
Improving the DGK comparison protocol
Thijs Veugen# ∗1

Information Security and Privacy Lab, Delft University of Technology
Delft, The Netherlands

∗ Technical Sciences, TNO
Delft, The Netherlands

1 thijs.veugen@tno.nl

Abstract—When processing signals in the encrypted domain,
homomorphic encryption can be used to enable linear operations
on encrypted data. Comparison of encrypted data however
requires an additional protocol between the parties and will be
relatively expensive. A well-known and frequently used com-
parison protocol is by Damg̊ard, Geisler and Krøigaard. We
present two ways of improving this comparison protocol. Firstly,
we reduce the computational effort of one party by roughly
50%. Secondly, we show how to achieve perfect security towards
the other party without additional costs, whereas the original
version with encrypted inputs only achieved statistical security.
An additional advantage is that larger inputs are allowed.

I. I NTRODUCTION

In 2007, Damg̊ard, Geisler and Krøigaard (DGK) invented
their secure comparison protocol [1] together with a new
homomorphic cryptosystem that together formed an interesting
and efficient solution for the so-called millionaire’s problem.
Their protocol has been used frequently ever since as a sub-
protocol in applications for signal processing with encrypted
data. We mention a few.

In secure face recognition [2] a person is identified by com-
paring many face related values with a sample value. The same
with fingerprints [3]. In secure statistical analysis [4] many
sensitive statistical data have to be compared. In secure user
clustering [5] user profiles have to be compared with cluster
centroids. When generating private recommendations [6], user
similarity values have to be compared with a threshold. Finally,
also in secure adaptive filtering [7] or secure bioinformatics
services [8], the DGK comparison protocol is used.

We finish Section 1 by describing related work followed by
relevant background information in the preliminaries. In the
second Section, the DGK comparison protocol is introduced
and analysed. Our main contribution is described in Section3
containing several ways of improving the DGK comparison
protocol. The paper is finalized by the conclusions.

A. Related work

In 2001 Fischlin [9] presented his protocol using quadratic
residues to encrypt bits and securely computing a boolean
circuit presenting a comparison of two private numbers. His

WIFS‘2012, December, 2-5, 2012, Tenerife, Spain. 978-1-
4244-9080-6/10/$26.00 c©2012 IEEE.

protocol requires roughly a factor10 computational overhead
compared to DGK and a factorλ communication overhead,
where λ is an error probability parameter which should be
around86 to achieve a negligible probability of incorrectness
[1]. Later, Blake and Kolesnikov [10], [11] described a proto-
col for comparing two numbers that are unknown to the par-
ties requiring few communication but an exponentially large
plain text and therefore much worse computational complexity
than DGK. The protocol by Damgård, Geisler and Krøigaard
essentially combines the best of both worlds yielding small
computational and communication costs, requiring only one
communication round.

In concurrent independent work, Garay, Schoenmakers and
Villegas [12] develop a similar solution where the comparison
result is to remain secret. They save computation and com-
munication by allowing a number of communication rounds
logarithmic in the number of input bits. Their constant round
solution however is less efficient than the DGK solution.

Similarly, Schoenmakers and Tuyls [13] in 2004 found a
very efficient comparison protocol in terms of computational
complexity at the cost of a number of communication rounds
linear in the number of input bits.

As with many secure two-party solutions in the semi-honest
model, also secure comparison offers a perfect playground
for garbled circuits as shown by Kolesnikov, Sadeghi and
Schneider [14] in 2009. A disadvantage of garbled circuits
based solutions is that they cannot achieve perfect security
like DGK does for one party.

B. Preliminaries

The notation(x ≤ y) is used to denote the bit that will be
one exactly whenx ≤ y, and⊕ denotes the exclusive or of
two bits. We use two different homomorphic cryptosystems in
this paper to encrypt signals represented by integers.

