Real-time task recognition based on
knowledge workers’ computer activities

Saskia Koldijk

TNO & Radboud
University Nijmegen
The Netherlands

s.koldijk@cs.ru.nl

Mark van Staalduinen

TNO
The Netherlands

mark.vanstaalduinen@tno.
nl

ABSTRACT

Motivation — Supporting knowledge workers in their
self-management by providing them overviews of
performed tasks.

Research approach — Computer interaction data of
knowledge workers was logged during their work. For
each user different classifiers were trained and
compared on their performance on recognizing 12
specified tasks.

Findings/Design — After only a few hours of training
data reasonable classification accuracy can bewaethi
There was not one classifier that suited all ubess.

Take away message — Task recognition based on
knowledge workers’ computer activities is feasii¢h
little training, although personalization is an ionfant
issue.

Keywords
Task recognition, field study, unobtrusive sensing,
pattern recognition, personalization.

INTRODUCTION

Nowadays, many people spend their working days at a
computer, coordinating different activities in sele
projects to create information products. We refer t
these people as knowledge workers. Typically, they
have to self-manage their work to accomplish adiirth
tasks. Their course of action is not always sedfipked
but also determined by external causes, like ploalis,
mails, information requests, other persons
appointments (Czerwinski, Horvitz, & Wilhite, 2004)
which easily results in a fragmented way of working
So, a good overview of tasks is important for thénrt,
rather difficult to maintain. The goal of our resgais

to support knowledge workers with tools. This paper
aims at automatic task recognition to provide oiswe

of tasks performed.

Knowledge workers rely on software for
communication, information gathering, document
creation and work planning, so a vast collection of
digital traces is left behind on their computere3é are
available in the form of mouse motion, click eve hisy
presses and active window changes. We use thesstra

or

Mark Neerincx

TNO & Technical
University Delft
The Netherlands

mark.neerincx@tno.nl

Wessel Kr aaij

TNO & Radboud
University Nijmegen
The Netherlands

wessel.kraaij@tno.nl

to automatically infer what task a user is curnentl
performing. In this way we automatically createeal¥
time overview of tasks for the user in an unobtresi
way.

As research has shown, more awareness of one’s own
working process can have beneficial effects onahe
task behaviour and adherence to scheduled activitie
(Richman, Riordan, Reiss, Pyles, & Bailey, 1988). A
study by Johnson and White (1971) showed that mere
self-observation caused a positive change in bebavi

By being able to easily look back at their behaxiou
knowledge workers might get a better grip on theirk

style and improve it. Cognitive load and stresshlge
decreased.

Some systems that provide overviews of computer
activity exist (e.g. Sliff RescueTim®, but they
present low-level data in the form of time spent pe
application and websites browsed. They requireutiez

to interpret for which task a specific program @bsite
was used. In our research, minimal effort should be
required from the user. So we aim at automatic
recognition of tasks based on computer activitide
use not only application information, but also tgli
patterns of behaviour that originate from mouse and
keyboard.

In the field of activity recognition, various adties are
automatically recognized, for example activitiesan
adventure game (Albrecht, Zukerman, Nicholson, &
Bud, 1997) or computer activities, like filling aform

or planning a meeting (Rath, Devaurs, & Lindstaedt,
2009). These activities have rather clear strusture
involving predefined steps (see Natarajan, Bui,
Tadepalli, Kersting, and Wong (2008)). Thereforféem
model-based classification is applied, with logical
models assuming a plan library (e.g. Goldman, G&ib,
Miller, 1999) or Markov models, modelling the
sequence of actions in time (e.g. Albrecht et197).
Moreover, most models are applied to simple proklem

! http:/iwww.slifeweb.com
2 http://lwww.rescuetime.com

in a controlled environment. Our models will betées

in a field study. The recognition of knowledge wer¥
tasks on the basis of computer activities is a new
domain with different characteristics, where taaks
less structured and task sequences are
spontaneous. Whether task recognition in this dorai
feasible is thus a challenging research question.

This paper is organized as follows. First, we déscr
our framework for task recognition, then we explain
how we evaluated this framework in a field study.
Thereafter, our analyses and results are presente
followed by a discussion and conclusions.

