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Abstract

The Quality of Experience(QoE) of distributed internet applications can be
improved by placing servers closer to the clients. In this thesis, we analyse
and quantify the impact of application component placement on the QoE. To
determine optimal application component placement we propose a metric Com-
munication Affinity. Communication Affinity indicates the coupling between
two application components (stretch). Moreover, the presented concepts lead
to a novel approach to schedule the virtual machines on distributed clouds.

This work will be submitted to FGCS as:
Deepthi Devaki Akkoorath, Rudolf Strijkers, Marc X. Makkes, Oskar van Deven-
ter, Adam Belloum, Cees de laat, Robert J. Meijer, “A metric for QoE-optimal
placement of applications”





Acknowledgements

I would like to thank all those great people without whose help and support,
this thesis would not have become the way it is now. First and foremost, I
would like to thank my supervisor, Rudolf Strijkers for his continuous support
throughout the work. The regular discussions with Oskar van Deventer, Robert
Meijer, Marc Makkes and Adam Belloum has been very helpful in my progress.
I thank them all for their support.

I would like to thank TNO for taking me as an intern. I am very grateful
to Nuffic for supporting me with HSP Huygens scholarship without which my
master studies at UvA would not have been possible.

Next, is my friends who had always been my motivation through out my
studies. I thank them for proof reading my thesis and for the useful comments
which helped me to shape my thesis.

Last but not the least, I thank my parents.





Contents

List of Figures iv

List of Abbreviations vi

1 Introduction 1
1.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Techniques for Improving QoE 5
2.1 In-network Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 IntServ and DiffServ . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Programmable Networks . . . . . . . . . . . . . . . . . . . 7

2.2 Infrastructure based Solutions . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Content Delivery Networks . . . . . . . . . . . . . . . . . 9
2.2.2 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Dynamic Placement of Applications . . . . . . . . . . . . . . . . 11

3 Infrastructure Requirements 13
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Virtual Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Impact of Application Placement on Response Time 21
4.1 Experiment on Amazon Cloud . . . . . . . . . . . . . . . . . . . 21
4.2 Measuring the impact of latency . . . . . . . . . . . . . . . . . . 24
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 A Framework for Optimal Placement 27
5.1 Communication Affinity . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Using Communication Affinity for Optimal Placement Decision . 29
5.3 Optimal placement for application with three components . . . . 30
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ii



6 Optimal Placement of Applications 33
6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion 41
7.1 Research Questions Revisited . . . . . . . . . . . . . . . . . . . . 41
7.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 44

A Applications 47

B Softwares 48

C Application with Memcache 49

D Scripts 52
D.1 Change latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
D.2 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iii



List of Figures

1.1 Geographical location of different cloud sites . . . . . . . . . . . . 2
1.2 The upload process to a local server and server in the Internet . 3

2.1 Evolution of QoE improvement techniques . . . . . . . . . . . . . 5
2.2 Operation of IntServ: Resource Reservation by signalling along

the path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Operation of DiffServ at a node: Traffic classification . . . . . . . 7
2.4 Active networks: Active routers process Code embedded in packet. 8
2.5 UPVN: NE is virtualized in Applicaitons. Application specific

code can be run on NE using AC. . . . . . . . . . . . . . . . . . . 8
2.6 Components of a CDN . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Dynamic placement of application on public clouds . . . . . . . . 12

3.1 Interactions between entities in an application that can dynami-
cally place it services . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Infrastructure that supports dynamic placement of computation . 16
3.3 Architecture for the infrastructure for dynamic placement of ap-

plication components. . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Virtual Infrastructure for the experiments . . . . . . . . . . . . . 19
3.5 Simulation of WAN . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Components and interactions in Experiment 4.1 . . . . . . . . . . 22
4.2 Locations of Amazon EC2 used in Experiment 4.1 . . . . . . . . 22
4.3 Response time of the application for different configurations in

Amazon EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Change in response time of Application A with latency . . . . . 24
4.5 Change in response time of Application B with latency . . . . . . 25

5.1 A model of application components and the affinity between the
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Response time calculated for different location of a server . . . . 31
5.3 Response time for different configurations . . . . . . . . . . . . . 32

6.1 Processes in experiments . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Application settings used in experiments . . . . . . . . . . . . . . 35

iv



6.3 Response time for clients accessing Smart server and Static server
with application A . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Comparing response time for applications with different affinity . 37
6.5 Response time for static and moving server with application B . 38
6.6 Response Time for static and optimizing server with and without

cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



List of Abbreviations

CDN Content Delivery Networks

DNS Domain Name System

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IP Internet Protocol

QoE Quality of Experience

QoS Quality of Service

RTT Round Trip Time

URL Uniform Resource Locator

VM Virtual Machine

vi





Chapter 1

Introduction

Internet is the fabric for applications and services we use in our daily life such
as social networking, news, entertainment and business. Cloud computing has
become a way to deploy internet applications without upfront investments in
the servers, around the world. Cloud computing refers to computational and
application resources provided as utilities over the Internet as “a pay as you go”
service [3]. On Infrastructure as a Service(Iaas) clouds, users can create and
run virtual machines on demand.

The public cloud infrastructures are available at different locations in the
world (Figure 1.1), which enables us to place the applications anywhere in
the world. This has many consequences to the internet applications. The on-
demand provisioning of resources on cloud enables the application to dynam-
ically adapt its location by creating or moving virtual machines. In addition,
the internet application can grow dynamically by adding new virtual machines
of its components to satisfy user demands, for scalability and robustness.

Recent literature shows the potential advantage of hosting mobile applica-
tions in the cloud to save energy in mobile devices by offloading computation to
the cloud [14]. This shows that, in future, more applications will be hosted in
the Internet. Unlike the desktop applications, Internet application’s Quality of
Experience(QoE) is also influenced by the network latency, server location and
communication patterns.

Latency introduced due to the distance in network increases the response
time of the internet applications. The increasing network traffic, unreliable
networks and network congestion add to the communication latency, thereby
decreasing QoE of these applications. The best effort delivery model of IP net-
works provides scalability and flexibility but does not ensure QoE. Even though
there are many models to ensure Quality of Service(QoS) for unreliable IP net-
work, limited QoE due to latency of long distance communication remains an
issue.
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Figure 1.1: Geographical location of different cloud sites. Data was collected from
each cloud providers website.

Content Delivery Networks(CDN) were introduced to distribute and cache
the contents at the edge of Internet. Distributing contents over the Internet
reduces latency to end-users and, core network traffic. CDN, thus improves the
performance of content delivery over the Internet. But current Internet Appli-
cations do more than static content delivery, whose QoE cannot be ensured by
CDNs.

Consider a photo sharing application where you upload photos to the In-
ternet. In order to optimize QoE, the response time must be minimized. If
the photo sharing application is hosted in the Internet, the response time for
uploading a photo will be in the order of seconds. Uploading a photo to a
webserver in user’s local network reduces the response time (Figure 1.2). If the
photo sharing service can place its server closer to the end-user, it can improve
QoE of the end-user. But what if the user is mobile or there are variable number
of users from different locations? In such cases, the applications need to adapt
to the changing environments to maintain its QoE.

When the internet applications grow dynamically or adapt to the changing
environment, by on-demand allocation of virtual machines on distributed public
clouds, a strategic placement of application’s virtual machines on the cloud
would help to improve the QoE. For example, the application creates a new
server closer to the user every time the user moves to a new location. This leads
to our research question stated in the next section.
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Figure 1.2: The upload process to a local server and server in the Internet

1.1 Research Question

We can dynamically place the application components anywhere on Internet on
demand. Can we optimize the QoE of an Internet application by dynamically
placing application components closer to end-users?

The research question can be further divided into following sub questions:

• Which factors determine the optimal placement of application compo-
nents?

• Can we automate the decision making of optimal application component
placement?

1.2 Contributions

An application’s QoE is affected by its response time. Dynamic placement of
application components reduces the response time, though it is not the case for
all applications. The improvement in response time depends on the location of
all components of the application as well as the communication pattern between
them. We introduce a metric called Communication Affinity which quantifies
the impact of application component placement on its response time. We pro-
pose a method for QoE-optimal placement decision of application components
on a distributed cloud, using communication affinity.

