
Real-time task recognition based on
knowledge workers’ computer activities

Saskia Koldijk

TNO & Radboud
University Nijmegen

The Netherlands

s.koldijk@cs.ru.nl

Mark van Staalduinen

TNO
The Netherlands

mark.vanstaalduinen@tno.
nl

Mark Neerincx

TNO & Technical
University Delft
 The Netherlands

mark.neerincx@tno.nl

Wessel Kraaij

TNO & Radboud
University Nijmegen

The Netherlands

wessel.kraaij@tno.nl

ABSTRACT
Motivation – Supporting knowledge workers in their
self-management by providing them overviews of
performed tasks.

Research approach – Computer interaction data of
knowledge workers was logged during their work. For
each user different classifiers were trained and
compared on their performance on recognizing 12
specified tasks.

Findings/Design – After only a few hours of training
data reasonable classification accuracy can be achieved.
There was not one classifier that suited all users best.

Take away message – Task recognition based on
knowledge workers’ computer activities is feasible with
little training, although personalization is an important
issue.

Keywords
Task recognition, field study, unobtrusive sensing,
pattern recognition, personalization.

INTRODUCTION
Nowadays, many people spend their working days at a
computer, coordinating different activities in several
projects to create information products. We refer to
these people as knowledge workers. Typically, they
have to self-manage their work to accomplish all their
tasks. Their course of action is not always self-planned
but also determined by external causes, like phone calls,
mails, information requests, other persons or
appointments (Czerwinski, Horvitz, & Wilhite, 2004),
which easily results in a fragmented way of working.
So, a good overview of tasks is important for them, but
rather difficult to maintain. The goal of our research is
to support knowledge workers with tools. This paper
aims at automatic task recognition to provide overviews
of tasks performed.

Knowledge workers rely on software for
communication, information gathering, document
creation and work planning, so a vast collection of
digital traces is left behind on their computer. These are
available in the form of mouse motion, click events, key
presses and active window changes. We use these traces

to automatically infer what task a user is currently
performing. In this way we automatically create a real-
time overview of tasks for the user in an unobtrusive
way.

As research has shown, more awareness of one’s own
working process can have beneficial effects on the on-
task behaviour and adherence to scheduled activities
(Richman, Riordan, Reiss, Pyles, & Bailey, 1988). A
study by Johnson and White (1971) showed that mere
self-observation caused a positive change in behaviour.
By being able to easily look back at their behaviour,
knowledge workers might get a better grip on their work
style and improve it. Cognitive load and stress might be
decreased.

Some systems that provide overviews of computer
activity exist (e.g. Slife1, RescueTime2), but they
present low-level data in the form of time spent per
application and websites browsed. They require the user
to interpret for which task a specific program or website
was used. In our research, minimal effort should be
required from the user. So we aim at automatic
recognition of tasks based on computer activities. We
use not only application information, but also typical
patterns of behaviour that originate from mouse and
keyboard.

In the field of activity recognition, various activities are
automatically recognized, for example activities in an
adventure game (Albrecht, Zukerman, Nicholson, &
Bud, 1997) or computer activities, like filling in a form
or planning a meeting (Rath, Devaurs, & Lindstaedt,
2009). These activities have rather clear structures,
involving predefined steps (see Natarajan, Bui,
Tadepalli, Kersting, and Wong (2008)). Therefore, often
model-based classification is applied, with logical
models assuming a plan library (e.g. Goldman, Geib, &
Miller, 1999) or Markov models, modelling the
sequence of actions in time (e.g. Albrecht et al., 1997).
Moreover, most models are applied to simple problems

1 http://www.slifeweb.com
2 http://www.rescuetime.com

in a controlled environment. Our models will be tested
in a field study. The recognition of knowledge workers’
tasks on the basis of computer activities is a new
domain with different characteristics, where tasks are
less structured and task sequences are more
spontaneous. Whether task recognition in this domain is
feasible is thus a challenging research question.

This paper is organized as follows. First, we describe
our framework for task recognition, then we explain
how we evaluated this framework in a field study.
Thereafter, our analyses and results are presented,
followed by a discussion and conclusions.

TASK RECOGNITION FRAMEWORK
To recognize knowledge workers’ tasks automatically, a
framework is necessary that specifies the mapping from
low level computer interaction data to performed tasks.
The following components are required to realize this
framework:

• A set of task labels that users intuitively use.

• A number of useful features obtained from computer
interaction data.

