Improving the DGK comparison protocol

Thijs Veugen# =

Information Security and Privacy Lab, Delft University afchinology
Delft, The Netherlands

* Technical Sciences, TNO
Delft, The Netherlands
Lthijs.veugen@ no. nl

Abstract—When processing signals in the encrypted domain, protocol requires roughly a factd® computational overhead
homomorphic encryption can be used to enable linear operations compared to DGK and a factor communication overhead,
on encrypted data. Comparison of encrypted data however \ynare \ js an error probability parameter which should be

requires an additional protocol between the parties and will be
relatively expensive. A well-known and frequently used com- around86 to achieve a negligible probability of incorrectness

parison protocol is by Damgard, Geisler and Krgigaard. We [1]. Later, Blake and Kolesnikov [10], [11] described a jrot
present two ways of improving this comparison protocol. Firstly, col for comparing two numbers that are unknown to the par-
we reduce the computational effort of one party by roughly ties requiring few communication but an exponentially éarg
50%. Secondly, we show how to achieve perfect security towards plain text and therefore much worse computational compylexi

the other party without additional costs, whereas the original o . .
version with encrypted inputs only achieved statistical security. than DGK. The protocol by Dansgd, Geisler and Kreigaard

An additional advantage is that larger inputs are allowed. essentially combines the best of both worlds yielding small
computational and communication costs, requiring only one
I. INTRODUCTION communication round.

In 2007, Dam@rd, Geisler and Krgigaard (DGK) invented In concurrent independent work, Garay, Schoenmakers and
their secure comparison protocol [1] together with a ne¥illegas [12] develop a similar solution where the compamis
homomorphic cryptosystem that together formed an intiexgst result is to remain secret. They save computation and com-
and efficient solution for the so-called millionaire’s ptetm. Munication by allowing a number of communication rounds
Their protocol has been used frequently ever since as a sl@garithmic in the number of input bits. Their constant rdun
protocol in applications for signal processing with enc¢egb solution however is less efficient than the DGK solution.
data. We mention a few. Similarly, Schoenmakers and Tuyls [13] in 2004 found a

In secure face recognition [2] a person is identified by convery efficient comparison protocol in terms of computationa
paring many face related values with a sample value. The sag@gnplexity at the cost of a number of communication rounds
with fingerprints [3]. In secure statistical analysis [4] mga linear in the number of input bits.
sensitive statistical data have to be compared. In secume us As with many secure two-party solutions in the semi-honest
clustering [5] user profiles have to be compared with clusterodel, also secure comparison offers a perfect playground
centroids. When generating private recommendations [@};, ugor garbled circuits as shown by Kolesnikov, Sadeghi and
similarity values have to be compared with a threshold.IKina Schneider [14] in 2009. A disadvantage of garbled circuits
also in secure adaptive filtering [7] or secure bioinformsti based solutions is that they cannot achieve perfect sgcurit
services [8], the DGK comparison protocol is used. like DGK does for one party.

We finish Section 1 by describing related work followed by
relevant background information in the preliminaries. e t B. Preliminaries
second Section, the DGK comparison protocol is introduced . .) .
and analysed. Our main contribution is described in Secion | N€ notation(z < y) is used to denote the bit that will be

containing several ways of improving the DGK comparisoﬂne sxactly when def,'f and @hdenotes t::_e exclusive or Of_
protocol. The paper is finalized by the conclusions. two bits. We use two different homomorphic cryptosystems in
this paper to encrypt signals represented by integers.