1.3 Thesis Outline

To understand the state of the art, we discuss the methods adopted in past
to improve QoE and QoS of Internet applications in chapter two. In chapter
three we discuss the requirements for the infrastructure that enables dynamic
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placement of applications on Internet and identify the basic components of the
infrastructure. In addition, we discuss an architecture for the infrastructure.

We analyse the impact of the placement of an application components on
its response time in chapter four. This study leads to the concept of Commu-
nication Affinity which is explained in chapter five. Communication Affinity
quantifies the effect of latency between various components of an application
on its response time. An optimal placement of application components can be
determined using Communication Affinity.

The experiments to evaluate the optimal placement strategy using communi-
cation affinity is explained in chapter six. The experiments use the architecture
and the framework of the infrastructure explained in chapter three for the im-
plementation of dynamic placement of application components. We present the
conclusions of our study and the direction for future work in chapter seven.
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Chapter 2

Techniques for Improving
QoE

Long distance communication over Internet can be inefficient due to unreliable
networks, congestion and packetloss. The Internet provided only a point-to
point best effort delivery [6]. Integrated Service (IntServ) and Differentiated ser-
vice (DiffServ) models were introduced to add functionalities to the best-effort
IP model to provide QoS for applications [6, 5] (Figure 2.1a). However, end-to-
end QoS across multiple domains by IntServ and DiffServ was not employed in
Internet. The complexity in policy agreements between multiple providers, for
example, agreement for payment and billing limits the adoption of these models
by ISPs. Later, programmable networks were introduced to add more applica-
tion specific processing of the packets [8]. But, none of these models addressed
the problem of communication latency, which limits the QoE of the applications.

Internet 
Application

Static 
Web contents

Users

QoS in
network

Internet

router

(a) QoS in network. Communication la-
tency is not solved.

Internet

Static 
contents

 Internet 
Application

Users

QoS in
network

router

(b) Contents moved into network. Latency
between user and content is reduced

Figure 2.1: Evolution of QoE improvement techniques
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Other solutions, built on top of the existing internet, were introduced to
reduce the communication latency and thereby improving QoE of internet ap-
plications. Content Delivery Networks(CDN) [15] improved the efficiency of
static content delivery by distributing and caching the contents at different lo-
cations in the internet (Figure 2.1b). CDNs were designed for static content
delivery; hence it did not solve the problem for other internet applications. The
idea of CDN was adopted by edge computing [22] to place applications closer to
the users. The edge computing infrastructures are designed for specific type of
web applications. Therefore, state of the art methods for improving QoE would
not suffice for a wide range of internet applications.

2.1 In-network Solutions

The separation of concerns between the network functionalities and the applica-
tion was an important design choice in the TCP/IP model which forms the basis
of the Internet [10]. In order to provide QoS for applications, new mechanism
to provide some control over end-to-end packet delays were added to the basic
IP model. These solutions were added to the core of the network which handles
packet forwarding and end-to-end packet delivery.

2.1.1 IntServ and DiffServ

Different applications have different QoS requirements. File-transfer, web brows-
ing and e-mail can tolerate delay but they cannot tolerate packet loss, while
multi-media applications are latency-sensitive but they can tolerate loss. How-
ever, the best-effort IP model provides equal treatment to all packets. In order
to facilitate application specific end-to-end QoS in Internet, two models were
introduced: Integrated Service model(IntServ) and Differentiated Service model
(DiffServ) [6, 5].

IntServ functions on a per-flow basis where QoS is provided for specific
packet streams [6]. In order to guarantee the QoS requirements, end hosts
specify their requirements using a signalling mechanism. Signalling mechanism
reserves resources along the path of the flow (Figure 2.2). End-to-end QoS can
be guaranteed only if all network devices in the path support IntServ and agree
to reserve resources for the flow. This requires every device in the path to main-
tain the states which limits its scalability [18].

DiffServ is a coarse-grained mechanism in which each packet is classified
into a particular traffic class. Each traffic is identified by a DS codepoint [5].
The routers in the network implement per-hop-behaviours associated with each
codepoint, to offer low-loss, low-latency, low-jitter etc (Figure 2.3 ).
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Resource Reservations

Network link 

(Tspec,FlowSpec)

Figure 2.2: Operation of IntServ: Resource Reservation by signalling along the path

Packet 
Classifier

queues for each 
traffic class

Packet Scheduling
(Per-hop behaviour)

Figure 2.3: Operation of DiffServ at a node: Traffic classification

Both models ensures QoS, how ever the QoE of internet applications depends
on the response time, which is limited by communication latency. Ensuring QoS
does not reduce the communication latency.

2.1.2 Programmable Networks

Some applications might require additional QoS other than low-delay or low-
jitter as provided by IntServ and DiffServ. It may be difficult to include every
application specific requirements in network protocols, especially when new ap-
plications are emerging [8]. Th programmable network enables applications to
program the application specific requirements into the network. Programmable
network allows application to change the network, for example, to adapt to a
changing environment such as in case of failures.

Active networks [23] enables application specific processing for packets by
embedding the processing rules to the packets. Such packets are called capsules.
Capsules are executed at each active node along its path (Figure 2.4).

User Programmable Virtualized Networks (UPVN) is a generalized pro-
grammable networks model in which applications can control the network ele-
ments. In UPVN, programmable network elements are virtualized UPVN [16].
Network elements appear as objects(NC) to the application. NCs can deploy

7



Execute program

Active 
routersend capsule

Application

IP
header

Active
Program

Data

Figure 2.4: Active networks: Active routers process Code embedded in packet.

Figure 2.5: UPVN: NE is virtualized in Applicaitons. Application specific code can
be run on NE using AC.[16]

application components (AC) on network elements to allow application specific
processing (Figure 2.5).

Even though programmable networks enable applications to optimize net-
work for QoS or performance, QoE cannot be ensured.

2.2 Infrastructure based Solutions

QoS models provided in network, IntServ and DiffServ can ensure QoS only if all
domains through which the packets travels, supports the QoS model. Moreover,
the minimum latency ensured by these models are limited by the distance the
packets have to travel. The fact that these models were not deployed in Internet
arose the need for other methods to improve QoE of applications. Web content
delivery over Internet were not fast due to latency, packet loss etc. Higher the
number of hops a packet has to travel, the higher is the chances of packet loss
and increased delay. Inorder to minimize the distance to the clients, Content
Delivery Networks(CDN) uses additional infrastructures at different parts of the
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Internet to host the contents. Edge computing also adopted the idea of CDNs
to host web application on additional infrastructures distributed across the in-
ternet.

2.2.1 Content Delivery Networks

A Content Delivery Network (CDN) is a distributed system which consists
of geographically distributed servers that host content from different content
providers [24, 19]. CDNs were designed to reduce the traffic on the network and
the latency between content server and the users by distributing and caching
the contents on strategically placed servers over the internet. Since the contents
are closer to the users, the content transfer is less affected by the latency and
packet loss, thus improving the QoE of content delivery.

A CDN consists of an origin server, surrogate servers , request router and
a transport system (Figure 2.6). A user request for a content is redirected by
a request router to a surrogate server. Request router constantly collects data
from surrogate servers and based on the data the user is redirected to one of
the Surrogate server. Surrogate server retrieves a copy of the content using the
transport system if it does not have a copy of it. The content is cached and
then delivered to the user.

Transport System

Origin Server

Request 
Router

Surrogate 
Servers

1

2

3

5
4

Figure 2.6: Components of a CDN

Origin server: The origin server has the original copy of the contents and
maintains the latest updated copy. Origin server can be hosted by the content
provider or CDN provider. The content from origin server is propagated to the
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surrogate servers by the transport system of CDN.

Surrogate Servers: Surrogate servers replicate or cache contents from ori-
gin servers and deliver contents on behalf of the origin servers. Surrogate servers
are geographically distributed so as to reduce the network distance to the users.
When a request for content is received, surrogate server delivers the content
immediately if a valid copy of it is available in the cache. If the content is not
cached, it downloads a copy from the origin server using the Transport System
and delivers it to the client. A copy of it is cached for future clients. An efficient
caching policy must be implemented in order to achieve good cache hit.

Request Router: A Request Router redirects the users to an appropriate
surrogate server which is closer to the user. A monitor collects real time mea-
surements on surrogate server load and network connectivity which is used for
choosing an optimal surrogate server. The Request Router also performs load
balancing by redirecting requests to different surrogate server and thus handle
flash crowds and reduce latency perceived by users, if efficiently implemented.