TASK RECOGNITION FRAMEWORK

To recognize knowledge workers’ tasks automatically
framework is necessary that specifies the mappiog f
low level computer interaction data to performesksa
The following components are required to realizis th
framework:

* A set of task labels that users intuitively use.

» A number of useful features obtained from computer
interaction data.

« Different classifiers that map low level activity
features to the defined task labels.

* Make presentation * Make overview

* Create visualization « Analyse data

We learned that knowledge workers do not intuitivel
more think in terms of applications to categorize their

activities. They have a specific purpose or taskind,
which often requires the use of several applicatidrne
tasks are in focus and the applications used depand
these tasks. Important to note is that some apjits
like PowerPoint, are used for different tasks. €fane

d task recognition is not a simple one-to-one mapping
"between an application and a task. Users also lswitc

between different applications while executing tamsk,
which became clear from the descriptions of some
respondents. Our recognition model should be rotaust
this behaviour.

Features

Automatic task recognition requires relevant feasuin

our research, computer interaction data is usedghwh
should be automatically logged. From this raw data
useful features should be extracted, such that the
classifier can discriminate between tasks.

We used ulLog (software developed by Noldus
Information Technolog}) to log mouse and keyboard
actions, as well as the applications used. Thexedfiis

These components are described in the next three raw data was processed to extract relevant feataies

subsections.
Task Labels

these features were calculated for a 5 minute time
segment, which we assume to be long enough to

To obtain more knowledge about tasks that knowledge @verage out fluctuations, but fine grained enoughta

workers typically perform, and which task labelgyh
intuitively use, we developed a questionnaire. dtalt
47 employees from TNO (Netherlands Organization for
Applied Scientific Research) with various backgrdsin
and different functions completed this online
questionnaire.

The answers to the questions ‘What tasks do you
perform and how do you use your computer to realize
this task?' and ‘Describe a typical working day'reve
manually grouped into sets of similar answers. Task
categories that clearly arose from the data werailem
meeting and planning. These were mentioned by yearl
anyone. Depending on the specific role or expenise
the knowledge worker several project tasks were
mentioned, like searching for information, analgsin
data, making a presentation or writing a reportnia
people also listed phoning, traveling, using social
media, coffee breaks, talking with colleagues, doin
some private Internet browsing, or having lunch.

The appropriateness of our identified task labeés w
confirmed by several knowledge workers. We
investigated automatic task recognition for thoseks
that are performed using a computer:

* Read mail » Program
* Write mail Write report/ paper
» Organize/ archive data+ Search information

* Plan » Read article/ text

lose useful information. In this way we calculated
example how often the user clicked within the 5 utén
segment, or how much of the time a certain apptioat
was in focus within this 5 minute segment.

Mouse features include

» the number of clicks and scrolls within the time
frame.

Keyboard features include
 the amount of characters and special keys typed,
« the number of spaces and backspaces.
Application features include

« the application that was mainly in focus during the
five minute time frame,

« features for typical applications like Word or
Outlook, which indicate what percentage of time
these applications were in focus.

Other features used are

« the number of different applications used withie th
time frame,

« the number of switches between applications,
* the time of the day.

% http://www.noldus.com

Classifiers

For mapping simple features to higher level tasks,
classifier is used. All features determined for oinee
segment are provided to a classifier, which assi@ns
task label to this time segment. As knowledge wirke
tasks do not have a clear predefined structurectwhi
could be modelled, we chose to use several common
and rather simple data-based classifiers:

» KStar
* Decision Tree » Multilayered Perceptron

For all classifiers we used Weka (Hall et al., 20@ith
default settings. To investigate which of the difgt
classification principles is most suitable in ownghin,

we compared the performance and learning curves of
these classifiers.

The reason to use a single time segment for
classification is that it simplifies the model, whi
yields fast task recognition and requires a smathioer

of parameters to be estimated. This seemed a good
starting point to us. This model is easier to traian
more complex temporal models, where the label of a
segment is also determined by information from
previous time segments. Moreover, training a temlpor
model requires more ground truth labels than ouwleho
and in a real-world setting such a large labellathset

is difficult to acquire.