A. Related work The first one is the cryptosystem by Daand, Geisler and

In 2001 Fischlin [9] presented his protocol using quadratir@igaard (DGK) [1], [15] that is dedicated to small plaixie

residues to encrypt bits and securely computing a booledpd fits nicely within the secure comparison protocol. The

circuit presenting a comparison of two private numbers. HRUPIC key is(n, g, h, u) and the private key igp, g, vy, vg)
such that the cipher text modulusis the product of two large

_ _ primesp enq. In the protocols we us& pgi to denote the
WIFS2012, December, 2-5, 2012, Tenerife, Spain. 978-drivate key of the DGK crypto system. The plaintext space is
4244-9080-6/1(#26.00 ©2012 IEEE. Z,, whereu is a small (16 or 32 bit) prime divisor of both

p—1 andg — 1. The additional parameters, and v, aret- More precisely,

bit prime divisors ofp — 1 and ¢ — 1 respectively, where a —1
reasonable value for parameters 160. The numbers,;_and i =s5+xi—yi+3 Z (z: @ y;)
h are elements ofZ; of orderuv,v, andv,v, respectively.
The reasoning behind the values of all these parameters is))
explained in [15]. Clearly, the sum of exclusive ors will be zero exactly when

We denote a DGK encryption of plaintext € Z, by %i = Yi for eachj, i < j <.£. The variables, introduced
[m] which is computed agm] = ¢"h" mod n, wherer is later in [2], can be set to either1 or 1 depending on the
a fresh random integer dit bits. A table can be used for COMparison that is performed. For example whea —1, ¢;
decrypting[m] [15] but in the comparison protocol we onlyWill only be zero whenz; = 1 andy; = 0 (andz; = y;

want to determine whether, = 0 which can be done quite for €achj, i < j < {) and thusz > y. To avoid one of the
fast through the checkn]»"s mod n = 1. Sinceu < p it parties learning the comparison result, one party will ket t

is even sufficient to checkn]*»*s mod p = 1 which will on parameters and the other party will learn whethey = 0 or
average cost (¢ + t)/4 = 3t multiplications modulon. not. _ _ _ _ _

The second cryptosystem is Paillier [16] with cipher text "€ basic DGK comparison protocol is depicted in Proto-
modulus N2, N being a product of two large primes. Theeol 1. In [1] more variants are described like shared inputs
Paillier encryption of plaintexin € Zy is denoted by[m] or acl_wieving security against actiye adversaries. For mdor
and computed a§m] = g™+ mod N2, wherer is a fresh security proof we also refer to this paper.
random integer of sizeV and the order ofy € Z}. is a i i i :
multiple of N. We choosey = N + 1 because it reduceg™ Protocol 1 DGK comparison with private inputs

j=i+1

to 1 + N - m modulo N? and saves an exponentiation. The Party A B
private key is denoted by¥<p,iie- iN OUr protocols. More | Input T y and Kpgx
details can be found in the paper [16]. Output b4 €40,1} | 65 €{0,1}
Both cryptosystems are additively homomorphic [ad - | Constraints|| 4 © ép = (z < y)
ly] = [z+y] mod N? and[z]-[y] = [x+y] mod n, a property 0<z,y<2t
thas we will use frequently. 1) B sends the encrypted bitg;], 0 < i < £ to A.
We assume the semi-honest model where both parties A anQ) For eachi, 0 < i < ¢, A computesiz; & y;] as follows:
B follow the rules of the protocol, but collect as much infor- if 2; =0 then[z; & yi] « [ys]

mation as possible to deduce private information. However, else[z; @ ;] + [1] - [yi] ! mod n.
the DGK comparison can be extended to the malicious model3) A chooses a uniformly random bit, and computes

with active adversaries [1]. s=1-2-54.
The multiplicative inverse of modulon is denoted by:—* 4) For eachi, 0 < i < £, A computes[c;] = [s] - [z;] -
and equals the integer 0 < y < n, such thatc-y = 1 mod n.] L - (Hf_*l_ﬂ[mj @ y;])® mod n
) j=i .

