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Abstract

We propose a novel and intuitive way to quantify the utility of a classifier in cases where automatic clas-
sification is deployed as partial replacement of human effort, but accuracy requirements exceed the ca-
pabilities of the classifier at hand. In our approach, a binary classifier is combined with a meta-classifier
mapping all decisions of the first classifier that do not meet a pre-specified confidence level to a third
category: for manual inspection. This ternary classifier can now be evaluated in terms of its yield, where
yield is defined as the proportion of observations that can be classified automatically with a pre-specified
minimum accuracy.

1 Introduction
The evaluation practice of information processing tasks such as classification, detection and ranking is a non-
trivial issue, where no ideal recipe exists. Evaluation is either tailored toward component benchmarking or
can be focused on end-to-end user experience. The component evaluations have their roots in the Cranfield
Information Retrieval experiments that were a model for the successful TREC evaluations [10]. These batch
style experiments have for a long time focused on automatic only experiments, where human involvement
is separated as much as possible from the actual experiments in order to avoid inter user variability and
completely focus on the actual system component under scrutiny. Such batch style experiments have been
attractive for IR researchers and even inspired evaluations in other communities such as natural language
processing, since experiments were easy to conduct, and also very economic because humans were excluded
from the loop (except for creating the ground truth). Still many researchers felt that these studies were
limited, since they failed to model a real search process.

The component based evaluation which is the model for TREC is sometimes referred to as intrinsic
evaluation in contrast to an evaluation where the component’s performance is measured in the user context
(extrinsic). When evaluating a complete system, intrinsic evaluation approximates performance evaluation
and extrinsic evaluation is related to adequacy measurement [4]. In such a task based evaluation, factors
such as usability play a crucial role. Performance measurements are usually aimed at comparing systems,
whereas adequacy measurements focus more on the usability and practical use for an end user.

In many scenarios, the classification accuracy of a machine learning based classification system is not
sufficiently high, since the tasks at hand are difficult. We propose that for these scenarios, systems can still
successfully be deployed if only the ”easy cases” are classified automatically. In such a deployment scenario,
quality standards can still be met, whilst reducing (and not completely replacing) the manual workload.

The objectives of this paper are two-fold:

1. Introduce a novel ensemble of classifier evaluation measures which can evaluate the deployment of a
classifier which only partially replaces human labeling.

2. Develop a ternary classifier that can operate at a pre-specified accuracy by forwarding “difficult” items
for manual processing.



assigned class: ”+” assigned class: ”–”
ground truth: ”+” TP FN
ground truth: ”–” FP TN

Table 1: Classification contingency table. Precision is defined as TP/(TP + FP ) and recall is defined as
TP/(TP + FN).

In this paper we propose a novel ensemble of evaluation measures for classification tasks that can be used for
component evaluations. The distinguishing characteristic of this new ensemble is the fact that both measures
(accuracy and yield) are motivated from the task viewpoint and directly relate to potential cost savings
in terms of reduced manpower. The structure of this paper is as follows: in section 2 we give a formal
definition of the new ensemble of evaluation measures and discuss the relationship of these measures with
operational characteristics of an abstracted workflow ( an office where analysts manually label documents).
Section 3 illustrates the ensemble of measures by reporting experiments concerning automatic detection of
domestic violence cases in police files and a spam detection task. Section 4 describes the ternary classifier
architecture. Section 5 presents two experiments that illustrate the value of the evaluation method and the
ternary classifier. The paper concludes with a discussion section.

2 Classifier accuracy and classifier yield
Several evaluation measures dominate the field of component based evaluation for classification and ranking
tasks. The field of information retrieval evaluation popularized the precision and recall measures. These are
set based measures which can best be visualized by looking at a contingency table (Table 2). Whereas the
original precision and recall measures are hardly used anymore in IR (instead mean average uninterpolated
precision is the norm for ranking tasks), they are regularly reported for classification experiments. Precision
and recall have the desirable property that they relate well to intuitive characteristics of quality. Better
systems have higher precision and or recall values. A disadvantage of precision and recall is that the test
set must be a representative sample of the real class population. An opposite approach is to quantify the
error rates of a classifier, where a better system has smaller error rates. For a binary classifier scenario both
type I and type II error rates (false alarms and misses) can be measured independently from the actual class
distribution in the test set.

Precision is a measure of fidelity and is inversely related to type I errors (false positives). Recall can be
seen as a measure of completeness, being inversely related to type II errors (false negatives). An important
nuance to make here is that fidelity and completeness are defined with respect to the positive class label,
i.e. the task modeled is correctly identifying items with a positive class label. Precision and recall can be
combined into a single measure Fβ [9], which helps to compare systems at a certain operating point (usually
precision and recall are considered equally important). Note that precision and recall are defined from the
perspective of the positive class.

