
Processing in the Encrypted Domain using a
Composite Signal Representation

Tiziano Bianchi1, Thijs Veugen2, Alessandro Piva1, and Mauro Barni3?

1 Dipartimento di Elettronica e Telecomunicazioni, Università di Firenze
Via S. Marta 3, 50139, Firenze, Italy

tiziano.bianchi@.unifi.it, alessandro.piva@.unifi.it
2 TNO Information and Communication Technology
P.O. Box 5050, 2600 GB Delft, The Netherlands, and

Information and Communication Theory Group, Delft University of Technology
P.O. Box 5, 2600 AA Delft, The Netherlands

thijs.veugen@tno.nl
3 Dipartimento di Ingegneria dell’Informazione, Università di Siena

Via Roma 56, 53100, Siena, Italy
barni@dii.unisi.it

Abstract. The current solutions for secure processing in the encrypted
domain are usually based on homomorphic cryptosystems operating on
very large algebraic structures. Recently, a composite signal represen-
tation has been proposed that allows to speed up linear operations on
encrypted signals via parallel processing and to reduce the size of the
encrypted signals. Though many of the most common signal processing
operations can be applied to composite signals, some operations require
to process the signal samples independently from each other, thus requir-
ing an unpacking of the composite signals. In this paper, we will address
the above issues, showing both merits and limits of the composite signal
representation when applied in practical scenarios. A secure protocol for
converting an encrypted composite representation into the encryptions
of the single signal samples will be introduced. Two case studies clearly
highlights pros and cons of using the composite signal representation in
the proposed scenarios.

1 Introduction

Signal processing in the encrypted domain (hereafter referred to as s.p.e.d.), i.e.,
the availability of signal processing tools that work directly on encrypted data,

? The work described in this paper has been partially supported by the European
Commission through the IST Programme under Contract no 034238 - SPEED and
by the Italian Research Project (PRIN 2007): “Privacy aware processing of encrypted
signals for treating sensitive information”. The information in this document reflects
only the author’s views, is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

represents a valid solution for all the applications where valuable or sensitive
signals must be processed by non trusted entities. This new field of research is
receiving an increasing attention from the cryptographic and signal processing
communities, which is justified by the list of applications that would benefit
from the availability of s.p.e.d. tools [1]: access to a database containing en-
crypted data or signals [2], database access by means of encrypted queries [3],
remote processing of private data, like medical recordings or biometric signals,
by non-trusted parties [4], transcoding of encrypted contents [5], buyer-seller
watermarking protocols [6].

From a technical point of view, processing of encrypted signals is feasible
by relying on probabilistic homomorphic encryption [7,8] and secure multiparty
computation (MPC) [9, 10]. In this paper we focus on techniques based on ho-
momorphic encryption, since they permit to avoid interaction among the parties
involved in the computation in the case of linear processing.

Additively homomorphic cryptosystems play a central role in s.p.e.d. theory.
For such systems we have:

D[E[m1] · E[m2]] = m1 +m2 (1)
D[E[m1]c] = c ·m1 (2)

where D and E indicate, respectively, the decryption and encryption operators
and c is a constant factor. In other words, an addition in the plain domain
corresponds to a multiplication in the encrypted domain, hence allowing the ap-
plication of many basic signal processing tools directly in the encrypted domain.
This is the case of linear operators like the Discrete Fourier Transform (DFT),
FIR filters, correlation and simple operations among two or more signals like
componentwise signal addition.

A problem with the use of homomorphic encryption is that signals need to be
encrypted sample-wise. Samplewise encryption of signals poses some severe com-
plexity problems since it introduces a huge expansion factor between the original
signal sample and the encrypted one. In [11], a compositite representation of sig-
nals that permits to greatly reduce the expansion factor due to encryption, while
still allowing the exploitation of the homomorphic properties of the underlying
cryptosystem to process signals in the encrypted domain, has been proposed. In
addition to limiting the storage requirement, this representation allows the par-
allel processing of different samples, thus providing a considerable reduction of
computational complexity in terms of operations between encrypted messages.

Though many of the most common signal processing operations, including
block-wise linear transforms, FIR convolution, linear filtering, can be easily ap-
plied to composite signals, the use of composite representation in complex pro-
cessing chains may present some problems. As a matter of fact, some operations
may require to process the signal samples independently from each other, thus
making impossible the processing of their composite representation.

In this paper, the above issues will be addressed, trying to show both mer-
its and limits of the composite signal representation when applied in practical
scenarios. In order to improve the flexibility of the proposed representation tech-

Fig. 1. Graphical representation of a M -polyphase composite representation having
order R. The values inside the small boxes indicate the indexes of the samples of a(n).
Identically shaded boxes indicate values belonging to the same composite word.

nique, we will introduce a secure protocol for converting an encrypted composite
representation into the encrytions of the single signal samples. Such a protocol
can be used in situations where it is convenient to apply simultaneously process-
ing techniques based on composite signal representation and algorithms requiring
a samplewise encryption. The proposed techniques will be applied in two case
studies, secure content retrieval and watermark embedding in the encrypted do-
main, showing the potentialities of the composite representation of signals when
applied to complex s.p.e.d. scenarios.