The multiplicative inverse is efﬁciently Computed by USing 5) A blinds the numbers:i by raising them to a random
the Euclidean algorithm [17], and can also be used to negate exponentr; of 2¢ bits: [¢;] « [c;]™ mod n, and sends

an encrypted integefi—z] < [2]~! mod n. To estimate the them in random order to B.
computational complexity of the different protocols, weeus @) B checks whether one of the numbeyss decrypted to
the fact that an involution module with an exponent ot zero. If he finds onejp « 1, elsedp « 0.

bits will on average take e multiplications modulon.
Finally, let o be the statistical security parameter, which To sh hat in P I 1ind P

value is usually chosen around 80. Integer division is dshot . 0S .OWt atin ro.toco indeelh & 0p = (z < y), we

by +. And we assume all random variables, excluding th(gstlngwgh two cases: .

inputs of the secure multi-party computation protocol, are ® f 4 =0 thens =1 so s+ x; —y; is only zero when

uniformly chosen. r; = 0 andy; = 1. Thus when B finds:; = 0 (in which
casedp = 1), we haver < y, and otherwiser > y.
[I. ANALYSIS OF DGK COMPARISON e If 64 =1thens= —1s0s+2; —y; is only zero when
When comparing two integets andy bitwise, the obvious z; =1 andy; = 0. Thus when B finds; = 0, we have

approach is to scan both bit rows from left (the most significa z >y, and otherwiser < y.

part) to right searching for the first differing bit. The ooimee In both casesjs @dp = (z < y). An extra measure described
of the comparison of these differing bits will determine then Subsection II-A is needed to provide correctness in case
comparison result of both integers. A similar approach is=y.

followed by the DGK protocol. Assume both integers contains The value of B’s inputy is hidden from A by the DGK

¢ bits denoted by:; andy; respectively, sa = 2,1 ... 2129, encryption system. On the other hand, A's input perfectly
x¢—1 being the most significant bit of. Then the numbers hidden from B (given some extra measures for the aasey

¢, 0 < i < ¢ are computed which will only be zero whenas described in subsection II-A) because was uniformly

x; =y, for eachj, i < j < ¢ and at the same time; # y;. chosen and party B only learngs. Therefore, Protocol 1

realizes computational security towards A and perfectiycu and not zero otherwise.

towards B. -1
The main computational effort for A is in the multiplicative c_1 =04+ in b y;
blinding of the numbers; which requires on averagé- 3t i=0

multiplications modulon. The main computational effort for party B will sets; < 1 only when one of the variables = 0,
B is the decryption (checks) of the same numbersvhich 1 < ; — s andsy « 0 otherwise. This also assures that
requires on average- %t multiplications modulon. 54 @05 = (x < y) even in the case of equality.

The DGK protocol with private inputs is easily extended \wjth this extra measure in Protocol 1, perfect security
to encrypted inputs [18] as depicted in Protocol 2. Thg achieved towards B. The variablg; will be uniformly
correctness and security of Protocol 2 is shown in the sa@@tributed independent of the random distributionszoéind

paper [18]. v.

Protocol 2 DGK comparison with encrypted inputs and sta- I1l. 1 MPROVEMENTS

tistical security We present two different ways to improve the DGK com-

parison algorithm. The first improvement significantly reesi

party A 5 th tational complexity of Protocol 1, and th d
Input [e] and [y] | Kpagirer and Kpox the computational complexity of Protocol 1, and the secon
Output @<yl improvement provides perfect security towards B for Proto-
Constraints|| 0 < z,y < 2" andZ + o < log, N col 2 without substantially reducing the performance.

1) A chooses a random numberof £/ + 1+ o l:l)its, and A. Computational complexity
computes]z] < [z —y +2° + 7] = [2] - [y] " - [2° + The computational complexity of Protocol 1 can be reduced

r] mod N2. A sends[:] to B. , in two ways. The first, major improvement is achieved by
2) B decrypts[z], and comeuteﬁ = z mod 2°. carefully considering the cases whete= 0 leading to a re-
3) A computesa = r mod 2°. duction in step 5 that requires the highest computatiorfattef

4) A and B run a DGK comparison protocol with privat&yithin Protocol 1. The observation that > 0 when; # 64
inputscr and 3 resulting in output$4 andds such that jngependent of the valug leads to the definition of the set

