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Abstract. There are several applications in which humans and agents
jointly perform a task. If the task involves interdependence among the
team members, coordination is required to achieve good team perfor-
mance. This paper discusses the role of explanation in coordination in
human-agent teams. Explanations about agent behavior for humans can
improve coordination in human-agent teams for two reasons. First, with
more knowledge about an agent’s actions and plans, humans can more
easily adapt their own behavior to that of the agent. Second, with more
insight in the reasons behind an agent’s behavior, humans will have more
trust in the agents, and therefore more easily coordinate their actions.
The paper also presents a study in the BWA4T testbed that examines
the effects of agents explaining their behavior on human-agent team per-
formance. The results of this study show that explanations about agent
behavior do not always lead to better team performance, but they do
impact the user experience in a positive way.

1 Introduction

When the members of a team jointly perform a task, it often happens that one
team member is dependent on other team members for achieving a subtask. For
instance, it may happen that a team member can only start to achieve subtask
A after someone else has achieved subtask B, or that a team member can only
start to achieve subtask C after another team member has started to achieve
subtask D. When team members are dependent on each other for achieving a
task, they are interdependent [16]. It is inefficient when two interdependent team
members are separately trying to achieve a task that can easily be achieved by
one team member. Therefore, interdependent team members need to coordinate
their actions in order to achieve a good team performance. The better the actions
of different team members are coordinated, the higher the performance of the
team will be.



Coordination of actions is not only important in human teams, but also
in teams that consist of a mix of humans and software agents. Therefore, when
developing agents that aim to participate in a human-agent team, it is important
to make them able to coordinate their actions with other team members (both
humans and agents). Johnson et al [16] stress the importance of taking the
interdependence of the team task into account when designing agents that are to
function in a human-agent team. They promote a teamwork-centered approach
when designing autonomous systems, called coactive design.

In this paper we will analyze literature on teamwork and explanation, and
argue that explanation plays an important role in achieving good human-agent
team performance. Namely, in order to coordinate actions, it is important that
team members understand and predict each other’s behavior, and explanations
can help to improve insight in other team members’ behavior. Consequently, we
argue that to develop agents that perform well in human-agent teams, the agents
should be equipped with explanation capabilities.

Furthermore, we will describe an empirical study investigating the role of ex-
planation in human-agent teamwork. For the study, we will use the BlocksWorld
for Teams (BWA4T) testbed for team coordination [18]. In BW4T, a team of
players has to perform a joint task in a virtual environment. The players are
highly interdependent, and the performance of the team strongly depends on
the level of coordination among the players.

The outline of this paper is as follows. In section 2, we will discuss literature
on teamwork and explanation, and motivate why explanation is important in
human-agent teamwork. In section 3, we will describe the BW4T coordination
testbed for investigating teamwork. In section 4, we describe the experiment that
examines the effect of explanations about agent behavior on the coordination in
human-agent teams. In section 5, we end the paper with a conclusion.

2 Background

In this section we will discuss human teamwork, human-agent teamwork, and ex-
planation in human-agent teams, respectively. Human teamwork has been stud-
ied for several decades. Compared to the large body of literature concerning hu-
man teamwork, there is relatively little literature on human-agent teamwork. The
work on human-agent teamwork builds on concepts and theories that were devel-
oped in research on human teamwork. Therefore, before we discuss human-agent
teamwork specifically, we first provide a short introduction to human teamwork.

2.1 Human teamwork

There are two main streams in the literature on human teamwork. In the first,
the concept of transactive memory is used to explain teamwork, and in the
second, the concept of shared mental models is used to explain teamwork. We
will describe both views.



Transactive memory systems The theory of transactive memory was first
introduced by Wegner [35]. A transactive memory system (TMS) is a memory
system that is distributed across different team members. In a TMS, each of the
team members has 1) knowledge that captures his or her own expertise, and 2)
knowledge about who knows what. The knowledge that needs to be remembered
is thus divided over the different team members. The assumption is that it is
more efficient for an individual to remember who has knowledge on a certain
topic than remembering all the details by oneself.