The first one is the cryptosystem by Damgård, Geisler and
Krøigaard (DGK) [1], [15] that is dedicated to small plaintexts
and fits nicely within the secure comparison protocol. The
public key is (n, g, h, u) and the private key is(p, q, vp, vq)
such that the cipher text modulusn is the product of two large
primesp en q. In the protocols we useKDGK to denote the
private key of the DGK crypto system. The plaintext space is
Zu whereu is a small (16 or 32 bit) prime divisor of both

p − 1 and q − 1. The additional parametersvp and vq are t-
bit prime divisors ofp − 1 and q − 1 respectively, where a
reasonable value for parametert is 160. The numbersg and
h are elements ofZ∗

n of order uvpvq and vpvq respectively.
The reasoning behind the values of all these parameters is
explained in [15].

We denote a DGK encryption of plaintextm ∈ Zu by
[m] which is computed as[m] = gmhr mod n, where r is
a fresh random integer of2t bits. A table can be used for
decrypting[m] [15] but in the comparison protocol we only
want to determine whetherm = 0 which can be done quite
fast through the check[m]vpvq mod n = 1. Sinceu < p it
is even sufficient to check[m]vpvq mod p = 1 which will on
average cost3

2
(t+ t)/4 = 3

4
t multiplications modulon.

The second cryptosystem is Paillier [16] with cipher text
modulusN2, N being a product of two large primes. The
Paillier encryption of plaintextm ∈ ZN is denoted by[[m]]
and computed as[[m]] = gmrN mod N2, wherer is a fresh
random integer of sizeN and the order ofg ∈ Z

∗
N2 is a

multiple of N . We chooseg = N + 1 because it reducesgm

to 1 + N · m moduloN2 and saves an exponentiation. The
private key is denoted byKPaillier in our protocols. More
details can be found in the paper [16].

Both cryptosystems are additively homomorphic so[[x]] ·
[[y]] = [[x+y]] mod N2 and[x]·[y] = [x+y] mod n, a property
thas we will use frequently.

We assume the semi-honest model where both parties A and
B follow the rules of the protocol, but collect as much infor-
mation as possible to deduce private information. However,
the DGK comparison can be extended to the malicious model
with active adversaries [1].

The multiplicative inverse ofx modulon is denoted byx−1

and equals the integery, 0 ≤ y < n, such thatx·y = 1 mod n.
The multiplicative inverse is efficiently computed by using
the Euclidean algorithm [17], and can also be used to negate
an encrypted integer:[−x] ← [x]−1 mod n. To estimate the
computational complexity of the different protocols, we use
the fact that an involution modulon with an exponent ofe
bits will on average take3

2
e multiplications modulon.

Finally, let σ be the statistical security parameter, which
value is usually chosen around 80. Integer division is denoted
by ÷. And we assume all random variables, excluding the
inputs of the secure multi-party computation protocol, are
uniformly chosen.

II. A NALYSIS OF DGK COMPARISON

When comparing two integersx andy bitwise, the obvious
approach is to scan both bit rows from left (the most significant
part) to right searching for the first differing bit. The outcome
of the comparison of these differing bits will determine the
comparison result of both integers. A similar approach is
followed by the DGK protocol. Assume both integers contains
ℓ bits denoted byxi andyi respectively, sox = xℓ−1 . . . x1x0,
xℓ−1 being the most significant bit ofx. Then the numbers
ci, 0 ≤ i < ℓ are computed which will only be zero when
xj = yj for eachj, i < j < ℓ and at the same timexi 6= yi.

More precisely,

ci = s+ xi − yi + 3
ℓ−1∑

j=i+1

(xi ⊕ yi)

Clearly, the sum of exclusive ors will be zero exactly when
xj = yj for eachj, i < j < ℓ. The variables, introduced
later in [2], can be set to either−1 or 1 depending on the
comparison that is performed. For example whens = −1, ci
will only be zero whenxi = 1 and yi = 0 (and xj = yj
for eachj, i < j < ℓ) and thusx > y. To avoid one of the
parties learning the comparison result, one party will set the
parameters and the other party will learn whetherci = 0 or
not.

The basic DGK comparison protocol is depicted in Proto-
col 1. In [1] more variants are described like shared inputs
or achieving security against active adversaries. For a formal
security proof we also refer to this paper.

