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Abstract.

The inspection of wall loss corrosion is difficalt pipe support locations due to limited accesgjbiHowever,
the recently developed ultrasonic Multi-Skip sciagrtechnique is suitable for this problem. The hmétemploys
ultrasonic transducers in a pitch-catch geometsjtipmed on opposite sides of the pipe supportaSivaves are
transmitted in the axial direction within the pipall, reflecting multiple times between the innedaouter
surfaces before reaching the receivers. Alongpath, the signals accumulate information on thegral wall
thickness (e.g., via variations in travel time) eTrhethod is very sensitive in detecting the presefiovall loss,
but it is difficult to quantify both the extent adépth of the loss. If the extent is unknown, thaly a
conservative estimate of the depth can be madéodie cumulative nature of the travel time vaoa. Multi-
Skip tomography is an extension of Multi-Skip seiieg and has shown promise as a complimentaryvellp
inspection technique. In recent work, we have dgped the technique and demonstrated its use fonsgmicting
high-resolution estimates of pipe wall thicknessfitgs. The method operates via a model-basedvadle field
inversion; this consists of a forward model forgicting the measured wave field and an iterativicess that
compares the predicted and measured wave fieldsnanichizes the differences with respect to the nhode
parameters (i.e., the wall thickness profile). Tgaper presents our recent developments in Muip-Sk
tomographic inversion, focusing on the initial lbzation of corrosion regions for efficient parametation of the
surface profile model and utilization of the sigpahse information for improving resolution.
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1. Introduction

Pipe supports are locations where corrosion quatguiently occurs due to the ingress of water.
Inspection of these locations is a difficult taglchuse of accessibility issues. Recently a new
screening method has been developed, called Mkii®r M-Skig®) ultrasonics[1]. This
method uses shear waves at typical incidence abgtasen 45 and 70 degrees that reflect
multiple times in the pipe wall. This allows tharnsmission of shear waves over long distances
that gather information about the wall thicknessrdupropagation. Wall thickness loss
manifests itself as a change of travel time. Awnnéerential scan is used to detect any wall
thickness reduction around the pipe at the supgpoation. This method turns out to be very
sensitive to detecting the presence of wall thiskress. However, the travel time changes are
proportional to the integral wall thickness losile for integrity assessment the deepest
corrosion pit is of interest. In this paper we aoluce an extension of the Multi-Skip method,
called Multi-Skip tomography. This method allowstasonstruct a wall thickness profile
under a pipe support, at a certain circumferepuaition.

2. Ray approximation versus full-wavefield approach

A high-frequency ray propagation model can be eggildo simplify the tomography problem.
Furthermore, the interaction of the rays with thdace profile can be simplified by assuming
that the deviations from a planar surface are ssugh that the defect can be modeled as a
“phase screen”. In this approximation, the surfaadile deviations are modeled as a reflection
coefficient profile that applies time delay pertatibns only (or linear phase shifts) to the
propagating signals, ignoring the geometric pegtidms of the rays. For surface profile



deviationsAz(x) with respect to lateral positiofy the time delay perturbations for the phase
screen are given by

At(x) = (28z(x)cosb)/ c, (1)

wherec is the propagation speed, aéids the angle of incidence of the ray. By consiagthe
time delaysAt! for all source and receiver pairs (denoted bydesiin andn) and for all skips

(denoted by the superscrigtwhich runs from 1 t&), one can establish a system of linear
equations:

A Az = At (2)

where At = (Atﬁ’,-~-,Ath% | A2 AP A - At )T is a vector of the time delay

perturbationsAz = (Az,,Az,,---,Az,)" is a parameterization of the surface profile diwies
into P discrete values, andl is a (MNK x P) matrix of coefficients.

The time delay perturbations can be measured fhencdllected data by cross-correlating the
signals acquired for each source / receivermpaiand isolated skif with the signals expected
for a planar surface profilé\z, (x) =0. The system of equations can then be invertedbtiairo

the surface profile deviations via a least-squaadstion, i.e.,

AZ = argminQAAz—Af‘), (3)

Az

whereAt are the time delays measured from the data. Wéograpveighted least-squares
solution and use the correlation coefficient aseggiving factor.