The common methods used for redirecting users are DNS redirection , URL
rewriting and http redirection [24, 9]. Http redirection is limited to http ser-
vices. URL rewriting is useful for partial site content delivery. Here we discuss
DNS redirection because it is a common redirection methods used in CDNs and
it can be used with any internet application.

DNS redirection: In this method, server’s name is mapped to the IP address
of appropriate surrogate server when user submits the DNS query [9]. First, user
sends the DNS query to the local DNS server. Local DNS server forwards the
query to the CDN redirector. CDN redirector would then find the best surrogate
server which can serve the content to the user and gives its IP address in return
to the query. The advantage of this method is the transparency of redirection.
It can be used for any Internet based application. The disadvantage is that
it does not consider client IP address when redirecting, because DNS requests
may contain the IP address of client’s DNS servers. However, the location of
client’s DNS server might approximates the clients location. Caching of DNS
replies in the intermediate DNS servers also limits the ability of CDN redirector
to effectively redirect all clients [19].

Transport System: The Transport System distributes content to the sur-
rogate servers. A surrogate server obtains a copy of the content from the origin
server or another surrogate server depending on the transport system. The
transport system can also be categorize into pull based system and push based
system, based on who is responsible for distributing the contents [19].
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2.2.2 Edge Computing

Content Delivery Networks makes static content delivery faster by caching it in
the network edge. When applications generate dynamic web pages and objects
that cannot be cached, CDNs cannot be used to improve the QoE of such ap-
plications. Edge computing adopted the idea of CDN, by moving applications
to the edge. Application Content Delivery Network(ACDN) and Akamai edge
computing are two mechanisms that provide Edge computing facilities.

ACDN (Application content delivery network) is an architecture for repli-
cating the application on edge servers dynamically based on the user demand.
If the number of clients from a particular location increases above a threshold,
a replica of the application is installed in the server nearest to that location.
In [20], a prototype of their mechanism is explained which is tested on a web
application which is read-only for users. The dynamic placement decision on
ACDN considers only the number of clients at a particular location.

Akamai has an application delivery network and Edge computing platform
which is aimed at accelerating application performance by moving computing
closer to users. In [17], authors have classified the types of applications they
deploy in their edge computing infrastructure. The edge computing platform is
limited to a specific type of applications.

ACDN and Akamai support only specific types of web applications. More-
over, the placement decision depends only on number of clients from a location.
The users have limited control on the application placement because, they use
edge computing provider’s private infrastructures.

2.3 Dynamic Placement of Applications

The in-network solutions Intserv, Diffserv and programmable networks are not
available in current Internet. Moreover, the QoS provided by these models
cannot ensure QoE of internet applications which is limited by communication
latency. Even though CDNs improved the QoE of static content delivery, and
edge computing improved QoE for specific type of web applications, we still
don’t have a general method for improving QoE of all distributed internet ap-
plications.

CDNs provided efficient content delivery by placing the contents close to
where they are needed. In this thesis, we extend the idea of CDNs to the ap-
plications. We study whether the dynamic placement of applications close to
the users improves the QoE. Dynamic placement of applications is needed to
improve QoE in a dynamic environment where clients are mobile, or the number
of clients are variable.
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Cloud A

Cloud B

Cloud C

Cloud D

Cloud E

Cloud F

Dynamically Place 
VMs

Users

Internet 
Application

Figure 2.7: Dynamic placement of application on public clouds

Cloud computing provides a platform for users to deploy their applications
without the need for buying and maintaining expensive infrastructures. Cloud
services are offered at different layers - Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS) [25]. IaaS cloud of-
fers hardware resources such as computing, storage and networking as services.
These clouds are usually hosted in big data centers.

Virtualization is one of the key technology that enables cloud computing
[12]. Users can create virtual machines on IaaS clouds on demand where the
resources are shared by the users. Virtualization allows easy configuration of
user’s applications since it abstracts the underlying hardware details. Users can
easily manage, create, start or stop his virtual machines on IaaS. These proper-
ties of IaaS clouds makes it a good platform for applications that dynamically
place its components (figure 3.1b).

We consider a general distributed application decomposed into various com-
ponents. The components of the applications can be encapsulated in virtual
machines and then be placed on the distributed cloud infrastructure on-demand.
The QoE improvement method we propose can be used with any distributed
internet application.
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Chapter 3

Infrastructure
Requirements

At present, the applications are statically deployed in the Internet. We can
also place our applications on isolated public clouds. Inorder to improve the
QoE, the applications can be deployed on the clouds located near to the users.
However, static deployment of applications can only provide limited QoE, unless
it is over provisioned (figure 3.1a) for unexpected changes in the environment
such as network failures and flash crowds. A dynamic placement of application
allows to adapt to a changing network environment and changing location of
clients. Dynamic placement of application components would provide improved
QoE compared to a static placement, by placing the components where it is
needed at that time (figure 3.1b). To enable dynamic placement of applications
in Internet, the internet infrastructure must provide additional functionalities.

Cloud A

Cloud B

Cloud C Cloud D

Cloud E

Cloud F

Virtual Machines in
Public clouds

Users

(a) Localization of application in public
clouds

Cloud A

Cloud B

Cloud C

Cloud D

Cloud E

Cloud F

Dynamically Place 
VMs

Users

Internet 
Application

(b) Dynamic placement of application on
public clouds
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3.1 Requirements

In current Internet, when a user request for an application he is redirected to a
specific location where the application is available. However, internet applica-
tions which dynamically place its computation in Internet might need to create
an application instance at a specific location to improve its QoE. The time at
which a service must be created at a new location is decided by the application.
Figure 3.1 shows the interactions between various entities that enables a client
to access an Internet application which can dynamically place its computation.
There are four actions shown in the figure. The order of the actions given in
the figure may change. The possible orders of actions are:

Request
Router

Supervisor

Service A

Location l

A. Request service A

B. Use service at location l

C. Create instance
 of service A

D. Use service

 Application / 
Infrastructure

User

Figure 3.1: Interactions between entities in an application that can dynamically place
it services

• A,B,C,D :- When the user requests for a service, user will be redirected
to a location. Then the application instantiates a replica of its service at
that location which user can access. In this case, the service is instantiated
after the user is redirected to the new location. The service instantiation
should be done fast because the service should be available when the user
requests for it.

• A,C,B,D :- When the user requests for a service, an instance of its ser-
vice is created at location l. Unlike the previous scenario, the application
instantiates the service and the user is redirected when the service is avail-
able. This mechanism allows the application to ensure that the service is
already running when user requests for it.

• A,B,D,C :- Here the service is instantiated when the request for service
comes at location l. Hence, there should be some mechanisms to down-
load, install and run the application when a request for it comes. Service
instantiation should be done fast so that user does not notice the delay.
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• C,A,B,D :- In this case, the service is already running at location l before
the user requests for it. Hence, the user would not notice any delay. This
mechanism is useful if the application can predict the possible locations
and instantiate the service before requests come.

The basic functions that we require from the infrastructure to enable the
above actions in accessing an application are as follows:

• A platform to deploy services dynamically

• A mechanism to choose a location

• A mechanism to transfer service to a specific location

• A request routing service

A platform to deploy services dynamically: The applications need
to adapt itself to the changing environment. For example, when a user requests
from a particular location, the application creates or move its instance at that
location and allows user to access it. This requires an infrastructure that al-
lows dynamic placement of application components. Infrastructure as a Service
(IaaS) clouds allow users to create and run their virtual machines on demand
on their infrastructure [25]. At present there are many cloud providers located
all over the world. Thus it is possible to place our applications any where in
the world. Hence IaaS clouds can be used as a platform for dynamic placement
of applications.

A mechanism to choose the location: The application decides when to
create a VM or move a VM to a new location. Then the application will specify
a particular location, a particular node(a machine), or specific requirements of
the node to place its vm. When there are many cloud providers and locations,
there should be a mechanism for discovering and selecting the locations where
the application can place its VMs.

A mechanism to transfer service to a specific location: Dynamic
placement of applications in the Internet requires immediate instantiation of
virtual machines on specified locations. At present, images of virtual machines
created for one cloud site may not be available at another site. Each cloud may
not support image formats used in other clouds. Hence, the applications that
need to dynamically place VMs on different locations have to create separate
VM images for each cloud, which is cumbersome. Hence, the cloud providers
must adopt a standard format for virtual machine images.