Protocol 1 DGK comparison with private inputs

Party A B
Input x y andKDGK

Output δA ∈ {0, 1} δB ∈ {0, 1}
Constraints δA ⊕ δB = (x ≤ y)

0 ≤ x, y < 2ℓ

1) B sends the encrypted bits[yi], 0 ≤ i < ℓ to A.
2) For eachi, 0 ≤ i < ℓ, A computes[xi ⊕ yi] as follows:

if xi = 0 then [xi ⊕ yi]← [yi]
else[xi ⊕ yi]← [1] · [yi]

−1 mod n.
3) A chooses a uniformly random bitδA and computes

s = 1− 2 · δA.
4) For eachi, 0 ≤ i < ℓ, A computes[ci] = [s] · [xi] ·

[yi]
−1 · (

∏ℓ−1

j=i+1[xj ⊕ yj])
3 mod n.

5) A blinds the numbersci by raising them to a random
exponentri of 2t bits: [ci] ← [ci]

ri mod n, and sends
them in random order to B.

6) B checks whether one of the numbersci is decrypted to
zero. If he finds one,δB ← 1, elseδB ← 0.

To show that in Protocol 1 indeedδA ⊕ δB = (x ≤ y), we
distinguigh two cases:

• If δA = 0 then s = 1 so s + xi − yi is only zero when
xi = 0 andyi = 1. Thus when B findsci = 0 (in which
caseδB = 1), we havex < y, and otherwisex ≥ y.

• If δA = 1 thens = −1 so s+ xi − yi is only zero when
xi = 1 andyi = 0. Thus when B findsci = 0, we have
x > y, and otherwisex ≤ y.

In both cases,δA⊕δB = (x ≤ y). An extra measure described
in Subsection II-A is needed to provide correctness in case
x = y.

The value of B’s inputy is hidden from A by the DGK
encryption system. On the other hand, A’s inputx is perfectly
hidden from B (given some extra measures for the casex = y
as described in subsection II-A) becauseδA was uniformly
chosen and party B only learnsδB . Therefore, Protocol 1

realizes computational security towards A and perfect security
towards B.

The main computational effort for A is in the multiplicative
blinding of the numbersci which requires on averageℓ · 3t
multiplications modulon. The main computational effort for
B is the decryption (checks) of the same numbersci which
requires on averageℓ · 3

4
t multiplications modulon.

The DGK protocol with private inputs is easily extended
to encrypted inputs [18] as depicted in Protocol 2. The
correctness and security of Protocol 2 is shown in the same
paper [18].

Protocol 2 DGK comparison with encrypted inputs and sta-
tistical security

Party A B
Input [[x]] and [[y]] KPaillier andKDGK

Output [[(x ≤ y)]]
Constraints 0 ≤ x, y < 2ℓ and ℓ+ σ < log2 N

1) A chooses a random numberr of ℓ + 1 + σ bits, and
computes[[z]]← [[x− y + 2ℓ + r]] = [[x]] · [[y]]

−1
· [[2ℓ +

r]] mod N2. A sends[[z]] to B.
2) B decrypts[[z]], and computesβ = z mod 2ℓ.
3) A computesα = r mod 2ℓ.
4) A and B run a DGK comparison protocol with private

inputsα andβ resulting in outputsδA andδB such that
δA ⊕ δB = (α ≤ β).

5) B computesz ÷ 2ℓ and sends[[z ÷ 2ℓ]] and [[δB]] to A.
6) A computes[[(β < α)]] as follows:

if δA = 1 then [[(β < α)]]← [[δB]]
else[[(β < α)]]← [[1]] · [[δB]]

−1
mod N2.

7) A computes[[(x ≤ y)]] ← [[z ÷ 2ℓ]] · ([[r ÷ 2ℓ]] · [[(β <
α)]])−1 mod N2.

In Protocol 2 the comparison(x ≤ y) is reduced to the
private comparison(α ≤ β) [18]. As in Protocol 1, it realizes
computational security towards A. Since the valuex − y is
statistically hidden inz, the probabilityPr(x − y|z) is not
uniform and depends onz and therefore Protocol 2 provides
only statistical security towards B. For example whenz =
rmin − 1, B will know that x = 0 andy = 2ℓ − 1.