In order to use TMS theory for the explanation and prediction of team perfor-
mance, different ways to measure TMS have been proposed [24, 1, 27]. Moreland
et al [24], for example, distinguished three components of TSM: specialization,
credibility and coordination. The specialization component refers to the level of
knowledge differentiation within the team. Credibility refers to team members’
beliefs about the accuracy of other members’ knowledge. Coordination refers to
team members’ ability to work together efficiently.

Results of TMS as a determinant of performance are promising [1,21, 25].
However, a real consensus among researchers on how to measure TMS is lacking.
First, there is no commonly accepted theory on which components comprise
TSM. Second, there are different ways to measure a team’s performance on
these components.

Shared mental models Mental models refer to the internal representations
that humans have of the world around them. Mental models enable humans to
understand, explain and predict the systems in their environment [28]. In the
context of teamwork, mental models can help individuals to understand the be-
havior of other team members and to predict their future actions. This allows
the individuals to adjust their own actions to the expected behavior of others.
It is argued that in order to coordinate the actions of different team members
well, it is important that the team members have similar mental models: shared
mental models (SMM) [6]. Most researchers classify SMM into two broad dimen-
sions: task-related knowledge and team-related knowledge (e.g. [7]). Task-related
knowledge concerns knowledge about how to achieve the task, the current status
of task achievement, etc. Team-related knowledge concerns knowledge and capa-
bilities of other team members, what they are currently intending or doing, etc.
Experimental results trying to demonstrate the effects of sharedness of mental
models on team performance are promising. However, like for TMS, there is no
common method for measuring the sharedness of mental models [23].

Relation between TMS and SMM There is little interaction between the
research fields of TMS and SMM. An exception is the work of Nandkeolyar [25],
who compared both theories on their predictive power on team learning and
team effectiveness. He found that in most cases high levels of TMS components
(specialization, coordination and credibility) and high levels SMM both pre-
dicted team performance well. However, in some cases, high levels of SMM did



not result in high team performance, especially when teams scored high on TMS
specialization and credibility.

Researchers from both sides have stated that one theory is an extension of
the other. Shared knowledge in SMM theory can be seen as a team member’s
knowledge about who knows what in TMS theory. The other way around, a
team member’s knowledge about who knows what in TMS theory can be seen
as shared knowledge in SMM theory. Whether both theories only provide a
different vocabulary for the same processes, or describe distinctive phenomena,
in both cases do the two theories have a different focus. TMS focuses more
on the dividedness of knowledge and SMM focuses more on the sharedness of
knowledge. Both sides, however, do acknowledge that some of both is needed.
Without any shared knowledge, it is not possible to coordinate actions, but
totally overlapping knowledge leads to a single minded view on tasks, also called
groupthink [14].

2.2 Human-agent teamwork

Literature shows that sharedness and dividedness of knowledge are both impor-
tant in human teamwork. In this section, we argue that sharedness and divided-
ness of knowledge are at least as important in human-agent teamwork.

Dividedness of knowledge is particularly important in human-agent teams
because agents and humans have different strengths and capabilities. For exam-
ple, agents may be better at remembering a large amount of data than humans,
but humans are often better at recognizing danger than agents. Both humans
and agents even have capabilities that the other does not have. On the one hand,
there is no human that can calculate as fast as an agent can, but on the other
hand, there are no agents that can break the ice (socially). To fully benefit of the
strengths and capabilities that the members of a human-agent team offer, the
tasks should be divided over the team members in such a way that each team
member performs the tasks that best suit his or her capabilities and knowl-
edge. For most tasks, especially the complex ones, this will lead to a division of
knowledge over team members.

Sharedness of knowledge is important in human-agent teams to coordinate
actions, especially because knowledge and capabilities are often divided over
team members. When the members in a team have different strengths, they
must be are aware of each others’ specialties in order to allocate subtasks to the
right team member. Moreover, initially humans know less about the behavior of
an agent team member than the behavior of a human team member. Namely,
being a human already reveals many properties of a team member, e.g. mem-
ory capacity, speed of doing tasks. Among agent team members, there is more
diversity concerning these properties. Therefore, it is especially important that
mental models about what team members know and can do are shared for the
coordination of actions. In line with this argument, several approaches for team
agents have been proposed that are explicitly based on SMM theory [19, 37].