* Naive Bayes

APPROACH FOR FRAMEWORK EVALUATION

To evaluate our task recognition framework, we
performed a field study in which data was collected
from knowledge workers who were performing their
daily job. These workers regularly annotated whadk
they were performing. This annotated data set was t
used for several analyses. We aimed to investigate
good our framework is, in terms of classification
performance and learning speed, for recognizingstas
performed by different knowledge workers.

We now explain the tool to collect annotated data i
user friendly way and then describe the methoduf o
user study.

Tool For Collecting Annotated Data

For our study, the participants had to annotatér the
activities with task labels while working at the
computer. A simple pop up reminding them to indicat
which task they were currently performing was
perceived as very annoying. Therefore, we created a
more user friendly data annotation tool, which nsake
the labelling easier by suggesting task label&i¢ouser.
Classifiers were trained on the initially collecteéataset

of our pilot study. These are then used to autaralhyi
classify the previous five minutes of user activithe
recognized task label of one of the classifier sy
then presented to the user in a small pop-up. Hee u
can look back at the suggested task labels of the
previous hour and confirm or correct them (see feéigu
1). This approach makes it easy to check or correct
activity labels whenever the user wished to. Aftee

hour of new data the classifier is retrained taroally
predict suitable task labels for this user.

Besides making labelling of activities easier, vagled
two types of visualizations to make the use of the
program more interesting for the participants. Tihst
visualization depicts the performed tasks as achaat
(see Figure 2). This gives the knowledge workees th
possibility to look back and see which kind of @ fey
were mainly performing over the days. The second
visualization shows the activities of the knowledge
workers as a Gantt chart (see Figure 3). In this
visualization they can easily see the course aVities
over the day. Our idea was that presenting useseth
visualizations gives them insights in their way of
working and makes it more important to them to
correctly label their activities.

checkedd

14:30 |write_reponijaper(99%) |v[

chackedl

14:35 |write_reportIJ|aper(1l]l]%) |v[

14:40 |[write_report/_paper (97%) !v checked10

write_reporti_paper (97%) |
write_mail (3%)
lorganize/_archive_data {0%) =

make_presentation (0%}
'
|
-

hone (0%}
Figure 1: View to check or correct the automathmeléing.

afk (0%)

pian (0%)
create_visualization (0%)

Method
The exact method we followed for collecting annedat
user data is described in this section.

Participants

Eleven knowledge workers employed at TNO
volunteered to participate in our two week data
collection period (10 male, 1 female). All partiaigs
typically spent most of their working day at the
computer and carried out a diverse set of typical
knowledge worker tasks.

Materials

The participants worked at their regular work place
their own Windows desktop computer with mouse and
keyboard. The logging tool uLog was installed oa th
machines to capture mouse, keyboard and application
activity. The logging files were read out by a Java
program and stored in a triple store database Ydena
server for further access. Another Java program was
used to fetch the current activity data from theadase
(using SPARQL) and apply various classifiers frdra t
Weka machine learning toolkit in order to suggetstsk
label to the user.

Procedure

First of all the required software was installed the
participants’ computers and its usage was explained
shortly. The knowledge workers were instructedtéots

up the software at the beginning of the day andkvasr and correct them when necessary, either immediately
usual. During their work, the data capturing progsa after the pop-up or within one hour via the dashtoa

ran without attracting attention. Every five mingjit¢he view (see Figure 1). It was explained to the pgrdénts
recognition program analysed the user’'s activityada that they could access some simple visualizatidribeo
and suggested a task label to the user in a sopiup activities of the days, which were automaticallydea

window. All participants used this same setup. They via the dashboard whenever they wished to.
were told to regularly check the suggested tasklsab

B pashboard 1 o =10] x|

[Current Activity | Pie Chart | Gantt Chart |

Your activity (total time: 295 minutes logged)

program

make overview

search information

] - write mail
make presentation

read mail

show todays data day before |201 1-04-07 next day refresh

Figure 2: Dashboard with Pie chart visualization
showing amount of spent time per task.