• Different classifiers that map low level activity
features to the defined task labels.

These components are described in the next three
subsections.

Task Labels
To obtain more knowledge about tasks that knowledge
workers typically perform, and which task labels they
intuitively use, we developed a questionnaire. In total
47 employees from TNO (Netherlands Organization for
Applied Scientific Research) with various backgrounds
and different functions completed this online
questionnaire.

The answers to the questions ‘What tasks do you
perform and how do you use your computer to realize
this task?' and ‘Describe a typical working day' were
manually grouped into sets of similar answers. Task
categories that clearly arose from the data were email,
meeting and planning. These were mentioned by nearly
anyone. Depending on the specific role or expertise of
the knowledge worker several project tasks were
mentioned, like searching for information, analysing
data, making a presentation or writing a report. Many
people also listed phoning, traveling, using social
media, coffee breaks, talking with colleagues, doing
some private Internet browsing, or having lunch.

The appropriateness of our identified task labels was
confirmed by several knowledge workers. We
investigated automatic task recognition for those tasks
that are performed using a computer:

 • Read mail • Program

 • Write mail • Write report/ paper

 • Organize/ archive data • Search information

 • Plan • Read article/ text

 • Make presentation • Make overview

 • Create visualization • Analyse data

We learned that knowledge workers do not intuitively
think in terms of applications to categorize their
activities. They have a specific purpose or task in mind,
which often requires the use of several applications. The
tasks are in focus and the applications used depend on
these tasks. Important to note is that some applications,
like PowerPoint, are used for different tasks. Therefore
task recognition is not a simple one-to-one mapping
between an application and a task. Users also switch
between different applications while executing one task,
which became clear from the descriptions of some
respondents. Our recognition model should be robust to
this behaviour.

Features
Automatic task recognition requires relevant features. In
our research, computer interaction data is used, which
should be automatically logged. From this raw data
useful features should be extracted, such that the
classifier can discriminate between tasks.

We used uLog (software developed by Noldus
Information Technology3) to log mouse and keyboard
actions, as well as the applications used. Thereafter, this
raw data was processed to extract relevant features. All
these features were calculated for a 5 minute time
segment, which we assume to be long enough to
average out fluctuations, but fine grained enough not to
lose useful information. In this way we calculated for
example how often the user clicked within the 5 minute
segment, or how much of the time a certain application
was in focus within this 5 minute segment.

Mouse features include

• the number of clicks and scrolls within the time
frame.

Keyboard features include

• the amount of characters and special keys typed,

• the number of spaces and backspaces.

Application features include

• the application that was mainly in focus during the
five minute time frame,

• features for typical applications like Word or
Outlook, which indicate what percentage of time
these applications were in focus.

Other features used are

• the number of different applications used within the
time frame,

• the number of switches between applications,

• the time of the day.

3 http://www.noldus.com

Classifiers
For mapping simple features to higher level tasks, a
classifier is used. All features determined for one time
segment are provided to a classifier, which assigns a
task label to this time segment. As knowledge workers’
tasks do not have a clear predefined structure, which
could be modelled, we chose to use several common
and rather simple data-based classifiers:

 • KStar • Naïve Bayes

 • Decision Tree • Multilayered Perceptron

For all classifiers we used Weka (Hall et al., 2009) with
default settings. To investigate which of the different
classification principles is most suitable in our domain,
we compared the performance and learning curves of
these classifiers.

The reason to use a single time segment for
classification is that it simplifies the model, which
yields fast task recognition and requires a small number
of parameters to be estimated. This seemed a good
starting point to us. This model is easier to train, than
more complex temporal models, where the label of a
segment is also determined by information from
previous time segments. Moreover, training a temporal
model requires more ground truth labels than our model,
and in a real-world setting such a large labelled dataset
is difficult to acquire.

APPROACH FOR FRAMEWORK EVALUATION
To evaluate our task recognition framework, we
performed a field study in which data was collected
from knowledge workers who were performing their
daily job. These workers regularly annotated which task
they were performing. This annotated data set was then
used for several analyses. We aimed to investigate how
good our framework is, in terms of classification
performance and learning speed, for recognizing tasks
performed by different knowledge workers.

We now explain the tool to collect annotated data in a
user friendly way and then describe the method of our
user study.