64 ®dp = (a < P). L={i|0<i<landz; = d,}. Sincec; > 0 whenever
5) B computes: < 2° and sendgz + 2°] and[05] t0 A. ;¢ £ these elements;] can be replaced by random non-zero
6) A computes[(5 < o] as follows: elements and don't need to be multiplicatively blinded iepst

if 64 =1then[(8 < a)] « [05] 5. This is depicted in Protocol 3.

else[(3 < a)] « [1] - [65] " mod N?. The setZ will on average contairf/2 elements leading to
7) A computes|(z < y)] « [+ 2] ([r +2]-[(B < reduction of the computational complexity in step 556%%.

a)])~" mod NZ. And since this step determines the complexity of party A,

Protocol 3 reduces the average computational complexity of
party A in Protocol 1 by50% (see Subsection IlI-C).

The second, minor improvement is achieved by removing
the exponent three in step 4 saviag muliplications modulo
n in total. This is depicted in step 4 of Protocol 3. Because the

Jirst part ofc; is either zero or one, the second part containing
the sum no longer requires a factor three.

1) Timing attacks: The computational optimizations de-
scribed above introduce a practical weakness in the prbtoco
This is due to the fact that the computational effort depends
on the valuex so by measuring the time or the power

When z # y, none or one of the values;, will be consumption party B could learn information about private
zero depending on the (uniform) choice &f, so g will inputx.
be uniformly distributed and independent from the random One way to overcome this vulnerability is to use additional
distributions of inputse andy. However, whem: = y there timers or dummy execution steps such that the execution
will never occur a zero in the;, irrespective ofd 4, because time will be constant. This however invalidates the introei
the parts +z; —y; will never equal zero. So some informatiorbenefits of reduced processing time.
is leaked towards B in case of equality of inputs. This is due Another solution is to add a buffer of precomputations to
to the introduction of the variable in [2], but they did not be executed. Whenever the situation permits, precomposatio
mention the problem of information leakage. can be done and stored for later usage. Precomputations coul
As personally communicated by Tomas Toft, an easy wégr example consist of random factors that are needed while
to overcome this information leakage is to introduce anaextencrypting values. By using ’idle’ time for precomputing
variablec_; that will be zero whene = y with probability% random values, the overall computational complexity and

In Protocol 2 the comparisof < y) is reduced to the
private comparisorfic < 3) [18]. As in Protocol 1, it realizes
computational security towards A. Since the value- y is
statistically hidden inz, the probabilityPr(z — y|z) is not
uniform and depends on and therefore Protocol 2 provide
only statistical security towards B. For example when=
Tmin — 1, B will know thatz = 0 andy = 2¢ — 1.

A. Equality of inputs

Protocol 3 Optimized DGK comparison with private inputs [«; OJ1JO0J1I[TOJ1JOT1
B OjoJI[1[[o]o[1I[1
Party A B d oOj[ojojo1[1[1[1
Input T y and Kpgk a;®dB; [|0]1]1]0]O0]L1][1]O
Output b4 €{0,1} | 65 €{0,1} w; O[1|1[0|[1[0[0][1
Constraints|| 64 ® 05 = (z < y) & & B 1]0J0]1
0<z,y<?2t TABLE |
1) B sends the encrypted bitg;], 0 < i < £ to A. THE VALUE w; WHEN a; 7 G
2) For eachi, 0 <14 < ¢, A computesz; ® y;] as follows:
elsefz; ® y;] < [1] - [y;] ! mod n. ; -
3) A chooses a uniformly random hity. Let £ be the set B. Security properties))
{i|0<i<(andz; =34} In' .Protocol 2, no carry-over module is al!ovyed in thg
4) For eachi € £: addition ofz —y+2¢ andr leading to only statistical security
A computes]c;] = Hlﬁ;}ﬂ[xj ® y;] mod n. towards B. Ifr could be chosen from the full range< r <
If 5, = 0 then ;] <_j[_1'] [yi] ! - [e;] mod n N, the valuez would perfectly mask the secret value- y,

and perfect security could be achieved towards B.