B pashboard i : 100 x|
[Current Activity | Pie Chart | Gantt Chart |

Your activity over the day

make presentation

plan
write mail

read mail

Tasks

program

make overview

away from keyboard II. . - I

09:00 10:00 11:00 12:00 12:00 14:00 15:00 16:00 17:00
Time

search information

show todays data | day before |201 1-04-07 | next day | refresh

Figure 3: Dashboard with Gantt chart visualization
presenting tasks performed during the day.

ANALYSES AND RESULTS

The annotated data sets resulting from our fieldlyst
were used for several analyses. In this section we
present the analyses performed and the resulttnebta
beginning with a check on our chosen task labets an
features. In the next subsection, the comparison of
different classifiers will be described. Finallyesjfic
analyses regarding individual differences betwessrs
are presented. For results in full detail see Kbldi
(2011).

The data collection phase resulted in eleven d&ase
one for each participant. For a reliable grounthtanly
data with labels explicitly checked by the user ever
used in our analyses. In table 1 the amount of keebc
labels per user can be seen. As user J and B dhémie
little labels, their data was excluded from further
analyses.

Table 1: Dataset - amount of checked labels pat use
(Users ordered on amount of data, users J and B wer
excluded from further analysis because of tocelitthta)

User A Cc K 1 E G H D F 1
Z# labels 522 156 144 108 72 42 36 36 30 6
in hours 435 13 12 9 6 35 3 3 25 05

B
3

0.25

Task Labels and Features

First of all, we tested whether the defined tadhels
and the chosen set of features were suitable. @y
main insights are presented here (for more detaits
Koldijk, 2011).

Regarding the task labels we considered confusion
matrixes. In general, our task labels seemed apiptep
Typical confusions of tasks were mainly due to some
tasks involving other tasks as subtasks (e.g. beayc
information being part of writing a document).

Regarding our chosen features, we analysed their
information gain. All our features turned out to be
useful. Information about applications turned @ubé a
good feature among users, whereas mouse and kelyboar
activity as well as work style (e.g. switching beiloar)

are good features on a per user basis.

Comparison of Classifiers

Next, we compared the selected classifiers in tesfns
performance and leaning speed. Details about the
analyses and results are presented in the follotvirg
subsections.

Performance

We used the Weka machine learning toolkit to teaid

test several classifiers, in order to answer thestion
which classifier is best in recognizing tasks. The
performance of the classifiers was measured as
percentage correctly classified instances. For
performance evaluation we applied 10 fold cross-
validation. To make the estimate more reliable we r
this whole process ten times and averaged thetsesul
over the runs.

Labelling each segment simply as the majority tagk
Weka's ZeroR classifier yielded us a baseline amyur
We compared the performance of the following
classifiers: KStar, Decision Tree, Naive Bayes and
Multilayered Perceptron. All labelled data of oreeuat

a time was used to train and test a classifiers TWas
repeated with all nine users' data sets.

As you can see in Figure 4, for each user all deste
classifiers performed better than baseline (whics w
given by ZeroR). It differed per user which claigsif
achieved the best performance. For example, you see
that the Perceptron was clearly best for user A \ait
final classification accuracy of about 70%, wheréas
user | Naive Bayes gave best results with 80% acgur

For user E KStar slightly won with 75% accuracy.

From our analysis we can conclude that
classification accuracy is reasonably high in tfiice
setting, but it is impossible to say which of the
classifiers generally achieves the best performance

The different classifiers use very different prjsies to
discriminate between tasks. There is thus not one
principle that clearly works best in this domainmight
depend on the specific work style or charactesstt

the user which method is most suitable. We analyse
differences between users in more detail in théisec
on individual differences.

the

Learning Curves

As a next step we investigated which classififag&est

in learning to classify tasks. We simulated thewghs

of the data set in order to analyse the learnionggss of

the classifiers. The user's complete data set instsof

all split into 10 folds, one of these folds heldagpfor
testing. From the remaining folds data was randomly
sampled creating increasingly large training porsib
The first training portion contained 3 sampled data
instances, the next 6, 9 and 12 instances. From dhe
the training portion size grew with 6 instancehgdf an
hour of data). Every classifier was then trainedeanh

of these training portions, always using the fixedt
sets to evaluate their performance. We plotted the
classifier performances for different data set sias
learning curves (values again averaged over 10 test
folds and 10 runs).