Another measure that is often reported for classifier evaluation experiments is classifier accuracy. This
is an intuitive measure for classification quality provided the class prior probabilities do not differ too much.
The accuracy quantifies the quality of both positive and negative decisions made by the (binary) classifier.
This averaging behaviour makes accuracy highly sensitive to a skewed distribution of class priors (imbal-
anced natural class distribution). This means that it is difficult to interpret accuracy results unless the class
distribution of the test set is known. A simple majority classifier can have a very high accuracy for skewed
distributions.

A subclass of typical real-life classification problems are detection tasks. These can be characterized
as binary classification tasks with a skewed natural class distribution i.e. the negative cases are much more
common than the positive cases. We are aware of the problems that these kinds of tasks pose for training
classifiers and for designing benchmark data sets (some of these issues were briefly introduced above). A
training data set needs to contain sufficient positive examples of a relatively rare phenomenon. The test data
set however should contain enough negative examples in order to have a proper estimate of false positives.
These are all important issues for the design of evaluations, but they are not the focus of this paper. Our
claim is that just stating that a classifier has a certain F1 value or accuracy cannot be translated in terms
of its potential for operational deployment. Also, in some scenarios the problem is so difficult that state of



assigned class: ”+” assigned class: ”–” assigned class: ”?”
ground truth: ”+” TP FN Mground truth: ”–” FP TN

Table 2: Classification contingency table for the ternary classifier

the art classifiers do not meet the minimum quality requirements that have been defined for this task. Still,
if we could modify the workflow of human analysts and the classifier architecture in such a way that part
of their work could be automated, while meeting the minimum quality requirements, it is easy to define a
business case. We therefore propose a novel and intuitive way to quantify the utility of a classifier in cases
where classification is applied in order to partially replace human labour, but accuracy requirements exceed
the capabilities of the classifier at hand. Typical application scenarios are binary detectors. In our approach,
a binary classifier is combined with a meta-classifier mapping all decisions of the first classifier that do not
meet a pre-specified confidence value to a third category: for manual inspection. The classifier combination
can be seen as a ternary classifier, which can now be evaluated in terms of its yield at a pre-specified
confidence level, where yield is defined as the proportion of observations that can be classified automatically
with a minimum pre-specified accuracy. In a way, accuracy and yield model the same intuitive aspects that
underly precision and recall, classifier accuracy is a way to measure the fidelity of the classification task and
classifier yield can be viewed as a measure for classifier completeness at the task level. The intended use of
the ensemble {accuracy,yield} is to measure the classifier yield at a fixed (minimum) level of accuracy. As
an example, we could be interested in the yield of a biometric detector at an accuracy level of 99%.

Table 2 shows a modified contingency table where the classifier can assign one additional label: ”?”
(queue for manual inspection). Now accuracy can be defined as usual:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

and yield can be defined as:

yield =
TP + TN + FP + FN

TP + TN + FP + FN +M
(2)

It is easy to see that the classifier yield is just the proportion of observations that is not labeled as M.

3 Related work
As far as we know, the proposed ensemble of measures (yield at minimum accuracy) is a novel way of
measuring the quality of a classifier. There are several established evaluation traditions that have some
elements in common. The TREC filtering task used a linear utility function for the adaptive filtering task,
which is a rather complex classification task where a system can use feedback in order to set its optimal
operating point (decision threshold) in a dynamic fashion. The linear utility is defined as [5]:

linear utility = α× TP + β × FP + γ × FN + δ × TN (3)

This is essentially a cost function, where parameters must be chosen to model a particular user scenario.
Choosing four parameters (which can be negative) is non-trivial, and therefore in our view not so intuitive.
Linear utility could be extended to handle the five-cell contingency table corresponding to our ternary clas-
sifier, but that would mean five parameters to choose. A more elegant way to model the cost of running a
certain classifier on a dataset is the family of cost functions that were developed in the Topic Detection and
Tracking (TDT) framework [3]. The basic cost function is defined as follows:

detection cost = CMiss × PMiss × PT + CFAPNTPFA (4)

where CMiss and CFA are fixed cost parameters that tax type II and type I errors respectively, PMiss and
PFA are the probabilities (normalized counts) of type II and type I errors (false alarms), and PT = 1−PNT is
the prior probability of a positive class label (T=target). Usually, the detection cost is measured at different
levels of Miss/False Alarm trade-off by threshold sweeping, thus generating a detection cost curve. The
detection cost function is motivated by the desire to quantify different types of error and sum the complete
cost of a detection task for a certain data collection (taking into account the relative proportion of the class



population sizes). However, the detection cost is based on a fully automatic scenario. Incorporating the cost
of manually assessing observations would make the detection cost function less intuitive.