Tool For Collecting Annotated Data
For our study, the participants had to annotate their
activities with task labels while working at the
computer. A simple pop up reminding them to indicate
which task they were currently performing was
perceived as very annoying. Therefore, we created a
more user friendly data annotation tool, which makes
the labelling easier by suggesting task labels to the user.
Classifiers were trained on the initially collected dataset
of our pilot study. These are then used to automatically
classify the previous five minutes of user activity. The
recognized task label of one of the classifier types is
then presented to the user in a small pop-up. The user
can look back at the suggested task labels of the
previous hour and confirm or correct them (see Figure
1). This approach makes it easy to check or correct
activity labels whenever the user wished to. After one

hour of new data the classifier is retrained to optimally
predict suitable task labels for this user.

Besides making labelling of activities easier, we added
two types of visualizations to make the use of the
program more interesting for the participants. The first
visualization depicts the performed tasks as a pie chart
(see Figure 2). This gives the knowledge workers the
possibility to look back and see which kind of tasks they
were mainly performing over the days. The second
visualization shows the activities of the knowledge
workers as a Gantt chart (see Figure 3). In this
visualization they can easily see the course of activities
over the day. Our idea was that presenting users these
visualizations gives them insights in their way of
working and makes it more important to them to
correctly label their activities.

Figure 1: View to check or correct the automatic labelling.

Method
The exact method we followed for collecting annotated
user data is described in this section.

Participants
Eleven knowledge workers employed at TNO
volunteered to participate in our two week data
collection period (10 male, 1 female). All participants
typically spent most of their working day at the
computer and carried out a diverse set of typical
knowledge worker tasks.

Materials
The participants worked at their regular work place on
their own Windows desktop computer with mouse and
keyboard. The logging tool uLog was installed on the
machines to capture mouse, keyboard and application
activity. The logging files were read out by a Java
program and stored in a triple store database (Jena) on a
server for further access. Another Java program was
used to fetch the current activity data from the database
(using SPARQL) and apply various classifiers from the
Weka machine learning toolkit in order to suggest a task
label to the user.

Procedure
First of all the required software was installed on the
participants’ computers and its usage was explained
shortly. The knowledge workers were instructed to start

up the software at the beginning of the day and work as
usual. During their work, the data capturing programs
ran without attracting attention. Every five minutes, the
recognition program analysed the user’s activity data
and suggested a task label to the user in a small pop-up
window. All participants used this same setup. They
were told to regularly check the suggested task labels

and correct them when necessary, either immediately
after the pop-up or within one hour via the dashboard
view (see Figure 1). It was explained to the participants
that they could access some simple visualizations of the
activities of the days, which were automatically made,
via the dashboard whenever they wished to.

Figure 2: Dashboard with Pie chart visualization

 showing amount of spent time per task.

Figure 3: Dashboard with Gantt chart visualization

 presenting tasks performed during the day.

ANALYSES AND RESULTS
The annotated data sets resulting from our field study
were used for several analyses. In this section we
present the analyses performed and the results obtained,
beginning with a check on our chosen task labels and
features. In the next subsection, the comparison of
different classifiers will be described. Finally specific
analyses regarding individual differences between users
are presented. For results in full detail see Koldijk
(2011).

The data collection phase resulted in eleven datasets,
one for each participant. For a reliable ground truth only
data with labels explicitly checked by the user were
used in our analyses. In table 1 the amount of checked
labels per user can be seen. As user J and B checked too
little labels, their data was excluded from further
analyses.

Table 1: Dataset - amount of checked labels per user.
(Users ordered on amount of data, users J and B were
excluded from further analysis because of too little data)

Task Labels and Features
First of all, we tested whether the defined task labels
and the chosen set of features were suitable. Only the
main insights are presented here (for more details see
Koldijk, 2011).

Regarding the task labels we considered confusion
matrixes. In general, our task labels seemed appropriate.
Typical confusions of tasks were mainly due to some
tasks involving other tasks as subtasks (e.g. searching
information being part of writing a document).

Regarding our chosen features, we analysed their
information gain. All our features turned out to be
useful. Information about applications turned out to be a
good feature among users, whereas mouse and keyboard
activity as well as work style (e.g. switching behaviour)
are good features on a per user basis.

Comparison of Classifiers
Next, we compared the selected classifiers in terms of
performance and leaning speed. Details about the
analyses and results are presented in the following two
subsections.

Performance
We used the Weka machine learning toolkit to train and
test several classifiers, in order to answer the question
which classifier is best in recognizing tasks. The
performance of the classifiers was measured as
percentage correctly classified instances. For
performance evaluation we applied 10 fold cross-
validation. To make the estimate more reliable we ran
this whole process ten times and averaged the results
over the runs.