In literature on human-machine interaction, there is a shift of attention from
dividedness towards sharedness in human-agent teams. In the seventies, Sheridan



and Verplank [29] introduced different levels of autonomy. At the highest auton-
omy level, the computer decides everything, acts autonomously, and ignores the
human, and at the lowest autonomy level, the computer offers no assistance, and
the human must take all decisions and actions. This model of autonomy levels
thus focuses on how tasks are divided over machines and humans. Johnson and
colleagues [17] argue that the levels autonomy model falls short on the actual
complexity of effective human-agent teamwork. They observe that humans and
agents have different capabilities and argue that to combine their strengths, it is
crucial to have good coordination in human-agent teams [3]. To coordinate ac-
tions it is necessary to exchange information about each others’ goals, intentions,
and observations. This stresses the importance of sharedness of knowledge.

We believe that explanation can contribute to coordination in human-agent
teams in two ways. First, explanations about agent behavior can increase the
sharedness of mental models by informing humans about the actions, observa-
tions and intentions of the agents. With this knowledge, humans will be able
to better understand and predict new agent behavior, which will make it easier
to coordinate actions. Second, explanations about agent behavior can increase
humans’ trust in agents. Members of a human-agent team usually have different
knowledge and capabilities. So when a team member provides information other
team members, e.g. informing about an intention, they will only use that infor-
mation to coordinate their actions when they trust the team member. Having
insight in another’s reasoning increases trust, and in human-agents teams trust
will improve coordination. In the next section, we will provide a short overview
of research of explaining intelligent systems.

2.3 Explanation in human-agent teams

To discuss different applications in which intelligent agent and/or system be-
havior is explained, we will use Sycara and Lewis’ [31] distinction of different
roles of software agents in human-agent teams. According to them, agents in
a human-agent team can have the role of individual assistant, team assistant
and equal team member. We will discuss the explanation of intelligent system
behavior for each of these roles.

In the first role, an agent provides individual assistance to a human. In that
case, the agent cooperates with only one human, who may or may not be part of
a bigger team. Examples of providing explanations as an individual assistant are
expert systems and recommender systems. These types of systems both support
a single human user in making decisions. The explanation of intelligent system
behavior was first researched in the field expert systems. It was discovered that
to accept an advice or diagnose of an expert system, users want to know how and
why a certain outcome was reached [30,36, 11]. Aims of explanations in expert
systems are increasing user acceptance, trust, ease of use, usefulness and user sat-
isfaction [10]. Aims of of explanations in recommender systems are transparency,
scrutability, trust, effectiveness, persuasiveness, efficiency, satisfaction [32].

In the second role, an agent provides team assistance. A team assistant agent
cooperates with all team members, usually to support coordination activities in



the team [33]. The concept of team assistance is relatively young, and we are
not aware of explanation approaches for team assistant agents.

In the third role, an agent acts as a (more or less) equal team member. In
this role, an agent performs the reasoning and tasks of a human teammate. Vir-
tual training is a field in which the behavior of agents in the role of an equal
team member is explained. In virtual training, intelligent agents are used to
play a trainee’s colleagues, opponents or team members. Several approaches for
explaining the behavior of such agent have been proposed [15,34,8,12]. Expla-
nations in virtual training aim to increase the trainee’s understanding of the
played session, and thereby support learning.

Different roles of agents in teams yield different types of explanations. Ex-
pert system behavior (where the system has the role of personal assistant), for
example, is explained by traces of rules that were applied and the justification
behind those rules [11]. Behavior of agents in virtual training (where the agent
has the role of equal team member) is explained in terms of goals and inten-
tions [8, 12]. The difference between expert systems on the one hand, and virtual
intelligent agents on the other hand, is that the behavior of the latter more
closely resembles human behavior. Humans explain and understand their own
and others’ behavior in terms of the underlying mental concepts such as desires,
plans, beliefs and intentions [22,20]. In Dennett’s words [9], people adopt the
intentional stance towards virtual intelligent agents, i.e. they attribute beliefs
and goals to them in order to understand their behavior. Thus, the role of the
agent in a human-agent team should be taken into account when developing its
explanation capabilities.