2 Composite representation of signals

We now briefly review the composite representation of signals. Let us consider
an integer valued signal a(n) ∈ Z, satisfying |a(n)| ≤ Q, where Q is a positive
integer. Given a pair of positive integers B,R, we define the composite represen-
tation of a(n) of order R and base B as

aC(k) =
R−1∑
i=0

ai(k)Bi, k = 0, 1, . . . ,M − 1 (3)

where ai(k), i = 0, 1, . . . , R − 1 indicate R disjoint subsequences of the signal
a(n).

The k-th element of the composite signal aC(k), represents a word where we
can pack R samples of the original signal, chosen by partitioning the original
signal samples a(n) into M sets of R samples each. Several ways of partitioning
a(n) exist. A useful one is obtained by choosing ai(k) = a(iM + k) [11]. In
this case, each composite word contains R samples which are spaced M samples
apart in the original sequence, i.e., belonging to one of the Mth order polyphase
components of signal a(n): this representation is referred to as M -polyphase
composite representation (M -PCR). A graphical interpretation of M -PCR is
provided in Fig. 1.

While the composite representation may seem a trivial one, its use for the
parallel processing of an encrypted signal is not straightforward, especially if we
want to represent and process negative values. To do so, we must first establish
some properties. These are given by the following theorem:

Theorem 1. Let us assume that |a(n)| < Q ∀n, B > 2Q, and BR ≤ N where
N is a positive integer, and let aC(k) be defined as in equation (3). Then, the
following holds:

0 ≤ aC(k) + ωQ < N (4)

where ωQ = Q
∑R−1
i=0 Bi = QBR−1

B−1 . Moreover, the original samples can be ob-
tained from the composite representation as

ai(k) =
{[

(aC(k) + ωQ)÷Bi
]

mod B
}
−Q. (5)

The proof of the theorem is given in [11]. To give a hint of the proof, just
consider that aC(k) + ωQ can be considered as a positive base-B integer whose
digits are given by ai(k) +Q.

3 Merits and Limits of Composite Representation

When working on plain data, the previous analysis ensures that given the origi-
nal signal samples a(n), it is possible to compute the composite representation
according to (3), and viceversa that the original signal values can be correctly
computed from the composite representation according to (5). When dealing
with encrypted data, the first part of the previous theorem demonstrates, first
of all, that the composite representation can be safely encrypted by using a ho-
momorphic cryptosystem defined on modulo N arithmetic: in fact, as long as
the hypotheses of the theorem hold, the composite data aC(k) takes no more
than N distinct values, so the values of the composite signal can be represented
modulo N without loss of information. Concerning the security of the composite
signal representation, if we work with a semantically secure cryptosystem like
the one proposed in [12] the security is automatically achieved.

Let us now consider the case where the original signal samples a(n) have
been encrypted samplewise by using an additive homomorphic cryptosystem
whose private key is owned by a party P1; in such a case, the encryption of the
composite representation can be performed directly in the encrypted domain by
a second party P2, by applying (3) and exploiting the homomorphic properties of
the cryptosystem. Going from the composite to the samplewise representation
however is not possible in the encrypted domain by means of homomorphic
computations only, since such a conversion requires rounding and division. Then
unpacking has to be carried out by the owner of the private key P1, or performed
by means of a properly designed interactive protocol involving P1 and P2.

In [11], it has been shown that several basic signal processing operations
can be performed on the encrypted composite representation. As a matter of
fact, every kind of processing which shows a certain degree of parallelism, that
is, where different signal samples undergo similar operations, is amenable to be
processed in composite form. This is the case of very basic signal processing
building blocks like linear filtering (convolution of two sequences) and block-by-
block linear transforms.

However, several examples can be found where signals can not be processed
in composite form. A simple case is when each signal sample should be scaled
by a different value, like in a masking or windowing operation. Another case
occurs when the values of each sample should be added together, for example
to estimate the average value of a signal. In both cases, it is easy to verify that

there is no way to perform the above operations by manipulating the composite
representation, unless the original samples are first extracted from it.

Since the extraction of the encrypted signal samples from the encrypted com-
posite representation requires an interactive protocol, when and how using the
composite representation should be decided according to the specific processing
chain. In the following, we will consider two possible application scenarios:

1. signal samples are encrypted samplewise and processed samplewise. Compos-
ite representation is used at the end of the processing chain to save band-
width and/or limit storage requirements.

2. composite representation is applied at the beginning of the processing chain
(if applicable, before encryption). When (and if) needed, an encrypted sam-
plewise representation can be computed using the following interactive pro-
tocol.