Figure 4 plots the learning curves per user. ltwsho
that, in general, the performance of the classifieas at
80% of its maximum after only about 30 instances,
which is only 2.5 hours of training data. The parfar
form of the learning curves differed per user. Eeer

K, all classifiers learned slowly, whereas for usehey

all learned quickly. For user |, there was a great

* Note that by sampling, each training portion hasualihe
same task label distribution as in the total sée instances
were not added in the order they actually appedueiehg data
collection, as in that case the points in the liegrrcurves
would have been very dependent on the specific task
performed at that time.

difference between learning curves, with Naive Baye
quickly achieving a high performance and KStar
performing badly, whereas for user K, all curveseve

mingled up, showing no clear winner in terms of
learning speed.

userA,
100
& 80
?‘0:1 |
E B0 /"d__f_#_F """""" e —
« /” e -
= ~
3w ;;//]
'g V‘K—’_’—
= 20¢
D . 1
0 50 100 150
#1training instances
userl
100
E
=
®
(4
=
B
5
L&
&
D o 1
0 S0 100 150

#training instances

Figure 4: Learning curves for the different class, for

Individual Differences

We saw great variance in both final performancéhef
classifiers and their learning speed between u3éiis.
poses the following questions:

* Where do these performance differences come from,
i.e. how do the users differ?

* Given these individual differences, how does a
trained model perform on a new user?

Differences Between Users

A first aspect we considered are the differencethin
users' tasks. The distribution of tasks that thenktaedge
workers performed during the data collection period
was analysed. Our results show that different users
performed a different task mix. Some task combanmeti
may be better distinguishable than others, so ¢his
explain differences in classification performance.

A second aspect we considered is the typical patier
behaviour of the users. Therefore we analysed the
distribution of clicks, typing or other featuresrpeser
and task. It turned out that even when users were
performing the same task their behaviour differed
(Koldijk, van Staalduinen, Raaijmakers, van Ro@éij,

From this analysis we can conclude that the
classification is in general learned quickly in sthi
setting, but it is impossible to say which of the
classifiers generally learns quickest. Again, siieci
characteristics of the users seem to influence fasiva
model is learned and which classifier is most $léta

userE
100 1
= @ Perceptron
:-E Bayes
w e
o o Tree
5 B0 /ff/’: ———— KStar
> /7
= / ZeroR
o 40t &
= 20
D L i
0 a0 100 150
#training instances
userkl
100
E B0
=
o
2 =
e T
8 a0t
E
° /
& 20
D L i
0 50 100 150

training instances

some selected users. Note: ZeroR proadasseline.

Kraaij, 2011). For example user G typed extraongina
many characters when writing a report and in génera
clicked more often than other users. Statisticallysis

in form of a 12 (tasks) x 9 (users) MANOVA with all
features as dependent variables showed a sigrtifican
effect of task and user on almost all features.sThi
means not only the task, but also the specificsuaes
distinguishable on basis of the measured behaviour.

These results hint at different users having aedsift
way of working. They might for example differ in vko
style, for example thinking a lot and typing a sewe

in one go versus quickly typing and retyping thinGs
they might differ in mouse use, for example using
mainly the keyboard to navigate versus using thasao
to point and click. These individual characteristalso
make task recognition more or less easy to learn fo
various classifiers.

From these analyses we can conclude that the task m
of the users and their typical behaviour is very
individual. This explains why there is no ‘one clfier
suits all' solution.

Generalizability of the Classifiers

Analyses thus far indicate that task recognitiowesy
personal. It is thus the question whether a clessifin
be trained on a set of user data and effectivelydss
to classify a new user's behaviour .

To answer this question we first trained a classifin
the data of user A. We used this trained classtier
classify the test sets of other all users. Ourltesihow
that although the trained classifier worked fine user
A's test set it reached a performance of only 20% o
average on other users test sets. We can condlonfe f
this that a classifier trained on one user doeswark

on other users data.

