in more detail how SCOTZ achieves the de-
sign objectives presented in the previous section.

(a) (b)

Figure 6.2: Abstraction of the design of SCOTZ with nine application zones,
labelled A to I: (a) before size morphing, (b) after several iterations of size mor-
phing; application A and B have been switched to frequently, and are therefore
allocated more space, while keeping all application zones in relatively stable po-
sitions.

Figure 6.3: An example of size-morphed application zones; the web browser is
switched to twice as often as the word processor and the PDF reader, and is there-
fore allocated twice as much space.
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6.3.1 Stable layout

SCOTZ groups windows by application in application zones, which stay in as sta-
ble locations as possible. SCOTZ offers three different layouts for the application
zones: two treemap layouts, where size morphing is applied, and a grid layout
where no size morphing is applied (see Figure 6.4). A treemap is a space-filling
layout that recursively divides the screen in rectangles, sized relative to some un-
derlying data attribute (Johnson and Shneiderman, 1991). In SCOTZ, the size of
the application zone reflects how often an application has been switched to. Vari-
ous algorithms for generating treemaps exist, each offering advantages for specific
contexts. For example, some treemaps are designed to keep items in relatively sta-
ble positions as the underlying data changes. The properties of treemaps and the
suitability of various treemaps to be used for the layout of the application zones
in SCOTZ are examined in more detail in Chapter 8.

(a) Spiral treemap (b) Squarified treemap (c) Grid layout

Figure 6.4: Three layout options for the application zones in SCOTZ.

The ordering of the window representations within each application zone is
either alphabetically by window title, by frecency (a combination of frequency
and recency), or the same as the order in which the respective windows were
opened, using a row-major order. Alphabetic ordering is very predictable and
understandable, sorting by frecency supports window revisitation and sorting the
representations by the order in which the respective windows were opened is very
stable when additional windows are opened for an application.
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6.3.2 Support for revisitation

SCOTZ allocates more space to the most frequently switched to applications when
a treemap layout (see Figure 6.4) is used. This size morphing reduces the Fitts’
Law (Fitts, 1954) targetting time of these application zones, as well as making
them easier to find because the size difference of items facilitates guided search
(Wolfe and Horowitz, 2004).

SCOTZ supports switching back to recently used windows by retaining the
recency-like z-ordering that is used in Windows Alt+Tab. Alt+Tab is very power-
ful when the user needs to ‘flip’ between a few recent windows. When SCOTZ is
bound to Alt+Tab, pressing Alt+Tab will bring up the SCOTZ interface as normal,
but repeated presses of Tab will cycle through the windows according to z-order,
similar to the implementation of Microsoft Windows Alt+Tab (see Figure 6.5).
This provides quick and easy access to recently used windows.

Figure 6.5: Using Alt+Tab to cycle through the windows in SCOTZ by z-order. A
pulsating red border indicates the currently selected window (indicated by a red
arrow in this figure).

6.3.3 Support for various display sizes

To accommodate for a wide range of display sizes SCOTZ can either be a full
screen window (see Figure 6.1), a smaller window in the centre of the screen,
or a smaller window positioned under the mouse cursor (see Figure 6.6). By
positioning SCOTZ under the mouse cursor it provides proximal access on (very)
large displays.

Also, as SCOTZ is a transient interface, which is only shown when the user
intentionally invokes it, it does not take up precious screen estate when it is not
used, which is particularly important on small screens.
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Figure 6.6: SCOTZ in a smaller display mode, positioned under the mouse cursor.

6.3.4 Support for keyboard and mouse input

SCOTZ has rich options for both keyboard and mouse input. Both the mouse and
the keyboard can be used to invoke SCOTZ; the user can bind any key (combi-
nation), middle mouse button click or left+right mouse button click to SCOTZ.
If SCOTZ is bound to the Alt+Tab key combination it retains the z-order-based
window switching as it is implemented in Windows Alt+Tab.

As the design of SCOTZ is aimed at keeping the application zones in spatially
stable locations, positioning the SCOTZ interface relative to the mouse cursor
means that a target can always be acquired with the same mouse gesture. Previ-
ous work has shown that despite some difficulties in the learning/training phase,
mouse gestures can be very efficient and accurate (Dulberg et al., 1999).

6.3.5 Support for application launching

SCOTZ provides a single interface mechanism for both window switching and
application launching. After having used SCOTZ for a long period of time, users
will most likely be familiar with the locations of application zones (as these stay in
spatially stable locations). Therefore, it makes sense for these zones to double as
efficient application launchers. If an application has no open windows associated
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with it, the application zone is still visible in SCOTZ (for example, see the Skype,
Thunderbird and Window Media Player zones in Figure 6.1) and clicking on an
empty application zone launches the application.

6.3.6 Options for end-user customisation

Users can make several functional personalisations in SCOTZ to accommodate
their personal goals and preferences (in addition to choices about layout and input
methods, as presented in previous sections): for example, users can include or
exclude certain applications in SCOTZ, and can customise the rate of growth for
application zones. The appearance of SCOTZ is also customisable: users can
change the font size and type to accommodate various levels of visual acuity, and
the colour scheme to accommodate for various types of colour blindness as well
as personal taste and preference. Also, users can adjust the opacity of SCOTZ
(see Figure 6.7).

(a) Opaque (b) Almost transparant

Figure 6.7: Different opacity levels of the SCOTZ window.

6.4 Conclusion

This chapter presented SCOTZ, a new window switcher which is designed to pro-
vide a spatially stable layout and to provide support for window revisitation. The
design objectives presented in this chapter could be applied to other areas of HCI
as well.

An example of how the two key design objectives (stability of the layout and
support for revisitation) could be applied in other areas of human-computer in-
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(a) (b)

Figure 6.8: (a) Google Chrome’s New Tab functionality, (b) a mock-up of Google
Chrome’s New Tab functionality using a treemap.

teraction is shown in Figure 6.8. The web browser Google Chrome shows the
websites you visit most often whenever you open a new tab (see Figure 6.8a).
As noted in section 6.2.2, web site visits are known to follow a very skewed re-
visitation pattern: a few web sites are visited a lot, but the relative frequencies
quickly drop off (Tauscher and Greenberg, 1997). By making the size of the web-
site thumbnail reflect the visit frequency to that particular website the Fitts’ Law
targetting time for frequently occurring targets is reduced. A mock-up of Google
Chrome’s New Tab layout using a treemap is shown in Figure 6.8b.

In general, providing a spatially stable layout, supporting various display sizes,
supporting keyboard and mouse input and providing options for end-user customi-
sation are useful objectives to guide the design of many other user interfaces.
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Chapter VII

SCOTZ: Theoretical and Empirical Validation

Chapter 6 described SCOTZ and its design objectives. This chapter presents
theoretical examinations and various empirical studies which assess the validity
of the following underlying assumptions of SCOTZ: (1) providing a stable layout
leads to efficiency gains and (2) size morphing leads to improved item targetting
times and makes it easier to find items. Also, this chapter presents the findings
from a qualitative study, and an empirical study which demonstrates that SCOTZ
yields performance and preference benefits over existing window switching tools.

The first key design principle of SCOTZ is to provide a spatially stable lay-
out. Previous work has shown the performance benefits of spatially stable layouts
over a variety of alternatives (e.g., Teitelbaum and Granda, 1983). To examine
the effect of spatial instability in more detail, this chapter first presents two exper-
iments: (1) an empirical study which compares spatially stable 2D layouts with
frequency and recency based layouts, which are two orderings that could be used
in a window switcher, and (2) an empirical study which examines whether the
(slight) instability caused by size morphing negatively affects user performance.

The second key design principle of SCOTZ is to use size morphing, i.e., al-
locate more screen estate to the most frequently switched to applications. This
size morphing has two potential benefits: (1) improved item targetting times, as
encapsulated by Fitts’ Law, and (2) improved item search times, because the size
difference of items facilitates guided search. Therefore, the second section of this
chapter provides theoretical proof of the improved item targetting time of items
in size-morphed layouts, and the third section provides an empirical and an eye-
tracker study that demonstrate size-morphed layouts facilitate finding items.

The final two sections of this chapter present a qualitative evaluation of SCOTZ
and an empirical evaluation of SCOTZ and two other state-of-the-art window
switching interfaces: the Microsoft Windows 7 Taskbar and Windows 7 Alt+Tab.
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7.1 Contributions and findings

• providing a spatially stable layout is important for user performance;

• the slight spatial instability caused by size morphing does not have a large
negative effect on user performance;

• size-morphed layouts, including treemap layouts, have efficiency benefits;

• size-morphed layouts assist users in finding items;

• lessons learned from a qualitative study of SCOTZ;

• an empirical study demonstrating the performance benefits of SCOTZ over
two major commercial window switching interfaces (the Windows 7 Taskbar
and Windows 7 Alt+Tab).

7.2 Spatial stability

The first experiment1 described in this section examines the importance of spatial
stability in a layout, or whether orderings such as by frequency or recency lead
to equally good performance as fully stable layouts. The second experiment de-
scribed in this section is inspired by the observation that items unavoidably move
as they grow/shrink when a size-morphed layout is used, which affects the stabil-
ity of the layout as a whole. Therefore, the experiment examines how severely, if
at all, this instability affects user performance.

7.2.1 Experiment: Stable, frequency, or recency?

As described in Chapter 6, previous work suggests that spatially stable layouts
lead to better performance than spatially unstable layouts. However, such a stable
ordering is an unattainable ‘gold standard’ for SCOTZ, as total stability would
prohibit the addition of zones for new windows/applications. However, previous
studies commonly only compare stable layouts to randomly updating layouts (e.g.,

1 All experiments described in this chapter were conducted at different times with different
groups of participants.
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Teitelbaum and Granda, 1983). A window switching interface can order items
in a variety of ways, including by recency (similar to Alt+Tab) or by frequency
(which might work well for Zipf-like distributions). The goal of the experiment
described in this section to examine user performance on a fully stable layout
(though unattainable for practical use in SCOTZ, it is an informative control con-
dition) to other ‘sensible’, but less stable orderings: recency and frequency. This
is achieved by studying the performance impact of several different orderings (sta-
ble, recency order, frequency order, and random order) for tasks involving acqui-
sition of targets in a Zipf-like distribution (similar to the distribution found for
window revisitation in Chapter 5).

Layouts

Four layouts were used: stable, recency, frequency and random (a useful control
condition). The stable layout used an arbitrary but stable order (i.e., icons never
moved). The recency layout moved the most recently selected item to the top left
of the grid, pushing earlier items along in row-major order (similar to Alt+Tab).
The frequency layout repositioned items according to their cumulative selection
counts (most frequent at top left, in row-major order). Finally, in the random

layout all windows were randomly repositioned after each selection.

Procedure

The experimental interface consisted of a grid of distinct icons (see Figure 7.1)
with a cued target on the right. Participants were instructed to click on the target
icon region as quickly and accurately as possible. After each successful selection
the windows were temporarily hidden from view, participants had to press a ‘next’
button in the centre of the layout, and the layout was updated. To understand how
performance with these interfaces is influenced by number of targets, participants
completed trials with 4, 9, 16, 25, 36, 49 and 64-item grids. The Zipf’s Law dis-
tribution of targets was generated by randomly selecting eight targets from among
the candidates (all four for the 4 item grid): one was cued 10 times, one 5 times,
then 3, 2, 2, 1, 1, and 1 for the others (power law R2 ≈ .97, α ≈ 1.3).
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Figure 7.1: Experimental interface showing 16 icon regions and the target on the
right.

Design

The selection time dependent measure was analysed using a 4×3×7 RM-ANOVA
for factors layout (stable, frequency, recency, random), experience (low, medium
or high) and items (4-64). Experience was determined by assigning first-time icon
selections as low experience, 2nd-7th selections as medium experience, and 8th-
10th as high experience.

The experiment used a within-subject design, with all participants performing
tasks in all layouts. The different layouts were presented in random order, and
within that order the different set sizes were presented randomly. Icons that had
been selected more than once in a layout were not re-used in following conditions.
The interface was displayed on a monitor with 1280 × 1024 pixels resolution.

Participants

Twenty-six students volunteered for the experiment (16 male, 10 female, 16-44
years old). Their participation lasted approximately 45 minutes.

Results and discussion

All correct selections preceded by an erroneous click on a wrong item were re-
moved. The overall error rate was 3.1%, but there was no difference across con-
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ditions in terms of errors made. All extreme outliers (data points larger than 3
standard deviations above the mean) for each layout×experience×items condi-
tion were removed.

Figure 7.2: Experiment mean selection times for the four layouts by experience
including 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).

All factors showed significant main effects2: layout (F1.4,27.9=72, p<.001),
experience (F2,40=409, p<.001) and items (F2.6,51.1=135, p<.001). Stable lay-
outs were the fastest (mean 1.2s) followed by frequency ordering (1.3s), recency
ordering (1.3s), and random (1.8s). Post hoc comparisons (Bonferroni correc-
tion, α=.05) show pairwise differences between all layouts and the random lay-
out, and between the stable layout and the recency layout. Figure 7.2 shows a
significant layout×experience interaction (F3.0,59.0=47, p<.001) caused by rela-
tively constant performance across experience with the random layout in contrast
to marked improvement with other layouts. Figure 7.3 shows a significant lay-

out×items interaction (F4.4,8.3=14, p<.001), caused by the random layout wors-
ening much more rapidly across increased number of items than the other three
layouts.

2 Analysis corrected for deviance from sphericity by means of Greenhouse-Geisser where re-
quired.
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Figure 7.3: Experiment mean selection times for the four layouts by items in-
cluding 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).

The results show that stability is beneficial: the stable, frequency, and recency
layouts all supported expertise development, while random did not.

Performance with stable and frequency layouts was similar to each other, rais-
ing the question of whether SCOTZ should use frequency ordering. However, the
experiment used a Zipfian distribution of stimuli, causing the frequency layout to
quickly settle to spatial stability, so the frequency layout’s comparative success
is probably also explained by its spatial stability (after a short period of reorgan-
isation). In practical use, a frequency layout for windows is unlikely to succeed
due to the transient nature of most windows. Consequently, some other basis for
organisation is required, such as application zones. Although application zones
could be placed in a frequency layout, doing so would create placement instability
during early use, which might cause users to discard the system due to its unpre-
dictable behaviour. Therefore, using spatial stability as the main layout principle
is a preferable solution.