4 Unpacking the Composite Representation in the
Encrypted Domain

The party P2 has the encrypted number [x] = [aC(k) + ωQ] presented as a B-
ary integer. The number x contains R integers xi = ai(k) + Q, 0 ≤ i < R,
each from the interval [0, B) such that

∑
i xiB

i = x. P2 would like to compute
the encrypted integers [xi] from [x]. The party P1 knows the secret key of the
cryptosystem. The parameters B and R are assumed known by both parties.
Neither P1 nor P2 should gain any knowledge about x or the integers xi at the
end of the protocol. The number N equals the modulus of the homomorphic
encryption system, e.g. Paillier [12]. We use [.] do denote encrypted numbers,
and ÷ to denote integer division, i.e. x÷B = (x− x mod B)/B.

Summary:
Publicly known the Pallier modulus N and its public key,

the parameters B and R
Only known to P1 the private Pallier key
Only known to P2 The encrypted number [x]
Output for P2 (not for P1) the encrypted numbers [xi] for i = 0, . . . , R− 1
The relation x =

∑R−1
i=0 xiB

i holds. During the protocol P1 and P2

are not allowed to learn anything about x (or the numbers xi).
We define ξi as the B-ary presentation of the integers xi up to xR−1, i.e.

ξi =
∑R−(i+1)
j=0 xj+iB

j . Then the main protocol looks like:
{x = ξ0}
for i := 0 to R− 1 do: { compute xi from x }

1. {x = ξi}
P1 and P2 jointly compute [x mod B] from [x] without revealing x or x mod
B to P1 or P2. {x mod B = xi}

2. x := x÷B{x := ξi+1}

The second step could be computed in the encrypted domain by P2, but the
division by B requires a modular exponentiation to B−1, which is an integer of
size N . To avoid this costly exponentiation, we would like P1 to compute this
division in the plain domain. The problem is that P1 is not allowed to learn x or
x mod B. Therefore, P2 will first blind x by adding a sufficiently large random
number r before sending it to P1. The size (number of bits) of r should be equal
to size(x) + K, the parameter K being the security parameter which is usually
something like 80. The addition z = x + r can be computed by P2 due to the
homomorphic property of the encryption system: [z] := [x] ∗ [r] mod N .

The blinding of x is also necessary for jointly computing [x mod B] in an
efficient and secure way, as is shown in subsection 4.1. In this protocol the
encrypted bit [s] is securely computed which indicates whether a carry-over
occured in the addition of x mod B and r mod B, i.e. {s = 1} ≡ {x mod B +
r mod B ≥ B}. This bit s is also used in the computation of x÷B in step 2.

The idea of computing x := x ÷ B securely in the plain domain, is mainly
implemented by letting P1 compute z := z÷B, and letting P2 compute r := r÷B.
As long as the relation z = x+ r is maintained, the next B-ary value xi can be
computed. We know that (x + r) mod B = x mod B + r mod B − s ∗ B, since
there is at most one reduction modulo B, which occurs when s = 1. Therefore,

z ÷B =
z − z mod B

B

=
x+ r − (x+ r) mod B

B

=
x+ r − x mod B − r mod B + s ∗B

B
= x÷B + r ÷B + s

So the relation z = x+r can be maintained, by letting P1 substract the encrypted
bit s from z÷B, which is actually the correction of the carry-over that occurred
during the B-ary addition of x and r. However, P1 is not supposed to learn
whether a carry-over occurred, because that would leak information about x.
Therefore, P2 will not send the encrypted bit s to P1, but a blinded version of
this bit: s′ = r′− s, where r′ is a sufficiently large random number of K+ 1 bits.
The number s′ is added to z ÷ B by P1, and the blinding factor r′ is added by
P2 to r ÷B, such that the relation z = x+ r is maintained.

The above derivation leads to the following unpacking protocol, using vari-
ables [z] and r, where r is an unencrypted random variable only known to P2,
and [z] is an encrypted variable whose content is blinded for P1:
{x = ξ0}

1. P2 chooses a random number r of size(x)+K bits, and computes [z] := [x+r]
by computing [z] := [x] ∗ [r] mod N
{ P2 blinds x for P1}

2. P2 sends [z] to P1 who decrypts it to z
3. for i := 0 to R− 1 do: { compute xi from x }

(a) {z = x+ r;x = ξi}
P1 and P2 jointly compute [x mod B] from [z] without revealing x or
x mod B to P1 or P2

{x mod B = xi}
P2 will obtain the encrypted bit [s] such that
{s = 1} ≡ {x mod B + r mod B ≥ B}
(see subsection 4.1 for more details)

(b) P2 chooses a random variable r′ of K+1 bits, and computes [s′] := [r′−s]
by computing [s′] := [r′] ∗ [s]−1 mod N
{ P2 blinds s for P1}

(c) P2 sends [s′] to P1 whe decrypts it to s′
(d) { Compute x := ξi+1}

P1 computes z := z ÷B + s′ and P2 computes r := r ÷B + r′

{z := z ÷B + s′ = (x÷B + r ÷B + s) + (r′ − s) = ξi+1 + r}

4.1 Computing [x mod B]

Summary:
Publicly known the Pallier modulus N and its public key,

the parameters B and R
Only known to P1 the private Pallier key, the integer z
Only known to P2 the random number r
Output for P2 (not for P1) the encrypted number [x mod B]
The relation z = x+ r mod N holds (and x = ξi). During the protocol P1 and
P2 are not allowed to learn anything about x (or the number x mod B).