When an application request to create a VM at a location, the VM image
have to be transferred to the specified location. Image transfer might take a
long time due to the size of images [21]. Since this is a common problem for all
applications, an efficient image management and transfer system must be a part
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of the infrastructure to solve this issue. Since CDNs are designed for efficient
content delivery, CDN technology may be used for transferring and caching im-
ages at different location.

A request routing service: The application dynamically creates and
deletes its instances. Hence there should be a request routing mechanism which
redirects the user to one of the application instance. The request routing system
must know which instances of the applications is running and where they are
located. The application may notify the request router about its instances or
the request router may implement a monitor which monitors the application.

3.2 Infrastructure

The required components can be organised into a system (Figure 3.2). These
components form the basis of the infrastructure that allows dynamic placement
of the applications.

Cloud 
Discovery &
Selection

Image
Management

MyApp

Get Available
 locations

Register 
my image

Place 
VM
here

Get image 
of MyApp

Client A

Request 
Router

www.MyApp.com

Cloud A

Cloud B

Cloud C

Cloud D

API

Figure 3.2: Infrastructure that supports dynamic placement of computation

The platform for deployment of applications is a distributed IaaS cloud.
Applications choose specific locations to place their virtual machines with the
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help of cloud discovery and selection component. Application specifies its re-
quirements through an API and retrieves the information about the clouds. For
example, if the application need to place the VM at a location near the client,
it requests the cloud discovery and selection to get the cloud nearest to the
client. In [4] and [7], the authors describe an intercloud reference topology in
which this cloud discovery is done by Intercloud Exchange and cloud exchange
modules respectively.

Once the application selects a location, it request the infrastructure to place
its virtual machine at that location. The cloud at that location has to obtain
the image of the application virtual machine to create the virtual machine. This
is done through an image management system. Image management system pro-
vides information about where the images are located and enables the cloud
nodes to obtain the image.

The image of the application virtual machine is provided by the application
provider. The image would be registered with the image management system
and stored in an image repository accessible by all clouds. The images will be
identified using a unique id which is used by the application to instantiates its
virtual machines.

The request router will be notified when the new application instance is
available. The request router redirects the request from the users to the nearest
instance of the application.

The optimizer component which makes placement decision is not shown in
figure 3.2. We assume that optimizer is a part of the application which interacts
with the infrastructure through APIs to dynamically place its components.

3.3 Architecture

A architecture for the infrastructure and the optimizer for dynamical placement
of application components is developed based on the study of required compo-
nents of infrastructure (See figure 3.3). Each component in the infrastructure
is mapped to a module in the architecture.

1. Node Discovery: This module implements the cloud discovery and selec-
tion. The optimizer communicates with node discovery module to retrieve
the information about available nodes where it can place new virtual ma-
chines. This information is used by the optimizer to select a suitable node
for placing the VM.

2. Request Router: The request router redirects clients to an optimal location
where the application is available. The application/optimizer notifies the
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VM manager

create/delete
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Figure 3.3: Architecture for the infrastructure for dynamic placement of application
components.

request router when a new VM of the application is created so that the
future clients can be redirected to the newly available VM.

3. VM management: When the optimizer selects a particular node to place
its VM, it requests the VM management module to create or move it VM
to the new node. VM management module handles the transfer of the
image and the creation of the virtual machine.

4. Optimizer: The dynamic placement of application components is handled
by an optimizer which interacts with the underlying infrastructure to move
virtual machines to specific locations. To enable the application to make
the placement decision, the optimizer is made a part of application’s VM.
Optimizer consists of a monitor which collects information needed for op-
timizing the location. For example, the monitor collects the details of the
client’s location.

This architecture is used in the implementation of the experiment environ-
ment for simulating the dynamic placement of application for experiments de-
scribed in chapter six.
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3.4 Virtual Infrastructure

Even though the distributed cloud platform is available today, we do not have
a complete infrastructure which has all the components we identified. There-
fore, we have to simulate the infrastructure for our experiments. Simulating the
infrastructure is well suited for our experiments because we could control the
factors affecting the experiments in the infrastructure.

We simulated a Wide Area Network on a multi-core machine by introduc-
ing latency between the virtual machines. OpenNebula[2] is used for virtual
machine management. Each application components were running on virtual
machines, which communicate via virtual network bridges (Figure 3.4). Virtual
machines are in same network. Latency between the components was emulated
by introducing delay to the packets using linux traffic controller - tc [1] and
NetEm [13]. (See Appendix D.1 for scripts )

Figure 3.4: Virtual Infrastructure for the experiments

We assume that the virtual machines can be placed on some restricted loca-
tions on a 2-D plain. These restricted locations are the available cloud nodes in
the infrastructure. The locations on the 2-D plain are represented using (x,y)
co-ordinates, where a unit distance in the 2-D plain corresponds to 1ms of la-
tency. A particular point in the 2-D plain is considered as origin. Since the
unit distance in the plain corresponds to 1ms of latency, the latency between
two virtual machines is calculated by the distance between their locations. A
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Figure 3.5: The simulation of WAN. The available nodes represents cloud nodes.
Possible locations of VMs and clients on the WAN is also shown.

possible locations of clouds and the applications components is shown in figure
3.5.

Movement of virtual machines is simulated by changing the location co-
ordinates of the virtual machine. When a virtual machine is moved, the latency
between the virtual machines are changed accordingly.

3.5 Summary

The dynamic placement of the application components is possible using dis-
tributed public clouds. The basic components required for the infrastructure
was identified. Based on the architecture, a simulated environment is imple-
mented which is used for experiments discussed in chapter six.
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Chapter 4

Impact of Application
Placement on Response
Time

A distributed Internet application can be decomposed into many interacting
application components. Moving the application closer to the end-user requires
moving all the components, which may not be feasible if there are restrictions
to move the components. In order to study the impact of placement of applica-
tion components on the response time, our experiments place the components of
the application on different geographical locations. The interacting application
components together determine the resulting response time. The relationship
between the latency between application components, and the response time is
analysed to decide an optimal placement strategy of the application components.

4.1 Experiment on Amazon Cloud

This experiment is performed to analyse the impact of moving application com-
ponents closer to the user. The components of the applications are placed at
different geographical locations to study how the placement affects the response
time.

In this experiment, we considered a photo sharing applicationA with a server
and a database (See Appendix A for details). The response time is determined
by measuring the time to upload a photo to the application and getting the
result back (Figure 4.1).

The server and database are placed at different locations in each configura-
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Figure 4.1: Components and interactions in Experiment 4.1

Figure 4.2: Locations of Amazon EC2 used in Experiment 4.1

tion. We use Amazon EC2 cloud at 3 different locations1 - US(United States),
EU(Europe) and SE(Singapore) (Figure 4.2). The table 4.1 shows each config-
uration and the locations of application and database.

Configuration Application Database
Config-1 EU EU
Config-2 EU US
Config-3 EU SE
Config-4 US US
Config-5 SE SE

Table 4.1: The location of application and database in each configuration

1http://aws.amazon.com/ec2/
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The client is located in Amazon EC2 cloud at EU. For each configuration
the client uploads photos of different sizes to the application and measures the
response time. The photo is uploaded to the application server while some meta
data is updated to the database. Figure 4.3 shows the average response time to
upload a photo and get the html response for all configurations.

Figure 4.3: Response time of the application for different configurations in Amazon
EC2

The experiment shows the effect of communication latency on response time.
The best response time is for Config-1 because the client is closest to the ap-
plication. It is seen that, Config-2 and Config-3 is worse than Config-4 and
Config-5, despite the fact that client is closer to the application. This is because
for each user request, a series of database queries are issued in order to gener-
ate the html response. The latency between the database and the server has a
higher impact on the response time than that between the client and the server.
Hence, even though the data upload to a nearby application server is faster, the
database access increases the overall response time for Config-2 and Config-3.

The overall response time of the application not only depends on the prox-
imity of the client and application but also the location of other components
of the application. An optimal placement mechanism for an application should
consider all components and their interactions.
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4.2 Measuring the impact of latency

The placement of application components affects the response time. We need to
study why certain placements configuration in experiment in section 4.1 resulted
in large response time. We study how the latency between the components af-
fect the response time, by changing the latency between the components and
measuring the response time for different latency. A controlled environment on
a multi-core machine to simulate WAN, which is explained in 3.4, is used for
the experiment.