A modeled example solution is shown in Figure lddlat-bottomed defect of depth 1 mm,
using a single source, a wideband pulse from 400-kH200 kHz, and 256 receivers. The
surface profile was estimated using the approashribed above. Here, measured time delays
with correlation coefficients less than 0.95 wexeleded from the solution. The estimated
surface profile is shown to agree with the actuefile in terms of the location, width, and
depth of the defect. However, it also exhibits gigant noise. Moreover, the solutions are
worse for deeper defects and at lower frequenaiegalthe violation of the phase screen and
high-frequency assumptions. This limits the apliliy of the technique and has motivated
the use of a more complicated full-wave field solntdetailed in the following sections. It is
possible, however, that this simple technique cteldised as a first stage to localize the defect
and to refine the surface parameterization fofaevave field inversion.
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Figure 1 — Demonstration of topographic inversibthe surface profile using an assumed ray
propagation model and a phase screen defect mduekexpected arrival time differences
(defect — no defect) are shown in (a) and the nredsdifferences are shown in (b); black

regions indicate a correlation coefficient below threshold of 0.95. The actual and estimated

surface profiles are shown in (c) in black and phespectively, where the source position is
indicated by a red marker and the receiver postare indicated by the green markers.

3. Forward wave field model

The forward modeling procedure is conceptually ax@d in Figure 2, using a wave field

operator formulation [2]. In Figure ZQ‘ %) is the emitted wave field from a wedge transducer
at the steel-wedge interface. This operator indwalastic transmission effects from the wedge

into the steel. The wave field propagation operé(yor(zm’ ZO), extrapolates the wave field
from the top surface to the back wall. Note thatmay vary with the lateral coordinate. The

wave field is reflected from the back wall, Whé?e (Zm) describes the angle dependent

reflection. The upward propagation operaYXr_ (20’ Zm) propagates the waves to the outer
surface at z0 and again, zO may vary laterallyt fahe wave field is detected by a wedge

transducer, described lR/(ZO) and another part is reflected back, describeﬁ%vﬂ). Each
pass through the feedback loop yields another enigtder skip. The wave fields and operators
are formulated in the temporal frequency domain.



The inversion model is parameterized with- ZO(X) andm = Zm(x), where X is the lateral
coordinate. The data matrix for primary reflections., ignoring multiple reflections can be
written as:

P(2) = (2, )W (20, 2, )R (2, )W (20, 2,)8(2, ). (4
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Figure 2 Schematic illustration of wave propagatiwodel for elastic, anisotropic media.
The wave field is generated by an arbitrary soarcay (S) that describes both the
directivity and the signal spectrum. The wave figtdpagates down (Wand gets

reflected (R), where the reflection operator describes gerargle dependent
reflectivity. The second propagation (M6 back to the surface and the detector response
is expressed by D. Multiple reflections are gerestdty the feedback loop.

4. Wavefied inversion scheme

Wave field inversion of Multi-Skip measurementsaglon an iterative inversion scheme. An
objective function is defined, which is minimizedratively. In our approach, the objective

function consists of three separate terms, themiffce between the measu%c(ZO) and

forward modeled wave fieltﬁ)c (ZO) the surface paramete?gxi) and a smoothness constraint
(second derivative). These terms are assignedvelstaling factors:

0°z
= Ra)-lRt) nalx) 2.2¢] e
In order to update the parameters, partial dexeatare calculated:
oF
J=—, 6
ox (6)

where J is the jacobian matrix. The last two teimtfie objective function play an important
role in regularizing the inversion problem. To dttate the influence of these two

regularization terms on the performance of thersio® a 20 mm wide flat bottom hole with a
depth of 6mm is modeled. First, we evaluate thieigmice of the smoothness constraint (second
regularization term); the sparseness term (firgtil@ization term) is ignored. The scale

paramete|’72 Is set in such a way that the contributions are D% and 10% of the difference



in wave field amplitude. The result is shown ind¥ig 3. All results shown here are for the 8th
skip and a frequency of 400 kHz. Twelve sourcetpos are modeled on the left hand size of
the defect. The receiving transducer is scanned ¥& 0.5 m to x = 1.25 m, with a step size of
0.5 mm. The wall thickness is 33 mm.