To compute [x mod B] from [z] we have the following protocol between the
owner (P2) of (the encrypted) x and the owner (P1) of the private key for de-
cryption:

1. P2 asks P1 for [c] with its encrypted bits [ci] such that c = z mod B and
c =

∑
i 2ici.

2. Perform the bitwise comparison protocol with [c] and d = r mod B. At
the end of the protocol P2 receives from P1 the encrypted bit [s] such that
{s = 1} ≡ {c < d}.

3. P2 computes [y] = [x mod B] by computing [y] := [c] ∗ [d]−1 ∗ [s]B mod N
{y := c − d + B ∗ s}. This works because x mod B = (z − r) mod B =
(c− d) mod B. So y is either c− d+B or c− d depending on whether c < d
or not.

To see that the encrypted bit [s] indeed satisfies {s = 1} ≡ {x mod B + r mod
B ≥ B} observe that c = z mod B = (x + r) mod B = (x mod B + d) mod B,
so c can only be smaller than d = r mod B when the addition of x mod B and
d leads to a reduction modulo B.

The bitwise comparison protocol (step 2) has the largest computational com-
plexity. A good comparison protocol to use is by Damg̊ard, Geisler and M.
Krøigaard (DGK) [13]. This protocol uses an encryption system that is fine-
tuned to small numbers and since B is relatively small compared to N , this

advantage can be effectively exploited. To that end in step 1, P1 will have to
provide the bits ci encrypted by this modified encryption system, and in step 2,
P1 is asked to switch back to the original encryption system.

4.2 Security analysis

The main requirement is that both P1 and P2 are not allowed to learn anything
about the number x = ξ0 (or any part of it). We assume that both P1 and
P2 honestly follow the steps of the unpacking protocol. However, they can be
curious, so they are allowed to do various computations with the values they
obtain. We informally proof that our main security requirement holds.

Especially P1, who owns the private key, is allowed to decrypt any value it
receives. For this reason, we chose to blind any sensitive (encrypted) value that is
sent from P2 to P1, by adding a large enough random number. The security that
is obtained for P1 is therefore statistically: the probability of P1 guessing the
value of x (or some part of it) is negligible, i.e. smaller than 2−K , K being the
security parameter. The values that are obtained by P1 are z (which is blinded
by r) and R times the value of s′ (which is blinded by r′). In each round the value
of z is modified by using the current values of z and s′. Since the current values
are blinded, the new value of z can again be considered as a blinded value. In the
DGK comparison protocol logB extra values are sent from P2 to P1 but these
are fully blinded as well as the comparison result s (see [13] for more details and
a security proof of the comparison protocol). Since all these values are indeed
blinded, it’s statistically infeasible for P1 to learn anything about x = ξ0.

Party P2 will not learn anything about the value of x (or some part of it),
because P2 only obtains encrypted versions and both the Paillier and the DGK
systems are semantically secure. This means that the security for P2 is compu-
tationally: given the amount of computational power that is nowadays available,
it is infeasable for P2 to compute any plain part of the encrypted values he
obtains. Due to the semantical security of the used encryption systems (Pallier
and DGK), it is even impossible for P2 to decide whether two encrypted values
contain the same plain value or not. The values that are obtained by P2 are:

– The encrypted variable [x], where x = ξ0.
– The encrypted variable [z], where z = ξ0 + r mod N and r is a random

variable chosen by P2.
– The R encrypted variables [c], where c = (ξi + r) mod B and r is each time

computed from r and r′.
– The R · logB encrypted bits [ci], where c =

∑
i ci2

i.
– The R encrypted bits [s], where {s = 1} ≡ {c < d} and d = r mod B.
– The R encrypted variables [s′], where s′ = s+ r′ and r′ is a random variable

chosen by P2.
– The R encrypted variables [y], where y = x mod B, x = ξi and thus y = xi.

The only unencrypted values that P2 obtains (r, d and r′) are computed from
random numbers that where generated by P2 itself, and since all other values are
indeed encrypted, it’s computationally infeasible for P2 to learn anything about
x = ξ0.

4.3 Final remarks

The exponentiation [s]B in step 3 of the [x mod B] protocol can be avoided when
P1 gives back both [s∗B] and [s], at the expense of an increased communication
complexity.

It is important that ξ0+r is smaller than N , the size of the encryption system,
because carry-overs modulo N lead to miscomputations. This means that there
could be a problem when computing z in the first step in the main unpacking
algorithm. There are two solutions:

1. Let the modulus of the encryption system be at least size(x) + 2K bits long,
so we take a buffer of K bits to avoid carry-over at the cost of including less
signals in one encrypted number. This is the solution used in the case study.

2. Use a different comparison protocol for the first steps that can cope with large
encrypted numbers. They exist but are computationally harder. See e.g. the
protocol of Schoenmakers and Tuyls [14]. Our main unpacking algorithm
becomes more complicated but the overall complexity, especially for large
R, will however not be influenced much.