In the first experiment, we have a server that runs application A, a database
which is used by the server and a client accessing the server. The latency be-
tween the client and server is varied between 0 and 200ms. The latency between
the server and database was kept at 0ms. The response time for the client re-
quest was measured for different latency. Next, the latency between the server
and database was changed while latency between the client and server was kept
at 0ms. The response time for both cases is measured (Figure 4.4). When the
latency between the server and the database is increased, the response time is
increasing at a higher rate compared to increasing the latency between the client
and the server. This explains the results of experiment in section 4.1. When
the server is placed at EU and the database is placed at SE or US, the response
time is worse than when the server and the database are kept at same location
in SE/US, but far from the client.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  50  100  150  200

R
es

po
ns

e 
tim

e 
in

 s
ec

on
ds

Latency in milliseconds

Changing latency between Server-Database
Changing latency between Client and Server

Figure 4.4: Response time of Application A for different latency between the compo-
nents.

The experiment was repeated for application B (Figure 4.5). When the la-
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Figure 4.5: Response time of Application B for different latency between the compo-
nents.

tency between server and database is increased, the increase in response time
is small compared to increasing latency between server and client. This means
moving the server closer to the client improve response time.

4.3 Summary

Our experiments show that the latency between different components affects
the response time differently for different applications. Response time is not
just about latency between the client and the server, but how various compo-
nents in the application interact with each other. Hence, we need to study the
relationship between the latency between the application components and the
response time to determine an optimal placement of application components.
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Chapter 5

A Framework for Optimal
Placement

An optimal placement of applications components depends on the interactions
between the components. To minimize the response time, the components has
to be placed close to each other to reduce the latency between them. Which
components should be placed close together in order to reduce the response time,
has to be determined. In hierarchical memory systems, frequently accessed data
are placed near the application in a cache. If the data is placed higher up in
the hierarchy, the data access is faster; hence the application will be faster. To
improve the performance of the applications, the caches exploit the locality of
reference of the data [11]. The type of locality is determined by the time and
space relationship between the objects.

• Temporal Locality: If an object is accessed at one point of time, then it is
likely that same object is accessed again within a short time. Such objects
tend to exhibits temporal locality.

• Spatial Locality: If an object is accessed at one point of time, then it is
likely that nearby objects are accessed in near future.

Temporal locality of data is exploited to improve performance of memory
access in hierarchical memory systems. Most frequently accessed data are kept
near to the CPU in cache. Content Delivery Networks also exploit temporal
locality of web objects by storing the most frequently accessed data in edge
nodes. Ideal case is to cache all objects near the user so that the data access is
fast. However, the limited storage in caches forces them to selectively caches ob-
jects. Hence the caching algorithms utilize the locality of objects to selectively
cache them. It is interesting to find the factor that determines the placement of
a component for optimal placement of virtual machines. Can we quantify the
temporal and spatial relationship of components? We propose to introduce a
term Communication Affinity that defines this relationship.
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5.1 Communication Affinity

Literally, the term Affinity means “a natural liking or attraction to something”.
Communication affinity is an indication of the coupling between two components
of an application. Communication affinity tells how relative placement of two
components affects the response time. We define stretch as the ability of two
components to be placed far from each other, without affecting the QoE. Two
components have high stretch means, these two components can be placed far
apart. Communication affinity between two components indicates the stretch
of two components.

Definition 1. Communication Affinity between two components is defined as
the rate of change of response time with unit change in latency between those
two components.

Communication affinity between components A and B denoted by x, indi-
cates that when latency between A and B is increased by 1 unit, the response
time increases by x units. Thus communication affinity between two compo-
nents shows the impact of latency between those two components on response
time. Higher the value of x means higher the impact of latency on response
time, thus lower the stretch.

Roughly, Communication affinity corresponds to the amount of communica-
tion between two components. If the amount of communication between two
components is high, then the placement of these two components affects the
response time of the application. For example, consider two components A and
B that communicates using a sequence of n request/response messages. One
request/response message takes one round trip time between A and B. When
round trip time (RTT) between A and B is increased by one unit, the total time
required for n request/response message increases by n units. If there is another
component C which communicates with B using m sequential request/response
messages, then increasing RTT between B and C by one unit increases the over-
all time by m units. Hence the contribution of latency between A and B to
the overall time is n× latency between A and B and that between B and C is
m× latency between B and C. Here n and m is a measure of amount of com-
munication between components and the communication affinity between them.

We can determine communication affinity by an analysis of the application’s
communication pattern. However, different communication patterns - syn-
chronous/ asynchronous communication, sequential/parallel communication, re-
quest/response messages vs bulk data transfer - behaves differently. A further
research in this area would help to analyse different communication patterns
and build a model to determine affinity. Here, we determine communication
affinity empirically.
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The relationship between the latency between the components, and the re-
sponse time for the applications (A and B) was found to be linear (Figure
4.4,4.5). Therefore, the communication affinity between the components for
these applications is determined by calculating the slope of the straight line got
by plotting the response time at different latency between the components. The
communication affinities of the two applications are given in table 5.1.

Application Client-Server Server-Database
A 8.733 83.33
B 3.995 1.339

Table 5.1: Communication Affinity measured for different applications

In application A, communication affinity between server and database is
83.33. When latency between server and database is increased by 1ms, response
time increases by 83.33ms. When latency between the client and the server
is increased by 1ms, response time increases by 8.733. Compared to latency
between the server and the database, latency between the client and the server
has less impact on the response time. On the other hand, in application B,
communication affinity between the server and the database is less than affinity
between the server and the client. Hence the impact of latency between the
client and the server is higher than that between the server and the database.

5.2 Using Communication Affinity for Optimal
Placement Decision

The response time at a given latency can be determined using a linear equation
with communication affinity, because the latency and response time has a linear
relationship. Using this linear relationship we can determine the response time
at different placement of application components. We consider a basic internet
application which consists of three components - client,server and a database
(Figure 5.1).

C1, C2 and C3 are the components of the application.
l1 is the latency (RTT) between C1 and C2.
l2 is the latency between C2 and C3.
A1 is the affinity between C1 and C2

A2 is the affinity between C2 and C3

Let t(m1,m2) is the response time of the application when l1 = m1, l2 = m2.
t(0,0) denotes the response time of the application when all latencies are 0. Given
t(0,0) we can determine the response time at t(m1,m2) using Affinity.
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Figure 5.1: A model of application components and the affinity between the compo-
nents.

t(m1,m2) = A1m1 + A2m2 + t(0,0) (5.1)

Configuration of the application is denoted as Ω = (l1, l2). Let Ω1 =
(m1,m2) and Ω2 = (k1, k2) be two different configurations of the application.
If the current configuration of the system is Ω1, to determine whether changing
to new configuration Ω2 will improve response time, we can use the following
formula.

∆RT = tΩ1
− tΩ2

= A1(m1 − k1) + A2(m2 − k2)
∆RT gives improvement in Response Time by moving to the new configu-

ration. Thus we can predict the response time at new configuration and decide
whether to change to new configuration or not.

5.3 Optimal placement for application with three
components

We determine the optimal placement of a three component application using
the communication affinity. The property of affinity such that latency and re-
sponse time is linearly related simplifies the calculation of the best configuration.

We considered an application with 3 components where C1 is the client, C2

is the server and C3 is the database. The response time of the application is
calculated using equation 5.1, for two pairs of values for A1 and A2. In the
first case, A1 = 3.995 and A2 = 1.339 and in the second case, A1 = 1.339 and
A2 = 3.995 The components are assumed to be located in a 2-D plain and the
latency between them is calculated as the geometric distance between them.
Hence a location in the 2-D plain can be represented as (x,y), where x and y are
represented in milliseconds. The database is at origin (0,0) and the client is at
(125 ms,125 ms). The response time is calculated for different locations of the
server (Figure 5.2). When the communication affinity between the client and
the server is higher, the response time is better if the server is kept closer to
the client. Otherwise, the response time is better when the server is kept closer
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Figure 5.2: Response time calculate for different location of a server. Client is located
at position(125 ms,125 ms) and database at origin(0,0). Two plots shows when A1 >
A2 and A1 < A2

to the database. The optimal placement of an application differs depending on
the communication affinity between components.