The finding that the stable layout was significantly faster than the recency lay-
out, with performance benefits increasing with expertise is easily explained: after
each selection in the recency layout users must either calculate the new position
of their targets or visually search for them, both of which demand time.
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7.2.2 Experiment: Does size morphing cause too much spatial instability?

The previous experiment demonstrated that total stability is the ‘gold standard’,
but total stability would prohibit the addition of zones for new windows/applica-
tions, as well as prohibiting morphing sizes to reduce the Fitts’ Law targetting
time. Size-morphed layouts do allow for the addition of new zones, and lead to
Fitts’ Law targetting time benefits (see section 7.3). Unfortunately, size morphing
inevitably introduces some instability as items grow and shrink and ‘push’ others
out of the way.

The experiment described in this section examines the performance impact
of spatial instability caused by the morphing behaviour by examining the perfor-
mance of a totally stable layout (the gold standard control condition) and two lay-
outs that use size morphing, and are therefore inherently unstable. Similar to the
experiment described in the previous section, the performance impact of several
different layouts (stable, squarified treemap and spiral treemap) for tasks involving
acquisition of targets in a Zipf-like distribution was studied. Both treemaps used
in the experiment are relatively stable: the squarified treemap should rapidly sta-
bilise because of Zipfian target distribution, while the spiral treemap is, by design,
quite stable in terms of item placement. For more on treemap and their properties,
see Chapter 8.

Layouts

Three layouts were used: stable, squarified treemap and spiral treemap. The sta-

ble layout used an arbitrary but stable order (i.e., icons never moved), where no

size morphing was applied. Morphing behaviour was implemented with squari-
fied (Bruls et al., 2000) and spiral (Tu and Shen, 2007) treemaps. These treemaps
were used in this experiment because they are both good candidates for SCOTZ
because of their favourable individual properties (see Chapter 8).

Procedure

The procedure was similar to the experiment in Section 7.2.1. In the treemap
conditions the item sizes were related to how often the items had been selected
during the course of the experiment, with each item selection causing that item to
be allocated more space. The treemap layouts started off as a grid layout where
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items were all of equal size, and item sizes were updated after each successful
selection (for an example, see Figure 7.4). To isolate the effect of stability, a
very conservative ‘rate of growth’ of the items was used (similar to the damping

effect in Cockburn et al., 2007), such that there was no Fitts’ Law targetting time
advantage for the layouts that used size morphing compared to the stable (grid-
like) control condition.

Figure 7.4: Experimental interface showing 16 icon regions and the target on the
right. The items are layed out using the spiral treemap algorithm and item sizes
reflect how often they have been selected.

Design

The design was similar to the experiment in Section 7.2.1. The selection time

dependent measure was analysed using a 3×3×7 RM-ANOVA for factors layout

(stable, squarified, spiral), experience (low, medium or high), and items (4-64).
Experience was determined by assigning first-time icon selections as low experi-
ence, 2nd-7th selections as medium experience, and 8th-10th as high experience.

Participants

Seventeen students volunteered for the experiment (15 male, 2 female, 21-35 years
old). Their participation lasted approximately 30 minutes.
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Results and discussion

The overall error rate was 1.7%, but there was no difference across conditions
in terms of errors made. All extreme outliers (data points larger than 3 standard
deviations above the mean) for each layout×experience×items condition were
removed.

There were significant main effects3 for items (F2.6,41.7=204, p<.001) and ex-

perience (F1.1,16.8=444, p<.001), but not for layout (F2,32=1, p>.3), nor were
there any interactions. Mean item selection times for the three layouts were simi-
lar at 1.30s, 1.34s and 1.35s for stable, squarified and spiral respectively (also see
Figure 7.5).

Figure 7.5: Experiment mean selection times for the three layouts by experience
including 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).

The results shows that the spiral and squarified treemaps were only marginally
slower than the (non-morphed) stable control. This means that the morphing effect
of the two treemaps and the instability that unavoidably comes with it, did not
substantially adversely affect performance.

3 Analysis corrected for deviance from sphericity by means of Greenhouse-Geisser where re-
quired.
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7.3 Size morphing and targetting time - theoretical analysis

This section examines whether size morphing leads to improved item targetting
times. This is achieved by calculating the item targetting times in size-morphed
layouts as encapsulated by Fitts’ Law.

Fitts’ Law (Fitts, 1954) is a well-known and thoroughly tested rule of tar-
get acquisition time. Fitts’ Law states that the time required to move to a target
(movement time, MT) is a function of both the width of the target (W) and dis-
tance to the target (amplitude, A). More precisely, the following relationship has
been proposed and validated (MacKenzie and Buxton, 1992), where a and b are
empirically derived constants:

MT = a+ b× log2(
A

W
+ 1) (7.1)

The part log2( A
W

+ 1) in Equation 7.1 is referred to as the index of difficulty

(ID). For rectangular items, the shortest side can be used as the target width
W (MacKenzie and Buxton, 1992).

By using size morphing, more frequently targetted items become larger and
therefore their Fitts’ Law targetting time is decreased. However, the Fitts’ Law
targetting time of items that are not (often) selected increases as these items be-
come smaller. This ‘trade-off’ most likely leads to a lower average Fitts’ Law
targetting time for this very same reason: the larger items are selected more of-
ten, so their improved Fitts’ Law targetting times contribute more to the average
targetting time of the layout than the worsened Fitts’ Law targetting time of the
smaller items.

To examine this potential beneficial effect of size morphing (improved target-
ting times) the following section calculates the Fitts’ Law targetting time of size-
morphed layouts under ‘ideal’ circumstances (i.e., all items are perfectly square).
This is followed by a calculation of the Fitts’ Law targetting time of treemap lay-
outs.

7.3.1 Can size morphing lead to improved item targetting times?

This section provides a proof of concept of the advantage of using size morphing
by demonstrating that the weighted average index of difficulty (ID) of a layout
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that uses size morphing layout is lower than that of a layout that does not use size
morphing, under the assumption that all items are perfectly square. Also, item
sizes are an exact representation of their underlying value; an item with value ‘10’
is ten times larger (in terms of surface area) than an item with value ‘1’. Using
weighted average then implies that the ID of an item with value ‘10’ contributes
10 times more to the average ID than the ID of an item with value ‘1’, as the
former is selected 10 times as often as the latter, see Equation 7.2.

ID(weighted) =

∑n
i=1 valuei × IDi∑n

i=1 valuei
(7.2)

Figure 7.6: A unit square containing three items. Inset are the respective values/-
sizes of the items.

The proof of concept uses a unit square (see Figure 7.6), but the proof applies
equally well to larger layouts as the Fitts’ Law is scale-independent (as it uses
the ratio of distance to width, which is constant regardless of scaling). For ease
of calculation, all item values add up to one.4 Because of this conversion, the
sizes of the items (expressed as their surface areas) are equal to their values (see
Figure 7.6). The calculation assumes perfectly square items, which makes the W

(width) of the item the square root of its value (as the item size is equal to the
value of the item):

4 Any data set can be converted to a set where all values add up to one by converting the absolute
data values to (relative) ratios or percentages.
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IDi = log2(
A√
valuei

+ 1) (7.3)

The weighted ID for each item is therefore:

ID(weighted)i = valuei × log2(
A√
valuei

+ 1) (7.4)

By randomly picking a point in a unit square the expected distance to the
centre of the square is approximately .382598 (Finch, 2003). By inserting this as
the value for A in Equation 7.3 the weighted index of difficulty becomes a function
of item value (see Figure 7.7).

Figure 7.7: Weighted index of difficulty by item value, for items in a unit square.

Inserting Equation 7.4 in Equation 7.2 gives Equation 7.5 for the weighted
average ID (the denominator of Equation 7.2 disappears as all item values to add
up to one because a unit square is used).

ID(weighted) =
n∑

i=1

valuei × log2(
A√
valuei

+ 1) (7.5)

A basic example of how size morphing benefits overall Fitts’ Law targetting
time is shown in Figure 7.8. In this example, there are only two items. If both
items are assigned 50% of the available area, the weighted average ID (from Fig-
ure 7.7 and Equation 7.2) is 2 × 0.31 = 0.62, as indicated in Figure 7.8. If one
items is assigned 80% of available space (because it is selected 80% of the time),
and the other one, therefore, 20% of available space, the weighted average ID

110



decreases by ∆x and increases by ∆y, as indicated in Figure 7.8, making the
weighted average ID 0.18 + 0.41 = 0.59.

Because of the nature of the data distribution ∆x>∆y, therefore, the weighted
average ID always decreases when size morphing is used compared to a layout
where all items are of equal size.

Figure 7.8: Example of the Fitts’ Law advantage of using size morphing (see
explanation in text).

The weighted average ID’s for several data distributions are shown in Fig-
ure 7.9. For example, in the most pronounced distribution, when the item values
follow a power distribution of the form y ∼ c

x2 , the most selected item has a value
of approximately 0.62. This means it is the selection target for 62% of selections
and therefore takes up 62% of the total area of the layout. Figure 7.9 shows the
weighted average index of difficulty for several distributions for various numbers
of items, as well as the weighted average index of difficulty of a layout that does
not use size morphing. The results show that (1) size morphing can lead to lower
item targetting times and (2) the more pronounced (or skewed) the data distribu-
tion, the more beneficial size morphing becomes.

7.3.2 Can treemap layouts lead to improved item targetting times?

The calculations in the previous section assume that all items in the layout are
perfectly square. However, this is unattainable for actual treemap layouts. While
many treemap algorithms are aimed at creating a layout with as square as possible

items, they are never all perfectly square due the constraints of a treemap layout,
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Figure 7.9: Weighted average index of difficulty for size-morphed layouts for
the various data distributions, for various numbers of items. Also shown is the
weighted average index of difficulty when no size morphing is used (and all items
are of equal size).

i.e., item sizes must reflect underlying data values and the layout must be space-
filling while items may not overlap (for more on treemaps and their properties,
see Chapter 8). Therefore, the weighted average ID of a treemap layout will never
reach the optimal values shown in Figure 7.9.

Figure 7.10 shows the weighted average ID for squarified (Bruls et al., 2000),
spiral (Tu and Shen, 2007) and Moore (see Chapter 8) treemaps for various num-
bers of items when the data follows a power distribution of the form y ∼ c

x
,

calculated in the same manner as the results in the previous sections.

The results in Figure 7.10 show that not all treemaps layout improve item
targetting times compared to a 2D layout where no size morphing is applied. Also,
the results show that the squarified treemap leads to the relatively lowest item
targetting times.

7.4 Size morphing and search time

Pointing to the item, as captured by item targetting time in the previous section, is
only a part of total item acquisition time. When the user does not know the item
location, he/she must also search for it. Theory suggests that size morphing assist
users when searching for items, as the differences in item size makes finding par-
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Figure 7.10: Weighted average ID for three treemap layouts for a power distribu-
tion of the form y ∼ c

x
, for various numbers of items. Also shown is the weighted

average ID when no size morphing is used.

ticular items easier because of guided search (Wolfe et al., 1989; Wolfe and Gray,
2007). Guided search is an influential theory that offers an explanation of how
people (visually) search for targets. According to the guided search theory people
can focus their visual attention to a certain stimulus attribute, and exclude other
input as noise, in the very early stages of visual processing. In other words, in the
early stage of visual processing attention can already be guided to select appro-
priate objects in later stages of visual processing. Certain attributes of items are
identified as ‘guiding attributes’. Colour, motion and size are “undoubted” [sic]
attributes that guide search (Wolfe and Horowitz, 2004, p. 500). The presence
of one of these attributes can greatly facilitate finding items, as attention can be
‘guided’ to them in the early stages of visual processing.

In a size-morphed layout the most used items are relatively large, which should
facilitate finding these items: if the participant has selected an item quite often
(and understands that item size is directly mapped on item selection count), atten-
tion is guided toward the large items in the layout.

This section presents two studies: an empirical study similar to the studies
described in section 7.2 and an eye-tracker study, which examine whether there is
evidence that size-morphed layouts assist users in finding items.
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7.4.1 Experiment: Does size morphing support guided search?

The goal of the experiment in this section is to examine whether there is evidence
that size-morphed layouts lead to improved item search times. This is achieved
by presenting participants a ‘random treemap’ layout. In this random treemap,
size morphing is applied consistently and predictably, but the item locations are
assigned randomly after each item selection. Theory (Wolfe and Horowitz, 2004)
suggests that the size difference between items in such a layout should assist users
in finding items. Therefore, it is reasonable to expect that this ‘random treemap’
will support expertise development, as opposed to a randomly updating layout
where all items are of equal size (see Figure 7.2). Also, if the results indicate
that random treemap supports expertise development, this can not be explained by
people learning item locations, as they are completely unpredictable and instable.
However, guided search can explain this result.

Layouts

The experiment compared target acquisition performance using the random treemap
(described above) to the more stable spiral and squarified treemaps, as well the
‘gold standard’ fully stable layout that does not use size morphing.

Procedure

The procedure was similar to the experiments in sections 7.2.1 and 7.2.2. Par-
ticipants completed trials for all four layouts (the random, spiral and squarified
treemap, and the stable grid layout), which were presented in random order. How-
ever, contrary to the experiments presented in previous sections, where partici-
pants completed trials with grids with various sizes, only a 25-item grid was used
in the current study to limit the total duration of the experiment. Also, participants
made more selections in each layout compared to the previous experiments. This
ensures an absence of expertise development can not be attributed to the exper-
iment being too short. The Zipf’s Law distribution of targets was generated by
randomly selecting nineteen targets from among the candidates: one was cued 19
times, one 10 times, then 6, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 and 1 for the
others (power law R2 ≈ .97, α ≈ 1.0).
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Design

The design was similar to the experiment in Sections 7.2.1 and 7.2.2. The selec-

tion time dependent measure was analysed using a 4×3 RM-ANOVA for factors
layout (stable, squarified, spiral, random) and experience (low, medium, high).
Experience was determined by assigning first-time icon selections as low experi-
ence, 2nd-15th selections as medium experience, and 16th-19th as high experience.

