
Abstract—More and more natural disasters are happening every 
year: floods, earthquakes, volcanic eruptions, etc. In order to reduce 
the risk of possible damages, governments all around the world are 
investing into development of Early Warning Systems (EWS) for 
environmental applications. The most important task of the EWS is 
identification of the onset of critical situations affecting environment 
and population, early enough to inform the authorities and general 
public. This paper describes an approach for monitoring of flood 
protections systems based on machine learning methods. An 
Artificial Intelligence (AI) component has been developed for 
detection of abnormal dike behaviour. The AI module has been 
integrated into an EWS platform of the UrbanFlood project (EU 
Seventh Framework Programme) and validated on real-time 
measurements from the sensors installed in a dike.

Keywords—Early Warning System, intelligent environmental 
monitoring, machine learning, flood protection. 

I. INTRODUCTION

ORE than two thirds of European cities are regularly 
confronted with natural disasters like floods, 

earthquakes, volcanic eruptions, etc. Early Warning Systems 
(EWS) play a crucial role in mitigating the effects of such 
disasters by detecting conditions which forecast the onset of a 
catastrophe and by evaluating the impact. The EWS provide 
decision support and information services to governments, 
companies and general public. 

The goal of the UrbanFlood FP7 [1] project is the 
development of an Internet-based service platform for early 
warning systems validated for flooding. Most of the current 
EWS forecast the water heights in rivers and canals, but not 
the condition of dikes and the danger of dike breaches. The 
Ikdijk experiments [2] showed that information from sensor 
networks can help to predict dike failures. This approach shall 
be extended by in-time forecasts of such failures.  

The role of the artificial intelligence (AI) component is to 
detect the abnormal behaviour of the object and to provide 
early indicators for the decision support system. The EWS 
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infrastructure includes cloud and grid resources of the 
UrbanFlood project, distributed virtualization servers in the 
Netherlands, Russia and Poland. The advantage of a proposed 
EWS architecture is that a number of AI components can run 
on distributed resources, therefore the relatively complex 
computational tasks could be carried out effectively and 
efficiently, to provide a near real-time response in processing 
the sensor data.  

II.THE STATE OF THE ART

Environmental conditions like heavy rain, snowmelt, 
storms, etc. together with failures of water defence systems 
(e.g. caused by piping) are the main root causes of floods. 
Most of the state-of-the-art approaches mentioned in this 
section consider only the environmental data like the rain fall 
and winds. One of the advances of the UrbanFlood project is 
that a complete data set is used, including structural health 
parameters of the flood-protection dikes. The complexity of 
these data sets is very high and moreover it is not always 
possible to determine the inherent analytical dependencies 
within the data. Therefore some sophisticated methods are 
required in order to distinguish normal and abnormal 
situations and to estimate the level of emergency for a given 
state of the dike.  

One of the tasks of the UrbanFlood EWS is to bring 
together the dike structural health data and the environmental 
data and use this combined data for further monitoring and 
abnormal behaviour detection. The dike behaviour monitoring 
model should use input data from the dike (such as water 
pressure inside the dike, core temperatures, displacements) 
and external parameters including environmental parameters, 
such as the weather conditions, dike repair works, traffic load, 
etc. as input data. The output of this model is the dike 
behaviour characteristic, e.g. confidence value of dike 
stability.  

Let us consider two main classes of such models suggested 
in [3]: descriptive and cause-response models. Descriptive 
models are restricted to the pure geometrical description of the 
deformation process. They do not take into account 
influencing parameters like temperature, wind or traffic loads, 
whereas parametric cause-response models, for example finite 
element model, evaluate the reaction of the construction to 
external influence. In comparison to the parametric models, 
the structure of nonparametric cause-response model is not 
specified a priori. This type of models is directly derived from 
the measurements [3], including machine learning methods, 
such as neural networks and clustering methods. The high 
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potential of nonparametric methods for monitoring and 
analysis of dike deformation signals is described in [3]. 

In the UrbanFlood project various types of models are used 
as part of the EWS: the BREACH model developed by HR 
Wallingford [4] that combines features of descriptive and 
parametric cause-response models; and parametric cause-
response Virtual Dike model developed by the University of 
Amsterdam [5]. Here and in the following sections these 
models will be referred as “classical”. The first version of the 
AI component was developed on the basis of nonparametric 
cause-response methods. 