In the remainder of this paper we will discuss how to study the effects of ex-
planation in human-agent teamwork. The BlocksWorld for Teams coordination
testbed provides a mean to investigate human-agent teamwork. We will first de-
scribe the testbed itself, and subsequently, a study we performed in the testbed.
Agents in BlocksWorld for Teams have the role of an equal team member.

3 The BWA4T coordination testbed

BlocksWorld for Teams (BWA4T) is a testbed for team coordination [18]. In the
BWA4T testbed, teams of humans, agents, or humans and agents can perform a
task that requires coordination in a controlled environment. We therefore believe
that the BWA4T testbed is a useful tool for studying teamwork. The task is simple
to learn and it is possible to manipulate all conditions in the environment, but at
the same time, there are many interdependencies among the different players and
complex process arise. In this section we will describe the BWA4T task, discuss
the behavior of a BW4T agent, and discuss the implementation of a BW4T
agent.

3.1 The BWA4T team task

The BWAT task can be performed by human-human, agent-agent and human-
agent teams of variable sizes. The team goal is to jointly deliver a sequence of



colored blocks in a particular order as fast as possible. A complicating factor
is that the players (human or agent) cannot see each other. Figure 3.1 displays
a screenshot of a BWAT game session, showing the environment in which the
players have to search for blocks. The left picture displays all blocks and players
in the game, and the right picture shows what one player can see. A player can
only see the blocks in a room when he is inside that room. The status bar below
the Dropzone (gray area) shows which blocks need to be delivered.
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Fig. 1. Simulator view with two agents (left) and agent view with one agent (right).
The blocks that need to be delivered are respectively orange, light green, dark purple,
light blue, dark green and red. BotO in the right hall is holding an orange block and
botl in room C2 is holding a light green block.

To deliver a block successfully, a player has to go to a block of the right color,
pick it up and drop it in the Dropzone. A player can only carry one block at a
time. When a player drops a block of the wrong color in the Dropzone or any
block in a hall, the block disappears from the game. Human players can perform
actions in the environment through a menu that appears on a right mouse-button



click. The menu offers options to go to a place (room, hall or Dropzone), pick
up a block, drop a block and send messages.

A team’s performance on the BWAT task is measured by the speed of com-
pleting the task. BW4T is designed such that the task involves a large amount
of interdependence among the players, and requires coordination to achieve a
good performance. For instance, it is inefficient when one player is searching in
a room that has just been checked by another. And if a player is going to deliver
a particular block, the others should not do that as well. To coordinate, players
can send messages to each other, which appear in the chatbox below the Drop-
zone. Players can inform others about what they do, where they are and what
they see. Furthermore, players can see the same status bar. So when a player
delivers a block of the right color, the other players will know. Finally, only one
player can be inside a room or the Dropzone at the same time. When a player
tries to enter a room that is occupied, a red bar appears indicating that someone
is inside.

3.2 Behavior of a BW4T agent

Developing an agent that can perform the BWA4T task on its own is rather
straightforward. The agent needs to be able to search for blocks and deliver
blocks, and it has to plan its behavior. Planning involves deciding what to do
(search or deliver), where to search for blocks and which block to deliver. There
are several strategies to perform the BWA4T task. The agent can for instance
search all needed blocks and then deliver them. It can also search for the next
block in the sequence and deliver it once found, or keep checking rooms on the
way to the Dropzone to deliver a block.

The agent’s behavior gets more complex when there is a team of players
involved. Each of the agent’s has to coordinate its behavior with the others to
avoid that a room is checked twice, or that two agents are delivering a block
of the same color when only one block of that color is needed. To coordinate,
the players have to update others about their activities and percepts, e.g. tell
others what they are going to do and which blocks they found in which rooms.
Moreover, they have to adapt their own behavior to messages they receive from
others. For example, if a red block needs to be delivered and another player says
it is going to deliver that block, it is better to search for the next block in the
sequence.