Participants

Thirty students volunteered for the experiment (17 male, 13 female, 21-35 years
old). Their participation lasted approximately 30 minutes.

Results and discussion

The overall error rate was 1.7%, and there was no difference across conditions
in terms of errors made. All extreme outliers (data points larger than 3 standard
deviations above the mean) for each layout×experience condition were removed.
The results are shown in Figure 7.11.

There were significant main effects5 for layout (F3,87=35, p<.001) and expe-

rience (F1.4,40.6=562, p<.001). Mean item selection times were 1.3s, 1.4s, 1.4s
and 1.6 for stable, squarified, spiral and random layouts, respectively. Post hoc
comparisons (Bonferroni correction, α=.05) show pairwise differences between
all layouts except the spiral and squarified layout. Figure 7.11 shows a signifi-
cant layout×experience interaction (F3.847,111.561=10, p<.001), caused by differ-
ent performance of the various layouts on the medium experience level.

Overall, these results suggest that the random treemap assists users in finding
items. This is particularly apparent when comparing the results in Figure 7.11 and
Figure 7.2; a random layout that does not use size morphing (Figure 7.2) does not
support expertise development, but a random layout that uses size morphing does
support expertise development (Figure 7.11). These results can not be explained
by participants learning item locations as it is not possible to learn item locations
in a layout that randomly updates item positions. Guided search, however, can ex-

5 Analysis corrected for deviance from sphericity by means of Greenhouse-Geisser where re-
quired.
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plain these findings. Finding large items is facilitated by applying size morphing,
regardless of the (in)stability of the layout.

Furthermore, the layout×experience interaction can also be explained by guided
search: on the medium experience level the size difference between items is not
very big (yet), hence guided search is not yet facilitated. On the high experience

level, when the size difference between items is substantial, guided search is facil-
itated and this eliminates the negative impact of instability (note that on the high

experience level the random layout performs comparable to the other layouts).

Finally, the layout×experience interaction also reveals that the spiral and squar-
ified layouts perform worse than the stable layout on medium experience level
(albeit better than the random layout), a result that was not found in the experi-
ment described in Section 7.2.2. Apparently, the slight instability of the spiral and
squarified layouts does impair performance, but the effect is weak and therefore
hard to detect.

Figure 7.11: Experiment mean selection times for the three layouts by experience
including 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).
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7.4.2 Eye-tracker study

The experiment described in the previous section provides preliminary evidence
that size-morphed layouts facilitate finding items. This section provides a more
‘direct’ method of assessing the validity of this hypothesis by examining whether
it can be supported by eye-tracker data. Most likely, size-morphed layouts make
it easier to find items, because attention is guided toward the target item. Eye
focus, as recorded by an eye-tracking device, usually indicates where attention is
directed at (Poole and Ball, 2005). Therefore, the use of an eye-tracker can shed
more light on whether the size difference between items indeed makes it easier
to find certain items in a layout. In other words, with the use of an eye-tracker
the visual search component of item selection time (as measured in the previous
experiment) is isolated.

Eye-trackers allow for unobtrusive recording of a participant’s eye focus. Eye-
trackers log how the eye gaze shifts between and fixates on items in a display.
From this data, information about the visual search process can be extracted. For
example, many shifts and hardly any long fixations can imply that a person is
searching for an item (Poole and Ball, 2005). The following section describes
the data generated by eye-trackers in more detail, as well as desirable settings for
eye-trackers for studies similar to the current one.

Eye-tracker data and usability studies

Eye movements are required to scan our visual surroundings. During a visual
search the eye movement comprises of fixations, when the eye is fixated on a
point, and saccades, the rapid and discrete eye movements between fixations. The
area in which there is high visual acuity is rather small, approximately 2 degrees
around the centre of the fixation.

Data generated by an eye-tracker also comprises of fixations and saccades and
most devices automatically process the data to identify saccades and fixations. For
an overview of various algorithms to identify fixations and saccades see Salvucci
and Goldberg (2000).

For analysing data generated by an eye-tracker, several metrics are potentially
informative. An overview is given here:
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• Number of fixations: A large number of fixations generally implies a less
efficient search (Jacob and Karn, 2003). Also, a large number of fixations
on a particular area of the screen can be indicative of high interest in that
area.

• Fixation duration: Long fixation duration often means the user has difficulty
extracting information (Jacob and Karn, 2003). A long fixation on an item
without any other user action (such as selecting the item) can mean the
person is unsure whether the item is actually the target item. For example, in
the case of window switching, not all application/window icons are equally
informative (see example in Figure 7.12).

• Number of saccades: More saccades indicate a larger amount of visual
search.

• Scanpath length: A scanpath is the total length of the saccade-fixation-
saccade sequence. Ideally, the scanpath is a straight line to the target, fol-
lowed by a short fixation on the target (Goldberg and Kotval, 1999). A long
scanpath could mean the user is searching for an item.

• Scanpath duration: Scanpath length by itself does not reveals whether the
length is caused by long search or a long time spent processing informa-
tion. Scanpath duration can provide an indication of the complexity of the
processing.

• Scanpath convex hull: The scanpath convex hull is the smallest convex poly-
gon that contains the entire scanpath (Goldberg and Kotval, 1999). This
gives information about the area covered during the search. The convex
hull does not necessarily relate to the length or duration of the scanpath. A
lot of searching can take place in a small area, or conversely, a short search
across a large area can occur.

• Ratio of fixations on the target to the total number of fixations: A low ratio
indicates that the search is not very efficient.
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• Saccade direction changes: A direction change larger than 90 degrees could
imply that the user’s goals have changed or the user interface is not the way
the user expected (Poole and Ball, 2005).

Figure 7.12: Two icons that are not equally informative. While the icon on the left
could signify any kind of file folder, the icon on the right signifies the content of
the folder.

When using an eye-tracker for usability studies, several attributes of the eye-
tracking device determine its usefulness. Setting the correct time threshold for a
fixation can be problematic (Poole and Ball, 2005). Too low a threshold implies
many false positives, i.e., identifying too many fixations. It is usually advised to
set the lower threshold at at least 100 ms (Poole and Ball, 2005). Furthermore,
the sampling rate of the eye-tracker device should not be too low, as too low a
frequency means events such as fixations are missed. In general, for usability
studies, a sampling rate of 60 Hz is sufficient (Poole and Ball, 2005). Lastly, the
degrees of accuracy is of importance, with most eye-tracker being only accurate
to within one degree of the actual point of interest (Poole and Ball, 2005). An
important fact here is that a person’s attention can be directed up to one degree
away from the actual point in space where a person is looking without the user
moving their eyes (Jacob and Karn, 2003).

Layouts

Three different layouts were used in the experiment: a random layout, where
all item locations were randomly assigned with each update of the layout, and
Hilbert and Moore treemaps (see Chapter 8), in which items stay in relatively
stable locations.
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Hardware

The experiment used a Tobii T60 eye tracker with the ‘Tobii Fixation Filter’, which
defines a fixation as gaze points within a 35 pixel area. This is a good filter for
calculating scanpath length, but less suitable for a number of fixations analysis, as
it will gives a lot of ‘false hits’, i.e., identifying something as a fixation while it
is not. The alternative is a filter that requires a minimum dwell time before it will
log a fixation. This is less suitable for analysing scanpaths as rather continuous
‘flowing’ scanpaths can be missed as only the fixation points at the start and the
end of the scanpath are recorded as a fixation. Pilot testing revealed the ‘Tobii
Fixation Filter’ to be the most suitable for the purpose of the current study.

Procedure

The design and procedure were similar to the experiment in reported in Sec-
tion 7.4.1. Participants completed trials in a 30-item grid and items were cued
following a skewed (Zipfian) distribution of targets; one item was cued 15 times,
one item was cued 8 times, followed by 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, and 1. The
different layouts were presented in random order.

Design

The scanpath duration dependent measure was analysed using a 3×3 RM-ANOVA
for factors layout (Hilbert, Moore, random) and experience (low, medium, high).
Experience was determined by assigning first-time icon selections as low experi-
ence, 2nd-10th selections as medium experience, and 12th-15th as high experience.
Scanpath duration was used as a measure because (1) the data produced by ‘To-
bii Fixation Filter’ lends itself most to scanpath analysis and (2) while scanpath
length could potentially be an informative measure as well, data analysis revealed
that, despite best efforts, the eye-tracker regularly ‘lost’ the eye while it was mov-
ing, leading to scanpath lengths that seemed shorter than they actually were. The
start and end of the scanpath, where the eye was relatively stationary, was recorded
with a high success rate.
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Participants

Five students volunteered for the experiment (4 male, 1 female, 21-28 years old).
Their participation lasted approximately 15 minutes (including calibrating the
eye-tracker for each participant).

Results and discussion

There was a significant main effect for experience (F2,8=72, p<.001), but not for
layout, nor was there a layout×experience interaction (see Figure 7.13).

Similar to the experiment in section 7.4.1, the results show that the random
treemap layout supports expertise development, which suggests that guided search
takes place. The absence of a statistically significant difference between the lay-
outs and a layout×experience interaction can most likely be attributed to the
small sample size and the variability of the results. Both the variability within
subjects and between subjects (as shown in Figure 7.13) is quite large. Large
between-subject differences are very common in eye-tracker studies (Goldberg
and Wichansky, 2003) and large within-subject differences have also been ob-
served in previous eye-tracker studies (e.g., Byrne et al., 1999). Therefore, there
is reason to believe that the absence of a statistically significant difference be-
tween the layouts is a consequence of the methodology used. The trend of the
results, however, is the same as in the empirical study presented in section 7.4.1;
the random layout performs worse than the more stable layouts on the medium
experience level, but the difference disappears on the high experience level. This
is indicative of guided search: on the medium experience level the size difference
between items is minimal, hence guided search is not facilitated for the random
treemap. On the high experience level, when the size difference between items is
substantial, guided search is facilitated for the random treemap and the differences
between the various layouts disappear.

7.5 Qualitative study

Testing of software by end-users is an indispensable tool for researchers (Holzinger,
2005). Therefore, a beta version of SCOTZ was given to five volunteers, who were
asked to use it for at least several days. By giving SCOTZ to users while it was
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Figure 7.13: Experiment mean search times for the three layouts by experience
including 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).

still in the beta stages of development, the general concept could be validated and
performance problems could be eliminated in an early stage of design (Dolan and
Matthews, 1993). After several days of using SCOTZ, participants were given
a questionnaire and were interviewed. Questionnaires and interviews are a good
way of assessing the subjective satisfaction of users and interviews in particular
are of great value because they can be adjusted ‘on the fly’ to elaborate more
about new and unexpected issues that arise during the course of the conversa-
tion (Holzinger, 2005).

Based on the results, the following five observations were made:

1. People did not notice the slight location changes of application zones when

using the spiral treemap layout. Participants commented on never notic-
ing any location changes of the application zones when the spiral treemap
layout was used, even though gradual changes will have occurred as zones
grew and shrunk.

2. No clear preference for either the spiral or the squarified treemap layout.

The spiral layout was the default layout for SCOTZ, but some participants
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did (temporarily) switch to the squarified layout. However, there is no con-
sensus on which layout is preferred. Some participants regarded the squari-
fied layout as being too unstable (i.e., the application zones move too much),
while others really liked the squarified layout and clearly preferred it over
the spiral layout.

3. Even a user that mainly used Alt+Tab appreciated the size morphing of

the application zones. Though the size morphing of the application zones
does not seem to have direct benefits for people that mainly use Alt+Tab for
switching between windows, one participant commented that it helped him
to guide attention towards the application he was aiming for.

4. The application launching functionality was only used by some participants,

but it did not bother those who did not use it. The option to use SCOTZ as
an application launcher was only used by some users, yet this functionality
did not bother non-users. If anything, retaining the application zones when
no windows are open enhances the spatial stability of SCOTZ’s layout.

5. Overriding existing mappings such as Alt+Tab is useful, but risky. Because
SCOTZ was bound to Alt+Tab by default and SCOTZ retained Alt+Tab’s
(z-order) functionality, SCOTZ could be used without any additional learn-
ing. However, cycling to the correct application using SCOTZ (instead of
clicking on the zones/thumbnails with the mouse) can be confusing, because
it is harder to keep track of the selected item (also see Figure 6.5). Possible
solutions are (1) mapping SCOTZ under another key combination, (2) not
retaining the z-ordering, but picking an ordering that matches the layout of
SCOTZ better, or (3) providing better feedback on the z-ordering (e.g., with
a small strip at the bottom of the screen showing the full order).

7.6 Lab study

Sections 7.2, 7.3 and 7.4 provided theoretical and empirical validation of the de-
sign principles of SCOTZ, but it is yet unclear how SCOTZ compares to other
(common) window switching interfaces. Therefore, this section presents and em-
pirical evaluation of SCOTZ and the window switching interfaces available in
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the most recent version of the widely used Microsoft Windows operating system
(Windows 7): the Taskbar and Alt+Tab.

The Windows 7 Taskbar and Alt+Tab were chosen for comparison because (1)
Microsoft Windows is the most commonly used operating system, and therefore
a comparison with the tools available in Windows 7 is relevant, and (2) these
two tools present a challenging condition to compare SCOTZ against in terms of
the key design principles of SCOTZ. The Windows 7 Taskbar places application
icons in stable locations (unless a program is closed and re-opened) and Windows
Alt+Tab provides explicit support for switching back to recently used windows
because it places (the first six) window representations by their place in the z-
ordering of windows, which is very similar to a recency ordering.

7.6.1 Method

In the experiment, participants were presented with a set of windows in Microsoft
Windows 7, such as a word processor with several documents open, an e-mail
application, a game, a video player, etc. Participants completed a series of tasks
in which they had to switch to a particular window using the Windows 7 Taskbar,
Windows 7 Alt+Tab, or SCOTZ in a successive series of tasks (see Figure 7.14). In
each condition, participants were instructed to use one particular window switch-
ing tool exclusively.

Some windows were prompted often, while other were hardly ever prompted,
following the findings reported in Chapter 5: 80% of window switches was to
35% of all windows.

Figure 7.14: The experimental interface: all windows are on the primary screen
on the left, and the current task is on the secondary screen on the right.
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7.6.2 Procedure

At the start of each condition participants were given a verbal explanation and a
demo of the window switching tool used in that particular condition. Participants
then performed a series of 20 practice tasks with the window switcher before
starting the experimental tasks.