We point out that when B is a power of two the unpacking protocol can be
implemented using the protocol in [14] for converting an encrypted composite
value into the encryption of the bits. However, such a solution would be compu-
tationally more expensive than the specifically tailored protocol we propose. If
B is a power of two, an efficient solution could be obtained relying on a garbled
circuit, since the unpacking circuit is just a reordering of the wires. Nevertheless,
our solution can deal with arbitrary B, which can be useful in optimizing the
number of samples that can be packed together.

5 Two Case Studies

The feasibility of the proposed solutions in a practical scenario is verified by
considering two cases studies, the retrieval of a digital content in an encrypted
database [15] and the secure embedding of a watermark as described in [16]. In
the following, we will analyze the behavior of both cases considering the two
application scenarios described in section 3.

5.1 Secure Content Retrieval

In the secure content retrieval scenario, a client downloads from a server a set of
encrypted feature vectors representing some digital contents and matches them
with his own query vector using a secure matching protocol. In our case study,
we assume that the secure matching protocol consists of a correlation (inner
product) between feature vectors followed by a comparison with a threshold.

The schemes we consider are depicted in Fig. 2. The first solution employs
a samplewise representation encrypted with the Paillier cryptosystem until the
end of the processing chain. The second solution performs feature vector en-
cryption and correlation using a composite representation, but switches back to

(a)

(b)

Fig. 2. Secure content retrieval scenarios: (a) samplewise representation; (b) composite
representation. The dashed boxes indicate the blocks which differ between the two
solutions.

a samplewise representation for comparing the result of each correlation with the
threshold. Thanks to the properties of the composite representation, this allows
us to compute R correlations using a single correlation between the query vector
and the encrypted composite vectors [11]. In our analysis, we will concentrate
on the blocks which differ between the two solutions, namely the encryption,
correlation, and unpacking. We also point out that the encryption of the fea-
ture vectors is performed only once when they are added to the database, so its
complexity is kept separated from correlation and unpacking. The complexity of
packing in the plain domain has been assumed negligible.

In order to estimate the complexity of the proposed solutions, we quickly
review correlation in the encrypted domain. If we assume that the vectors have
M components, the correlation between an encrypted vector a and a plaintext
one x is

[ρ] =
M−1∏
k=0

[ak]xk , (6)

where [ak] and xk are the components of the encrypted and plaintext vectors,
respectively. In the following, we will assume that both ak and xk are rounded
to q-bit integers, where q = log2Q. If we consider a database of L vectors, the
above implementation will require ML Paillier encryptions of q-bit numbers,
ML exponentiations to q-bit numbers, and (M − 1)L multiplications.

When using the composite representation, since R features are encrypted in a
single word, we have only ML/R Paillier encryptions. Moreover, if we encode the
kth component of R vectors in a composite component, with a single correlation
between the query vector and a composite vector we are able to compute R
correlations:

[ρC] =
M−1∏
k=0

[aC,k]xk =
M−1∏
k=0

[
R−1∑
i=0

(a(i)
k)B

i

]xi = [
R−1∑
i=0

(ρ(i))B
i

]. (7)

Hence, on average we have ML/R exponentiations and (M − 1)L/R multiplica-
tions.

As to the unpacking protocol, required to obtain the R correlations to be
compared to a threshold, the complexity can be estimated as follows. In our sce-
nario, we have to unpack L/R encrypted values. For each value, the client (P2)
needs to perform one encryption of a log2N -bit number ([r]) and one multipli-
cation ([z] = [x] ∗ [r]) followed by R repetitions of the inner loop. Considering

Table 1. Computational complexities of the building blocks in the two SCR scenarios.
Values indicate the estimated number of multiplications modulo N .

samplewise scenario

Encrypt 6qML

Correlate (6q + 4)ML− 4L

composite scenario

Encrypt 6
R

qML

Unpack (P1) (3
2

log2 N + 3
2
`t + 13

2
`)L

Correlate 1
R

(6qM + 4M − 4)L

Unpack (P2) (6
R

(log2 N −K) + 6K + 3
4
`2 + 16` + 12)L

the loop, for each cycle P2 needs to perform three multiplications, one Paillier
encryption of a `-bit number ([d]), one Paillier encryption of a K-bit number
([r′]), and one exponentiation to a `-bit number ([t]B). Moreover, the DGK
comparison protocol requires that P2 performs `/2 (mi ⊕ xi in [13]) plus 2` (ci
in [13]) multiplications and `/2 exponentiations to log2 u-bit numbers (used for
blinding [x mod B] towards P1) over the field of DGK cryptosystem, where Zu
is the plaintext space of DGK and log2 u ≈ `+ 2 [13]. During each cycle of the
loop, the server (P1) needs to perform one Paillier decryption and one Paillier
encryption of a `-bit number. Moreover, the DGK comparison protocol requires
that P1 also performs ` DGK encryptions of bits and checks ` times whether a
DGK encrypted number is zero.