Dike abnormal behaviour can be detected by on-site or 
remote visual inspection; however it usually means that failure 
development is detected too late for proper maintenance 
actions. Analysis of the measurements collected at the object 
is required for early detection of the failure development. For 
dike monitoring, core temperature could be used as an 
indicator of leakage [6]. Characteristics of dikes stability 
include movements (horizontal, vertical, rotational, lateral), 
pore pressure and ground water flow through the dike [7]. 
Moreover, dike geometry (angle, type of ground, height, 
width) and environmental parameters (atmospheric pressure, 
air humidity, rainfalls, river flow, water height and others) are 
usually considered. 

In many publications floods are forecasted using 
environmental parameters only (see Fig. 1a). For example, in 
[8] flood forecast was based on a river flow. It was the only 
output of prediction model, which was built by a linear 
regression model. Flow rate, air temperature and rainfall were 
used as input parameters. Flood forecast method based on 
rainfall data was suggested in [9]. 

Fig. 1b shows classical application of neural networks for 
dike behaviour analysis in case of available training set, for 
example, in [10] one of dike parameters was used as dike 
behaviour characteristic. Although there are problems with 
availability of such data sets, since usually there are not so 
many measurements related to development of failures. In this 
case some classical model is used to convert geometrical 

parameters of dike into slope stability, e.g. in [11] dike 
behaviour was calculated by the Bishop model and used as a 
target for neural network. It is illustrated in Fig. 1c. 

In addition to the abovementioned examples, it would be 
beneficial to have an algorithm that can distinguish normal 
behaviour from abnormal based on only historical 
measurements of a normal dike behaviour. This is 
schematically shown in Fig. 1d, where the "Target" arrow is 
directed downwards. This approach is considered in this paper 
as a part of the abnormal behaviour detection strategy. 
Processing the sensor data is described in Section 3. 

III. THE APPROACH FOR ABNORMAL BEHAVIOUR DETECTION 

A. Approach Description 
Dike condition monitoring shall be carried out 

continuously. Numerous sensor data have to be processed in 
order to monitor dike condition. Obviously the amount of raw 
data is too large for manual inspections.  

Automatic sensor data validation and data aggregation have 
to be carried out. Machine learning methods are selected to 
support the extraction of fault indicators for further analysis. 
Fig. 2 depicts a generic scheme of an automatic detection of 
abnormalities. Environmental conditions and dike parameters 
are input data, which are analyzed after pre-processing by the 
set of the classification agents – Neural Clouds (NC). 
Confidence values calculated by NC can be used after that for 
further analysis.  
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It is very important to distinguish sensor faults from dike 
failures. For example, one sensor indicates abnormal 
behaviour, whereas others show usual behaviour at the same 
time. It could be either a leakage or a sensor defect. In this 
case some redundant information is used. Clustering methods 
and statistical correlation are used for detection of analytical 
groups of installed sensors. This is a so called analytical 
redundancy. Physical redundancy (Fig. 2) means that sensors 
are grouped according to rules like: all sensors that measure 
the same characteristic – e.g. S11 and S21) or sensors from 
the same cross-section, e.g. S11 and S12). Moreover, the 
relations between environmental parameters and dike 
characteristics should be analyzed.  
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Dimensionality 
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data

Preprocessed
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Fig. 3 Generic scheme of the pre-processing stage 

Data pre-processing scheme, as the first part of data 
analysis flow, is presented in Fig. 3. It includes data 
normalization, filtering, feature extraction and 
denormalization blocks. There are two main data flows inside 
each pre-processing block: sensor data flow and calculated 
features flow. Further analysis of the sensor data flow 
involves the application of approach for abnormal behaviour 
detection. One of the aims of data pre-processing is to build a 
set of redundant features representing possible dependencies 
within the data set and the critical data properties. Features 
calculated by different methods in frequency and time domain 
for sliding windows, will be used both as an inputs for the 
abnormality detection block and as independent abnormality 
indicators. Detected outliers and data gaps caused by sensor 
network or communication problems will be filled in using 
interpolation methods. 

A dike is an environmental object, therefore, methods 
commonly used for environmental time series analysis can be 
applied for dike behaviour analysis, e.g. singular spectrum 
analysis [12], Hilbert-Huang transform analysis [13], time 
series decomposition in seasonal, cyclical, trend and irregular 
component. Econometric analysis, fractal analysis and 
nonlinear dynamics methods will be used as independent 
indicators of time series changing properties. 

Pre-processed data and calculated features will be used for 
the system behaviour classification. In UrbanFlood project, 
the authors suggest to use a one-side classification concept for 
abnormality detection. The basic idea behind the one-side 
classification in the field of environmental monitoring is that 
the majority of the measured data usually corresponds to the 

normal conditions of the environmental object (e.g. dike). 
Data collection of abnormal or critical conditions is hardly 
possible, and fault modelling gives mainly the information 
that can support experts in understanding the failure 
mechanisms, but decision support could be still rather 
complicated. Taking into account the abovementioned issues 
we suggest the application of so-called Neural Clouds [14] for 
the dike abnormal behaviour detection.  