A. Equality of inputs

When x 6= y, none or one of the valuesci will be
zero depending on the (uniform) choice ofδA, so δB will
be uniformly distributed and independent from the random
distributions of inputsx and y. However, whenx = y there
will never occur a zero in theci, irrespective ofδA, because
the parts+xi−yi will never equal zero. So some information
is leaked towards B in case of equality of inputs. This is due
to the introduction of the variables in [2], but they did not
mention the problem of information leakage.

As personally communicated by Tomas Toft, an easy way
to overcome this information leakage is to introduce an extra
variablec−1 that will be zero whenx = y with probability 1

2

and not zero otherwise.

c−1 = δA +

ℓ−1∑

i=0

xi ⊕ yi

Party B will setδB ← 1 only when one of the variablesci = 0,
−1 ≤ i < ℓ, and δB ← 0 otherwise. This also assures that
δA ⊕ δB = (x ≤ y) even in the case of equality.

With this extra measure in Protocol 1, perfect security
is achieved towards B. The variableδB will be uniformly
distributed independent of the random distributions ofx and
y.

III. I MPROVEMENTS

We present two different ways to improve the DGK com-
parison algorithm. The first improvement significantly reduces
the computational complexity of Protocol 1, and the second
improvement provides perfect security towards B for Proto-
col 2 without substantially reducing the performance.

A. Computational complexity

The computational complexity of Protocol 1 can be reduced
in two ways. The first, major improvement is achieved by
carefully considering the cases whereci = 0 leading to a re-
duction in step 5 that requires the highest computational effort
within Protocol 1. The observation thatci > 0 whenxi 6= δA
independent of the valuey leads to the definition of the set
L = {i | 0 ≤ i < ℓ andxi = δA}. Sinceci > 0 whenever
i /∈ L, these elements[ci] can be replaced by random non-zero
elements and don’t need to be multiplicatively blinded in step
5. This is depicted in Protocol 3.

The setL will on average containℓ/2 elements leading to
reduction of the computational complexity in step 5 of50%.
And since this step determines the complexity of party A,
Protocol 3 reduces the average computational complexity of
party A in Protocol 1 by50% (see Subsection III-C).

The second, minor improvement is achieved by removing
the exponent three in step 4 saving2ℓ muliplications modulo
n in total. This is depicted in step 4 of Protocol 3. Because the
first part ofci is either zero or one, the second part containing
the sum no longer requires a factor three.

1) Timing attacks: The computational optimizations de-
scribed above introduce a practical weakness in the protocol.
This is due to the fact that the computational effort depends
on the valuex so by measuring the time or the power
consumption party B could learn information about private
input x.

One way to overcome this vulnerability is to use additional
timers or dummy execution steps such that the execution
time will be constant. This however invalidates the introduced
benefits of reduced processing time.

Another solution is to add a buffer of precomputations to
be executed. Whenever the situation permits, precomputations
can be done and stored for later usage. Precomputations could
for example consist of random factors that are needed while
encrypting values. By using ’idle’ time for precomputing
random values, the overall computational complexity and

Protocol 3 Optimized DGK comparison with private inputs

Party A B
Input x y andKDGK

Output δA ∈ {0, 1} δB ∈ {0, 1}
Constraints δA ⊕ δB = (x ≤ y)

0 ≤ x, y < 2ℓ

1) B sends the encrypted bits[yi], 0 ≤ i < ℓ to A.
2) For eachi, 0 ≤ i < ℓ, A computes[xi ⊕ yi] as follows:

if xi = 0 then [xi ⊕ yi]← [yi]
else[xi ⊕ yi]← [1] · [yi]

−1 mod n.
3) A chooses a uniformly random bitδA. Let L be the set
{i | 0 ≤ i < ℓ andxi = δA}.

4) For eachi ∈ L:
A computes[ci] =

∏ℓ−1

j=i+1[xj ⊕ yj] mod n.
If δA = 0 then [ci]← [1] · [yi]

−1 · [ci] mod n
else[ci]← [yi] · [ci] mod n.

5) For eachi ∈ L, A blinds the numbersci by raising them
to a random exponentri of 2t bits: [ci]← [ci]

ri mod n.
For the remainingi /∈ L a random non-zero[ci]← [ri]
is generated en encrypted.
A sends all[ci] in random order to B.