The overall complexity has been summarized in Table 1 in terms of num-
ber of multiplications modulo N (MM), where N is the modulus of the Paillier
cryptosystem, assuming that one multiplication modulo N2 costs as four MMs.
We also assume that the size of the field used by the DGK cryptosystem is
the same as N . The following further computational estimates are used: Paillier
encryptions of a n-bit number cost 6n MMs (we assume rN terms are precom-
puted); Paillier decryptions cost 3 log2N/2 MMs (see [12]); exponentiations to
n-bit numbers cost 3n/2 multiplications over the underlying ring; DGK encryp-
tions of bits cost 1/2 MMs (we assume hr are precomputed); checking whether a
DGK encrypted number is zero costs 3t/2 MMs, where t is a security parameter
of DGK [13].

As to the communication complexity, in the loop P2 sends to P1 one Paillier
encryption and ` DGK encryptions, whereas P1 sends to P2 two Paillier encryp-
tions plus ` DGK encryptions. This should be executed for each correlation,
resulting in L(6 + 2`) log2N bits. We must also consider that in the sample-
wise case P2 receives from P1 ML encryptions, resulting in 2ML log2N bits,
whereas in the composite case P2 receives from P1 ML/R encryptions, resulting
in 2ML log2N/R bits. As to the round complexity, the loop of the unpack-
ing protocol runs in two rounds. Since it is serially repeated R times for each

(a)

(b)

Fig. 3. Computational complexity of the SCR scenarios at different required precisions:
(a) number of MMs for each correlation; (b) number of MMs for each encrypted vector.

Fig. 4. Communication complexity of the SCR scenarios at different required preci-
sions.

composite word, assuming to process composite words in parallel we have 2R
rounds.

The computational and communication complexities of the two scenarios
have been compared in Fig. 3 and Fig. 4, respectively, in terms of MMs per
correlation/encrypted vector and kbits per correlation. The curves in Fig. 3-
(a) take into account only the complexity of correlation and unpacking, i.e.,
the operations that should be performed during each access to the database,
whereas the complexity of encrypting the feature vectors is compared in Fig.
3-(b). We have assumed M = 256. As to security parameters, we have chosen
log2N = 1024, K = 100, and t = 160. The complexity has been evaluated as a
function of the required precision q, examining values of q ranging from 8 to 32
bits. As shown in [11], the values of ` and R can be related to the size of N and
the required precision. Namely, we can assume ` = 2q + 1 and R = b log2N−K

` c.
As can be seen, the composite scenario when using the unpacking protocol

has some advantages with respect to the samplewise scenario. The computational
complexity of P2 is reduced, even considering the overhead of the unpacking
protocol. Furthermore, the communication complexity of the composite solution
is well below that of the samplewise solution. On the other hand, the composite
scenario requires P1 to perform some extra computations at every query, which
after few queries balances the gain obtained in encrypting the database, and the
unpacking protocol requires some extra rounds. However, we point out that the
composite solution permits to greatly reduce the storage requirements, which
may compensate for the increased computational effort of P1.

5.2 Watermark Embedding in the Encrypted Domain

In the secure watermark embedding (SWE) scenario, a seller receives the bits
of the watermark encrypted with the public key of a buyer – the output of a
previous protocol between him and the buyer – and embeds them into a set of
features extracted from the digital content he owns. In our case study, we assume
that the content is an image and that the features are obtained by applying a
block 2-dimensional Discrete Cosine Transform (2D-DCT) to the pixel values.
We also assume that the seller wants to perform the inverse DCT (IDCT) of
the watermarked features in the encrypted domain, before sending them to the

(a)

(b)

Fig. 5. Secure watermark embedding scenarios: (a) pixelwise; (b) composite. The
dashed boxes indicate the blocks which differ between the two solutions.

buyer. This is justified by the possibility of applying a perceptual mask [17] to
the watermarked image.

The schemes we consider are summarized in Fig. 5. The first solution employs
a pixelwise representation encrypted with Paillier cryptosystem until the end
of the processing chain. The second solution performs image encryption and
SWE using a composite representation of the image. In our analysis, we will
concentrate only on the blocks which differ between the two solutions, namely
the encryption, SWE, s.p.e.d. IDCT and unpacking. The complexity of packing
in the plain domain has been assumed negligible.

In order to estimate the complexity of the proposed solutions, we quickly
review quantization index modulation (QIM) watermarking in the encrypted
domain. The image is divided into square blocks of M×M pixels and an M×M
(I)DCT is applied to each block. The watermark encoder then chooses a subset
M of the available DCT coefficients that will be used to carry the watermark.
If we consider a generic x ∈M, QIM embedding can be expressed as

y = Q2∆(x) + w · sgn(x−Q2∆(x))∆ = x̃+ w ·∆x (8)

where w ∈ {0, 1} is the embedded bit, Q∆(·) is a uniform quantizer with step
∆, and sgn(·) is the sign function. In the following, we will assume that both x̃
and ∆x are rounded to q-bit integers, where q = log2Q. In order to keep secret
the exact set of features, the embedder outputs all the DCT coefficients of the
image in encrypted form. The marked coefficients are obtained as in (8). The
other coefficients are simply rounded to q-bit integers before encryption. Hence,
s.p.e.d. QIM can be expressed as