When the behavior of the other players in a team is known, it is sufficient
to send updates and process updates from others for effective task performance.
However, in applications with human-agent teams, usually the behavior of the
others is not completely known. The behavior of the agents may be designed
by different developers, and behavior of human players can never be completely
predicted as humans tend to vary their strategy, make mistakes and forget things.
It may happen, for instance, that a player tells that there is a yellow block in
room C1, but once you arrive it is not there, or that a player announces that
he is going to deliver an orange block, but actually does not, or that someone



delivered a white block, even though you had told to deliver it. Therefore, a
BWA4T agent should be able to deal with unexpected events.

3.3 Implementation of a BWA4T agent

Currently, there are two ways to implement a BWA4T agent. The first way is
to use Java. BW4T is implemented in Java and offers a basic agent class in
which the behavior of a BW4T agent can be specified. The second way is to use
GOAL [13], a BDI-based (Belief Desire Intention) programming language.

BDI-based programming languages offer the possibility to represent an agent’s
behavior in terms of its beliefs and goals, and a BDI agent’s actions are deter-
mined by a deliberation process on its beliefs and goals. The BDI-based agent
programming paradigm is based on Bratman’s theory of human practical rea-
soning, in which human reasoning is described with the notions of belief, desire
and intention [5]. Rao and Georgeff developed a BDI-based software model [26]
based on Bratman’s theory. A typical BDI deliberation cycle contains the follow-
ing steps: (i) perceive the world and update the agent’s internal beliefs and goals
accordingly, (ii) select applicable plans based on the current goals and beliefs,
and add them to the intention stack, (iii) select an intention, and (iv) perform
the intention if it is an atomic action, or select a new plan if it is a subgoal.

Currently, there is a set of BDI-based agent programming languages [2] and
GOAL is one of them. A connection has been established between BW4T and
GOAL, which makes it possible to implement BW4T agents in GOAL.

4 Experiment

In this section we describe the experiment performed in BW4T. As motivated
in section 2, we believe that human-agent teams in which agents explain their
behavior coordinate better than human-agent teams in which agents do not
explain their behavior. In the experiment, we will use performance on the BW4T
task to measure the level of coordination in human-agent teams. Our hypothesis
is that human-agent teams in which agents explain their behavior perform better
on the BWA4T task than human-agent teams in which agents do not explain their
behavior.

4.1 Method

Design. The experiment has a within-subjects design with an explanation and
a no-explanation condition. In the explanation condition, the subjects cooper-
ate with an agent explaining its behavior, and in the no-explanation condition,
subjects cooperate with an agent that does not explain its behavior. The order
of the two conditions, explanation and no-explanation were assigned counter-
balanced to the subjects, to correct for possible learning effects from the first to
the second trial.



Subjects. A total of 16 subjects (male = 14, female = 2) with an average age of
27 (sd=3.5) participated in the experiments.

Materials. We used the BWA4T testbed described in section 3. In order to investi-
gate the effects of an agent’s explanation on human-agent team performance, we
developed a BWAT agent that is able to explain its behavior. We implemented
the agent in GOAL.

The agent’s behavior is formed by the following rules. The agent starts to
check rooms and once it knows about a block that can be delivered, it starts to
deliver that block. The agent uses information about blocks in rooms received
from the other player. When the other player announces that he is going to
check a particular room, the agent will not check that room. When the other
player tells that he is going to deliver a block, the agent will start to search or
deliver the next block in the sequence. The agent is able to deal with humans
that vary their strategy, make mistakes and forget to tell things. Namely, the
agent revises its plans when a room contains other blocks than it expected, and
when the agent holds a block that is not needed anymore, it will drop the block
in a room. Thus, in general, the agent is cooperative and assumes that the other
player is cooperative as well.

The following GOAL code shows a part of the agent’s planning behavior in
which it decides to either deliver a block or check a room.

IF a-goal(deliverSequence), bel(me(Me),available(Me),
toPickUp(Block,Color),in(Block,Room))
THEN adopt(delivered(Block)) + insert(delivering(Me,Block)).