Protocol 4 shows how to adjust the DGK comparison proto-
col with encrypted inputs such that perfect security is exl
towards B requiring only a small increase in computational a
communication complexity. The difference with Protocols2 i
the modified subprotocol with private inputs.

The idea is that B sends an encrypted|tjtto A 'inform-
ing’ A whether a carry-over has occurred in the addition of
r —y+2° andr. A can use this additional encrypted bit
to compute numbers;, 0 < i < ¢, similar to the original
Protocol 1. An additional advantage of allowing carry-@ver
in Protocol 4 is that the inputs and y are allowed to be

: . . larger than in Protocol 2.
execution time of the protocol will reduce. To show that To ensure that biti = 1 exactly when a carry-over has

even the worst-case execution time of our protocol can B‘Ecurred we requiré + 2 < log, N such thatd < z — y +
reduced by such precomputations, consider the randomizat] , < (N’— 1)/2. This means%\at we pay theipriceyof not

step[c;] + [¢;]™ mod n that has to be performed before A C?rzl;\llowing input values consisting dbg, N — 2 or log, N — 1
send the' value; to party B. The same.(and from a SecurltBﬁits to ensure that — r will also be in the first half of the
perspective probably preferable) effect is achieved bydoan interval [0, N), i..0 < 2 —r < (N — 1)/2. When0 <
izing ¢; through [¢;] < [¢;]* - A" mod n, wherer; is the TN ey e T ; =

ame random value @ bits. buts. is a considerably smaller ! < (N —1)/2, party A will be assured that no carry-over
S value S, OUts; 1S S| ‘y s has occurred. Otherwise, wheris in the second half of the
random value of size: [1]. The random factorg:™ mod n

can be easily precomputed in which case the randomizatiinéerval [0,), the comparison < (N —1)/2 (which can be
effort of ¢; is reduced by a factot/log, u — 10 when u 8 rformed by B) will inform party A about the carry-over.

.) Depending on the value af a different comparison should
consists of32 bits. be executed (see Equation 1). Whee: 0, z = z —y+2/+r
However, formally there is no security problem as all oi"d the original comparisom < 5 should be computed, but in
protocols are provably secure in the semi-honest model [ERS€ a carry-over occurred £ 1 andz = z—y+2°+r—N),
[18]. This is argued by considering the detailed proof irtisec e comparisor < /§ should be performed where the non-
4.2 of the original paper [1]. Since the main difference is iRégative integefr = (r — N) mod 2-. B .
the computation of théc;], we especially have to simulate The most important part of the modified subprotocol is
these messages from A to B. Each encrypted nonzeie N the computation of the encrypted values that should
easily simulated by an encrypted random nonzero eleméRpProximatey; & 5; in case no carry-over occurred, a@g@@
of Z:. Since we use the same randomizations (as descriféigen & carry-over actually did occur. When = a; this is
above) as the original protocol, the simulated messagébevil OPviously true. The most interesting caseadis # &; when

statistically indistinguishable from the real protocolssages %i = (i ® i) — d. . _
by the same arguments. As can be deduced from Tabled, will be zero in exactly

the right cases. That isy; = 0 whena; ® 5; = 0 andd = 0,
Many cryptographic protocols suffer from potential timindout also whena; @ 8; = 0 andd = 1. Furthermorew; €
attacks. Also, the comparison protocol is always used as{al,1} in all other cases.
subprotocol within an application, and it's not always poles By multiplying eachw; with a factor2’ in step 4(f) of the

to time the execution of a particular comparison protocol. protocol, we can assure that in step 4(h) the @j;}ﬂ w; =

else[c;] < [yi] - [¢;] mod n.

5) For each € L, A blinds the numbers; by raising them
to a random exponent of 2t bits: [¢;] + [¢;]" mod n.
For the remaining ¢ £ a random non-zerf;| < [r;]
is generated en encrypted.