[y] =

{
[x̃] ∗ [w]∆x x ∈M
[x] x /∈M

. (9)

If we consider an image of size I and |M| = W , the above implementation
will require I Paillier encryptions of q-bit numbers, W exponentiations to q-bit
numbers, and W multiplications. As to s.p.e.d. IDCT, we refer to a separable
implementation by means of one dimensional M -point IDCTs: in order to keep
the size of the output limited, we preferred a direct implementation instead of
a fast one [18]. The complexity of a direct 1D-IDCT is M2 multiplications and
a separable implementation requires 2M 1D-IDCTs, hence the complexity of a
s.p.e.d. 2D-IDCT is 2M3 exponentiations. Processing the entire image requires
I/M2 2D-DCTs, which results in 2MI exponentiations to qT -bit numbers, where
qT = log2QT and QT is the scale factor used to quantize the cosine values [18].

Table 2. Computational complexities of the building blocks in the two SWE scenarios.
Values indicate the estimated number of multiplications modulo N .

pixelwise composite

Encrypt 6qI 1
R

6qI

SWE (6q + 4)W 6qW + W
R

[6(R− 1)` + R]

s.p.e.d. IDCT 12qT MI 1
R

12qT MI

Unpack (P2) - (6
R

(log2 N −K) + 6K + 3
4
`2 + 16` + 12)I

Unpack (P1) - (3
2

log2 N + 3
2
`t + 13

2
`)I

Fig. 6. Computational complexity of the SWE scenarios at different required precisions.

When using the composite representation, since R pixels are encrypted in a
single word, we have only I/R Paillier encryptions. Moreover, also the complex-
ity of 2D-DCT decreases to MI/R exponentiations [11]. However, in order to
perform SWE we have to express the terms [w]∆x according to the composite
representation. This can be obtained as (s.p.e.d. packing)

[yC(k)] = [x̃C(k)] ∗
R−1∏
i=0

{
[w(iM + k)]∆x(iM+k)

}Bi

(10)

and requires R − 1 exponentiations to `-bit numbers (` = log2B) and R − 1
multiplications. Hence, we have W exponentiations to q-bit numbers (to compute
[w]∆x terms) plus W/R s.p.e.d. packings and W/R multiplications.

As to the unpacking protocol, the complexity can be estimated as in the
SCR scenario, considering that we have to unpack I/R encrypted values. The
overall complexity in terms of number of multiplications modulo N has been
summarized in Table 2.

The complexities of the two scenarios have been compared in Fig. 6, in terms
of MMs per pixel. We have assumed W = I/16, i.e., we mark one DCT coefficient
out of 16 and M = 8. As to security parameters, we have chosen log2N = 1024,
K = 100, and t = 160. The complexity has been evaluated as a function of
the required precisions q and qT . To this end, we assumed qT = q and we have
examined values of q ranging from 8 to 32 bits. As shown in [11], the values of
` and R can be related to the size of N and the required precision. Namely, we
can assume ` = 2qT + q + 1 and R = b log2N−K

` c.
As to the communication complexity, the pixelwise scenario can be assumed

to have no complexity, since all the processing chain is on the server’s side. The
communcation complexity of the composite scenario depends on the unpacking
protocol and can be evaluated as in the SCR case. With the chosen parame-
ters, the communication complexity of the unpacking protocol ranges from 57.3
kbit/pixel (q = 8) to 204.8 kbit/pixel (q = 32).

As can be seen, the complexity of the composite SWE scenario when using
the unpacking protocol is far above that of the pixelwise scenario. Note that the

complexity is dominated by the unpacking protocol, which has to be executed
for each pixel of the watermarked image.

5.3 Discussion

In the SCR scenario, the main advantage is that a composite word is the re-
sult of parallel correlations between a set of encrypted vectors and a template.
In such a case, the cost of encrypting the vectors component-by-component is
higher than the cost of unpacking few composite words. We deem that also other
scenarios may benefit from the use of a composite approach, for example when
the cost of storing an encrypted samplewise representation for the entire life of
the application is not acceptable. For example, an untrusted server could hold
a large encrypted database, whose private key is owned by a third trusted au-
thority, using the composite representation for storage efficiency. However, every
time a query is made to that database it is likely that the matching algorithm
will require a pixelwise representation. Such a representation can be obtained
on the fly using the unpacking protocol between the server and the trusted au-
thority. Nevertheless, if the number of encrypted composite words that have to
be unpacked is equal to the original amount of encrypted data, then the use
of the unpacking protocol may be too onerous with respect to a samplewise
implementation. This is the case of the SWE scenario, where each pixel of the
encrypted and watermarked image has to be extracted from the composite rep-
resentation in order to apply a perceptual mask. In such cases, if we know in
advance that some processing requiring a samplewise representation is needed, it
may be worth using a samplewise representation in the whole processing chain.