Labelling each segment simply as the majority task with
Weka's ZeroR classifier yielded us a baseline accuracy.
We compared the performance of the following
classifiers: KStar, Decision Tree, Naive Bayes and
Multilayered Perceptron. All labelled data of one user at
a time was used to train and test a classifier. This was
repeated with all nine users' data sets.

As you can see in Figure 4, for each user all tested
classifiers performed better than baseline (which was
given by ZeroR). It differed per user which classifier
achieved the best performance. For example, you see
that the Perceptron was clearly best for user A with a
final classification accuracy of about 70%, whereas for
user I Naive Bayes gave best results with 80% accuracy.
For user E KStar slightly won with 75% accuracy.

From our analysis we can conclude that the
classification accuracy is reasonably high in this office
setting, but it is impossible to say which of the
classifiers generally achieves the best performance.

The different classifiers use very different principles to
discriminate between tasks. There is thus not one
principle that clearly works best in this domain. It might
depend on the specific work style or characteristics of
the user which method is most suitable. We analyse the
differences between users in more detail in the section
on individual differences.

Learning Curves
As a next step we investigated which classifier is fastest
in learning to classify tasks. We simulated the growths
of the data set in order to analyse the learning process of
the classifiers. The user's complete data set was first of
all split into 10 folds, one of these folds held apart for
testing. From the remaining folds data was randomly
sampled creating increasingly large training portions.4
The first training portion contained 3 sampled data
instances, the next 6, 9 and 12 instances. From then on
the training portion size grew with 6 instances (= half an
hour of data). Every classifier was then trained on each
of these training portions, always using the fixed test
sets to evaluate their performance. We plotted the
classifier performances for different data set sizes as
learning curves (values again averaged over 10 test
folds and 10 runs).

Figure 4 plots the learning curves per user. It shows
that, in general, the performance of the classifiers was at
80% of its maximum after only about 30 instances,
which is only 2.5 hours of training data. The particular
form of the learning curves differed per user. For user
K, all classifiers learned slowly, whereas for user E they
all learned quickly. For user I, there was a great

4 Note that by sampling, each training portion has about the
same task label distribution as in the total set. The instances
were not added in the order they actually appeared during data
collection, as in that case the points in the learning curves
would have been very dependent on the specific task mix
performed at that time.

difference between learning curves, with Naive Bayes
quickly achieving a high performance and KStar
performing badly, whereas for user K, all curves were
mingled up, showing no clear winner in terms of
learning speed.

From this analysis we can conclude that the
classification is in general learned quickly in this
setting, but it is impossible to say which of the
classifiers generally learns quickest. Again, specific
characteristics of the users seem to influence how fast a
model is learned and which classifier is most suitable.

Figure 4: Learning curves for the different classifiers, for some selected users. Note: ZeroR provides a baseline.

Individual Differences
We saw great variance in both final performance of the
classifiers and their learning speed between users. This
poses the following questions:

• Where do these performance differences come from,
i.e. how do the users differ?

• Given these individual differences, how does a
trained model perform on a new user?

Differences Between Users
A first aspect we considered are the differences in the
users' tasks. The distribution of tasks that the knowledge
workers performed during the data collection period
was analysed. Our results show that different users
performed a different task mix. Some task combinations
may be better distinguishable than others, so this can
explain differences in classification performance.

A second aspect we considered is the typical pattern of
behaviour of the users. Therefore we analysed the
distribution of clicks, typing or other features per user
and task. It turned out that even when users were
performing the same task their behaviour differed
(Koldijk, van Staalduinen, Raaijmakers, van Rooij, &

Kraaij, 2011). For example user G typed extraordinary
many characters when writing a report and in general
clicked more often than other users. Statistical analysis
in form of a 12 (tasks) x 9 (users) MANOVA with all
features as dependent variables showed a significant
effect of task and user on almost all features. This
means not only the task, but also the specific users are
distinguishable on basis of the measured behaviour.

These results hint at different users having a different
way of working. They might for example differ in work
style, for example thinking a lot and typing a sentence
in one go versus quickly typing and retyping things. Or
they might differ in mouse use, for example using
mainly the keyboard to navigate versus using the mouse
to point and click. These individual characteristics also
make task recognition more or less easy to learn for
various classifiers.

From these analyses we can conclude that the task mix
of the users and their typical behaviour is very
individual. This explains why there is no ‘one classifier
suits all' solution.