Another common aggregate statistic for measuring classification is the AUC (area under (ROC) curve)
[2]. AUC is the ROC (receiver operating curve) equivalent of mean average uninterpolated precision. ROC
is based on a plot of the true positive rate (recall) versus the false positive rate. ROC curves are less optimal
for unbalanced classes, since the interesting part of the curve needs zooming [6]. In principle it should be
possible to use our ternary classifier architecture for a yield fixed AUC evaluation scenario, although AUC
is not a very intuitive quality measure for non-experts.

Finally, a common evaluation procedure for biometric detectors is to measure the false alarm rate (FAR)
at a fixed maximum false reject (miss) rate (FRR) or vice versa [1]. Our proposed procedure is similar in the
respect that a certain operating point is pre-defined in order to compare systems. The pre-defined operating
point provides an ”anchor” in the recall-precision trade-off and simplifies evaluation to a single measure just
like Fβ defines a certain operating point in the precision recall space.

4 An example ternary classifier
The experiments that were carried out to illustrate the evaluation procedure were based on a two-level
classifier architecture. The first level classifier was implemented by an information diffusion kernel machine.
This kernel machine presupposes L1-normalized data (relative frequencies) and estimates similarity between
documents using a geodesic distance measure applied to the Riemannian manifold that represents this data
[11]. The (parameter free) diffusion kernel machine was modified to provide a posterior probability as output
in addition to the predicted class [7]. The mapping function was trained on a separate development data set.
The posterior probability (Platt score) was subsequently used as an input score σ for a meta-classifier that
was implemented by a decision rule based on two thresholds θl and θu. The decision rule was defined as
follows:

prediction(σ) =


+ if σ => θu

M if θl < σ < θu

− if σ <= θl

(5)

The thresholds maximizing the yield while satisfying the pre-specified minimum accuracy were computed
through exhaustive search by a two dimensional parameter sweep (for both threshold parameters θu and θl
) on a development set.

The development data set for parameter training should be chosen carefully since we assume that the
class distribution is the same in the development set and the test set and that the Platt score distribution is
more or less similar in the development and test set, for both classes.

5 Experiments
We will illustrate the use of the evaluation procedure by two experiments. The first experiment concerns the
detection of domestic violence in police files. The second experiment is about spam detection

5.1 Detection of domestic violence
Taking adequate action in cased of domestic violence is one of the focal points of the regional police force
Amsterdam-Amstelland (RPAA). Recognition of domestic violence as such in incident reports is not an easy
task, since domestic violence has a complex legal definition where several conditions need to be checked.
Domestic violence is not always marked as such in the reports by the registrating police officer, so it is
desirable to recognize these cases post-hoc automatically. The current practice for filtering out domestic
violence cases from the full database of incident reports is based on a rule based system. Rules are created
and maintained manually. Unfortunately the current rule set creates a very high number of false positives,
which means that all filtered cases currently are subjected to a manual check. In order to minimize the
number of manual checks, two classifiers were compared on site. A baseline rule based classifier1 using
hand-crafted thesauri (more elaborate and refined than the incident-report filtering system) and the ternary

1This classifier is actually a ranking system, where a decision threshold was chosen manually.



accuracy yield
baseline classifier 0.73 1
diffusion kernel machine 0.84 1

Table 3: Results for the detection of domestic violence on the full test set using a single classifier

accuracy yield
development set 0.90 0.70
full test set 0.92 0.86
test set sample A 0.93 0.86
test set sample B 0.92 0.89
test set sample C 0.93 0.86

Table 4: Results for the detection of domestic violence experiment using the ternary classifier

classifier discussed in Section 4. The ternary classifier architecture used the same feature set as the baseline
classifier. Example features are my father beats and my uncle abducts, where verb forms were normalized.

The evaluation procedure based on accuracy and yield was applied in order to provide simple intuitive
statistics that would enable a transparent interpretation of what a deployment of an automatic classifier
would mean in terms of reduction of processing time, whilst maintaining the required quality level.

The following datasets were used:

training set A collection of 1736 reports, manually re-checked. 1101 positive cases. A random sample of
200 case files was used for development, the rest (1536) for training.

test set A held out collection of 2291 reports, labeled by registrating officer. 541 positive cases

As a first step the diffusion kernel and Platt function were trained on the development set. In a second
step, optimal upper and lower decision score threshold were computed using the development data with a
pre-specified accuracy > 0.90.