The computational complexity of the proposed protocol can be further re-
duced by using some common optimizations. First of all, all random values
needed by the protocol, that is [r], [r′] and [d], may be pre-computed. This will
add a little to the storage requirements of the application. However, such values
are needed only for a short time, since they can be computed when the processor
is idle and discarded right after the end of the protocol. Hence, their effects on
the storage requirements are different from those of the encrypted signals. Fur-
thermore, in a practical implementation scalar products between vectors could
be implemented relying on vector addition chains [19]. Such an optimization will
affect in the same way both samplewise and composite solutions, however its
use may be relevant for a comparison with an unencrypted version of the same
protocols.

6 Conclusions

In this paper we have highlighted both merits and limits of the recently proposed
composite representation of signals, a tool for signal processing in the encrypted
domain, when applied in practical scenarios. In order to improve the flexibility
of the composite representation, we have introduced a secure protocol for con-
verting an encrypted composite representation into the encrytions of the single

signal samples. Such a protocol has been applied in two case studies, secure
content retrieval and secure watermark embedding, where both composite and
samplewise representations may be adopted according to the requirements of
the processing tasks. The results show that in a secure content retrieval scenario
the overhead due to the unpacking protocol is lower than the complexity of a
processing chain entirely based on a samplewise representation. Conversely, in
a secure watermark embedding scenario the samplewise representation may be
preferable, especially when it is required to perform some processing task that
would require the unpacking of the composite representation. In general, the
unpacking protocol is useful when the number of encrypted composite words is
much less than the original amount of encrypted data, or it is not convenient
to store an encrypted samplewise representation for the entire life of the ap-
plication. Further research will be devoted to the possible optimization of the
proposed unpacking protocol and to comparisons with alternative solutions for
the unpacking protocol (e.g., garbled circuits).

References

1. Erkin, Z., Piva, A., Katzenbeisser, S., Lagendijk, R.L., Shokrollahi, J., Neven,
G., Barni, M.: Protection and retrieval of encrypted multimedia content: When
cryptography meets signal processing. EURASIP Journal on Information Security
2007, Article ID 78943, 20 pages (2007)

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD ’00: Pro-
ceedings of the 2000 ACM SIGMOD international conference on Management of
data. Volume 29(2)., ACM Press New York, NY, USA (2000) 439–450

3. Shashank, J., Kowshik, P., Srinathan, K., Jawahar, C.: Private content based image
retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition. (June
2008) 1–8

4. Canny, J.F.: Collaborative filtering with privacy. In: IEEE Symposium on Security
and Privacy. (2002) 45–57

5. Johnson, M., Ishwar, P., Prabhakaran, V., Schonberg, D., Ramchandran, K.: On
compressing encrypted data. IEEE Trans. on Signal Processing 52(10) (October
2004) 2992–3006

6. Memon, N., Wong, P.: A buyer-seller watermarking protocol. IEEE Trans. on
Image Proc. 10(4) (Apr. 2001) 643–649

7. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In R.A. DeMillo et al., ed.: Foundations of Secure Computation, New
York, Academic Press (1978) 169–179

8. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and
System Sciences 28(2) (1984) 270–299

9. Yao, A.C.: Protocols for secure computations. In: Proceedings of Twenty-third
IEEE Symposium on Foundations of Computer Science, Chicago, Illinois (Novem-
ber 1982) 160–164

10. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. Lecture Notes in Computer Science 2045 (2001) 280–
299

11. Bianchi, T., Piva, A., Barni, M.: Efficient pointwise and blockwise encrypted
operations. In: Proc. of ACM Multimedia & Security Workshop 2008, Oxford, UK
(2008) 85–90

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Eurocrypt 1999. Volume 1592., Springer (1999) 223–238

13. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Australasian Conference on Information Security and Privacy -
A CSIP 2007. Volume 4586., Springer (July 2007) 416–430

14. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted
values. In: Advances in Cryptology - EUROCRYPT 2006, Springer (July 2006)
522–537

15. Lu, W., Swaminathan, A., Varna, A.L., Wu, M.: Enabling search over encrypted
multimedia databases. In: Proc. of SPIE. Volume Media Forensics and Security.
(January 2009)

16. Kuribayashi, M., Tanaka, H.: Fingerprinting protocol for images based on additive
homomorphic property. IEEE Transactions on Image Processing 14(12) (Dec.
2005) 2129–2139

17. Bartolini, F., Barni, M., Cappellini, V., Piva, A.: Mask building for perceptually
hiding frequency embedded watermarks. In: Proc. 5th IEEE Int. Conf. on Image
Processing, ICIP’98. Volume I., Chicago, IL, USA (October 1998) 450–454

18. Bianchi, T., Piva, A., Barni, M.: Discrete cosine transform of encrypted images.
In: Proc. of ICIP 2008, San Diego, CA, USA (2008) 1668–1671

19. Pippenger, N.: On the evaluation of powers and related problems. In: Proc. 17th
IEEE Symp. Foundation of Computer Science, Houston, TX, USA (1976) 258–263