IF a-goal(deliverSequence), bel(me(Me),available(Me),
not (toPickUp(Block,Color)) ,nextRoomInSeq(Room),
not (checked (Room) ) ,not (checking(_,Room)))

THEN adopt(checked(Room)) + insert(checking(Me,Room)) .

The first if-then rule states that if it is the agent’s goal to deliver the sequence
of blocks, and it believes that it is available to do something and that there is a
block that can be picked up, then it will adopt the goal to deliver that block and
obtains the belief that it is delivering that block. The second if-then rule states
that if it is the agent’s goal to deliver the sequence of blocks, and it believes that
it is available to do something, there is no block that can be picked up, and the
next room that has not been checked is not already being checked by someone
else, then the agent will adopt the goal to check that room and obtains the belief
that it is checking that room.

As the aim of this study is to study the effects of explanations about agent
behavior on coordination in human-agent teams, the agent needs to be able to
explain its behavior. In section 2, we argued that agents that play the role of
an equal team member are considered intentional. In other words, we under-
stand their behavior by attributing beliefs, goals and intentions to them. We
therefore believe that the beliefs, goals and intentions underlying the agent’s
actions comprise useful explanations about its behavior. The implementation in



GOAL allowed us to explain the agent’s behavior in terms of beliefs, goals and
intentions [12].

To explore the effect of explaining agent behavior on coordination in human-
agent teams, we need to be able to manipulate the agent’s communication be-
havior. Inspired on the KaOS policy framework [4], we use policies to regulate
the agent’s communication behavior, so we do not have to change the agent’s
programming code. We distinguish the following three communication policies.

1. Inform other players about your observations
2. Inform other players about your actions
3. Provide explanations for your actions

The first policy entails that if the agent observes something in the virtual en-
vironment, it sends a message to inform all other players about its observation.
Such messages are, for example, ‘Room A1l contains a pink block and a dark
blue block” and ‘Room B2 is empty’. The second policy prescribes that if the
agent performs an action, it has to send a message to inform all other players
about it. Messages informing about actions are for instance ‘Im going to Room
C1’, ‘I picked up a red block’ and ‘I just dropped a gray block’. The third policy
prescribes the agent to explain an action, that is, to provide the underlying goal
of that action. In the next section we will discuss the explanation of actions in
more detail. Examples explanations for actions are ‘I am going to Room B3 to
search for an orange block’ and ‘I am going to Room C2 to deliver a light green
block’.

In the explanation condition, the agent adhered to all three communication
policies, and in the no-explanation condition, only communication policies 1
and 2 were applied. Thus, the agent equally often provided updates in both
conditions, but the updates in the explanation condition were longer than those
in the no-explanation condition.

Measures. Team performance was measured by the time of completing the task.
Faster task completion indicates a higher team performance. Additionally, the
subjects’ estimation of team performance, their understanding of the agent’s
behavior, and their opinion on the length of the explanations was measured by
a questionnaire.

Procedure. The subjects received an explanation of the BWAT task and how to
direct their ‘bot’. Subsequently, they had to play a training session, in which they
had to deliver three blocks on their own. The training session was included to
make sure that the subjects completely understood the game, and to give them
time to think about their strategy in the actual trials. No agent participated in
the training session yet, to prevent that it would shape the subjects’ expectations
about the agents in the trial sessions.

For the two trial sessions, subjects were instructed to perform the task with
the agent as a team, as fast as possible. They were told that the agent could show
any kind of behavior, e.g. not search in the right places or not take the subject’s
messages into account, but that the agent would not lie to them. In both trial



sessions, the human-agent team delivered six blocks of different colors. The colors
and positions of the blocks differed per session, but the total traveling distance
to deliver all blocks was the same. The order of the two conditions, explanation
and no-explanation were assigned counter-balanced to the subjects, to correct
for possible learning effects from the first to the second trial. After both sessions,
the subjects were asked to fill in a short questionnaire.

4.2 Results

The time of completing the BWA4T task was used as a measure for team perfor-
mance. In the explanation condition, the average time (n=16) to complete the
task was 596 seconds (sd=118), and in the no-explanation condition the aver-
age time was 593 seconds (sd=81). These averages are obviously not significant
(paired t-test: p=0.95).