6) B checks whether one of the numbersci is decrypted to
zero. If he finds one,δB ← 1, elseδB ← 0.

execution time of the protocol will reduce. To show that
even the worst-case execution time of our protocol can be
reduced by such precomputations, consider the randomization
step[ci]← [ci]

ri mod n that has to be performed before A can
send the valueci to party B. The same (and from a security
perspective probably preferable) effect is achieved by random-
izing ci through [ci] ← [ci]

si · hri mod n, where ri is the
same random value of2t bits, butsi is a considerably smaller
random value of sizeu [1]. The random factorshri mod n
can be easily precomputed in which case the randomization
effort of ci is reduced by a factor2t/ log2 u = 10 when u
consists of32 bits.

However, formally there is no security problem as all our
protocols are provably secure in the semi-honest model [1],
[18]. This is argued by considering the detailed proof in section
4.2 of the original paper [1]. Since the main difference is in
the computation of the[ci], we especially have to simulate
these messages from A to B. Each encrypted nonzeroci is
easily simulated by an encrypted random nonzero element
of Z

∗
u. Since we use the same randomizations (as described

above) as the original protocol, the simulated messages will be
statistically indistinguishable from the real protocol messages
by the same arguments.

Many cryptographic protocols suffer from potential timing
attacks. Also, the comparison protocol is always used as a
subprotocol within an application, and it’s not always possible
to time the execution of a particular comparison protocol.

αi 0 1 0 1 0 1 0 1
βi 0 0 1 1 0 0 1 1
d 0 0 0 0 1 1 1 1

αi ⊕ βi 0 1 1 0 0 1 1 0
wi 0 1 1 0 -1 0 0 -1
α̃i ⊕ βi 1 0 0 1

TABLE I
THE VALUE wi WHEN αi 6= α̃i

B. Security properties

In Protocol 2, no carry-over modulon is allowed in the
addition ofx−y+2ℓ andr leading to only statistical security
towards B. Ifr could be chosen from the full range0 ≤ r <
N , the valuez would perfectly mask the secret valuex − y,
and perfect security could be achieved towards B.

Protocol 4 shows how to adjust the DGK comparison proto-
col with encrypted inputs such that perfect security is achieved
towards B requiring only a small increase in computational and
communication complexity. The difference with Protocol 2 is
the modified subprotocol with private inputs.

The idea is that B sends an encrypted bit[d] to A ’inform-
ing’ A whether a carry-over has occurred in the addition of
x − y + 2ℓ and r. A can use this additional encrypted bit
to compute numbersci, 0 ≤ i < ℓ, similar to the original
Protocol 1. An additional advantage of allowing carry-overs
in Protocol 4 is that the inputsx and y are allowed to be
larger than in Protocol 2.

To ensure that bitd = 1 exactly when a carry-over has
occurred, we requireℓ + 2 < log2 N such that0 ≤ x − y +
2ℓ < (N − 1)/2. This means that we pay the price of not
allowing input values consisting oflog2 N − 2 or log2 N − 1
bits to ensure thatz − r will also be in the first half of the
interval [0, N), i.e. 0 ≤ z − r < (N − 1)/2. When 0 ≤
r < (N − 1)/2, party A will be assured that no carry-over
has occurred. Otherwise, whenr is in the second half of the
interval [0, N), the comparisonz < (N − 1)/2 (which can be
performed by B) will inform party A about the carry-over.

Depending on the value ofd a different comparison should
be executed (see Equation 1). Whend = 0, z = x−y+2ℓ+r
and the original comparisonα ≤ β should be computed, but in
case a carry-over occurred (d = 1 andz = x−y+2ℓ+r−N),
the comparisoñα ≤ β should be performed where the non-
negative integer̃α = (r −N) mod 2ℓ.

The most important part of the modified subprotocol is
in the computation of the encrypted valueswi that should
approximateαi⊕βi in case no carry-over occurred, andα̃i⊕βi

when a carry-over actually did occur. Whenαi = α̃i this is
obviously true. The most interesting case isαi 6= α̃i when
wi = (αi ⊕ βi)− d.