Using no smoothness regularization (0%), the ingargesult contains a lot of artifacts. Adding
1% of regularization, significantly improves thesu#, both the shape and the depth are much
more accurate. If more regularization is added (1@@& influence becomes too strong and this
yields a solution that is too smooth. Additionahlypre oscillations left and right of the actual
defect are observed. In terms of depth sizingpgrérmance is similar.
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Figure 3 Influence of second regularization tetme, elative magnitude equals, a) 0%, b) 1%
and c) 10%. The geometry consists of 12 sourcegitots and with the receiver transducer a
scan is performed from x = 0.5 m to x = 1.25 mhwatstep size of 0.5 mm

Similarly we evaluate the influence of the firgpdsseness) regularization term. This term
suppresses parameters that are poorly resolvé@ imisfit between the measured and model
data. Effectively this yields a sparse solutiompmessing insignificant parameter values.
Figure 4 shows the inversion results with a 10%atmeess constraint (a) and with a 10%
sparseness constraint (b).
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Figure 4 Comparison of the influence of the smoesisnterm and the sparse term to regularize
the inversion problem. a) 10% smoothness addduaktoltjective function, b) 10% sparseness
added to the objective function

As expected the sparseness constraint suppressesant parameters. In terms of quality, this
result is quite similar to a 1% smoothness constrdio update the parameter, the Jacobian
matrix is calculated by varying each parameteniadially. Based on the Jacobian matrix, the
resolution matrix can be calculated as follows:

R=JJ (7)
where ‘T’ indicates the transposed matrix. Esséptibe resolution matrix shows how well
each parameter is resolved and whether there amatmns with other parameters.
Correlations with other parameters are undesimcesi increases instability in the iterative
optimization. Ideally the resolution matrix equaldiagonal matrix, where all elements on the
main diagonal have the same value.

The resolution matrices for 0%, 1% and 10% sparsecenstraint are shown in Figure 5. As
can be seen in Figure 5a there are strong sideshbaunich are likely to cause artifacts. Adding
some regularization clearly improves the problesnstzown in Figure 5b. Figure 5¢ shows the
resolution matrix for a 10% sparseness constrainich is nearly ideal.
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Figure 5 Resolution matrices showing the effeaeglularization with a sparseness constraint:
a) no constraint b) 1% sparseness constraint, %) dfiarseness constraint.

a)

The resolution matrices for a smoothness consteaeshown in Figure 6, again a 0,1 and 10%
smoothness constraint was added. The smoothnessaiohis realized by calculating the
second derivative of the parameters, i.e., theesbéthe outer pipe surface. This inherently
introduces correlations with neighboring parametsrsan be seen from the resolution matrices
shown in Figure 6b and c.
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Figure 6 Resolution matrices showing the effeategularization with a smoothness constraint,
a) no smoothness constraint, b) 1% smoothnessraorst) 10% smoothness constraint.

C)

Already 1% smoothness constraint added to the tgeftinction has a significant effect on
the resolution matrix. The smoothness constraiatpswerful method to regularize the
inversion problem. We have seen however that tochnmfluence of the smoothness
constraint yields oscillations in the solution.

In our inversion scheme, we start at a low freqyeard low skip order. Gradually increasing
the skip order and the frequency allows for a higgolution reconstruction. This requires an
adaptive parameterization. The resolution matritk lvé used further to assess whether local
refinement in case of defects will improve theabhiiity of the solution.

5. Conclusions and futurework

Multi-Skip tomography is a powerful method to cdite a high resolution wall thickness
profile at inaccessible locations. Skipping sheaves ensure a high resolution. Due to the
nature of the wave propagation, high frequency@aprations do not provide sufficient
accuracy to accurately reconstruct the wall thisknarofile. Our results indicate that with an
appropriate wave field modeling scheme, as paattoimographic reconstruction kernel, an
accurate and high resolution wall thickness prafde be reconstructed.

We introduced a conceptual propagation model, wagdentially describes all relevant aspects
of wave propagation, including elastic angle dependeflectivity. In our approach we
compare a measured wave field to a predicted €isidg this wave field modeling concept.

The objective function consists of the differeneéieen the measured and modeled wave
field, supplemented with regularization terms. Vé@dashown the added value of proper
regularization. Additionally, the resolution matgan be used to assess the effect of a specific
type of regularization. Moreover, the resolutiontrxawill be used during further development
to assess whether further adaptive refinement i@peters adds additional information.
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