B. Neural Clouds 
The NC classification algorithm receives the pre-processed 

data and a set of extracted features as an input. The core of the 
NC classification agent (single classification algorithm) is a 
combination of an Advanced K-Means (AKM) clustering 
algorithm and an extended Radial Basis Functions (RBF) 
network approach (Fig. 4) [14]. 

Fig. 4 Radial Basis Function network representation [14] 
L1 part - Gaussian bells, 

L2 part – superposition of Gaussian bells, 
g0 – normalizing parameter, 

Pc - confidence level 

AKM is a modification of the well-known k-means 
algorithm with an adaptive calculation of “optimal” number of 
clusters. Output of the AKM algorithm are centres of clusters 
representing historical data related to “normal” behaviour 
(training period). 

After all the centres of clusters have been extracted from 
the input data, the data is encapsulated with the hyper surface. 
[14] For this purpose Gaussian distributions or the so called 
“Gaussian bells” are used. 

2

2

2
imx

i exR  (1) 
where mi is the centre of the Gaussian bell,  is the width of 

the Gaussian bell, x is the input data. The centres of the AKM 
clusters become the centres of corresponding Gaussian bells 
(Fig. 4 – L1 part). 

The sum of all Gaussian bells is calculated, in order to 
obtain the encapsulating surface [14]. The sum of the 
Gaussian bells can be more than unity in case these bells 
overlap. Normalization factor g0 (Fig. 4) is applied to make 
the confidence values Pc calculated by Neural Clouds in 
boundaries from 0 to 1 only. Confidence values close to 1 are 
reflecting normal behaviour while values close to 0 are 
reflecting anomalies. 

The NC encapsulates all previously known configurations 

World Academy of Science, Engineering and Technology 78 2011

120



of selected parameters for a given training period. After 
training, the NC calculates a confidence value for every new 
state of the dike, describing the confidence value of abnormal 
behaviour. 

The basic idea of NC for complex system monitoring is 
based on implementation of a single classification instance 
aimed to detect the deviations of the whole system behaviour 
from the normal state. In this work, we extend this approach 
by introducing a set of classification agents (Fig. 5), which 
can be trained and used independently to perform the fault or 
abnormality localization. This way, we also efficiently utilize 
the cloud computing infrastructure of the EWS. 

The benefits from using smaller scale classification 
algorithms running on distributed computational resources are 
the reduced computational load and faster response times. It is 
proposed to group the data sets by data type, sensor location 
and possible dependencies within the data sets. Further, we 
train the committee of NC encapsulators separately for each 
set. Local classification agents are responsible for detection of 
abnormalities in the data from given sensor group, of 
correlations between the data from selected sensors, and of 
other extracted features (Fig. 2, 5). Such an extension could 
significantly improve the accuracy of the abnormality 
detection and make the follow up decision support processes 
more effective. 
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Another step towards the development of the NC 
application strategies comes from the nature of the 
environmental systems. Dike parameters depend on the 
external conditions: time of the day, high or low tide, 
atmospheric pressure, wind, seasonal temperature fluctuations, 
etc.  

We suggest to create several models of classification agents 
(Fig. 5) and to train them according to the selected rules: for 
example, models with the same internal structure like the 
number of classification agents, inputs for the agents, etc. can 
be used for different seasons. Training is performed according 

to the predefined seasons; and the models are activated based 
on the selected schedule. Overlapping of the models would 
give a possibility to consider the transition intervals using the 
confidence values from their committees (Fig. 5).  

The approach described in this section is used as a basis for 
implementation of the AI component in the UrbanFlood early 
warning system.  

IV. ARTIFICIAL INTELLIGENCE COMPONENT

The first version of the AI component was developed in 
C++ and Java programming languages and integrated into the 
EWS infrastructure (Fig. 6). Real-time dike measurements in 
XML format are published into Java Message Service (JMS) 
bus, and consumed by the AI component. The results of data 
analysis are sent back to the JMS topic to be used by decision 
support system and other components. The output message of 
the AI component also writes in XML format and contains 
calculated confidence value, timestamps of measurement and 
analysis. Data analysis block is based on the abnormal 
behaviour detection scheme. Input measurements and 
calculated confidence values are visualised by the 
WebDashBoard block. Only a web browser is required for 
visualization of dike measurements and results of data 
processing. Self-monitoring block is responsible for providing 
all the other EWS components with information about the AI 
component state. The main goal of this block is to increase 
robustness of the applications and of the EWS infrastructure. 
More details can be found in official website of the 
UrbanFlood project [1]. 
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Fig. 6 Artificial Intelligence component as part of the UrbanFlood
early warning system 

V.RESULTS OF STAMMERDIJK DATA ANALYSIS

One of the dike failure mechanisms is the slope macro-
instability. This mechanism has been extensively studied 
during the Ijkdijk experiments [15], when a full-scale levee 
crashed as a result of high water content inside the dike and a 
heavy load placed on the top of it. 