A sends all[¢;] in random order to B.

6) B checks whether one of the numbeyss decrypted to

zero. If he finds onejp <+ 1, elsedp «+ 0.

Protocol 4 DGK with encrypted inputs and perfect security step 4(h) is bounded by two, the factor threeﬁ%@

—z+1 wj
Party A B avoids interference with this value, s¢ will eventually be
Input [z] and[y] | Kpaiier and Kpgx zero only when both parts are zero.
Output (x <y)] We conclude that
Constraints|| 0 < z,y < 2 and/ + 2 < logy N .
1) A chooses a random number 0 < r < N, and 04 ®0p = (Of <B) . ff d=0 @)
computes]z] « [z —y + 2 + 7] = [z] - M—l [2¢ + (a<p) ,ifd=1

r] mod N2. A sends[z] to B.

2) B decrypts[z], and compute® = z mod 2°.

3) A computesa = r mod 2¢.

4) A and B run amodifiedDGK comparison protocol with
private inputsee and 3 resulting in outputsy4 anddg:

a) B sends the encrypted Hid] whered = (z <

b)
c)

d)

9)
h)

i) A blinds the numbersc; by raising them to a

)

5) B computes: = 2¢ and sendgz =+ 2¢] and [§z] to A.
6) A computes[(8 < «)] as follows:

if 64 =1then[(8 < a)] « [5]

else[(B < a)] « [1] - [6B] " mod N2.
7) A computes](z < y)] « [z + 2 - ([r +2°] - [(B <

1) Optimizations: We describe three ways of optimizing
the computational complexity of Protocol 4, and in partcul
its subprotocol of step 4.

First, the exponentiations in step 4(f) requ@ éz =
1(¢— 1)¢ multiplications modulon which is quite a lot. This
can be reduced by carefully analyzing the construction ef th
w;. The factor2’ is needed to avoid interference between the
different values when they are added in step 4(h). When0
all w; = (a; @ B;) will be either zero or one so then any
positive factor can be used to avoid interference. Wien1,

(N —1)/2) is the bit informing A whether a carry-
over has occured.

B sends the encrypted bits;], 0 <+i < ¢ to A.

A corrects|d] by setting[d] < [0] whenever) <

r<(N-1)/2. :
_ , w; € {—1,0,1}, and more precisely; = («a; ® 5;) € {0,1}
;‘ﬂ;\fg?m 0 <i </ Acomputesja; ® f;] as hen additionally; = &;, andw; = (a; ®3;) —1 € {—1,0}

. /—1 .
it o = 0 then [a; & fi] « [ﬁi] otherwise. So whed = 1, the sumy_. ., w; can be s.pll|t
elsela; @ 8] « [1] - [8:] ! mod n. into a non negative pa?Z:7 —it1,0,=a, wj and a non-positive

A computesi = (r — N) mod 2¢. the corrected partzj —it1,a;4a, Wit Therefore, a factof for the w; in the
value ofa in case a carry-over actually did occursecond part will suffice ensuring that the total sum can only
and adjustgo; @ ;] for eachi: be zero when all individual elements are zero.
If a; = &; then[w;] + [a; @ Bi] This leads to the following optimization in step 4(f):
else[w;] < [a; ® B;] - [d]7! mod n B

. . [w;] + [w;]® mod n only whena; # é;
For eachi, 0 < i < {, A computes|w;] i i y i 7

[w;]? mod n such that these values will not in-
terfere each other when added.

A chooses a uniformly random b#ty, and com-
putess=1—2-64.

For each‘ 0< i < ¢, A computege;] = [s] - [a] -
[(5] ([Tt [wy])? mod n,

Maximally E% log, ¢ multiplications modulon are required
for this optimized step 4(f) which is less than the computa-
tional bottleneck of the protocol in step 4(i).