The response time was calculated for specific latencies other than the lo-
cation. We consider the case when A1 = 3.995 and A2 = 1.339. Application
was configured for different l1 and l2 where l1, l2 ∈ (0, 200) and response time
was measured for different configuration(Figure 5.3). The location of client is
not controllable by the application. The database is also often large that it is
costly to move it in terms of time and bandwidth. Hence the restriction to move
components( C1 and C3 )is denoted by keeping l1 + l2 = constant. In this case
C2 has to be placed in such a way that RT is minimized. It is seen that given
l1+l2 = constant, RT is minimum when l1 is minimum. This is because A1 > A2.

There is no intermediate location other than a location closest to C1,for C2

which reduces the response time. This property can be used in the placement
decision algorithm. If A1 > A2, always find a configuration such that l1 is
minimum. That is always keep C1 and C2 closer. The algorithm for finding
optimal location of C2 reduces to finding a location near to C1.

5.4 Summary

In order to reduce response time we need to find an optimal placement of ap-
plication components. The ideal case is when latency between all components
is 0. In practical applications, there may be restrictions on possible locations
where components can be placed. For example, the location of the client cannot
be decided by the application. There may not be enough storage to place the
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Figure 5.3: Response time for different configurations

database so that latency is 0. In such cases, we may have to place the compo-
nents on the available locations such that response time is minimized. Given
possible placements configurations of an application, communication affinity can
be used to decide the optimal configuration which reduces the response time.
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Chapter 6

Optimal Placement of
Applications

We implement the optimization strategy for applications using the communi-
cation affinity and the improvement in QoE is observed. Inorder to observe
how communication affinity affects the optimal placement, applications with
different communication affinity is considered for the experiments. Using the
experiments, we show that the optimal placement of application components is
determined by the communication affinity.

6.1 Experiments

The infrastructure for dynamic placement of application is simulated on a multi-
core machine which is explained in section 3.4. The application components and
the clients are hosted on separate virtual machines running on the simulated
WAN environment.

The components of the architecture of the infrastructure is simulated. The
node discovery module gives the location of all available nodes in the infrastruc-
ture where a VM can be placed. The VM manager simulates the movement of
virtual machines by changing the (x,y) co-ordinates that represents their loca-
tion. Four process are running in parallel in the experiment (figure 6.1). The
client process is running in client’s VM. The optimizer is running in the server.
The experiment environment is emulated by two processes - one which simu-
lates movement of clients and the second one which introduces latency between
virtual machines.

In our experiments we considered two servers - Server A and Server B.
Server A is smart which optimizes its location according to the client’s location.
It periodically monitors client’s location and then moves to an available node
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Figure 6.1: Processes in experiments.

nearest to the client. Server B is static which means it does not change its
location. The clients are mobile, which move while accessing the servers. The
location of static server B is considered as origin. At the start of the experiment
Server A is located at origin (0,0). Database is located at ( 0,10ms). When the
experiment starts, the clients periodically increase their co-ordinates by 0.5ms
to simulate their moving. All experiments have similar settings except that the
application used is different.

The first two experiments consist of applications with only two components
- a client and a server with a local database. The two applications has differ-
ent affinities. In the third and fourth experiments the applications have three
components - client,server and database. The ideal case is when both server
and database can move closer to the user. Since database is usually large and
moving database frequently is costly in terms of time and bandwidth, we con-
sider the case when database is not mobile. Hence the optimization consists of
placing the server at an optimal location. In the following experiments we used
applications A,B and C (See Appendix A). The communication affinity between
the components of Application A and B is discussed in section 5.1.

Experiment 1. This experiment evaluates whether dynamic optimization of
application’s location improves the QoE of the application. In this experiment,
we use application A. The scenario consists of two clients cA and cB that ac-
cess servers A and B respectively. Server A is a smart server which optimizes
its location to improve QoE. Server B is located in a static location. It does
not optimize its location. Both clients cA and cB are moving while accessing
the servers. Client requests to the servers consist of uploading a photo to the
application. The measured communication affinity between client and server in

34



Acs = 8.733

Client Server

(a) Experiment 1

Acs = 3.995 Asd= 51.083

Client Server Database

(b) Experiment 3

Acs = 3.995

Client Server

(c) Experiment 2

Acs = 3.995 Asd=1.339

Client Server Database

(d) Experiment 4

Figure 6.2: Application settings used in experiments and the measured values of Com-
munication Affinity. (Acs=Affinity between client and server. Asd=Affinity between
server and database.)

this application is 8.733 (Figure 6.2a).

Experiment 2. This experiment is similar to experiment 1 with the exception
that the application used is application B, which has a different communica-
tion affinity value. The application does not allow uploading of photos instead
clients can browse through the website. In the experiment client request to view
the photo gallery in the website. The measure Communication Affinity between
client and server in this experiment is 3.995 (Figure 6.2c). We used an applica-
tion with different affinity to study how communication affinity affects the QoE.

Experiment 3. In this experiment there is a mobile client, server and database.
Server is moving according to clients location, while database is static. The ap-
plication used is C whose communication affinity between the components were
measured as: A1 = 3.995, A2 = 51.083 (Figure 6.2b). Here the communication
affinity between server and database is higher than Affinity between client and
server. This experiment is similar to the experiment in section 4.1. The main
difference is that we have used applications with different communication affini-
ties.

The optimal placement strategy using communication affinity tells that the
server has to be kept closer to the database because the communication affinity
between the server and the database is higher than that between the client and
server. In this experiment we have two servers: the static server which is placed
close to the database and a moving server which moves with the client. We
compare the response time for both servers to find out the optimal placement.

Experiment 4. In experiment 3, communication affinity between the server
and the database was large. In this experiment, we used application B in which
communication affinity between the server and the database is less than that
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between the client and server. Application B is similar to C used in experiment
3, but the database queries are cached to reduce the communication affinity
between the server and the database (See Appendix A). The communication
affinity between the client and the server is 3.995. The communication affinity
between the server and the database is 1.339 (Figure 6.2d). The rest of the
experiment is similar to the experiment 3. This experiment would evaluate the
impact of communication affinity between the components on its optimal place-
ment.

For this application, the optimal placement strategy is to place the server
close to the client, because the affinity between the client and the server is higher
than the server and the database. We compare the response time for the static
server and moving server to determine the optimal placement.

6.2 Results

Results of Experiment 1 and 2: The response time observed by clients of
both servers in experiment 1 is recorded (Figure 6.3). The result shows that
response time for the client of smart server is less than that of static server.
Hence the response time is minimized by smart placement of application.
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Figure 6.3: Response time for clients accessing Smart server and Static server with
application A

In order to compare the effect of affinity on the response time, we compared
the improvement in response time for the smart server in both experiment 1
and 2 (Figure 6.4). The decrease in response time for the application with com-
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munication affinity 8.733 is higher than that for the application with affinity
3.995. When the communication affinity is high the influence of latency on re-
sponse time is high. If communication affinity between the components are high,
the application will benefit from location optimization. On the other hand, if
the affinities are less the application may not have significant improvement by
location optimization. Hence finding the affinities between components of an
application tells us whether location optimization is required or not.
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Figure 6.4: Comparing response time for applications with different affinity. Higher
affinity application used in experiment 1 and lower affinity application used in exper-
iment 2.

Results of Experiment 3 and 4 : Figure 6.5 shows the response time
measured in experiment 4. The response time of smart server is less than that
of static server. When the client is moving away, the response time of smart
server is also increasing at a small rate. This is because when smart server
moves according to the location of client , the distance between the server and
the database increases. The latency between server and database adds to the
response time. However, the response time is better than the static server. This
is because the communication affinity between the client and the server is more
than the communication affinity between the server and the database.

The response time for the static server and moving server in experiments
3 and 4 is compared (See figure 6.6). The response time of moving server
in experiment 3 is worse than that of the static server. This is because the
communication affinity between server and database is higher than that between
client and server. The moving server in experiment 4 has better response time
than the static server. It is seen that when caching is introduced it increases the
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Figure 6.5: Response time for static and moving server with application B

stretch between the server and the database, since the communication affinity
between the server and database is decreased. Thus knowing the communication
affinity between various components of an application helps to decide what is
the optimal placement of application.