Table 3 lists the evaluation results (measured in terms of accuracy) for the baseline rule based ranking
classifier and the diffusion kernel machine. The more advanced classifier architecture has a superior perfor-
mance thanks to its generalizing capabilities. Still the accuracy of the diffusion kernel machine is too low for
deployment at RPAA. In a second step, score thresholds are learned on a development set2 to isolate those
reports where the classifier decision is based on a low confidence score. These reports can then be forwarded
for manual inspection. As an illustration, Figure 1 shows the probability that the classifier is correct as a
function of its score.

The important question is whether decision thresholds can be learned and whether they are robust. Table
4 lists the accuracy and yield of the ternary classifier for development and test sets. As an additional diag-
nostic, three random samples of the test set (sample size = 1000) were evaluated. The obtained accuracy and
yield on the test set are both higher than on the development. This could be explained by the fact that the test
set was obtained from cases from a different year, where annotation standards might have changed. Still, re-
sults of the classifier on development and test set show the potential of the proposed approach, which seeks
to minimize the amount of human labeling while meeting pre-specified quality standards. The results at
various subsamples demonstrate the robustness of the parameter settings. Related work on the same dataset
explores the possibility of involving a human expert for an interactive selection and definition of complex
features, based on formal concept analysis [8].

5.2 Spam detection
As a second experiment we chose a spam detection task, available from the ECML 2006 Discover Chal-
lenge http://www.ecmlpkdd2006.org/challenge.html. The challenge consists of two sepa-
rate tasks: a task (A) with many user-specific training data addressing user-specificity of the found solution,
and a task (B) with a limited amount of data per user, addressing generalization over users. In this work, we

2We did some preliminary experiments varying the size of the development set and a size of 100 was still sufficient.

http://www.ecmlpkdd2006.org/challenge.html


Figure 1: Posterior probability as a function of Platt score

#pos dev #pos test binary classifier accuracy ternary classifier accuracy ternary classifier yield
user 0 248 1002 0.62 0.89 0.19
user 1 241 1009 0.65 0.90 0.39
user 2 268 982 0.78 0.91 0.69

Table 5: Results for the detection of spam emails using a binary and ternary classifier

limit ourselves to task A. All data sets consist of word/frequency pairs, which can be easily normalized to
L1.

Task A models three users. For each user there are 4000 labeled training email messages and 2500 for
evaluation. We divided the evaluation sets in a development set of 500 emails and the remaining 2000 for
evaluation.

Table 5 lists the results of the spam detection experiment. The first two columns give the number of
spam messages in the development and test set respectively. The third column gives the accuracy of the
standard binary classifier (diffusion kernel machine). The fourth and fifth column give results on accuracy
and yield when the ternary classifier’s thresholds have been set for a minimum accuracy level of 0.90 us-
ing the development subsets. The desired accuracy (0.9) can be achieved for about 20-70% of the email
messages depending on the user, making it a much harder task than the domestic violence detection.

Figure 2 illustrates the optimal operation curves for each user mailbox in a so-called yieldplot, where the
classifier yield is plotted as a function of the desired accuracy level.

6 Discussion and Conclusions
We have presented a new ensemble of evaluation measures for a setting where a classifier is used to partially
replace human labelling effort. The measures accuracy and yield relate well to a more extrinsic view on eval-
uation, where the focus is on cost savings. Accuracy and yield can be seen as workflow oriented measures
for ’fidelity’ and ’completeness’. The simplicity of this approach does have some shortcomings. Indeed
accuracy as an aggregated measure hides the different sources of classification quality. it is well known that
accuracy is sensitive to class imbalance. An alternative ensemble based on false alarm rate, false reject rate



Figure 2: Yield as a function of (minimum) classifier accuracy, in the ternary classifier setting

and yield would solve this problem. However, this ensemble might be less intuitive for non-experts.
A second contribution of this paper is the concept of a ternary classifier, which forwards cases that

cannot be classified with a pre-specified confidence to a human expert, thereby reducing the error rate of
the classifier. Our method estimated two posterior probability threshold levels. The experiments show that
the yield vs. accuracy plot makes it easy to use the ternary classifier in an operational workflow. Also, the
ternary classifier can effectively forward difficult cases for human inspection.

In fact it is not essential that the classifier outputs true probabilities, it can be any monotonous increasing
ranking function. As long as ranking values can be compared across collections, since the threshold values
will always be optimized on a different data set than the test set.

There are several ways in which we plan to extend this research. We intend to look at the suitability of
other (first level) classifier architectures, look at an ensemble of measures that makes a distinction between
type I and type II error rates, and perform a more thorough analysis of the robustness of our parameter
setting procedure.
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