Then we tested whether a classifier could become mo
robust in classifying a new user when it was trdioe a

mix of several users' data. The idea was that the
classifier would not model specific details of ameer,

but pick up general patterns common among users. We
created train sets by sampling 30 instances per afse

all but one user and trained classifiers upon tluzga
sets. Then we tested its performance on the left ou
user's data to test the generalizability of the ehod

It turned out that the average classification panénce
was only 20 to 30% in this setting. This is better
compared to training on one user's data, but famfr
satisfactory. We can conclude from this analysit th
also a classifier trained on a mix of users' da@sdot
generalize well to new users.

DISCUSSION

Our research showed that task recognition in theaiio

of real-world knowledge worker activities is podsib
but there is no clear recommendation to which tgpe
classifier to use based on classification perforceaamd
learning speed. No classifier consistently workestb
for all users. So, one might wish to consider other
criteria to select the most suitable classifierthe final
application classification should be performed
efficiently, without taking too much processing
capacity. This makes KStar less suited, as clasgify
new instances can take long, because the datases$.gr
Furthermore, the classifier needs to be regularly
retrained in order to keep optimally adapted to the
current behaviour of the user. From this perspecti

structure which makes task recognition possible. In
general, we can state that a classifier can besabeed

for one particular user. When the tool is appliedat
new user, we face the so-called cold start problEms
problem can be solved by asking the user what lsher

is doing at several moments during one week, thus
collecting a representative set of annotated datahis
user. As little as 2.5 hours (30 instances) of
representative training examples is enough to teain
good model. After this week the tool could start to
recognize this user's tasks.

During our research we also gained some practical
insights. First, some users reported that it w#fgcdit

to remember what exactly they had been doing. Some
participants noted that the mere fact that thegllad
their data made them more aware of the tasks tlezg w
performing and some mentioned that this made them
work more eagerly. So the data collection procedure
although designed to be unobtrusive, might have had
some influence on the way of working. Another
observation regarding data annotation was thatitees
were curious and interested in whether the tool ldvou
come up with correct labels, especially in the beig,
which motivated them to regularly check the labels.
This curiosity and interest could be further exy@dj
making the annotation and the tool in general tunge
and game like.

Furthermore, we observed in our experiment thatsuse
often think in terms of broader goals, not in terwhshe
specific methods used. This is in line with the
differentiation that Heinze (2003) made (in Tahhboub
2006), describing an intentional level and an dagtiv
level. One might regard the more detailed desanipti
that the task recognizer comes up with as desgritiia
specific activities performed, including all sulkas
Users agreed that they have actually performedethes
subtasks, but they themselves describe the tagls th
performed during a day at a less detailed levbekllag
only their intended main tasks. To capture thisdrighy

of task labels one could take a series of subtasks
time to label the sequence with the intended madk t
label. Temporal models like Markov models or
conditional random fields could be considered for
modelling these sequences, like is done in related
research (e.g. Natarajan et al., 2008). In this,way

the Perceptron approach seems less suited, becauseénowledge of tasks in general could be used to awer

training on new data takes very long. Consequeatly
Decision Tree or Naive Bayes approach seem most
suitable for task recognition in practice.

Furthermore, our research revealed that recognizing
tasks on basis of computer activity is personakertls
differ in terms of the tasks they perform and how
predictable or difficult their task mix is. Moreaye
different users seem to have their own individuayef
working. Besides the factors analysed here, otnfs
might be of influence too. Users might for example
have different interpretations of what makes up a
specific task and in how precisely they label their
activities. Within one user, however, there is aayal

the classification, e.g. the fact that informats®eking

is often a subtask for another main task. One naggud
wish to use more flexible or overlapping time franie
order to find the exact beginning of new tasks.
Nevertheless we see no need to make an overly eampl
model when with a simple model acceptable accuracy
can be reached.

Enabling automatic task recognition is a first stéphe
SWELL project. With a broader view on the context
and mental state of the knowledge worker, we aim to

® http://ww.commit-nL.nl > Smart reasoning systems
for well-being at work and at home

provide optimal support to improve well-being atriwo
Clearly not all work of a knowledge worker can be
captured on basis of computer activity, e.g. tippens

in meetings, phone calls, talks with colleagues or
reading printed documents. To get a more complete
view, we intend to make use of other sources of
information. For situations when the user is ndivac

on the computer, we can use information from thex'sis
calendar to fill in gaps. We can also use a camech
microphone to get more information about the user's
current situation, like talking to colleagues. Muover

the mobile phone can be a very valuable source of
information with call logs, and built in accelerotees
and GPS to infer movement and location of the user.
We also intend to infer the content the user iskingy

on from documents on the computer. Besides that,
estimating the mental state of the user is of @ggrike

the workload and stress level (Koldijk, Neerincxdan
Kraaij, 2012). With this information, optimal suppo
and coaching could be provided.