At the start of each task, all windows were temporarily hidden from view and
the user was prompted to press a ‘Next’ button at the centre of the secondary
screen. Pressing this button revealed the next target window on the secondary
screen (by showing the application icon, the window title and a window preview
thumbnail of the target). Next, participants were prompted to click a ‘Start’ but-
ton in the centre of the primary screen, after which all the windows were unhid-
den, and participants then had to switch to the target window. If the participant
switched to the incorrect window nothing happened. In total, participants per-
formed 80 tasks in each condition (excluding the practice tasks).

After each condition, the participant filled out a short questionnaire regarding
the window switching tool that had just been used.

7.6.3 Design

Switching time and errors (switching to a non-target window) were measured
across three levels of the independent variable interface (Taskbar, Alt+Tab and
SCOTZ) and analysed using a one-way repeated-measures ANOVA. The exper-
iment used a within-subject design and the order in which the conditions were
presented to the participants was counterbalanced.

7.6.4 Software and hardware

All the content of the windows used in the experiment was non-modifiable to min-
imise distraction, to prevent accidental interaction with the windows, and to allow
for consistent window previews in the window switching tools throughout the
tasks. To prevent learning effects across conditions, three different window sets
were generated, all with unique applications and windows. The window sets were
counterbalanced across the three conditions. Each window set contained 8 appli-
cations and 15 windows. For example, one of the window sets contained a PDF
reader (with 4 windows open), a photo editor (3 windows), a presentation editor
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(2 windows), an HTML editor (2 windows), a music player, an email application,
a command prompt, and a card game.

Window icons that are already in use by well-known applications were not
used, to ensure that all participants started off with equal knowledge of the appli-
cation icons. This is particularly important for the evaluation of the Windows 7
Taskbar, which shows only application icons.

The full-screen version of SCOTZ with the squarified treemap algorithm was
used. All application zones in SCOTZ were fixed (i.e., did not change during the
experiment) and were pre-set to reflect the frequencies with which application-
s/windows were switched to during the experiment.

A mouse with an extra side button was used in the experiment, and this side
button was used to invoke SCOTZ.

7.6.5 Questionnaires

The experiment used the NASA Task Load Index6 (NASA-TLX) to assess the
perceived workload in each of the conditions. The NASA-TLX questionnaire
contains six sub-scales, each related to a particular aspect of perceived work-
load: mental demand, physical demand, temporal demand, performance, effort
and frustration. Participants are requested to rate their agreement on six 7-point
Likert scales:

• Mental demand: How mentally demanding was the task? (Very Low . . . Very
High)

• Physical demand: How physically demanding was the task? (Very Low
. . . Very High)

• Temporal demand: How hurried or rushed was the pace of the task? (Very
Low . . . Very High)

• Performance: How successful were you in accomplishing what you were
asked to do? (Perfect . . . Failure)

6 http://humansystems.arc.nasa.gov/groups/TLX/downloads/TLX.pdf
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• Effort: How hard did you have to work to accomplish your level of perfor-
mance? (Very Low . . . Very High)

• Frustration: How insecure, discouraged, irritated, stressed, and annoyed
were you? (Very Low . . . Very High)

Two more questions were added to assess the perceived ease of learning to op-
erate the window switcher (operation) and the perceived ease of learning window
locations (location learning) in the window switcher:

• Operation: How easy was it to learn to operate this window switcher? (Very
Easy . . . Very Difficult)

• Location learning: How easy was it to learn the locations of the windows in
this window switcher? (Very Easy . . . Very Difficult)

Finally, participants were asked to rank the three window switching interfaces
from most to least preferred.

7.6.6 Participants

Twelve people, all university students, participated in the experiment. Age ranged
from 20 to 35 years old (mean 27); two participants were female. All participants
were experienced computer users: computer use was at least 30 hours per week
for each of the participants. Participants were reimbursed with a NZ$10 shopping
voucher. The experiment took approximately 40 minutes to complete.

7.6.7 Results and discussion

Selection times

The mean time to switch to a window for each of the methods is shown in Fig-
ure 7.15. The results for the Windows 7 Taskbar are split by Taskbar button (for
applications with only one associated window) and Taskbar thumbnail (for appli-
cations with more than one associated window, where the user first has to select
the application icon and then the window in the fanned out sub-menu).
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Mean window switching times when using a Taskbar button, a Taskbar thumb-
nail, Alt+Tab and SCOTZ are 1.1s, 2.1s, 2.1s and 1.2s, respectively, giving a sig-
nificant effect of interface: F3,33=53, p<.001. Post hoc analysis (Bonferroni cor-
rection, α=.05) reveals pairwise differences between all tools (all p <.001) except
the Taskbar button and SCOTZ, and the Taskbar thumbnail and Alt+Tab.

Figure 7.15: Window selection times for the various window switching tools
including 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).

A more detailed analysis of window switching times when Alt+Tab is used
is shown in Figure 7.16, which shows the selection times for Alt+Tab ranked
by position of the target window in the Alt+Tab ordering split by input method
(using the keyboard to sequentially step through the list of thumbnails, or using a
mouse to click on the target thumbnail). By design, some of the target windows
in the experiment were high up in the Alt+Tab ordering and others further down,
following a nearly uniform distribution across all possible positions.

Three observations are apparent from Figure 7.16: (1) window selection time
when using Alt+Tab with mouse input is relatively constant across positions of
the target thumbnail, (2) window selection time when using Alt+Tab with key-
board input increases linearly as the position of the target thumbnail in the list of
windows becomes higher (r=.963, p<.01), and (3) Alt+Tab with keyboard input
is very efficient for switching back to the previously used window (position 1 in
the ordering); the mean window switching time is 0.9 seconds for this particular
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type of window switch, which is shorter than the mean switching times for both
the Taskbar and SCOTZ. However, this performance benefit quickly disappears
when the target window is further down the list of windows.

Figure 7.16: Window selection times for Alt+Tab sorted by position of the target
window in Alt+Tab and split by mouse and keyboard input. Participants almost
never used the keyboard to select a window further than position 5 in the Alt+Tab
ordering, hence there is no (reliable) data for this value.

Error rates

Figure 7.17 shows the error rates for the window switching tools used in the ex-
periment. Mean error rates for Taskbar button, Taskbar thumbnail, Alt+Tab and
SCOTZ are 0.8%, 5.8%, 2.8% and 2.7%, respectively. The difference between
these error rates is significant (RM-ANOVA, F3,33=5, p<.01). Post hoc analysis
(Bonferroni correction, α=.05) reveals a pairwise difference between the Taskbar
button and Taskbar thumbnail (p<.05).

Subjective measures

The NASA-TLX worksheet (see Figure 7.18) results showed significantly differ-
ent ratings for mental demand, effort, location learning, frustration (Friedman
test, all p’s <.001), and operation (p<.01). Post hoc pairwise comparisons (Bon-
ferroni correction, α=.05) reveals significant differences between Alt+Tab and
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Figure 7.17: Percentage of errors made with the various window switching tools
including 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).

SCOTZ on all five aforementioned factors, between the Taskbar and Alt+Tab on
all these factors except frustration, and between the Taskbar and SCOTZ on the
mental demand and location learning factors.

Figure 7.18: Questionnaire results; lower ratings are better. * Difference is signif-
icant, p<.01. ** Difference is significant, p<.001.

All participants preferred SCOTZ the most, and 9 out of 12 participants pre-
ferred Alt+Tab the least and 3 out of 12 participants preferred the Taskbar the
least.
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Discussion

Window switching times. The findings provide evidence that SCOTZ is faster
than both Taskbar thumbnails and Alt+Tab. The study finds no significant differ-
ence between the average window switching time using SCOTZ and a Taskbar
button. However, Taskbar buttons are not available when there is more than one
window associated with the application (forcing users to resort to Taskbar thumb-
nails). The study presented in Chapter 5 showed that 53.3% of windows belong
to an application that has more than one window associated with. In other words,
the majority of windows can only be reached via a Taskbar thumbnail, which is
significantly slower than SCOTZ.

Subjective measures. All participants ranked SCOTZ as the most preferred
tool. Users perceived SCOTZ as less mentally demanding, costing less effort, and
less frustrating than Alt+Tab, as well as finding it easier to learn to operate and
to learn item locations in SCOTZ compared to Alt+Tab. Also, window locations
in SCOTZ were perceived as easier to learn than those on Taskbar and SCOTZ
was perceived as less mentally demanding than the Taskbar. These two factors
are likely related: SCOTZ is less mentally demanding because it is easier to learn
locations, thereby reducing the cognitive burden for users. It is interesting that
users found locations in SCOTZ easier to learn than locations of items on the
Taskbar, as in both cases these were completely stable in the current study.

Alt+Tab. Overall, Alt+Tab was unpopular, with 75% of participants ranking
it as least preferred. Alt+Tab was also judged to be more mentally demanding
and costing more effort than the Windows Taskbar. Last, users found it harder to
learn to operate and learn item locations in Alt+Tab than with the Taskbar. One
participant commented that he/she “hated how Alt+Tab icons moved around”.
However, these results for Alt+Tab might have been negatively influenced by the
fact that users had to use Alt+Tab for all window switches in the experiment. The
results show that Alt+Tab is very efficient for switching back to the most recently
used window, with this particular type of switch outperforming both the Taskbar
and SCOTZ. One participant commented “I use Alt+Tab to switch between the

most recent windows, and other methods for older windows.” Such a ‘mixed
approach’ (using Alt+Tab to switch back to the most recently used window, but
another method for other types of window switches) might lead to higher user
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satisfaction than the ’enforced’ use of Alt+Tab for all window switches that was
the case in the experiment.

Comparison to other window switching tools. The experiment compared
user performance with SCOTZ against that with the Windows 7 Taskbar and
Alt+Tab. As reviewed in Chapter 2, many other window switching tools exist.
However, the comparative success of SCOTZ can probably be attributed to its
spatial stability and predictability of item locations. Unfortunately, hardly any of
the tools discussed in Chapter 2 section exhibit such stability and/or predictability.
As the positioning of window representations in Exposé, for example, is related to
the positions of the actual windows Exposé’s representation of available windows
is altered whenever windows are moved, opened, or closed, so users can never
be certain where their target windows will appear. Task-based approaches, which
are common, present similar problems. In general, task-based approaches are, by
design, not compatible with placing application and window controls in stable po-
sitions, as tasks are of a transient nature. Also, the predictability of locations of the
window representations is heavily dependent on the method used for identifying
tasks, with automatic grouping being risky as this can be unpredictable.

7.7 Conclusion

In this chapter, two empirical studies first showed that (1) spatially stable layouts
allow faster acquisition than recency and random layouts for skewed distributions
such as those occurring in window switching tasks, and (2) that the instability
inevitably caused by size morphing does not severely impact user performance
compared to the (idealistic but impractical) gold standard of absolute spatial sta-
bility. The results of the study presented in section 7.4.1 reveal that the slight
instability of the spiral and squarified layouts does impair performance, but the
effect seems to be weak and therefore hard to detect.

Next, theoretical examination of the effect of size morphing demonstrated that
size morphing leads to an overall performance advantage because of the Fitts’ Law
targetting time advantage of increasing item size. The results in sections 7.3.1
and 7.3.2 show that size morphing can lead to an improvement of Fitts’ Law tar-
getting time. In other words, the improved Fitts’ Law targetting times of larger
items outweighs the worsened Fitts’ Law targetting times of the smaller items,
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because the larger items are selected more often (hence they are larger than their
less ‘popular’ counterparts). The more pronounced (or skewed) the data distribu-
tion, the more beneficial size morphing can be. Not all treemap layouts lead to
an improvement of Fitts’ Law targetting time, with the aspect ratio of the items in
the treemap being a directly contributing factor to this difference (the Fitts’ Law
targetting time benefit is strongest for layouts with perfectly square items).

An empirical and an eye-tracker study demonstrated that size morphing facil-
itates finding items. The results of the studies in sections 7.4.1 and 7.4.2 are quite
similar: the random layout performs worse than the other layouts on the medium
experience level, but this difference disappears on the high experience level (see
Figures 7.11 and 7.13). In other words, even the random treemap supports exper-
tise development and this can be explained by guided search.

The results of these studies support the foundations of SCOTZ’s design and
help to better understand the comparative success of SCOTZ.

The results from the studies using a random treemap are by no means intended
to advocate letting go of the stability principle. Rather, the positive effects of
size morphing on finding items can serve as ‘safety net’ if the user forgets item
locations, e.g., when the user has not used the computer for a longer period of
time.

The lab study demonstrated the performance benefits of SCOTZ over two
common window switching tools: the Microsoft Windows 7 Taskbar and Alt+Tab.
This study also generated valuable insights regarding the most recent window
switching tools available in Microsoft Windows 7.

More research into the suitability of SCOTZ for Alt+Tab users could shed
more light on how these users can best be supported in their window switch-
ing activities. Interestingly, even Alt+Tab users reported to benefit from the size
morphing of the application zones in SCOTZ, but retaining the Alt+Tab order
in SCOTZ did confuse these users. Ideally, SCOTZ should retain the rapid back-
and-forth switching between two windows that Alt+Tab offers while also assisting
users in finding items further down the Alt+Tab ordering.
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Chapter VIII

Enhanced Spatial Stability with
Hilbert and Moore Treemaps

Chapter 6 introduced the new window switcher SCOTZ, which employs treemaps
for the layout of the application zones. The results in Chapter 7 revealed that
spatial stability is important, but, interestingly, no existing treemap algorithms
are stable when data updates, and when items are added/deleted, and when many
changes have taken place (i.e., the cumulative effect of data changes). In other
words, some treemaps are relatively stable when items are added, but not when
data is updated, other treemaps are relatively stable from individual update to
update, but these changes add up to large cumulative changes after many updates,
and so forth. This chapter focuses on the formal evaluation of the suitability of
various treemaps for SCOTZ, particularly in terms of spatial stability.