The “Stammerdijk”  dike in Amsterdam, the Netherlands  
was equipped with a detailed network of GeoBeads sensors 
continuously measuring pore water pressure, temperature and 
inclination (Fig. 8). Sensor modules have been installed in two 
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cross-sections up to 10 meters below sea level in various 
ground layers (sand, clay and peat) [16]. 

Fig. 8 One of the Stammerdijk cross-sections [17] with marked 
sensor locations 

During the “macro-stability” tests done at the Stammerdijk, 
heavy load was placed on dike. Main aim of this test was 
analysis of ability of installed sensor network to translate the 
influence of external circumstances on levee stability [16]. 
This is suitable situation for testing the proposed approach for 
abnormal behaviour detection. 

Some of sensors indicated influence of additional load on 
dike, for example, inclinometers SD_1A1_322(Y1) and 
SD_1C2_540(Y1), which measure relative inclination in
degrees (relative to reference time, averaged over 1 day) of 
GeoBeads. Here “SD” stands for StammerDijk, “1” is the 
cross-section number, “C2” is the sensor location, “540” is the 
depth of the sensor in centimetres. Fig. 7b and Fig. 7c show 

that additional load placed three times at dike was successfully 
detected by selected sensors – three rapid changes in graphics 

are related to the events of placing (time steps with numbers 
2238, 2711, 3012) and removal (steps with numbers 2607, 
2866, 3140) of the load  

These anomalies were detected by the Artificial Intelligence 
component (Fig. 7a). As training set the data related to normal 
mode were used. Test set includes data with anomalies as well 
as “normal” data. Fig.7a shows that suggested approach is 
able to detect such kind of anomalies: in case of “normal” data 
confidence values are close to 1, in case of anomalies close to 
0.

Fig. 9 is a 2D projection of NC trained on Stammerdijk  

Fig. 9 2D projection of Neural Clouds. Confidence levels are 
represented by the contour lines 

Input data from two selected sensors were pre-processed: 
measurements were normalised. Pre-processed dike 
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parameters were used as input for NC training. Training set 
(Fig. 7a) was encapsulated by NC (Fig. 9, 10). 

Fig. 10 Constructed Neural Clouds. Confidence levels are 
represented by the 3D surface 

VI. CONCLUSIONS AND OUTLOOK

In this paper we presented the concept of abnormal 
behaviour detection for Early Warning Systems (EWS) for 
environmental applications. The Neural Clouds (NC) 
approach allows an early detection of the system state which 
was not presented in the training set, and could be considered 
as part of the EWS responsible for early detection of the 
abnormal behaviour. According to the review of the state-of-
the-art, this is the first time such an approach is used for 
environmental applications.  

Preliminary results of NC application to real-world 
Stammerdijk data have proved the efficiency of this approach 
for abnormal behaviour detection. This strategy has been 
implemented in the AI component and integrated into the 
UrbanFlood early warning system prototype. Most of the 
classical models are resource-intensive, whereas application of 
an AI component is an efficient method for online data 
processing. 

The next step is to apply the presented approach to the 
analysis of the data from experimental dike IJkdijk [2] and 
real dike Livedijk [18]. It is important to extend the results of 
the Stammerdijk data analysis to the Ijkdijk macro-stability 
experiments, to be able to compare the results calculated for 
different dikes. 

For further development of the methodology, it is planned 
to introduce a forecasting component allowing classification 
of the future states of the system. 

We should mention that presented abnormal behaviour 
detection approach shouldn’t be considered as a stand-alone 
application for dike health assessment. Low confidence values 
(detected anomalies) should be used as indicator for initiation 
of further data analysis by computational models, which can 
calculate dike stability. 

As the next step, machine learning methods will be 
combined with classical models to make the system more 
robust. For example, the Virtual Dike [19] advanced 
computational model can be used for generating training sets 
for the AI component. 

Dike is a complex object that is affected by many different 
factors, including environmental conditions. To improve the 

quality of classification, further in the project Neural Clouds 
should be adapted to the changing environmental conditions. 
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