6.3 Conclusion

The experiments results show that Communication affinity is the metric that
determines the optimal placement of application components. Moreover, the
communication affinity determines whether the application requires a dynamic
optimization of the placement to improve its QoE. If the communication affin-
ity between the components in an application is less, the latency between the
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components may not have much impact on the response time. Hence calculat-
ing communication affinities in a distributed application helps us to categorize
applications as those requires optimization and those does not.
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Chapter 7

Conclusion

In this thesis, we studied how an optimal placement of application components
improves the QoE. In our experiment where we placed application server and
database at different location, the results gave an insight that not only the la-
tency between client and application but latency between all components of a
distributed Internet application affects the response time.

We introduced the Communication Affinity which models the effect of la-
tency between the components of distributed application on response time.
Communication Affinity indicates which components should be placed close to
each other in order to minimize response time induced by communication la-
tency.

The results of the experiments where the components of an application move
in order to minimize response time, showed that optimizing the location of ap-
plication components improves QoE. We also showed that if components are
placed without considering the communication affinity the response time might
not decrease, instead it increases. Hence communication affinity tells us the
optimal placement. Thus a placement optimizing algorithm must consider com-
munication affinity to decide an optimal placement.

7.1 Research Questions Revisited

The hypothesis of this research was that we can improve QoE by dynamically
placing application components on Internet. The experiments show that dy-
namic placement of application components by considering the communication
affinity does improve the response time of application. The questions that were
stated related to the hypothesis are the following.

• What are the factors that determine placement of applications?
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The latency between the the components of an application affects its re-
sponse time. However, the impact of the latency between the components
on response time depends on the amount communication between the
components. We quantified it using Communication Affinity. Lesser the
communication affinity between two components, more the freedom to
place the components anywhere. If communication affinity between two
components is high, they have to be placed close to each other.

• Can we automate the decision making for the optimal virtual machine
placement?
We showed that response time can be calculated using communication
affinity. Hence an algorithm can be developed which can calculate response
time at a given configuration and decide an optimal configuration.

7.2 Implications

An internet application which needs to dynamically grow to satisfy the varying
user demands, add new servers dynamically to handle the increased number
of clients. The dynamic creation of application components is also required to
handle the failures. When an internet application wants to create new servers,
the optimal placement can be determined using communication affinity.

In a distributed Internet application, components can be located anywhere
in the internet. Communication Affinity between the components tells us how
much distributed it can be, to ensure a good QoE. In the Internet, where appli-
cations can be dynamically placed, an optimal placement that maximizes QoE
of all application can be determined using communication affinity. Applications
with smaller communication affinity values between the components have more
freedom to place its components without affecting its QoE. Hence, the com-
ponents of applications with small communication affinity may be relocated to
enable the applications with large communication affinity between the compo-
nents to place them where it is needed to improve its QoE.

Moving some of the components of an application might be costly in terms
of time, bandwidth or other factors. Communication affinity helps to identify
which components have to be moved to improve QoE. This can be used to re-
strict the movement of some components while maintaining a good QoE and
thus reducing the cost involved in moving those components.

7.3 Future Work

In this thesis, we introduced the concept of Communication Affinity which quan-
tifies the effect of latency on response time. The factors such as available band-
width between the components might also affect the response time. A wider
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framework for communication affinity with different parameters should be in-
cluded in future study. The optimal placement thus should consider not only
distance based on latency but also distance based on bandwidth.

A distributed internet application has more number of components and more
complex interactions. A component might communicate with two or more com-
ponents in parallel resulting in a non-linear composition of components. In this
thesis we considered a linear architecture. A further research should study how
communication affinity framework can be applied to a non-linear component
architecture.

We used empirical methods to determine communication affinities in an ap-
plication. It might be interesting to look into the possibilities of determining
communication affinity by methods such code-analysis which can give accurate
values which is not affected by environment used for measurements.

In our experiments we considered geographical distance as network latency.
In Internet geographical distance may not correspond to network latency. An
optimizing algorithm should consider network proximity than geographical prox-
imity. An efficient algorithm which can find an optimal placement algorithm
using affinity has to be developed.

The communication affinity framework introduced in this thesis can be a
basis for the future work in developing an optimal placement strategy for dis-
tributed internet applications which considers various factors that affects QoE.
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Appendix A

Applications

All applications are installed in virtual machines with LAMP (Linux, Apache,
MySQL, PHP). Linux flavor used is Ubuntu server 10.04.

Application A
This application consists of a php application named phtagr1. The database
is MySQL. The application allows clients to login and upload photos to their
account.

Application B
This application consists of php application named phtagr. The database is
MySQL. Phtagr application is modified to use memcached2 to cache database
query results. The application allows to browse through the photos. It is not
used to upload photos. The modifications to the code to enable memcache is
given in appendix C.

Application C
This application consists of php application named phtagr. The database is
MySQL. The application allows to browse through the photos. It is not used to
upload photos. Unlike Application B, it does not cache database query results.

1http://www.phtagr.org/
2http://memcached.org/
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Appendix B

Softwares

The versions of softwares used in the experiment. These softwares were installed
in the application server.

apache2 2.2.14-5ubuntu8.9

libapache2-mod-php5 5.3.2-1ubuntu4.15

php5 5.3.2-1ubuntu4.15

php5-memcache 3.0.4-2build1

php5-mysql 5.3.2-1ubuntu4.15

libmemcache0 1.4.0.rc2-1

memcached 1.4.2-1ubuntu3

ruby 4.2

ruby1.8 1.8.7.249-2ubuntu0.1

rubygems1.8 1.3.5-1ubuntu2

mysql-common 5.1.61-0ubuntu0.10.04.1

mysql-server-5.1 5.1.61-0ubuntu0.10.04.1

mysql-server-core-5.1 5.1.61-0ubuntu0.10.04.1

php5-mysql 5.3.2-1ubuntu4.15
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Appendix C

Application with Memcache

Application B is a modification of original phtagr application to include caching
of queries using memcache. First, memcached has to be enabled in the server.
For that install memcached,libmemcache and php5-memcache in you server.
Then modify the phtagr source code as described here.

1. Modify the file phtagr/Config/core.php to enable Memcache

Conf igure : : wr i t e ( ’ Cache . check ’ , t rue ) ;
$engine = ’Memcache ’ ;

2. Modify the file phtagr/Model/Appmodel.php to add the following in the
class AppModel

var $cache = true ;
f unc t i on f i nd ( $type , $params )
{

i f ( $ th i s−>cache ) {
$tag = i s s e t ( $ th i s−>name) ? ’ ’ . $ th i s−>name : ’ appmodel ’ ;
$paramsHash = md5( s e r i a l i z e ( $params ) ) ;
$ve r s i on = ( i n t )Cache : : read ( $tag ) ;
$ fu l lTag = $tag . ’ ’ . $type . ’ ’ . $paramsHash ;
i f ( $ r e s u l t = Cache : : read ( $ fu l lTag ) ) {

i f ( $ r e s u l t [ ’ ve r s ion ’ ] == $ve r s i on )
re turn $ r e s u l t [ ’ data ’ ] ;

}
$ r e s u l t=array ( ’ ver s ion ’ => $vers ion , ’ data ’ => parent : : f i nd ( $type , $params ) , ) ;
Cache : : wr i t e ( $ fu l lTag , $ r e s u l t ) ;
Cache : : wr i t e ( $tag , $ve r s i on ) ;
r e turn $ r e s u l t [ ’ data ’ ] ;

} e l s e {
r e turn parent : : f i nd ( $type , $params ) ;

}
}

pr i va t e func t i on updateCounter ( )
{

i f ( $ th i s−>cache ) {
$tag = i s s e t ( $ th i s−>name) ? ’ ’ . $ th i s−>name : ’ appmodel ’ ;
Cache : : wr i t e ( $tag , 1 + ( i n t )Cache : : read ( $tag ) ) ;

}
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}

f unc t i on a f t e rDe l e t e ( )
{

$th i s−>updateCounter ( ) ;
parent : : a f t e rDe l e t e ( ) ;

}

f unc t i on a f t e rSave ( $created )
{

$th i s−>updateCounter ( ) ;
parent : : a f t e rSave ( $created ) ;

}

3. Modify phtagr/cakephp/lib/Cake/Model/Datasource/Database/Mysql.php
and replace the functions describe() and getCharSetName() by the following:

pub l i c func t i on de s c r i b e ( $model ) {
$cache = parent : : d e s c r i b e ( $model ) ;