This chapter first demonstrates that stability is not fully captured by the com-
monly used ‘distance change’ metric (e.g., Bederson et al., 2002; Shneiderman
and Wattenberg, 2001; Tu and Shen, 2007). Some treemaps with relatively low
distance change values from update to update can nevertheless be relatively unsta-
ble as the underlying data changes because items never ‘settle’ in a particular area
of the screen. To resolve this problem the ‘location drift’ metric is introduced, that
is designed to better encapsulate stability over time.

Next, this chapter introduces two treemaps that perform well across all metrics
of spatial stability, including the new ‘location drift’ metric, while also performing
well in terms of other common treemap metrics, such as aspect ratio. These new
treemaps are based on Hilbert and Moore space filling curves (Sagan, 1994).

Finally, as this chapter introduces a novel measure of spatial stability (location
drift), an empirical study manipulates the spatial properties of various space-filling
layouts, in order to examine how the distance change and location drift metrics
influence actual user performance in item retrieval.
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8.1 Contributions and findings

• an overview of which metrics can be used to assess the stability of treemap
layouts;

• a mathematical formalisation of existing treemap metrics;

• introduction of the ‘location drift’ metric;

• introduction of the Hilbert and Moore treemaps;

• a theoretical comparison of the Hilbert and Moore treemaps and various
other treemaps;

• an empirical study demonstrating that ‘location drift’ is a useful metric for
evaluating treemap stability.

8.2 Treemap algorithms

A treemap is a space-filling structure for the visualisation of data (Johnson and
Shneiderman, 1991). It recursively divides an area into rectangles of various sizes,
with the size of the rectangles representing some underlying quantitative data at-
tribute. The benefits of treemaps are manifold. First, by having the size of items
in the treemap reflect the underlying data large data sets can be communicated
in an effective manner (Bruls et al., 2000). Second, as treemaps are space-filling
no (precious) screen estate is wasted (Johnson and Shneiderman, 1991). Third,
hierarchies are clearly identifiable because of the nested structure of a treemap.
Hierarchies can be emphasised more by the use of colour (for example, see Fig-
ure 8.1).

The applications of treemaps are diverse. For example, treemaps have been
used to visualise information about the stock market (Wattenberg, 1999), as a
photo browser (PhotoMesa) (Bederson et al., 2002), to visualise threaded discus-
sion forums on PDAs (Engdahl et al., 2005), depicting hierarchical structures (Shi
et al., 2005; Stasko, 2000), visual decision making (Asahi et al., 1995) and the
analysis of social networks (Frantz and Carley, 2005).
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Figure 8.1: Example of a treemap generated by the website www.newsmap.jp.
Colour signifies the news category, size reflects the number of related articles.

Many alternative treemap algorithms have been proposed since their introduc-
tion (Johnson and Shneiderman, 1991), offering different advantages in differ-
ent contexts. The early ‘slice and dice’ algorithm (Shneiderman, 1992) (see Fig-
ure 8.2a) recursively slices the available space into parallel rectangles, but in doing
so it is susceptible to producing items with high aspect ratios, which is undesirable
as it makes items hard to label and select. Squarified (Bruls et al., 2000) (see Fig-
ure 8.2b) and cluster algorithms (Wattenberg, 1999) aim to produce lower aspect
ratios. However, the squarified treemap highlights another property of treemaps
that is important: distance change. The distance change metric quantifies how
much the positions of the items in the treemap change when the underlying data
is changed. Because the squarified algorithm sort items by size, small changes in
the data can mean items move quite a large distance.

One way to ensure treemap layouts are relatively stable when the underlying
data is changed is to preserve the underlying ordering of the data. Ordered treemap
layouts preserve the underlying data order, with example algorithms including
slice and dice, pivot (Shneiderman and Wattenberg, 2001), strip (Bederson et al.,
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(a) Slice and Dice (b) Squarified (c) Strip

Figure 8.2: Examples of treemaps generated by several algorithms.

2002) (see Figure 8.2c), and spiral layouts (Tu and Shen, 2007). However, some of
these algorithms do come with their own individual disadvantages. For example,
when the strip treemap is used rather sudden changes in the layout can occur when
an item moves from the right side of the treemap to the left side (on the next strip).
This problem is addressed by the spiral treemap (Tu and Shen, 2007), where items
are arranged following a spiral structure.

Many other designs have been proposed to meet the requirements of spe-
cific application areas. For example, Cushion treemaps (van Wijk and van de
Wetering, 1999) are designed to highlight hierarchical structure and Quantum
treemaps (Bederson et al., 2002) are designed to accommodate items with a fixed
size, such as photos.

By definition, treemaps have rectangular items: “[a treemap is a] two-dimensional

(2-d) space-filling approach in which each node is a rectangle whose area is pro-

portional to some attribute such as node size” (Shneiderman, 1992, p. 92). How-
ever, this can lead to situations where the aspect ratios of the items are unavoidably
unbalanced, as in the ‘extreme’ example when there are two items with respec-
tive weights of 999 and 1 (Wattenberg, 2005). To resolve this issue, some newly
developed algorithms create a layout with non-rectangular items. For example,
Voronoi treemaps (Balzer et al., 2005) use arbitrary polygons rather than rectan-
gles for visualising software metrics, and the Jigsaw layout (Wattenberg, 2005)
uses the space-filling H-curve (Niedermeier et al., 1997) to create non-rectangular
puzzle-piece shaped items (the new treemaps presented in this chapter use the
space-filling Hilbert and Moore curves). Wattenberg (2005) also provides a math-
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ematical analysis of the use of space-filling curves for supporting space-filling
visualisations (such as treemaps). The use of non-rectangular items, however,
does not come without its disadvantages. Wattenberg (2005, p. 27) observes that
“[...] irregular puzzle-piece shapes certainly look odd, and seem likely to make it

more difficult to compare areas and understand the tree topology than a treemap

[with rectangular items] does”.

8.3 Treemap stability

The stability of the treemap that is used for the layout of the application zones in
SCOTZ is important as stable layouts lead to good performance, while unstable
layouts do not (see results in Chapter 7). The stability of a treemap is often ex-
pressed as the distance change of items when the treemap data is updated (e.g.,
Bederson et al., 2002; Tu and Shen, 2007), with lower distance change values in-
dicating a more stable layout. If an item i in a treemap is defined as the rectangle
(x, y, w, h), with x, y the position of one of the corners and w and h the width
and the height, the distance change between two positions can be calculated and
averaged for all items using Equation 8.1 (Bederson et al., 2002).

distance change =
1

n

n∑
i=1

√
(∆xi)2 + (∆yi)2 + (∆wi)2 + (∆hi)2 (8.1)

Distance change variance (Tu and Shen, 2007) is sometimes used to comple-
ment the distance change metric; a low mean distance change, but a high distance
change variance means a few items move a lot. Distance change variance is cal-
culated using Equation 8.2.

dist. change variance =
n∑

i=1

(distance changei − distance change)2 (8.2)

Although the distance change metric provides important insights into the sta-
bility of a treemap, it does do not describe the instability caused by ‘drifting’ item
positions. For example, consider the two situations shown in Figure 8.3: in the
left layout an item flips between position A and B, while in the right layout the
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Figure 8.3: Example of items that move the same distance, but have different
location drift. Both images show different positions of an item and the associated
footprint. Left: low location drift and a small footprint because the item flips
between two positions A and B. Right: high location drift and large footprint
because the item moves from position A to B, from B to C, and from C to D.

item drifts from A to B to C to D, and so forth. If these positions are equidistant
distance change is identical for all updates, but the high cumulative movement dis-
tance of the right layout is likely to have a stronger detrimental effect on retrieval
because the item never ‘settles’ in one area of the screen.

This chapter introduces the location drift metric to encapsulate the instability
caused by drifting item positions. The underlying assumption motivating the lo-
cation drift metric is that human performance in item retrieval is facilitated when
items are located in a particular spatial region of the display, and hindered when
locations gradually drift. Location drift is calculated by analysing the item ‘foot-
print’, which is the rectangular area defined by the extreme border locations of
an item across all location changes (see Figure 8.3). If the top left of the screen
is defined as coordinates (0,0), xmin is the x-coordinate of the left border of the
left-most position the item has ever been at, ymin the y-coordinate of the top bor-
der of the top-most position the item has ever been at, xmax the x-coordinate of
the right border of the right-most position the item has ever been at and ymax the
y-coordinate of the bottom border of the bottom-most position the item has ever
been at. The footprint is the area described by these coordinates, and location drift
is the ratio of the footprint to the mean item size, see Equation 8.3.

location drift =
1

n

n∑
i=1

(ymax − ymin)i × (xmax − xmin)i
sizei

(8.3)
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8.4 Other treemap metrics

Three other metrics (not related to layout stability) are commonly used for evalu-
ating and comparing treemap algorithms: aspect ratio, readability and continuity.

The aspect ratio of an item is the ratio of the longer dimension to the shorter
one. Treemaps with a high mean aspect ratio are undesirable, because items are
hard to recognise, select, and label, as well as being visually unattractive. The
mean aspect ratio of a treemap is calculated using Equation 8.4 and values range
from 1 (treemaps with perfectly square items) to very high (treemaps with long
and ‘stretched’ items).

aspect ratio =
1

n

n∑
i=1

max(
widthi
heighti

,
heighti
widthi

) (8.4)

The readability metric (Bederson et al., 2002) measures how easy it is to
visually scan a treemap layout, and quantifies this by calculating the number of
times the reader’s gaze must change direction when scanning a treemap in order.
This readability metric is in the range [0,1], with 0 signifying very poor readability
and 1 maximal readability. Readability is defined mathematically in Equation 8.5,
from Bederson et al.’s statement:

“[...] we consider the sequence of vectors needed to move along the centers

of the layout rectangles in order, and count the number of angle changes

between successive vectors that are greater than .1 radians (about 6 de-

grees). To normalise the measure, we divide this count by the total number

of rectangles and then subtract from 1.” (Bederson et al., 2002, p. 842)

readability = 1− |angle > .1 radians|
n

(8.5)

Similar to readability, continuity (Tu and Shen, 2007) quantifies how easy it
is to visually scan a treemap layout. Continuity is calculated by counting how
many items that are consecutive in the data ordering are adjacent in the treemap,
see Equation 8.6.

continuity =
|adjacent consecutive items|

n− 1
(8.6)
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8.5 Hilbert and Moore treemaps

The (informal) observation that none of the currently available treemap algorithms
produce a very stable layout inspired the development of two new treemap algo-
rithms: Hilbert and Moore. Hilbert and Moore treemaps are intended to perform
well across all metrics of stability, including location drift, as well as on the other
metrics. Inspired by Wattenberg’s analysis of space-filling curves for visualisa-
tions (Wattenberg, 2005) these two new treemap algorithms are based on Hilbert
and Moore space-filling curves. However, unlike Wattenberg’s work, these new
treemaps maintain the traditional rectangular item shape. This section first de-
scribes the Hilbert and Moore space-filling curves and then the Hilbert and Moore
treemap algorithms.

8.5.1 Hilbert and Moore space-filling curves

The Hilbert and Moore treemap algorithms are based on two (similar) space-
filling curves (Sagan, 1994; Peano, 1890), shown in Figure 8.5. A space-filling
curve is a self-similar continuous curve which completely covers a N-dimensional
space without self-intersection. Examples of so-called level 0 and level 1 Hilbert
curves (Hilbert, 1891) are shown in Figure 8.4. The level 0 curve evolves to a level
1 curve by applying a standard set of rules, as shown in Figure 8.4. The level 1
curve comprises four quadrants with level 0 curves, albeit some rotated 90 degrees
and flipped along the horizontal or vertical axis. In each of these quadrants the
level 0 to 1 transition rules can be applied again to create a level 2 Hilbert curve,
and so forth.

The Moore curve (Moore, 1900) is a variant of the Hilbert curve with a differ-
ent level 0 to level 1 transition. This results in a curve where the start and end are
adjacent points (rather than adjacent corners, as is the case for the Hilbert curve).
The level 0 to level 1 transition (see Figure 8.4) creates an H-shaped curve. Sub-
sequent transitions are the same as the Hilbert curve transitions. Figure 8.5 shows
level 2 Hilbert and Moore space-filling curves.
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Figure 8.4: Level 0 and 1 Hilbert and Moore curves.

Figure 8.5: Level 2 Hilbert and Moore space-filling curves.

8.5.2 Hilbert and Moore treemap algorithms

To create a treemap based on the Hilbert and Moore space-filling curves the (or-
dered) data set is recursively divided in four weighted sections, until each section
contains four or fewer items. Next, the sections are laid out on the screen. In the
last step the actual items are laid out, during which some aspect ratio optimizing
is applied. This section demonstrates the algorithm by using the example shown
in Table 8.1.

Table 8.1: Ten numbered items and their associated values and sections

item # 1 2 3 4 5 6 7 8 9 10

value 5 5 2 8 3 2 2 3 6 10

section A A A B B C C C C D
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Step 1: Recursively divide list in weighted sections.
First, the algorithm divides the data in four weighted sections, such that each sec-
tion has a relative cumulative weight of its values that is (approximately) 25%,
while the underlying ordering of the data is maintained. This is recursively re-
peated until each section contains four or fewer items. For the example shown in
Table 8.1, this process generates 4 sections. These sections are labelled A, B, C
and D in Table 8.1, and have cumulative weights 12 (26%), 11 (24%), 13 (28%)
and 10 (22%), respectively.

Figure 8.6: Generation of a Hilbert treemap. Left: Layout of the sections. Right:
Layout of the actual items. Overlay is a level 1 Hilbert curve.

Step 2: Lay out the sections.
After the list is split, the sections are sequentially laid out on the screen following
the directional rules dictated by the Hilbert/Moore curve, see Figure 8.6, left.

Figure 8.7: Four layout options when the section has three items: Snake, Most1,
Most2 and Most3.

Step 3: Lay out the items.
When the actual items are laid out (not the sections), some aspect ratio optimising
is applied by comparing several candidate layouts if a section contains three or
four items. These candidate layouts all maintain the underlying data order and
place the first and the last item in adjacent corners. When a section contains
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Figure 8.8: Seven layout options when the section has four items: Snake, Most1,
Most2, Most3, Most4, HorizontalSplit and VerticalSplit.

three items, the algorithm compares the mean aspect ratio of four layouts called
‘Snake’, ‘Most1’, ‘Most2’ and ‘Most3’ (see Figure 8.7). When a section contains
four items, three additional layouts are evaluated; ‘Most4’, ‘HorizontalSplit’ and
‘VerticalSplit’ (see Figure 8.8). The layout with the lowest mean aspect ratio is
used. The layout is placed such that the continuity of the treemap as a whole is
maintained; the first item neighbours the last item in the previous section and the
last item neighbours the first item in the next section. The resulting treemap is
shown in Figure 8.6, right. An example of a slightly larger treemap generated by
the Moore treemap algorithm is shown in Figure 8.9.