Generalizability of the Classifiers
Analyses thus far indicate that task recognition is very
personal. It is thus the question whether a classifier can
be trained on a set of user data and effectively be used
to classify a new user's behaviour .

To answer this question we first trained a classifier on
the data of user A. We used this trained classifier to
classify the test sets of other all users. Our results show
that although the trained classifier worked fine on user
A's test set it reached a performance of only 20% on
average on other users test sets. We can conclude from
this that a classifier trained on one user does not work
on other users data.

Then we tested whether a classifier could become more
robust in classifying a new user when it was trained on a
mix of several users' data. The idea was that the
classifier would not model specific details of one user,
but pick up general patterns common among users. We
created train sets by sampling 30 instances per user of
all but one user and trained classifiers upon these data
sets. Then we tested its performance on the left out
user's data to test the generalizability of the model.

It turned out that the average classification performance
was only 20 to 30% in this setting. This is better
compared to training on one user's data, but far from
satisfactory. We can conclude from this analysis that
also a classifier trained on a mix of users' data does not
generalize well to new users.

DISCUSSION
Our research showed that task recognition in the domain
of real-world knowledge worker activities is possible,
but there is no clear recommendation to which type of
classifier to use based on classification performance and
learning speed. No classifier consistently worked best
for all users. So, one might wish to consider other
criteria to select the most suitable classifier. In the final
application classification should be performed
efficiently, without taking too much processing
capacity. This makes KStar less suited, as classifying
new instances can take long, because the dataset grows.
Furthermore, the classifier needs to be regularly
retrained in order to keep optimally adapted to the
current behaviour of the user. From this perspective,
the Perceptron approach seems less suited, because
training on new data takes very long. Consequently a
Decision Tree or Naive Bayes approach seem most
suitable for task recognition in practice.

Furthermore, our research revealed that recognizing
tasks on basis of computer activity is personal. Users
differ in terms of the tasks they perform and how
predictable or difficult their task mix is. Moreover,
different users seem to have their own individual way of
working. Besides the factors analysed here, other factors
might be of influence too. Users might for example
have different interpretations of what makes up a
specific task and in how precisely they label their
activities. Within one user, however, there is a general

structure which makes task recognition possible. In
general, we can state that a classifier can best be trained
for one particular user. When the tool is applied to a
new user, we face the so-called cold start problem. This
problem can be solved by asking the user what he or she
is doing at several moments during one week, thus
collecting a representative set of annotated data for this
user. As little as 2.5 hours (30 instances) of
representative training examples is enough to train a
good model. After this week the tool could start to
recognize this user's tasks.

During our research we also gained some practical
insights. First, some users reported that it was difficult
to remember what exactly they had been doing. Some
participants noted that the mere fact that they labelled
their data made them more aware of the tasks they were
performing and some mentioned that this made them
work more eagerly. So the data collection procedure,
although designed to be unobtrusive, might have had
some influence on the way of working. Another
observation regarding data annotation was that the users
were curious and interested in whether the tool would
come up with correct labels, especially in the beginning,
which motivated them to regularly check the labels.
This curiosity and interest could be further exploited,
making the annotation and the tool in general fun to use
and game like.

Furthermore, we observed in our experiment that users
often think in terms of broader goals, not in terms of the
specific methods used. This is in line with the
differentiation that Heinze (2003) made (in Tahboub,
2006), describing an intentional level and an activity
level. One might regard the more detailed description
that the task recognizer comes up with as describing the
specific activities performed, including all subtasks.
Users agreed that they have actually performed these
subtasks, but they themselves describe the tasks they
performed during a day at a less detailed level, labelling
only their intended main tasks. To capture this hierarchy
of task labels one could take a series of subtasks over
time to label the sequence with the intended main task
label. Temporal models like Markov models or
conditional random fields could be considered for
modelling these sequences, like is done in related
research (e.g. Natarajan et al., 2008). In this way,
knowledge of tasks in general could be used to improve
the classification, e.g. the fact that information seeking
is often a subtask for another main task. One might also
wish to use more flexible or overlapping time frames in
order to find the exact beginning of new tasks.
Nevertheless we see no need to make an overly complex
model when with a simple model acceptable accuracy
can be reached.