// $cache=$th i s−> cacheDes c r i p t i on ( $th i s−>ful lTableName ( $model , f a l s e ) ) ;
i f ( ! empty ( $cache ) ) {

r e turn $cache ;
}

// $cache = parent : : d e s c r i b e ( $model ) ;
$cache=$th i s−> cacheDes c r i p t i on ( $th i s−>ful lTableName ( $model , f a l s e ) ) ;
i f ( $cache != nu l l ){

r e turn $cache ;
}

$ tab l e = $th i s−>ful lTableName ( $model ) ;
$ f i e l d s = f a l s e ;
$ c o l s = $th i s−> execute ( ’SHOW FULL COLUMNS FROM ’ . $ tab l e ) ;
i f ( ! $ c o l s ) {

throw new CakeException ( d ( ’ cake dev ’ , ’ Could not d e s c r i b e t ab l e f o r %s ’ , $ tab l e ) ) ;
}

whi le ( $column = $co l s−>f e t ch (PDO: : FETCH OBJ) ) {
$ f i e l d s [ $column−>Fie ld ] = array (

’ type ’ => $th i s−>column ( $column−>Type ) ,
’ nu l l ’ => ( $column−>Null === ’YES’ ? t rue : f a l s e ) ,
’ de f au l t ’ => $column−>Default ,
’ length ’ => $th i s−>l ength ( $column−>Type ) ,

) ;
i f ( ! empty ( $column−>Key) && i s s e t ( $ th i s−>index [ $column−>Key ] ) ) {

$ f i e l d s [ $column−>Fie ld ] [ ’ key ’ ] = $th i s−>index [ $column−>Key ] ;
}
f o r each ( $th i s−>f i e l dParamete r s as $name => $value ) {

i f ( ! empty ( $column−>{$value [ ’ column ’ ] } ) ) {
$ f i e l d s [ $column−>Fie ld ] [ $name ] = $column−>{$value [ ’ column ’ ] } ;

}
}
i f ( i s s e t ( $ f i e l d s [ $column−>Fie ld ] [ ’ c o l l a t e ’ ] ) ) {

$char s e t = $th i s−>getCharsetName ( $ f i e l d s [ $column−>Fie ld ] [ ’ c o l l a t e ’ ] ) ;
i f ( $ char s e t ) {

$ f i e l d s [ $column−>Fie ld ] [ ’ charset ’ ] = $char s e t ;
}

}
}
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$th i s−> cacheDes c r i p t i on ( $th i s−>ful lTableName ( $model , f a l s e ) , $ f i e l d s ) ;
$co l s−>c l o s eCur so r ( ) ;

echo p r i n t r ( $ f i e l d s ) ;
r e turn $ f i e l d s ;

}

pub l i c func t i on getCharsetName ($name) {
i f ( ( bool ) vers ion compare ( $th i s−>getVers ion ( ) , ”5” , ”>=”)) {

/∗ $r = $th i s−> execute ( ’SELECT CHARACTER SETNAME FROM
INFORMATION SCHEMA.COLLATIONS WHERE COLLATIONNAME = ? ’ , array ($name ) ) ;

$ c o l s = $r−>f e t ch (PDO: : FETCH ASSOC) ;

i f ( i s s e t ( $ c o l s [ ’CHARACTER SETNAME’ ] ) ) {
r e turn $ c o l s [ ’CHARACTER SETNAME’ ] ;

}∗/
re turn ’UTF−8 ’; /∗ r ep l a c e t h i s by the charac t e r s e t o f the database .∗/
}
r e turn f a l s e ;

}
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Appendix D

Scripts

D.1 Change latency

#Ruby

de f s t a r t ( dev )
system (” sudo tc qd i s c de l dev ”+dev+” root ”)
system (” sudo tc qd i s c add dev ”+dev+” root handle 1 : p r i o bands 4”)
system (” sudo tc qd i s c add dev ”+dev+” parent 1 :1 netem delay 0ms 0ms ”)
system (” sudo tc qd i s c add dev ”+dev+” parent 1 :2 netem delay 0ms 0ms ”)
system (” sudo tc qd i s c add dev ”+dev+” parent 1 :3 netem delay 0ms 0ms ”)
system (” sudo tc f i l t e r add dev ”+dev+” pro to co l ip parent 1 :0 p r i o ”+”3”+” u32

match ip dst ”+”0.0.0.0”+”/0 match ip s r c ”+”0.0.0.0”+”/0 f l ow id 1:”+”3”)
end

de f stop ( dev )
system (” sudo tc qd i s c de l dev ”+dev+” root ”)

end

de f add ( dev , pr io , s r c ip , d s t i p )
cmd=”sudo tc f i l t e r add dev ”+dev+” pro to co l ip parent 1 :0 p r i o ”+pr i o . t o s ()+” u32

match ip dst ”+ds t i p+”/32 match ip s r c ”+s r c i p +”/32 f l ow id 1:”+ pr i o . t o s ( )
system (cmd)

end

de f change ( dev , latency , var , p r i o )
cmd=”sudo tc qd i s c r ep l a c e dev ”+dev+” parent 1:”+ pr i o . t o s ()+” netem delay ”+

la t ency . t o s ()+”ms ”+var . t o s ()+”ms ”
system (cmd)

end

D.2 Client

The script running in client which sends requests to the server and monitor
response time. The following script is for the client in experiment 1 in chapter
6.
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#Ruby

i pP r e f i x =”172 .16 .100 .”
i pS t a r t=1
ipMax=3
ur l=”index . html”

ip=ipP r e f i x+”1”
changeip=”sudo i f c o n f i g eth1 ”+ip
system ( changeip )

cmd=”/usr /bin / time −a −f %e −o”
system (” cu r l −−dump−header cook i e s . txt −−form method=POST

−−form data [ User ] [ username]=admin −−form data [ User ] [ password ]
=adminpas http : / / 1 7 2 . 1 6 . 0 . 3 / phtagr / u s e r s / l o g i n ”)

i=0
whi l e F i l e . e x i s t s ? ”/home/ubuntu/ s t a r t p r o c e s s ”

ip=ipP r e f i x+”1”
changeip=”sudo i f c o n f i g eth1 ”+ip
system ( changeip )
puts ip

system (” ping −c 1 −W 1 172 . 1 6 . 0 . 4 ” )
system (” ping −c 1 −W 1 172 . 1 6 . 0 . 4 > pingout ” )
system (”awk −f parsep ing pingout > pingtime ”)
system (” echo −n ‘ cat pingtime ‘ ’ ’ >> r e s u l t s 3 / time”+ip+”. out ”)
upload=cmd +”r e s u l t s 3 / time”+ip+”. out cu r l −−cook i e cook i e s . txt

−−form method=POST −−form data [ F i l e ] [ upload ] [ ]=@a . jpg
http : / / 1 7 2 . 1 6 . 0 . 3 / phtagr−l oca ldb−cache /browser / quickupload > out”

system ( upload )

ip=ipP r e f i x+”2”
changeip=”sudo i f c o n f i g eth1 ”+ip
system ( changeip )

system (” ping −c 1 −W 1 172 . 1 6 . 0 . 4 ” )
system (” ping −c 1 −W 1 172 . 1 6 . 0 . 4 > pingout ” )
system (”awk −f parsep ing pingout > pingtime ”)
system (” echo −n ‘ cat pingtime ‘ ’ ’ >> r e s u l t s 3 / time”+ip+”. out ”)

upload=cmd +”r e s u l t s 3 / time”+ip+”. out cu r l −−cook i e cook i e s . txt
−−form method=POST −−form data [ F i l e ] [ upload ] [ ]=@a . jpg
http : / / 1 7 2 . 1 6 . 0 . 4 / phtagr−l oca ldb−cache /browser / quickupload > out”

system ( upload )
s l e e p 1

i=i+1
i f i >= 20

i=0
system (” cu r l 1 7 2 . 1 6 . 0 . 3 / d e l e t e f i l e s . php”)
system (” cu r l 1 7 2 . 1 6 . 0 . 4 / d e l e t e f i l e s . php”)

end
end
system (” cu r l 1 7 2 . 1 6 . 0 . 3 / d e l e t e f i l e s . php”)
system (” cu r l 1 7 2 . 1 6 . 0 . 4 / d e l e t e f i l e s . php”)

For clients of experiment 2,3 and 4 use the following curl script to browse

53



through the website

cu r l −−cook i e cook i e s . txt http :// host /phtagr / exp l o r e r > out”

The full scripts used for all experiments are available online at:
https://github.com/deepthidev/optimizerscripts
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