8.6 Theoretical comparison of treemaps using metrics

This section presents an evaluation of Hilbert and Moore treemaps and several
other treemap algorithms using the stability metrics described in Section 8.3 (in-
cluding the new ‘location drift’ metric) and the remaining metrics described in
Section 8.4. The treemap algorithms that are compared are Hilbert and Moore,
slice and dice (Shneiderman, 1992), squarified (Bruls et al., 2000), strip (Bed-
erson et al., 2002), spiral (Tu and Shen, 2007), and three variants of the pivot
algorithm (pivot by size, pivot by middle and pivot by split size) (Shneiderman
and Wattenberg, 2001).
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Figure 8.9: A Moore treemap. The grey line denotes the space-filling curve.

To evaluate the metrics of these treemaps a large set of treemaps for a repre-
sentative data set is required. Multiple trials (i.e., creating a large set of treemaps
for each algorithm) are required because ordered treemaps (such as pivot, strip
and spiral layouts) will be (visually) different for different orderings of a data set.
For example, if the largest item is in the middle of the data set the layout will
look different (and have different metric values) than if the largest item is near the
front or end of the data ordering. Therefore, to calculate accurate and representa-
tive values for the various metrics they should be calculated for multiple data sets
(with different orderings).

8.6.1 Method

Three separate ‘batches’ of simulations were run for (1) the calculation of the
stability metrics when data is updated, (2) the calculation of the stability metrics
when an item is added to the layout, and (3) the calculation of the remaining
metrics (aspect ratio, readability and continuity). The stability metrics for data
updates were calculated using a series of Monte Carlo trials to simulate temporally
updating data (which is a common procedure, e.g., Tu and Shen, 2007). The effect
of item addition was examined because the effect of adding or deleting items on
treemap stability is not necessarily the same as the effect of data updates; some
treemap layouts are relatively stable when data updates, but not when items are
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added/deleted and vice versa (the effect of item addition on layout stability is the
same as the effect of item deletion). Finally, static layouts were used to calculate
the other metrics (aspect ratio, continuity and readability).

The data items were assigned values according to a Zipfian distribution (α=1),
then randomly ordered: for example, a 10 item dataset might be {3.33, 1.25, 1.11,

1.43, 10, 2.5, 1.67, 1, 5, 2}. Zipfian distributions are a common natural data
distribution, and often used for treemap evaluations (Bederson et al., 2002). To
cover a variety of cases the metrics were calculated for three different set sizes:
10, 30, and 50 items. All calculations apply to a square (1:1) treemap.

Dynamic updates

To measure the effect of data updates on the stability metrics a series of 100 trials
(for each set size) of 100 steps each were run, where each step simulates a data
update. At the start of each trial, item sizes followed the Zipfian data distribution
(α=1). Next, data updates were simulated by multiplying each item with ex (with
x drawn from a normal distribution with mean 0 and standard deviation 0.05)
in each step and the average distance change of all items and distance change
variance were calculated. Location drift was calculated at the end of each trial.
Finally, the metrics were averaged across all trials.

Item addition

For the calculation of the effect of item addition 100 trials (for each set size)
were run where, once again, the layout started off with item sizes following a
Zipfian data distribution (α=1). Next, a single random item was inserted into the
treemap (random location in the dataset and random size between the minimum
and maximum of the dataset) and the layout recalculated. After this update, the
average distance change of all items and distance change variance were calculated.
The metrics were averaged across all trials.

Remaining metrics

For the calculation of aspect ratio, continuity and readability 100 static layouts
(for each set size) with item sizes following a Zipfian data distribution (α=1) were
generated, and the metrics averaged across all layouts.
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8.6.2 Results

This section is split in three parts: the results of the stability metrics for data
updates, the stability metrics for item addition and the remaining metrics.

Figure 8.10: Distance change, distance change variance, and location drift metrics
for data updates. Error bars represent +/- 1 SE.

Stability - Dynamic updates

Figure 8.10 shows the results of the comparison of different treemap layouts on
the distance change, distance change variance and location drift metrics when data
is updated.

The first row of Figure 8.10 shows that the average distance change of the
Hilbert and Moore treemaps is lower than squarified and pivot by split size, but
higher than slice and dice and pivot by middle treemaps.

The second row of Figure 8.10 shows that distance change variance of the
Hilbert and Moore treemaps is lower than all other treemaps except slice and dice.
Also, the distance change variance for the Hilbert and Moore treemaps is similar
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to that of the pivot by middle treemap, which has a lower value for the distance
change metric (see previous paragraph).

The third row of Figure 8.10 shows that location drift of the Hilbert and Moore
treemaps is lower than squarified, spiral, pivot by size and pivot by split size
treemaps. Also, similar to the distance change metric, the location drift of Hilbert
and Moore treemaps is higher than slice and dice and pivot by middle treemaps.

Figure 8.11: Distance change and distance change variance metrics for item addi-
tion. Error bars represent +/- 1 SE.

Stability - Item addition

Figure 8.11 shows the results of the comparison of different treemap layouts on
the distance change metrics when an item is added to the layout.

The first row of Figure 8.11 shows that distance change of the Hilbert and
Moore treemaps is lower than pivot by middle and by split size, but higher than
slice and dice and pivot by size treemaps.

The second row of Figure 8.11 shows that distance change variance of the
Hilbert and Moore treemaps is lower than most treemaps, but higher than slice
and dice.
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Most treemaps, including Hilbert and Moore, perform relatively similar in
terms of stability when data is updated and when an item is added, but two layouts
exhibit very different behaviours across these situations. The squarified treemap
is quite unstable when the data is updated, but stability is not severely affected
when an item is added. For the pivot by middle treemap, which performs very
favourable in terms of stability when data updates, the reverse is true: it is very
stable when the data is updated, but not when an item is added.

Stability score

In total, five stability metrics were calculated for each of the three set sizes (see
Figures 8.10 and 8.11). To determine how well the different treemaps perform
overall in terms of stability a ‘stability score’ was calculated by linearly normalis-
ing the stability metrics (scaling values between 0 and 1) and averaging them for
each treemap. The stability scores for all treemaps are shown in Table 8.2.

Table 8.2: Stability scores and ranks for all treemaps. Lower scores mean better
stability.

Stability

Treemap Score Rank

Squarified 0.59 7

Slice and Dice 0.00 1

Strip 0.63 8

Spiral 0.46 5

Pivot by Size 0.45 4

Pivot by Middle 0.56 6

Pivot by Split Size 0.96 9

Hilbert 0.38 3

Moore 0.35 2

150



Table 8.2 shows that the Hilbert and Moore treemaps have the best (i.e., low-
est) stability scores after the slice and dice treemap. However, the slice and dice
treemap is not an attractive option for ‘real life’ use because of the very high av-
erage aspect ratio (see next section), which makes items hard, or even impossible,
to label and select.

Remaining metrics

Figure 8.12 shows the results of the comparison of different treemap layouts on
the three other common treemap metrics: aspect ratio, continuity and readability.

Figure 8.12: Aspect ratio, readability, and continuity metrics. Error bars represent
+/- 1 SE.

The first row of Figure 8.12 shows that the Hilbert and Moore algorithms
create treemaps with aspect ratios comparable to many other treemaps. Squari-
fied treemaps perform particularly well (mean aspect ratios 1.4, 1.3 and 1.3 for
the three set sizes, respectively, with 1 being the minimum) and slice and dice
treemaps perform particularly poorly (mean aspect ratios 16, 59 and 73). All
other algorithms produced mean aspect ratios in the range 1.8 to 2.8. Previous
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work (Tu and Shen, 2007) also found that asides from the squarified and slice and
dice treemaps, many treemaps are similar in terms of mean aspect ratio.

The second row of Figure 8.12 shows that the readability of the Hilbert and
Moore treemaps is lower than slice and dice, strip, and spiral treemaps, but similar
to pivot layouts. The poor readability of the Hilbert and Moore treemaps stems
from the localised reorientation (‘crumpling’) of Hilbert and Moore curves. How-
ever, this poor performance on the readability metric need not be detrimental for
user performance because the layout is very stable. Stable layouts, such as Hilbert
and Moore treemaps, eliminate the need to perform such a (slow) linear search
as encapsulated by the readability metric, because users learn where items are lo-
cated. In other words, it is unlikely that the poor readability of the layout will
affect user performance, because ‘reading’ the layout in order is not necessary to
locate an item when the layout is very stable. Last, the third row of Figure 8.12
shows that Hilbert and Moore treemaps have maximal continuity.

Results summary

The results of the simulations show that the Hilbert and Moore treemaps have the
best overall performance in terms of stability after the (very stable, but impractical
due to its high aspect ratio) slice and dice treemap. This is explained by the good
stability of the Hilbert and Moore treemaps both when data is updated and when
an item is added to the layout. Combined with the low aspect ratio and good
continuity of the treemaps generated by the Hilbert and Moore algorithms this
suggests that Hilbert and Moore treemaps are very suitable to be used for the
layout of application zones in SCOTZ.

8.7 Empirical study of location drift

Section 8.3 argued that the spatial stability of a treemap is not fully captured by
the distance change metric, and introduced location drift to overcome this lim-
itation. The previous section demonstrated that location drift can discriminate
between designs (see Figure 8.10). However, for location drift to be a useful met-
ric for the evaluation of treemap layouts, it should also be shown to relate to user
performance, similar to the validation of the readability metric in Bederson et al.
(2002). This section presents an empirical study which examined how various
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levels of distance change and location drift affect user performance. In particular,
it examines whether there is evidence that layouts with low distance change, but
high location drift impair user performance, as proposed in Section 8.3.

The study used five different layout conditions with widely differing spatial
properties resulting in substantially different metric values for distance change and
location drift. The participants’ tasks involved repeatedly selecting items within
the layouts as quickly and accurately as possible. All layouts consisted of 36 items
in a 6 × 6 matrix.

8.7.1 Layouts

The five experimental layout conditions included two control conditions repre-
senting end points of spatial stability: random, in which the location of every item
was randomly assigned prior to each selection trial; and stable, in which item
locations were fixed.

Figure 8.13: Layout updates for the low distance change condition.

The other three conditions were as follows:
Low distance change: Prior to each selection trial, item locations changed ac-
cording to one of the ‘rotation’ methods shown in Figure 8.13 (randomly chosen).
Low location drift: All item locations within each quadrant (of nine items) in the
layout were randomly assigned prior to each selection trial (i.e., all items always
stay in the same quadrant, but within that quadrant their locations change).
Semi-random: All item locations were randomly assigned prior to each selection
trial, with the caveat that 50% of items always stay in the same quadrant through-
out all the selection trials.
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Figure 8.14 shows the distance change and location drift metrics for each of
these layouts. The random layout has a mean distance change of 525 pixels (ap-
proximately half the total layout size, which is 1024 by 1024 pixels) and a location
drift of 36. For readability, the metrics in Figure 8.14 are normalised based on the
metrics of the random layout (‘max’ denotes the the values for the the random

layout).

Figure 8.14: Metrics for the layouts used in the experiment.

Procedure

The experimental interface consisted of a 36-item square grid with distinct icons
on the left side of the screen, and a cued target on the right side (see Figure 8.15).
Participants were instructed to click on the target icon region as quickly and ac-
curately as possible. After each selection, the grid was temporarily hidden from
view and updated according to specifics of the layout (see previous section). Next,
the participant was cued to press a ‘next’ button in the middle of the screen, after
which a new item was cued, etc. A Zipfian distribution of targets was used: one
item was cued 18 times, one 9 times, then (6, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
1) for the others (α=1.0, R2=.97). The items were cued in random order.
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Figure 8.15: The experimental interface.

Design

The selection time dependent measure was analysed using a 5×3 RM-ANOVA for
factors layout and experience (low, medium or high). Experience was determined
by assigning first-time item selections as low experience, 2rd–14th selections as
medium experience, and 15th–18th selections as high experience.

The experiment used a within-subject design, with all participants performing
tasks in all layouts. The different layouts were presented in random order. After
completion of the series of tasks in each layout the icons that had to be selected
more than once in that layout were deleted from the icon collection, such that
they were not re-used in following conditions. The experimental interface was
displayed on a monitor with 1280 × 1024 pixels resolution.

8.7.2 Participants

Thirty students, naı̈ve about the goal of the experiment, participated (15 male, 15
female, 18-39 years old). Participation lasted approximately 20 minutes.

8.7.3 Results and discussion

Any trial requiring more than one click to select the target was deemed an error
and was removed from the analysis (∼ 1% of selections).
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There were significant main effects1 for both layout (F2.9,84.1=22, p<.001) and
experience (F1.4,39.5=133, p<.001). The stable layout was the fastest (1.4s), fol-
lowed by the low location drift layout (1.7s), , the semi-random layout (1.9s), the
low distance change layout (1.9s) and the random layout (1.9s). Post hoc compar-
isons (Bonferroni correction, α=.05) show pairwise differences between all lay-
outs and the stable layout. Figure 8.16 shows a significant layout×experience in-
teraction (F4.2,122.9=13, p<.001), caused by relatively constant performance across
experience with the random, semi-random and low distance change layouts in
contrast to marked improvement of user performance with the low location drift

and stable layouts.

Figure 8.16: Experiment mean selection times for the five layouts by experience
including 95% within-subjects confidence intervals (Loftus and Masson, 1994;
Cousineau, 2005; Morey, 2008).