As can be deduced from Table I,wi will be zero in exactly
the right cases. That is,wi = 0 whenαi ⊕ βi = 0 andd = 0,
but also whenα̃i ⊕ βi = 0 and d = 1. Furthermore,wi ∈
{−1, 1} in all other cases.

By multiplying eachwi with a factor2i in step 4(f) of the
protocol, we can assure that in step 4(h) the sum

∑ℓ−1

j=i+1 wj =

Protocol 4 DGK with encrypted inputs and perfect security

Party A B
Input [[x]] and [[y]] KPaillier andKDGK

Output [[(x ≤ y)]]
Constraints 0 ≤ x, y < 2ℓ and ℓ+ 2 < log2 N

1) A chooses a random numberr, 0 ≤ r < N , and
computes[[z]]← [[x− y + 2ℓ + r]] = [[x]] · [[y]]

−1
· [[2ℓ +

r]] mod N2. A sends[[z]] to B.
2) B decrypts[[z]], and computesβ = z mod 2ℓ.
3) A computesα = r mod 2ℓ.
4) A and B run amodifiedDGK comparison protocol with

private inputsα andβ resulting in outputsδA andδB :

a) B sends the encrypted bit[d] where d = (z <
(N−1)/2) is the bit informing A whether a carry-
over has occured.

b) B sends the encrypted bits[βi], 0 ≤ i < ℓ to A.
c) A corrects[d] by setting[d] ← [0] whenever0 ≤

r < (N − 1)/2.
d) For eachi, 0 ≤ i < ℓ, A computes[αi ⊕ βi] as

follows:
if αi = 0 then [αi ⊕ βi]← [βi]
else[αi ⊕ βi]← [1] · [βi]

−1 mod n.
e) A computesα̃ = (r − N) mod 2ℓ, the corrected

value ofα in case a carry-over actually did occur
and adjusts[αi ⊕ βi] for eachi:
If αi = α̃i then [wi]← [αi ⊕ βi]
else[wi]← [αi ⊕ βi] · [d]

−1 mod n
f) For each i, 0 ≤ i < ℓ, A computes[wi] ←

[wi]
2i mod n such that these values will not in-

terfere each other when added.
g) A chooses a uniformly random bitδA and com-

putess = 1− 2 · δA.
h) For eachi, 0 ≤ i < ℓ, A computes[ci] = [s] · [αi] ·

[d]α̃i−αi · [βi]
−1 · (

∏ℓ−1

j=i+1[wj])
3 mod n.

i) A blinds the numbersci by raising them to a
random exponentri of 2t bits: [ci]← [ci]

ri mod n,
and sends them in random order to B.

j) B checks whether one of the numbersci is de-
crypted to zero. If he finds one,δB ← 1, else
δB ← 0.

5) B computesz ÷ 2ℓ and sends[[z ÷ 2ℓ]] and [[δB]] to A.
6) A computes[[(β < α)]] as follows:

if δA = 1 then [[(β < α)]]← [[δB]]
else[[(β < α)]]← [[1]] · [[δB]]

−1
mod N2.

7) A computes[[(x < y)]] ← [[z ÷ 2ℓ]] · ([[r ÷ 2ℓ]] · [[(β <
α)]])−1 mod N2.

0 exactly when all individualwj = 0.
The final difference with Protocol 2 is that we use[αi] ·

[d]α̃i−αi instead of[αi] in step 4(h). In effect, whend = 0 it
will equal [αi] and whend = 1 it will be [α̃i]. So the right
value is used depending on whether a carry-over occurred or
not.

Because the absolute value ofs+αi + d · (α̃i−αi)−βi in

step 4(h) is bounded by two, the factor three in3
∑ℓ−1

j=i+1 wj

avoids interference with this value, soci will eventually be
zero only when both parts are zero.

We conclude that

δA ⊕ δB = (α ≤ β) , if d = 0 (1)

(α̃ ≤ β) , if d = 1

1) Optimizations: We describe three ways of optimizing
the computational complexity of Protocol 4, and in particular
its subprotocol of step 4.