We also examined if there was a learning effect between the first and sec-
ond session. The average time (n=16) to complete the sessions was 617 seconds
(sd=118) for the first session, and 572 seconds (sd=76) for the second session.
The results show that the subjects completed the task faster in the second ses-
sion than in the first session, but the difference is not significant (paired t-test:
p=0.26).

In the questionnaire administered after each session, we asked subjects to
judge their own, the agent’s and their common performance on a scale from 1 to
7. Table 1 shows the averages in both the explanation condition (EX) and the
no-explanation condition (NE).

EX NE
I was effectively performing the task 5.9 (sd=0.7) 5.8 (sd=1.1)
The agent was effectively performing the task 6.0 (sd=1.3) 5.5 (sd=1.3)
We were effectively performing the task as a team 5.7 (sd=1.6) 5.1 (sd=1.7)

Table 1. Average estimation of performance on a 1-7 scale (n=16).

The results are not significant (paired t-tests: p=0.67, p=0.36, p=0.41, respec-
tively), but for all questions and in particular for agent and team performance,
the subjects judged performance on average higher in the explanation condi-
tion than in the no-explanation condition, even though no actual differences in
performance were found.

In order to investigate how well subjects evaluate performance, we calcu-
lated the correlations between the self-evaluations in Table 1 and the actual
team performances. Surprisingly, the subjects’ self-evaluations have a low or even
negative correlation with the actual performances. Three of the negative corre-
lations are significant («=0.05): evaluated human performance and actual team



performance in the no-explanation condition (R=-0.49), evaluated agent perfor-
mance and actual team performance in the explanation condition (R=-0.50),
and evaluated team performance and actual team performance in the explana-
tion condition (R=-0.55). The results show that subjects make better estimates
of their own performance in the explanation condition, and better estimates of
the agent’s and the team’s performance in the no-explanation condition.

In the questionnaire, we also asked the subjects to judge how well they under-
stood the actions and motivations of the agents, and how well the agents seemed
to understand their actions and motivations. The results in Table 2 show that the
subjects had a significantly better idea of what the agent was doing in the expla-
nation condition than in the no-explanation condition (paired t-test: p=0.030).
Though the other results are not significant, for all questions understanding was
on average rated higher in the explanation than in the no-explanation condition
(paired t-test: p=0.74, p=0.65, p=0.47, respectively).

EX NE
I had a good idea of what the agent was doing 6.1 (sd=1.0)| 5.1 (sd=1.4)
The agent seemed to have a good idea of what I was
doing 5.8 (sd=1.1)| 5.7 (sd=1.0)

I understood the reasons behind the agent’s behavior| 5.9 (sd=1.2)| 5.7 (sd=L1.5)
The agent seemed to understand the reasons behind
my behavior 5.6 (sd=1.0)| 5.3 (sd=1.9)

Table 2. Average understanding of behavior on a 1-7 scale (n=16).

Finally, we asked subjects if the agent provided too little, just emough, or
too much information. In the explanation condition, 1 subject thought that the
agents provided too little information, and all other 15 subjects thought that
the agent provided just enough information. A chi-square goodness of fit test
shows that the result is significant (x?=26.4, p<0.001). In the no-explanation
condition, 10 subjects indicated that the agents provided too little information,
while 6 subjects indicated that the provided information was just enough. This
result is significant as well (x2=9.5, p=0.009). Thus, in general subjects preferred
the amount of information in the explanation condition over the amount of
information in the no-explanation condition.

4.3 Discussion

We found no significant differences between human-agent team performance in
the explanation and the no-explanation condition. Therefore, the results do not
support our hypothesis that explanations about agent behavior improve human-
agent team performance on the BW4T task. The experience of the subjects,



however, was affected by the agent’s explanations. The subjects’ ratings of their
idea of what the agent was doing was significantly higher in the explanation con-
dition than in the no-explanation condition. Furthermore, a significant number
of subjects believed that the agent in the no-explanation condition provided too
little information, whereas a significant number of subjects indicated that the
agent in the explanation condition provided just enough information.