Another reason to introduce this optimization is that DGK
encryption requires the plain texts to remain small (16 or 32
bits) [1]. Our modification reduces the absolute value of the
numberse; in step 4(h) from roughly2¢ to ¢2.

The second optimization is similar to the one described in
Subsection IlI-A. The seL can be defined a0 < i < ¢ |
(o = da) 0r (a; = da)}. Wheni ¢ L, neithera; nor &;
will equal 54, so ¢; will never be zero independent of the
fact whether a carry-over occurred. On averagé of the ¢
elements will lie outsideC, so the computational complexity
of Party A in Protocol 4 (in particular of step 4(i)) will be
roughly reduced by a fact@5% (see Subsection III-C).

By considering step 4(c), a final optimization can be de-
duced. Namely, when party A is certain that no carry-over has

random exponent; of 2¢ bits: [¢;] < [¢;]™ mod n,
and sends them in random order to B.

B checks whether one of the numbetsis de-
crypted to zero. If he finds onep « 1, else
53 + 0.

a)])~" mod N2. occurred, there is no need for executing the steps 4(c) upto
4(i) to compute the values;. Instead, the computationally
less intensive steps 2) upto 5) from Protocol 3 could be
0 exactly when all individuakv; = 0. performed. From B’s point of view, there is no difference

The final difference with Protocol 2 is that we ugg] - between Protocol 3 and the modified version, it only affects
[d]%~«i instead of|c;] in step 4(h). In effect, whed = 0 it the way that party A computes the numbeysIn particular,
will equal [«;] and whend = 1 it will be [&;]. So the right steps 4(c) upto 4(i) could be optimized as follows:
value is used depending on whether a carry-over occurredlorr 4+ 21 < N then A executes steps 2) upto 5) from

not.

Protocol 3 (with private inputsx and 5 instead ofr andy),

Because the absolute value 0f o; +d- (&; — ;) — B; in and otherwise A performs steps 4(c) upto 4(i) from Protocol 4

Since our optimization with sef improves As compu- which is particularly interesting when packing [6] is used
tational complexity by a facto60% in Protocol 3 and by which allows additional computational and communication
25% in Protocol 4, the modification above leads to an averagévantages.

21{+1

improvement by a factof\%é+1 -50% + =5 - 25% which is
very close t50% for most values of. A disadvantage of the
modification above is that it might lead to additional timing[]
attacks with respect te as described in Subsection I1I-Al.

C. Comparison of performance 2
To determine the value of our improvements the average
total number of multiplications modula is computed and [3]
compared to the original Protocol 1. Since the main com-
putational difference between Protocol 1 and Protocol 2 iﬁ
B's decryption of z, the computational effort for party A
will be comparable for both protocols. We assume that all
random factors are precomputed and only depict the effort 6!
party A, because our optimizations only affect party A. Also
depicted is the performance of Protocol 4 including the first6]
two optimizations from Subsection IlI-B1 but excluding the

third one. 7]

x 10*

0 ‘ [8]
Protocol 1 and 2
91| — — — Protocol 3
— — Protocol 4
= 8f
F - 9
5 T [10]
g o -
g -
z L -
: [11]
1F /7// - 4
ol” ‘ ‘ ‘ [12]
0 50 100 150 200
Number of input bits
. . . [13]
Fig. 1. Average computational complexity for party A

The results depicted in Figure 1 confirm our expectatior[1§4
that Protocol 3 and Protocol 4 reduce the average computa-
tional complexity of party A in Protocols 1 and 2 59% and
25% respectively. Because in Protocol 1 the computationﬁls]
effort of party B is roughly25% of As effort, the average
computational complexity of the entire protocol will be re-
duced by40% and20% respectively. If the third optimization [16
from Subsection 11I-B1 had been included, the performance
of Protocols 3 and 4 would have been identical at the cost of
introducing extra timing vulnerabilities. (17

[18]
IV. CONCLUSIONS

We carefully analyzed the widely used secure comparison
protocol by Dam@rd, Geisler and Krgigaard [1], [15] and
presented two improvements. Firstly, we were able to reduce
the computational effort of party A by roughf%. Secondly,
we showed how to achieve perfect security towards party B
without additional costs in the variation with encrypteguts,
whereas the original version only achieved statisticaliggc
An additional advantage is that larger inputs are allowed

REFERENCES

|. Damgard, M. Geisler, and M. Krgigaard, “Homomorphic encryption
and secure comparisonJournal of applied cryptologyvol. 1, no. 1,
pp. 22-31, 2008.

Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, R. agéndijk, and
T. Toft, “Privacy-preserving face recognition,” iRroceedings of the
Privacy Enhancing Technologies Symposi8eattle, USA, 2009, pp.
235-253.

M. Barni, T. Bianchi, D. Catalano, M. D. Raimondo, R. D. ladh and

P. Failla, “Privacy-preserving fingercode authentication Workshop
on Multimedia and Securif2010.

] J. Guajardo, B. Mennink, and B. Schoenmakers, “Modulouctidn

for Paillier encryptions and application to secure statitanalysis,”
in SPEED’09 Lausanne, Switzerland, sep 2009.

Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Privapreserving
user clustering in a social network,” IEEE International Workshop on
Information Forensics and Securjt2009.

——, “Generating private recommendations efficiently gsiromomor-
phic encryption and data packingEEE Transactions on Information
Forensics and Securityol. 7, no. 3, pp. 1053-1066, 2012.

J. Troncoso-Pastoriza and F. Perez-Gonzalez, “Sedapgtize filtering,”
IEEE Transactions on Information Forensics and Secusitl. 6, no. 2,
pp. 469 — 485, 2011.

M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzeskeisand
H. Schibeder, “Towards secure bioinformatics services,”’Anancial
Cryptography and Data Securijtyser. Lecture Notes in Computer
Science, vol. 7035, 2012, pp. 276-283.

M. Fischlin, “A cost-effective pay-per-multiplicatiocomparison method
for millionaires,” in CT-RSA 2001: Proceedings of the 2001 Conference
on Topics in Cryptology London, UK: Springer-Verlag, 2001, pp.
457-472.

I. Blake and V. Kolesnikov, “Strong conditional obloas transfer and
computing on intervals,” inASIACRYPT vol. 3329. Advances in
Cryptology, 2004, pp. 515-529.

——, “Conditional encrypted mapping and comparing entegpnum-
bers,” in Financial Cryptqg vol. 4107. LNCS, 2006.

B. S. Juan Garay and J. Villegas, “Practical and secotetiens for
integer comparison,” ifPublic Key Cryptography - PKC'Q#vol. 4450.
Springer-Verlag, 2007, pp. 330-342.

B. Schoenmakers and P. Tuyls, “Practical two-party caamnn based
on the conditional gate,” iPASIACRYPT'04 ser. Lecture Notes in
Computer Science, no. 3329, Advances in Cryptology. Sprirf94,
pp. 119-136.

] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Impedvgarbled

circuit building blocks and applications to auctions andmpating
minima,” in CANS ser. Lecture Notes in Computer Science, vol. 5888.
Springer-Verlag, 2009, pp. 1-20.

I. Damgard, M. Geisler, and M. Krgigaard, “A correction to efficiemtd
secure comparison for on-line auctiondgurnal of applied cryptology
vol. 1, no. 4, pp. 323-324, 2009.

| P. Paillier, “Public-key cryptosystems based on comodegree resid-

uosity classes,” irProceedings of Eurocrypt 199%er. Lecture Notes
in Computer Science, vol. 1592. Springer-Verlag, 1999, 33-238.
[Online]. Available: citeseer.ist.psu.edu/articlelfi@i99publickey.html

1 A. J. Menezes, P. C. van Oorschot, and S. A. Vanstétamdbook of

Applied cryptography CRC Press, 1996.
T. Veugen, “Encrypted integer division,” ilEEE Workshop on Infor-
mation Forensics and Securjtipec 2010.