First, the exponentiations in step 4(f) require
∑ℓ−1

i=0 i =
1
2
(ℓ− 1)ℓ multiplications modulon which is quite a lot. This

can be reduced by carefully analyzing the construction of the
wi. The factor2i is needed to avoid interference between the
different values when they are added in step 4(h). Whend = 0
all wi = (αi ⊕ βi) will be either zero or one so then any
positive factor can be used to avoid interference. Whend = 1,
wi ∈ {−1, 0, 1}, and more preciselywi = (αi ⊕ βi) ∈ {0, 1}
when additionallyαi = α̃i, andwi = (αi⊕βi)−1 ∈ {−1, 0}
otherwise. So whend = 1, the sum

∑ℓ−1

j=i+1 wj can be split

into a non-negative part
∑ℓ−1

j=i+1,αj=α̃j
wj and a non-positive

part
∑ℓ−1

j=i+1,αj 6=α̃j
wj . Therefore, a factorℓ for thewj in the

second part will suffice ensuring that the total sum can only
be zero when all individual elements are zero.

This leads to the following optimization in step 4(f):

[wi]← [wi]
ℓ mod n only whenαi 6= α̃i

Maximally ℓ 3
2
log2 ℓ multiplications modulon are required

for this optimized step 4(f) which is less than the computa-
tional bottleneck of the protocol in step 4(i).

Another reason to introduce this optimization is that DGK
encryption requires the plain texts to remain small (16 or 32
bits) [1]. Our modification reduces the absolute value of the
numbersci in step 4(h) from roughly2ℓ to ℓ2.

The second optimization is similar to the one described in
Subsection III-A. The setL can be defined as{0 ≤ i < ℓ |
(αi = δA) or (α̃i = δA)}. When i /∈ L, neitherαi nor α̃i

will equal δA, so ci will never be zero independent of the
fact whether a carry-over occurred. On average25% of the ℓ
elements will lie outsideL, so the computational complexity
of Party A in Protocol 4 (in particular of step 4(i)) will be
roughly reduced by a factor25% (see Subsection III-C).

By considering step 4(c), a final optimization can be de-
duced. Namely, when party A is certain that no carry-over has
occurred, there is no need for executing the steps 4(c) upto
4(i) to compute the valuesci. Instead, the computationally
less intensive steps 2) upto 5) from Protocol 3 could be
performed. From B’s point of view, there is no difference
between Protocol 3 and the modified version, it only affects
the way that party A computes the numbersci. In particular,
steps 4(c) upto 4(i) could be optimized as follows:
If r + 2ℓ+1 < N then A executes steps 2) upto 5) from
Protocol 3 (with private inputsα andβ instead ofx and y),
and otherwise A performs steps 4(c) upto 4(i) from Protocol 4.

Since our optimization with setL improves A’s compu-
tational complexity by a factor50% in Protocol 3 and by
25% in Protocol 4, the modification above leads to an average
improvement by a factorN−2ℓ+1

N
· 50%+ 2ℓ+1

N
· 25% which is

very close to50% for most values ofℓ. A disadvantage of the
modification above is that it might lead to additional timing
attacks with respect tor as described in Subsection III-A1.

C. Comparison of performance

To determine the value of our improvements the average
total number of multiplications modulon is computed and
compared to the original Protocol 1. Since the main com-
putational difference between Protocol 1 and Protocol 2 is
B’s decryption of z, the computational effort for party A
will be comparable for both protocols. We assume that all
random factors are precomputed and only depict the effort for
party A, because our optimizations only affect party A. Also
depicted is the performance of Protocol 4 including the first
two optimizations from Subsection III-B1 but excluding the
third one.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Number of input bits

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

 m
od

ul
o

n

Protocol 1 and 2
Protocol 3
Protocol 4

Fig. 1. Average computational complexity for party A

The results depicted in Figure 1 confirm our expectations
that Protocol 3 and Protocol 4 reduce the average computa-
tional complexity of party A in Protocols 1 and 2 by50% and
25% respectively. Because in Protocol 1 the computational
effort of party B is roughly25% of A’s effort, the average
computational complexity of the entire protocol will be re-
duced by40% and20% respectively. If the third optimization
from Subsection III-B1 had been included, the performance
of Protocols 3 and 4 would have been identical at the cost of
introducing extra timing vulnerabilities.