With a larger number of subjects, more of the results obtained from the
questionnaire may have been significant. Namely, all of the subjects’ ratings
are higher for the explanation condition than for the no-explanation condition,
both concerning self-evaluations on performance as understanding of each other’s
actions. It is not probable that the difference in performance on both conditions
quickly would have become significant with a larger number of subjects, since
the performances on both conditions are rather similar.

There are several possible explanations for the similar team performances on
both conditions. We provide five of them. First, subjects may have lost time in
processing the agent’s explanations, which then was compensated by a more ef-
ficient task completion. The robots in BW4T move slowly on purpose to provide
players sufficient time to communicate, and think and process information. How-
ever, at some points in the game many actions have to be done at once (enter
a room, go to a block, pick up a block, go to the Dropzone, and communicate
about your actions) despite of the slow speed of the robots. Thus, at those time
points, processing explanations may lead to time loss.

Second, the subjects may have anticipated a cooperative agent. Though we
told them that the agent could perform any behavior and made them aware
of possible strategies, several of the subjects reported that their strategy was
to behave as if the agent was cooperative until they would find out otherwise.
With such a strategy, explanations do not contribute to a quicker adaptation
to the agent’s behavior as the subject’s initial behavior already makes the right
assumptions about the agent’s behavior. It would be interesting to conduct an
experiment with a less cooperative or capable agent, e.g. one that cannot process
certain messages or is colorblind, to see if explanations help subjects to quicker
adapt to the gaps in the agent’s capabilities.

Third, the task may involve too much noise. Some of the subjects, for in-
stance, reported that they mistook one color for another (e.g. yellow and light
green), which caused a serious delay. Other subjects said that they changed their
strategy after the first trial, e.g. they let the agent deliver all blocks. Further-
more, though the blocks are evenly spread over the rooms in different trials,
there is a luck factor involved in finding blocks. This factor can be decreased by
letting the team deliver more blocks, but adding blocks also gives the subjects
more time to learn the agent’s behavior, which decreases the expected effect of
providing explanations. In conclusion, noise factors like these may have wiped
out the effects of explanation on team performance.

Fourth, the task may be too simple to show an effect. In most situations, the
rationale behind the agent’s behavior can be deduced from its actions.



Finally, the agent always explained its actions by the goals they aimed to
achieve. The advantage of such explanations is that they are immediately deriv-
able from the mental state of a BDI agent. Possibly, when extending the agent’s
explanation capabilities, e.g. by adding information about the agent’s strategies,
the explanations would become more useful and have a bigger effect on team
performance.

5 Conclusion

In this paper, we discussed literature on human teamwork, human-agent team-
work and the explanation of intelligent systems and agents. We argued that
explanation of the behavior of agents in a human-agent teams can contribute
to team performance in two ways. First, when team members have more shared
knowledge, e.g. about their current activities and plans, it is easier to coordinate
their actions. Second, explanations can increase trust in a team member, which
also facilitates the coordination of actions.

Furthermore, we presented a study in the BW4T coordination testbed that
examined the effects of agents explaining their behavior on coordination in
human-agent teams. A first result was that, against our expectations, expla-
nations about agent behavior did not lead to better team performance. In the
discussion we suggested several explanations for these results, e.g. the task be-
ing too simple. A second result was that, in correspondence to our expectations,
humans indicated that they better understood the agent’s behavior when they
received explanations about it.

Though the BWA4T task is simple, we believe that it offers a good platform
for investigating human-agent teamwork. In order to further study human-agent
teamwork, we intend to do more experiments in the BW4T testbed, in which we
will use more diverse conditions than the two described in this paper. We will
test the effects of no communication at all and an overload of explanations, and
compare them to the current results. We also want to measure more dependent
variables in the experiments. Besides time of completing the task, we will also
measure the sharedness of knowledge between team members, and the trust
humans have in agents. Such research will give insight in whether concepts that
were adopted from literature on human teamwork also apply to human-agent
teamwork.

In future work, we intend to apply the results of this research to a real world
domain. We are aiming for the domain of crisis management, where software
agents can support policemen and firefighters by providing information, provid-
ing advice, and taking over simple tasks.
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