Enabling automatic task recognition is a first step of the
SWELL project5. With a broader view on the context
and mental state of the knowledge worker, we aim to

5 http://www.commit-nl.nl > Smart reasoning systems

for well-being at work and at home

provide optimal support to improve well-being at work.
Clearly not all work of a knowledge worker can be
captured on basis of computer activity, e.g. time spent
in meetings, phone calls, talks with colleagues or
reading printed documents. To get a more complete
view, we intend to make use of other sources of
information. For situations when the user is not active
on the computer, we can use information from the user's
calendar to fill in gaps. We can also use a camera and
microphone to get more information about the user’s
current situation, like talking to colleagues. Moreover
the mobile phone can be a very valuable source of
information with call logs, and built in accelerometers
and GPS to infer movement and location of the user.
We also intend to infer the content the user is working
on from documents on the computer. Besides that,
estimating the mental state of the user is of interest, like
the workload and stress level (Koldijk, Neerincx and
Kraaij, 2012). With this information, optimal support
and coaching could be provided.

CONCLUSIONS
In this paper we have presented task recognition based
on computer activities in a real-life setting. Our research
has shown that task recognition on the basis of PC
activity is challenging but feasible.

First, task recognition involves more than a simple one-
to-one mapping between an application and a task. This
is due to interleaved activities, switches to subtasks and
a mix of applications used that determine the task
performed by the user.

Second, task recognition is very personal. Different
users have different work styles and task mixes.
Nevertheless, we saw that on an individual basis, the
classifiers we used learn to recognize tasks quite fast,
yielding a performance up to 80% which is reasonable
high, considering the 12 possible task labels that are
used.

Third, unlike other research, in which clearly structured
tasks were modelled (see e.g. Natarajan et al., 2008),
our research has shown that task recognition also works
for less structured tasks and more spontaneous activity,
since our results were obtained using realistic data.

Fourth, comparison of several classifiers revealed that
there is not one classifier that clearly works best in this
domain.

Finally, since different users show different patterns of
behaviour when performing a task, the classification
model should be trained for each specific user to yield
optimal task recognition. We concluded that no more
than 2.5 hours (30 instances) of representative training
examples is required to train a good model.

ACKNOWLEDGMENTS
We thank Iris van Rooij for her support and ideas.

This publication was supported by the Dutch national
program COMMIT (project P7 SWELL).

REFERENCES
Albrecht, D., Zukerman, I., Nicholson, A., & Bud, A.

(1997). Towards a Bayesian model for keyhole
plan recognition in large domains. In Proceedings
of the Sixth International Conference on User
Modeling.

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A
diary study of task switching and interruptions. In
Chi '04: Proceedings of the sigchi conference on
human factors in computing systems.

Goldman, R. P., Geib, C. W., & Miller, C. A. (1999). A
new model of plan recognition. In Proceedings of
the fifteenth conference on uncertainty in artificial
intelligence.

Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., & Witten, I. H. (2009). The weka
data mining software: an update. SIGKDD
Explorations Newsletter, 11 , 10-18.

Johnson, S. M., & White, G. (1971). Self-observation as
an agent of behavioral change. Behavior Therapy,
2 (4), 488 - 497.

Koldijk, S. (2011). Look what you’ve done! Task
recognition based on PC activities (Masters’
thesis). Radboud University, Nijmegen, The
Netherlands.

Koldijk, S., van Staalduinen, M., Raaijmakers, S., van
Rooij, I., & Kraaij, W. (2011). Activity-logging for
self-coaching of knowledge workers. In 2nd
workshop on information access for personal
media archives.

Koldijk, S., Neerincx, M., Kraaij, W. (2012).
Unobtrusively measuring stress and workload of
knowledge workers. Proceedings of Measuring
Behavior.

Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., &
Wong, W.-K. (2008). Logical hierarchical hidden
Markov models for modeling user activities. In
Proceedings of the 18th international conference
on inductive logic programming.

Rath, A. S., Devaurs, D., & Lindstaedt, S. N. (2009).
Uico: an ontology-based user interaction context
model for automatic task detection on the
computer desktop. In Ciao '09: Proceedings of the
1st workshop on context, information and
ontologies.

Richman, G. S., Riordan, M. R., Reiss, M. L., Pyles, D.
A., & Bailey, J. S. (1988). The effects of self-
monitoring and supervisor feedback on staff
performance in a residential setting. Journal of
Applied Behavioral Analysis, 21 (4), 401-409.

Tahboub, K. (2006). Intelligent human-machine
interaction based on dynamic Bayesian networks
probabilistic intention recognition. Journal of
Intelligent & Robotic Systems, 45 , 31-52.