IV. CONCLUSIONS

We carefully analyzed the widely used secure comparison
protocol by Damg̊ard, Geisler and Krøigaard [1], [15] and
presented two improvements. Firstly, we were able to reduce
the computational effort of party A by roughly50%. Secondly,
we showed how to achieve perfect security towards party B
without additional costs in the variation with encrypted inputs,
whereas the original version only achieved statistical security.
An additional advantage is that larger inputs are allowed

which is particularly interesting when packing [6] is used
which allows additional computational and communication
advantages.

REFERENCES

[1] I. Damg̊ard, M. Geisler, and M. Krøigaard, “Homomorphic encryption
and secure comparison,”Journal of applied cryptology, vol. 1, no. 1,
pp. 22–31, 2008.

[2] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, R. L. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” inProceedings of the
Privacy Enhancing Technologies Symposium, Seattle, USA, 2009, pp.
235–253.

[3] M. Barni, T. Bianchi, D. Catalano, M. D. Raimondo, R. D. Labati, and
P. Failla, “Privacy-preserving fingercode authentication,” in Workshop
on Multimedia and Security, 2010.

[4] J. Guajardo, B. Mennink, and B. Schoenmakers, “Modulo reduction
for Paillier encryptions and application to secure statistical analysis,”
in SPEED’09, Lausanne, Switzerland, sep 2009.

[5] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Privacy-preserving
user clustering in a social network,” inIEEE International Workshop on
Information Forensics and Security, 2009.

[6] ——, “Generating private recommendations efficiently using homomor-
phic encryption and data packing,”IEEE Transactions on Information
Forensics and Security, vol. 7, no. 3, pp. 1053–1066, 2012.

[7] J. Troncoso-Pastoriza and F. Perez-Gonzalez, “Secure adaptive filtering,”
IEEE Transactions on Information Forensics and Security, vol. 6, no. 2,
pp. 469 – 485, 2011.

[8] M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzenbeisser, and
H. Schr̈oeder, “Towards secure bioinformatics services,” inFinancial
Cryptography and Data Security, ser. Lecture Notes in Computer
Science, vol. 7035, 2012, pp. 276–283.

[9] M. Fischlin, “A cost-effective pay-per-multiplicationcomparison method
for millionaires,” in CT-RSA 2001: Proceedings of the 2001 Conference
on Topics in Cryptology. London, UK: Springer-Verlag, 2001, pp.
457–472.

[10] I. Blake and V. Kolesnikov, “Strong conditional oblivious transfer and
computing on intervals,” inASIACRYPT, vol. 3329. Advances in
Cryptology, 2004, pp. 515–529.

[11] ——, “Conditional encrypted mapping and comparing encrypted num-
bers,” in Financial Crypto, vol. 4107. LNCS, 2006.

[12] B. S. Juan Garay and J. Villegas, “Practical and secure solutions for
integer comparison,” inPublic Key Cryptography - PKC’07, vol. 4450.
Springer-Verlag, 2007, pp. 330–342.

[13] B. Schoenmakers and P. Tuyls, “Practical two-party computation based
on the conditional gate,” inASIACRYPT’04, ser. Lecture Notes in
Computer Science, no. 3329, Advances in Cryptology. Springer, 2004,
pp. 119–136.

[14] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled
circuit building blocks and applications to auctions and computing
minima,” in CANS, ser. Lecture Notes in Computer Science, vol. 5888.
Springer-Verlag, 2009, pp. 1–20.

[15] I. Damg̊ard, M. Geisler, and M. Krøigaard, “A correction to efficientand
secure comparison for on-line auctions,”Journal of applied cryptology,
vol. 1, no. 4, pp. 323–324, 2009.

[16] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” inProceedings of Eurocrypt 1999, ser. Lecture Notes
in Computer Science, vol. 1592. Springer-Verlag, 1999, pp. 223–238.
[Online]. Available: citeseer.ist.psu.edu/article/paillier99publickey.html

[17] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of
Applied cryptography. CRC Press, 1996.

[18] T. Veugen, “Encrypted integer division,” inIEEE Workshop on Infor-
mation Forensics and Security, Dec 2010.