The design of SCOTZ aims to maximise stability because it supports rapid
acquisition of familiar targets in particular. To gain further insight into user per-
formance on familiar targets, this section presents planned analysis of data from
the ‘high’ experience level. The results show a significant main effect for layout

1 Analysis corrected for deviance from sphericity by means of Greenhouse-Geisser where re-
quired.
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(F2.6,75.1=15, p<.001). The stable layout was the fastest (0.9s), followed by the
low location drift layout (1.3s), the semi-random layout (1.6s), the low distance

change layout (1.7s), and the random layout (1.9s).
Post hoc analysis (Bonferroni correction, α=.05) reveals that the stable layout

is faster than all other layouts (all p’s <.001). Also, low location drift layout
significantly improves performance compared to the random layout (p<.01) and
the low distance change layout (p<.05).

The finding that the low location drift layout significantly improves perfor-
mance compared to the low distance change layout is interesting, as the former
is a layout with higher average distance change than the latter. However, location
drift of the former is much lower, which provides a good explanation of why it
performs better. When location drift is low the development of spatial memory
for item locations is aided; it is easier to learn item locations when they stay in the
same area of the screen.

Figure 8.17: Experiment mean selection times on the ‘high’ experience level, split
and sorted by distance change and location drift, including 95% within-subjects
confidence intervals (Loftus and Masson, 1994; Cousineau, 2005; Morey, 2008).
These plots are a combination of the data presented in Figure 8.14 and 8.16.

The results of the study suggest that location drift is a more robust predictor of
user performance than distance change. This is shown in Figure 8.17. Figure 8.17
shows the average selection times on the ‘high’ experience level split and sorted
by distance change (left) and location drift (right). The ‘peak’ in Figure 8.17 (left)
is the low distance change layout, which has relatively low distance change, but
high location drift. Correlation analysis of the data shown in Figure 8.17 reveals
a significant strong correlation between location drift and selection time (r=.95,
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p<.05), but the correlation between distance change and selection time fails to
reach significance (r=.85, p>.05). On the individual (within subject) level (Bland
and Altman, 1995) correlation coefficients for location drift and distance change
(and time) are r=.56 (p<.001), and r=.50 (p<.001), respectively.

8.7.4 Results summary

The results show that (1) a layout with low distance change, but high location drift
impairs user performance and (2) location drift seems to be a more robust predictor
of user performance than distance change. This demonstrates that location drift
is a valuable metric for the evaluation of treemaps and to accurately capture the
stability of a treemap layout location drift needs to be taken into account

8.8 Conclusion

This chapter introduced two new treemaps, Hilbert and Moore. The Hilbert and
Moore treemaps have very good stability, while aspect ratio is low and continuity
is high.

The new location drift metric (1) is able to discriminate between different
treemap layouts, (2) can explain some effects on user performance which the
commonly used distance change metric can not account for and (3) appears to
be a more robust predictor of user performance than the distance change metric.
Additionally, the finding that the low location drift layout significantly improves
performance compared to the low distance change layout is interesting, as the
former is a layout with higher average distance change than the latter. However,
location drift of the former is much lower, which provides a good explanation of
why it performs better. When location drift is low development of spatial memory
of item locations is aided; it is easier to learn item locations when they stay in the
same area of the screen. These results show that to accurately capture the stability
of a treemap layout not only distance change needs to be analysed, but location
drift as well.

In all, Hilbert and Moore are good treemaps to be used in SCOTZ because
of their good stability when data is updated, when many data updates have taken
place and when items are added or deleted.
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Chapter IX

Discussion and Future Work

9.1 Summary and research objectives

The research presented in this thesis addressed two research objectives: (1) to fur-
ther explore and characterise how people switch between and organise windows
and (2) to develop a new window switching interface that specifically tries to ex-
ploit the characteristics of window use, as well as provide a layout that is spatially
stable. The first objective was reached with the longitudinal log study using Py-

Logger. Using data analysis and visualisations generated with Window Watcher

tool many insights were gained about how people interact with windows, and how
they make use of the various methods available to switch between windows. The
strong revisitation patterns for application/window switching observed in the Py-

Logger study, combined with the desire to create a window switching tool which
is spatially stable, led to the development of SCOTZ. Various empirical studies
demonstrated the success of SCOTZ and its underlying principles. Finally, the
various studies inspired the development of two new treemap algorithms, Hilbert
and Moore, to meet the requirements of SCOTZ in terms of spatial stability.

9.2 Limitations of work

This section discusses various limitations of the work presented in this thesis: the
user population of the studies, potential privacy concerns by the participants in the
PyLogger study and the fact that most studies took place in a lab setting.

9.2.1 User study population

The participants in the studies reported in this thesis were predominantly students
or employees of a university’s computer science department. This implies that the
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population is one of advanced/expert users. For some of the results of PyLogger
study (Chapter 5) this limits generalisability. For example, usage patterns might
differ for a less advanced user population. Therefore, future research could focus
on different types of user groups. Nevertheless, the comparison with the results
found in Hutchings et al. (2004) is valid, as this study had a very similar user
population. Also, issues found regarding the (in)efficiency of different Taskbar
button types and the somewhat limited use of the Alt+Tab functionality can be
expected to be similar, if not exasperated, for a less advanced user population.
Revisitation patterns are nearly identical to previous work and show little inter-
subject variability, and are therefore not likely to be different for a less advanced
user population.

In the various studies examining spatial stability and size morphing (Chap-
ter 7) and the location drift study (Chapter 8) it is unlikely that the characteristics
of the user population have affected the results, as these studies comprised of sim-
ple visual search and selection tasks, for which no effect of computer experience
can be expected.

In the lab study comparing SCOTZ with the Windows 7 Taskbar and Alt+Tab
(Chapter 7) the user population probably affected the results in the Alt+Tab con-
dition. Most probably, a less advanced user population would have performed
worse in the Alt+Tab condition, as the ordering of the windows in the Alt+Tab
window is difficult to understand and the key combination requires some practice
and keyboard dexterity.

9.2.2 Privacy concerns

Some participants in the PyLogger study might have had concerns about their
privacy, as window titles were recorded, and therefore could have changed their
behaviour because they knew they were being observed. However, many partici-
pants commented that they had completely forgotten about the logging tool when
they were contacted again after the three-week period (note: participants were
at this point reminded verbally that they could choose to delete any data before
handing it over to the researchers). Also, a post-study questionnaire revealed that
participants rarely consciously considered that the logger was running, and rarely
to never changed their behaviour because the logger was running.
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9.2.3 Lab setting

All studies (except the PyLogger study and qualitative study reported in Sec-
tion 7.5) reported in this thesis took place in a lab setting. As the majority of
studies, as noted before, comprised of simple visual search and selection tasks
there is no reason to expect the results do not apply outside the lab setting. If
anything, the lab setting minimised distraction. For the study which compared
SCOTZ with the Windows 7 Taskbar and Alt+Tab the lab setting implied that the
participants were using an unfamiliar computer, possibly with a different layout
(or even different operating system) than the system they use normally. While this
could mean that some participants were familiar with the Windows 7 Taskbar and
Alt+Tab while others were not this cannot have unfairly advantaged SCOTZ in
any way as (1) all participants were not familiar with SCOTZ and (2) the study
used a within-subject design.

However, as all studies concerning SCOTZ took place in a lab setting (except
the qualitative study reported in Section 7.5) it remains unknown how SCOTZ
performs under ‘real-life’ conditions. Nevertheless, the various studies in Chap-
ter 7 validate the underlying principles of SCOTZ, and there is no reason to expect
these do not apply under more realistic conditions. A final question that remains
unanswered is how to best introduce a tool (like SCOTZ) which provides a new
mechanism for an action for which the fundamentals of the interaction have hardly
changed for many years. After all, habits are hard to break (e.g. Singley and An-
derson, 1989).

9.3 Extending the results

This section explores to what extent the results reported in this thesis can (and can
not) be extended to other applications, research areas and contexts.

9.3.1 An empirical characterisation of window use

The results presented in Chapter 5 mainly focused on aspects related to window
switching, but the results are informative for research involving other aspects of
window use as well.

161



For example, several results of the empirical study suggest that people expe-
rience difficulty keeping track of the position of windows, both in terms of the
x,y-position and the position in the z-order: (1) even when a direct click on the
window to switch to it is possible people do not always use it and (2) analysis
of the use of Alt+Tab reveals that this method is mainly used to switch back to
the most recently used window, while going one step ‘further’ than that could po-
tentially cover almost all window switches. These results suggest that users have
trouble keeping track of windows. Users might benefit from more feedback about
the location of windows on the screen, both in terms of x,y-position as well as the
relative position of windows in the z-order.

A second example of the extendability of the results presented in Chapter 5 is
related to the ‘splattering’ window management style. Better support for tiling, or
viewing multiple window simultaneously with little overlap, might benefit users
who prefer a splattering window management style. Microsoft Windows 7 does
provide some support for tiling windows: when the user drags a window to the
left/right edge of the screen it automatically expands to fill half of the screen. This
allows for two windows to be tiled next to each other with relative ease. Including
more features to facilitate displaying multiple windows (also see section 2.3.2)
might support splatterers better in their window use and management.

9.3.2 Visualising large data sets

Chapter 4 presented Window Watcher, a tool for visualising the large data files
generated by PyLogger. The goals of Window Watcher were to visualise (1) spa-
tiotemporal, (2) spatial and (3) temporal data aspects, as well as (4) user actions.
Spatiotemporal data is effectively captured by the ‘playback’ window, which pro-
vides a visual replay of the data sets, albeit sped up. The visualisation of this spa-
tiotemporal aspect has proven the most useful in my analysis, not only because it
reveals patterns (nearly) impossible to extract from the log data, it also inspired
the analysis, in particular the improved definitions of window management styles.
The spatial aspect of the data is captured by the heatmap, though I observed that
due to the ‘additive’ effect of the heatmap (i.e., with every update the ‘popularity’
of the various areas of the screen is cumulatively recalculated) temporal patterns
are visible as well when the heatmap is viewed while it is being dynamically
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updated. These temporal aspects of the data have proven most difficult to cap-
ture effectively; when the visualisation is ‘zoomed in’ on too small a timeframe
all context (previous/next behaviours) is lost, while a larger timeframe means it
quickly becomes too coarse to observe small, but important details. Finally, the
visualisation of user actions in Window Watcher is limited to mouse actions, and
does not include keyboard actions. Though a ‘replay’ of Alt+Tab use, for exam-
ple, could theoretically be implemented as well, this is a case where information
is more effectively gathered from the log data (e.g., the average position of the
target window in Alt+Tab).

9.3.3 Support for revisitation with treemaps

Section 6.4 already showed how support for revisitation with treemaps could be
applied in a different context, i.e., website revisitation. Figure 9.1 shows another
example of how size morphing could be applied in a different context: the (Win-
dows) desktop environment. The Windows desktop contains (shortcuts to) appli-
cations and documents. By increasing the size of the icons a layout resembling an
‘iconic tagcloud’ is generated, and the most accessed applications become easier
to find and select.

Figure 9.1: A mockup of a Windows desktop with size morphing applied to the
application shortcut icons.
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Another example of how the design principles presented in this thesis could
be used in a different context is shown in Figure 9.2. Figure 9.2 shows the 7 Sticky

Notes application (http://www.7stickynotes.com/) for Microsoft Win-
dows 7. With 7 Sticky Notes, users can place ‘post-it’ notes on the desktop, and
modify their colour, size, location, and so forth. Alternatively though, all notes
could be equal sized to start off with, and be set to more/less important by the
user, in response to which the notes will grow/shrink. If a Hilbert/Moore treemap
is used, it means that the notes can dynamically grow/shrink, while the locations
do not change much, and new notes can be added without affecting the stability
of the layout much. This means that the user can focus his/her attention on the
goal of the application (making notes and allocating importance to them), without
having to spend (cognitive) effort on the spatial layout of the notes.

Figure 9.2: The 7 Sticky Notes application (Source: http://www.
7stickynotes.com/screenshots.php)

9.3.4 The importance of spatial stability

The experiment in Chapter 7 demonstrated the importance of spatial stability of
a user interface. Many elements of the user interface on a ‘standard’ computer
are already quite stable, e.g., the icons on the desktop do not move, and the order
of the list of bookmarks in a web browser does not change. SCOTZ demon-
strates how such stability can be achieved for transient elements such as win-
dows. However, people who own or use several computers (e.g., at the work-
place and at home) do not experience such stability across contexts unless they
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invest (a lot) of effort into ‘mirroring’ both environments (note that SCOTZ’s
settings and variables are easily transportable between computers). Automatic
synchronisation systems do exist for specific applications (e.g., http://www.
bookmarksync.com/), but there is no easy method to mirror the layout of, for
example, the desktop (including desktop icons, and applications that are ‘pinned’
to the Taskbar in Windows 7) across systems. Possibly, users who use several
different computers regularly could benefit from improved support for synchro-
nizing (desktop) layouts between these various environments, such that they have
a spatially stable computing environment regardless of which computer they are
using.

9.3.5 Keyboard users

Although SCOTZ provides support for keyboard users (by facilitating Alt+Tabbing
through all the windows) it is primarily a mouse-driven system. Despite the fact
that one ‘heavy’ Alt+Tab user in the qualitative study (see section 7.5) remarked
that the size morphing in SCOTZ helped him to guide attention towards the appli-
cation he was aiming for when using Alt+Tab, this seems to be a coping strategy
rather than an actual benefit of SCOTZ. When using Alt+Tab to switch between
windows with SCOTZ, the order in which it steps through the windows is con-
sistent with Alt+Tab’s default behaviour, but (unavoidably) rather confusing, as
this does not match the order in which SCOTZ displays the windows. Future
work should explore window switching tools for keyboard users further (for more
details, see section 9.4.3).

9.3.6 SCOTZ on large and small displays

SCOTZ was mainly designed for, and tested on (see Chapter 7) ‘regular’ single or
multiple monitor setups (when using a multiple monitor setup SCOTZ will appear
on the screen where the mouse cursor was located when SCOTZ was invoked).
This section explores to what extent SCOTZ could be successful on either (very)
large or small displays.
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Large displays

As noted in section 6.3.3, SCOTZ is suitable for large displays as it can be dis-
played as a small window positioned under the mouse cursor, thus preventing the
user from having to move the mouse cursor over large distances. However, a
general problem with window switching on large displays is that switching to a
window will only cause it to be shifted to the top of the z-order, but its x,y-position
is unaffected. SCOTZ’s behaviour is consistent with other window switching in-
terfaces on this aspect, and therefore behaves predictably. However, users of large
displays (or even ‘normal’ multi-monitor setups) sometimes fail to notice where
the focal window is located, as it may be outside the their field of view. Hoff-
mann et al. (2008) already demonstrated the success of various graphical cues
(highlighting the target window and presenting graphical trails) to alleviate this
problem. Though outside the scope of this thesis, an alternative approach could
be to not only shift the focal window to the top of z-order, but also change its x,y-
position to bring it closer to where the user is currently focusing. To prevent all
windows ending up on one big ‘heap’ on one screen location, options for sending
windows back to the periphery or outside the field of view should be implemented
as well.