CONCLUSIONS

In this paper we have presented task recognitiaeda
on computer activities in a real-life setting. @esearch
has shown that task recognition on the basis of PC
activity is challenging but feasible.

First, task recognition involves more than a sinple-
to-one mapping between an application and a task. T
is due to interleaved activities, switches to sskd¢aand

a mix of applications used that determine the task
performed by the user.

Second, task recognition is very personal. Differen
users have different work styles and task mixes.
Nevertheless, we saw that on an individual basis, t
classifiers we used learn to recognize tasks daié
yielding a performance up to 80% which is reasomabl
high, considering the 12 possible task labels trat
used.

Third, unlike other research, in which clearly stured
tasks were modelled (see e.g. Natarajan et al.8)200
our research has shown that task recognition atstasv
for less structured tasks and more spontaneoudtggcti
since our results were obtained using realistia.dat

Fourth, comparison of several classifiers revealed
there is not one classifier that clearly works beghis
domain.

Finally, since different users show different patteof
behaviour when performing a task, the classifiati
model should be trained for each specific useriétdy
optimal task recognition. We concluded that no more
than 2.5 hours (30 instances) of representativaitig
examples is required to train a good model.

ACKNOWLEDGMENTS
We thank Iris van Rooij for her support and ideas.

This publication was supported by the Dutch nationa
program COMMIT (project P7 SWELL).

REFERENCES

Albrecht, D., Zukerman, I., Nicholson, A., & Bud,. A
(1997). Towards a Bayesian model for keyhole
plan recognition in large domains. Rroceedings
of the Sixth International Conference on User
Modeling

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004A
diary study of task switching and interruptions. In
Chi '04: Proceedings of the sigchi conference on
human factors in computing systems.

Goldman, R. P., Geib, C. W., & Miller, C. A. (1999
new model of plan recognition. Proceedings of
the fifteenth conference on uncertainty in art#lci
intelligence.

M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., & Witten, I. H. (2009). The weka
data mining software: an updateSIGKDD
Explorations Newsletter, 1,110-18.

Johnson, S. M., & White, G. (1971). Self-observatis
an agent of behavioral chandgehavior Therapy,
2 (4), 488 - 497.

Koldijk, S. (2011). Look what you've done! Task
recognition based on PC activitie$Masters’
thesis). Radboud University, Nijmegen, The
Netherlands.

Koldijk, S., van Staalduinen, M., Raaijmakers, &n
Rooij, ., & Kraaij, W. (2011). Activity-logging fo
self-coaching of knowledge workers. 18nd
workshop on information access for personal
media archives.

Koldijk, S., Neerincx, M., Kraaij, W. (2012).
Unobtrusively measuring stress and workload of
knowledge workersProceedings of Measuring
Behavior.

Natarajan, S., Bui, H. H., Tadepalli, P., KerstiiKg, &
Wong, W.-K. (2008). Logical hierarchical hidden
Markov models for modeling user activities. In
Proceedings of the 18th international conference
on inductive logic programming.

Rath, A. S., Devaurs, D., & Lindstaedt, S. N. (2009
Uico: an ontology-based user interaction context
model for automatic task detection on the
computer desktop. I€@iao '09: Proceedings of the
1st workshop on context, information and
ontologies.

Richman, G. S., Riordan, M. R., Reiss, M. L., Pyl@s
A., & Bailey, J. S. (1988). The effects of self-
monitoring and supervisor feedback on staff
performance in a residential settingpurnal of
Applied Behavioral Analysis, 24), 401-409.

Tahboub, K. (2006). Intelligent human-machine
interaction based on dynamic Bayesian networks
probabilistic intention recognitionJournal of
Intelligent & Robotic Systems, 431-52.

Hall,