Small displays

Small-screen devices such as smartphones are often application-centric, with an
application either running or not running (multiple entities of an application are
uncommon or impossible), and applications usually taking up all available screen
estate. This means that users are always reliant on a switching interface to switch
between tasks/applications (as opposed to the use of a direct click on the target).

A default feature for switching between applications on the Android mobile
OS is a list with the six most recently used applications, which is shown after a
long press on the ‘Home’ button. Figure 9.3a shows a downloadable custom ver-
sion of this functionality called MoreRecent (http://code.google.com/
p/morerecent/), which shows the 15 most recently used applications, sorted
by recency or application name.

Figure 9.3b shows how size morphing, similar to SCOTZ, could be applied in
such an environment, with the most used applications growing in size. However,
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(a) (b)

Figure 9.3: (a) The MoreRecent app for the Android OS (Source: http://
code.google.com/p/morerecent/), (b) a mock-up of the MoreRecent
app using size morphing.

care should be taken that the lesser used (and therefore smaller) applications do
not become too small, which would make selecting them hard or impossible on a
small screen.

9.4 Future work

This section explores several areas of future work that could lead to a better under-
standing of task and window switching, as well as address the needs of a specific
group of users, i.e., keyboard shortcut users.

9.4.1 Improved understanding of user behaviour

While the results of the study presented in Chapter 5 revealed many interesting
and novel findings regarding interaction with windows, many questions remain
unanswered, in particular regarding the reasons for and the context of certain be-
haviour. For example, the finding that even when the target window is (almost)
completely visible (90 to 100% visibility) another method rather than a direct click
is used for 26.4% of window switches begs the question why this is happening.
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Did the user not see the window and why? Was the user distracted? Was a window
switching interface used purely out of habit? Unfortunately, such questions can
not be answered by inspecting the log files, nor by using the visualisation methods
presented in Chapter 4. Therefore, future work should focus on determining why

certain behaviours happen, e.g., by think-aloud protocols, or by simulating certain
‘critical’ cases in a lab setting. At the same time, asking people about the rea-
sons for their behaviour and underlying mental processes is notoriously risky, as
demonstrated in the classic study by Nisbett and Wilson (1977), where passersby
in a shop were presented with pairs of identical garments, e.g., stockings:

“Subjects were asked to say which article of clothing was the best qual-

ity and, when they announced a choice, were asked why they had chosen

the article they had. There was a pronounced left-to-right position effect,

such that the right-most object in the array was heavily over-chosen. For

the stockings, the effect was quite large, with the right-most stockings be-

ing preferred over the left-most by a factor of almost four to one. When

asked about the reasons for their choices, no subject ever mentioned spon-

taneously the position of the article in the array. And, when asked directly

about a possible effect of the position of the article, virtually all subjects

denied it, usually with a worried glance at the interviewer suggesting that

they felt either that they had misunderstood the question or were dealing

with a madman.” (Nisbett and Wilson, 1977, pp. 243-244)

9.4.2 Task switching on small displays

Section 9.3.6 described an example of how SCOTZ could be implemented on
small-screen devices, such as a smartphone. However, the comparative success
of such an installment of SCOTZ could be better predicted if more were known
about application and task switching on such small mobile devices. While there
are studies regarding switching between tasks on a mobile device and different
contexts (e.g., Tamminen et al., 2004), there is little known about task switch-
ing on the mobile- or smartphone. On one hand, it seems reasonable to suspect
to find similarities to switching on the desktop computer, such as the revisitation
patterns described in section 5.8.2 (a few applications are revisited a lot, but oth-
ers are hardly ever revisited). On the other hand, differences can be expected, as
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these devices are more application-centric than desktop computers, and some ap-
plications on smartphones do not even accommodate having multiple documents
opened concurrently for one application. This different approach influences how
users can (and will) use these devices.

In general, the “know thy user” admonition applies equally well to mobile con-
texts as it does to window switching on the desktop computer. As smartphones are
rapidly becoming more popular this is a useful avenue for task switching research
to explore.

9.4.3 Enhanced support for keyboard users

Keyboard shortcut users are a small, but significant portion of computer users.
Additionally, it is widely agreed that keyboard shortcuts are a way for users to be
more efficient as they progress to higher levels of expertise, without compromis-
ing the learnability of the user interface for beginning users (Nielsen, 1993; Lane
et al., 2005; Dix et al., 2003). Multiple studies have demonstrated performance
advantages of keyboards shortcuts over toolbar icons and traditional menu struc-
tures (Lane et al., 2005; McLoone et al., 2003; Odell et al., 2004). Future work
should investigate how keyboard users can be supported better in their window
switching, and there are several problems to be addressed.

The first problem when it comes to addressing the needs of keyboard users is
the fact that it remains elusive what triggers a computer user to become a keyboard
shortcut user. Previous work has found a weak correlation between the number of
hours per week someone uses a computer and the use of keyboard shortcuts (Peres
et al., 2004, 2005). Once again, to “know thy user” seems desirable before formu-
lating any design recommendations. Unfortunately, the empirical study presented
in this thesis failed to shed light on the matter.

Second, it is not clear how well people understand Alt+Tab’s ordering of win-
dows. Though informally, during one of my studies a participant made the com-
ment that it “would be great if Alt+Tab could be used to access the most recently
used window”, which is in fact the essence of what Alt+Tab does. This demon-
strates a clear misunderstanding of how Alt+Tab works. The way Alt+Tab is used
seems to confirm this confusion: people mainly use it to just go back to the most
recently used window, not traversing any further down the list of windows, even
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though more than 80% of all target windows of a window switch are either on
position 1 or 2 in the Alt+Tab list. Improving users’ understanding of Alt+Tab’s
order might promote more efficient use of it, though I note that understanding the
‘inner workings’ of an interface is not necessarily required to be able to use it
proficiently.
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Kärkkäinen, L. and J. Laarni (2002). Designing for small display screens. In Proc.

of NordiCHI ’02, pp. 227–230. ACM.

Keim, D. A. (2002). Information visualization and visual data mining. IEEE

Transactions on Visualization and Computer Graphics 8(1), 1–8.

Kellar, M., C. Watters, and M. Shepherd (2006). The impact of task on the usage
of web browser navigation mechanisms. In Proc. of GI 2006, pp. 235–242.

Kumar, M., A. Paepcke, and T. Winograd (2007). EyeExposé: Switching appli-
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façades: towards fully adaptable user interfaces. In Proc. of UIST ’06, pp.
309–318. ACM.

Tamminen, S., A. Oulasvirta, K. Toiskallio, and A. Kankainen (2004). Under-
standing mobile contexts. Personal Ubiquitous Comput. 8, 135–143.

Tan, D. S., B. Meyers, and M. Czerwinski (2004). Wincuts: manipulating arbi-
trary window regions for more effective use of screen space. In Proc. of CHI

EA ’04, pp. 1525–1528. ACM.

Tashman, C. (2006). Windowscape: A task oriented window manager. In Proc.

of UIST ’06, pp. 77–80. ACM Press.

Tauscher, L. and S. Greenberg (1997). Revisitation patterns in world wide web
navigation. In Proc. of CHI ’97, pp. 399–406.

Teitelbaum, R. C. and R. E. Granda (1983). The effects of positional constancy
on searching menus for information. In Proc. of CHI ’83, pp. 150–153.

Tourangeau, R. (2001). Remembering what happened: Memory errors and survey
reports. In A. Stone, J. Turkkan, C. Bachrach, J. Jobe, H. Kurtman, and V. Cain
(Eds.), The Science of Self-Report: Implications for Research and Practice, pp.
29–47. Lawrence Erlbaum.

186



Tractinsky, N. and D. Zmiri (2005). Exploring attributes of skins as potential
antecedents of emotion in HCIs. In P. Fishwick (Ed.), Aesthetic Computing.
MIT Press.

Treisman, A. (1986). Properties, parts, and objects. In K. Boff, L. Kaufman, and
J. Thomas (Eds.), Handbook of perception and human performance. Wiley.

Treisman, A. M. and G. Gelade (1980). A feature-integration theory of attention.
Cognitive Psychology 12(1), 97–136.

Truemper, J. M., H. Sheng, M. G. Hilgers, R. H. Hall, M. Kalliny, and B. Tandon
(2008). Usability in multiple monitor displays. SIGMIS Database 39, 74–89.

Tu, Y. and H. Shen (2007). Visualizing changes of hierarchical data using
treemaps. In IEEE Transactions on Visualization and Computer Graphics, pp.
1286–1293.

Uehling, D. L. and K. Wolf (1995). User action graphing effort (UsAGE). In
Proc. of CHI ’95, pp. 290–291. ACM.

van Dam, A. (1997). Post-WIMP user interfaces. Commun. ACM 40, 63–67.

van Wijk, J. J. and H. van de Wetering (1999). Cushion treemaps: Visualization of
hierarchical information. In Proc. of INFOVIS ’99, pp. 73–78. IEEE Computer
Society.

Wattenberg, M. (1999). Visualizing the stock market. In Proc. of CHI EA ’99, pp.
188–189. ACM.

Wattenberg, M. (2005). A note on space-filling visualizations and space-filling
curves. In Proc. of InfoVis ’05, pp. 24–29. IEEE Computer Society.

Wickens, C. (1992). Engineering psychology and human performance (2nd ed.).
HarperCollins.

Wickens, C., S. Gordon, and Y. Liu (1998). An introduction to human factors

engineering (2nd ed.). Addison-Wesley.

187



Wolfe, J. and W. Gray (2007). Guided search 4.0: Current progress with a model
of visual search. In W. Gray (Ed.), Integrated Models of Cognitive Systems, pp.
99–119. Oxford.

Wolfe, J. M., K. R. Cave, and S. L. Franzel (1989). Guided search: an alternative
to the feature integration model for visual search. Journal of Experimental

Psychology: Human Perception and Performance 15(3), 419–33.

Wolfe, J. M. and T. S. Horowitz (2004). What attributes guide the deployment
of visual attention and how do they do it? Nature Reviews Neuroscience 5(6),
495–501.

Xu, Q. and G. Casiez (2010). Push-and-pull switching: window switching based
on window overlapping. In Proc. of CHI ’10, pp. 1335–1338. ACM.

188


	List of Tables
	List of Figures
	Introduction
	Research domain
	Current situation
	Research objectives
	Contributions
	Publications related to this thesis

	Window Management Tools
	Commercial window switching tools
	Microsoft Windows
	Mac OS
	Empirical evaluations

	Task-based approaches
	Window organisation
	Support for interacting with overlapping windows
	Support for displaying multiple windows
	Comparing overlapping and tiled approaches

	Eye-gaze input

	Related Work
	Studies of window use
	Switching between windows
	Display space management
	Large displays and multi-monitor setups

	Visual search
	Spatial cognition
	Motor skills

	PyLogger and Window Watcher: Tools for Studying Window Use
	Contributions and findings
	Data collection methods
	Visualisation tools
	PyLogger
	Accessing window information
	Detecting change
	Recording user actions

	Window Watcher
	Spatiotemporal data
	Spatial data
	Temporal data
	User actions

	Conclusion

	An Empirical Characterisation of Window Use
	Contributions and findings
	Definitions
	Participants and procedure
	Number of windows
	Open windows
	Non-minimised windows
	Visible windows
	Applications and windows

	Window switching
	Frequency
	Methods used for switching between windows
	Methods used for opening windows
	Methods used for closing windows

	Tools for switching between windows
	Windows Taskbar
	Direct click
	Windows Alt+Tab

	Display space management
	Window management styles
	Empty space

	Revisitation patterns
	Window revisitation
	Application revisitation

	Window geometry management
	Comparison to previous studies
	Implications for the design of window switching tools
	Number of windows
	Window management styles
	Grouping by application
	Z-ordering
	Support for revisitation

	Conclusion

	Supporting Window Switching with SCOTZ: Design and Implementation
	Contributions and findings
	Design objectives
	Stable layout
	Support for revisitation
	Support for various display sizes
	Support for keyboard and mouse input
	Support for application launching
	Options for end-user customisation

	SCOTZ
	Stable layout
	Support for revisitation
	Support for various display sizes
	Support for keyboard and mouse input
	Support for application launching
	Options for end-user customisation

	Conclusion

	SCOTZ: Theoretical and Empirical Validation
	Contributions and findings
	Spatial stability
	Experiment: Stable, frequency, or recency?
	Experiment: Does size morphing cause too much spatial instability?

	Size morphing and targetting time - theoretical analysis
	Can size morphing lead to improved item targetting times?
	Can treemap layouts lead to improved item targetting times?

	Size morphing and search time
	Experiment: Does size morphing support guided search?
	Eye-tracker study

	Qualitative study
	Lab study
	Method
	Procedure
	Design
	Software and hardware
	Questionnaires
	Participants
	Results and discussion

	Conclusion

	Enhanced Spatial Stability with Hilbert and Moore Treemaps
	Contributions and findings
	Treemap algorithms
	Treemap stability
	Other treemap metrics
	Hilbert and Moore treemaps
	Hilbert and Moore space-filling curves
	Hilbert and Moore treemap algorithms

	Theoretical comparison of treemaps using metrics
	Method
	Results

	Empirical study of location drift
	Layouts
	Participants
	Results and discussion
	Results summary

	Conclusion

	Discussion and Future Work
	Summary and research objectives
	Limitations of work
	User study population
	Privacy concerns
	Lab setting

	Extending the results
	An empirical characterisation of window use
	Visualising large data sets
	Support for revisitation with treemaps
	The importance of spatial stability
	Keyboard users
	SCOTZ on large and small displays

	Future work
	Improved understanding of user behaviour
	Task switching on small displays
	Enhanced support for keyboard users



