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Abstract

Physical activity (PA) is a main determinant of total energy expenditure (TEE) and has been suggested to play a key role in
body weight regulation. However, thus far it has been challenging to determine what part of the expended energy is due to
activity in freely moving subjects. We developed a computational method to estimate activity related energy expenditure
(AEE) and resting metabolic rate (RMR) in mice from activity and indirect calorimetry data. The method is based on penalised
spline regression and takes the time dependency of the RMR into account. In addition, estimates of AEE and RMR are
corrected for the regression dilution bias that results from inaccurate PA measurements. We evaluated the performance of
our method based on 500 simulated metabolic chamber datasets and compared it to that of conventional methods. It was
found that for a sample time of 10 minutes the penalised spline model estimated the time-dependent RMR with 1.7 times
higher accuracy than the Kalman filter and with 2.7 times higher accuracy than linear regression. We assessed the
applicability of our method on experimental data in a case study involving high fat diet fed male and female C57Bl/6J mice.
We found that TEE in male mice was higher due to a difference in RMR while AEE levels were similar in both groups, even
though female mice were more active. Interestingly, the higher activity did not result in a difference in AEE because female
mice had a lower caloric cost of activity, which was likely due to their lower body weight. In conclusion, TEE decomposition
by means of penalised spline regression provides robust estimates of the time-dependent AEE and RMR and can be applied
to data generated with generic metabolic chamber and indirect calorimetry set-ups.
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Introduction

In the last few decades a great deal of effort has been devoted to

measuring energy expenditure in humans and animal models, with

the aim of uncovering potential causes for obesity. Activity-related

energy expenditure is the most variable component of total energy

expenditure [1,2] and has been shown to play a key role in

achieving energy balance in humans [3,4] and rodents [5,6]. The

resting component of TEE, or resting metabolic rate, consists of

the basal metabolic rate, which is the minimum level of energy

required by the body to sustain vital functions, and the thermic

effect of food, which is the energy needed for the digestion of food

[7,8]. In addition, at temperatures outside the thermoneutral

range, a substantial part of RMR comprises energy expenditure

involved in thermoregulation [9]. Low levels of RMR have been

identified as a risk factor for future weight gain in Pima Indians

[10,11] and adaptations in RMR have been linked to weight

regain after extensive weight loss in rats [12].

Since subtle differences in daily energy expenditure can lead to

substantial changes in weight when integrated over extended

periods of time, it is vital to have accurate estimates of AEE and

RMR in order to gain a better and more quantitative un-

derstanding of their role in the development of overweight.

Estimation of the contribution of AEE and RMR to TEE in freely

moving rodents, however, has proven to be difficult. The standard

approach is to simultaneously monitor physical activity and TEE

of an animal in a metabolic chamber employing indirect

calorimetry. Subsequently, the contribution of AEE and RMR

to TEE is determined by linear regression [6] or by taking the

TEE that is not associated with activity [5,12,13]. However, since

these approaches do not take into account that the RMR varies
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with time – e.g. due to diurnal variations, the thermic effect of

food, or nervous and hormonal changes – the estimates of the AEE

and RMR that are thus obtained are relatively inaccurate.

A significant improvement with respect to these methods has

been proposed by Even et al. [14], who showed that time-

dependent estimates of RMR can be obtained from indirect

calorimetry data by means of Kalman filtering. Although this

method gives reliable and reproducible results in mice [15] and

rats [16], specialised equipment and high time resolution

monitoring of activity and respiratory gas exchange are needed

for the Kalman filter to give optimal results.

Here, we propose a computational method that allows to

determine the RMR and AEE in mice from data generated by

generic, commercially available metabolic chambers employing

indirect calorimetry. The method is based on modelling the time

variations in RMR by means of penalised cubic spline functions

and includes a correction for the bias introduced by inaccurate

measurements of physical activity. Both features enable the use of

respiratory gas exchange data that has been generated at low time

resolutions and with infrared beam activity monitors, as they are

provided by conventional systems of metabolic chambers for

rodents. We evaluated the performance of our method on

simulated indirect calorimetry data and show that it is robust to

changes in sample time resolution and measurement error in PA.

In addition, we demonstrate its applicability in a case study of high

fat diet fed male and female C57Bl/6J mice.

Results

Penalised Spline Regression
We here give a short description of the penalised spline (P-

spline) regression model to decompose the TEE; for a more

extensive discussion, see Methods. Our method is based on the

assumption that the slow time variations in the RMR can be

modelled by a set of spline functions and that the AEE linearly

correlates with the intensity of PA. Estimation of the spline

coefficients and of the caloric cost of activity (CCA), i.e. the scale

factor of AEE to PA, occurs by minimising the residual sum of

squares of the model with respect to the time sequence of TEE

measurements. Since gas diffusion effects deform the time

dependency of the measured TEE, this deformation is modelled

by means of linear compartments and applied to the PA time

sequence. Variability in the spline coefficients is diminished by

penalising the first order derivative of the spline function, thus

ensuring that smooth results are obtained and no overfitting occurs

to measurement noise [17]. The degree of penalisation is

determined from the data using the generalised cross validation

criterion [18]. In order to account for the regression dilution bias

that is introduced into the CCA estimate by inaccuracies in the PA

measurements, a corrected estimator was devised based on

a multiplicative errors-in-variables model.

Since the P-spline model is based on the assumption that the

relation between PA and AEE is linear, this must be ascertained by

inspecting the scatterplot of the TEE and PA. If the relation is

nonlinear, the measured PA has to be preprocessed accordingly.

Selection of the parameters of the preprocessing function can

be based on minimisation of the residual sum of squares of the P-

spline model. See Supplementary Text S2 for details.

Validation Study
The P-spline estimation method was validated on a set of

simulated high time resolution metabolic chamber datasets. An

experimental high time resolution metabolic chamber dataset

(TEE and PA measured every 10 s) served as basis for providing

realistic simulation parameters and to verify the results from the

simulation study. Performance of the P-spline method was

determined based on the accuracy of the RMR estimate and on

its robustness to low sample rates and large chamber sizes. Overall

performance was compared to that of three other methods: linear

regression, averaging TEE for periods of zero activity and Kalman

filtering (Supplementary Text S3). The value of including TEE

decomposition in indirect calorimetry data analysis was assessed

by applying the P-spline model to data from a case study in which

male and female C57Bl/6J mice had been put on a 10 week high

fat diet. For details regarding the set-up of the validation study, see

Methods.

Performance Evaluation
A total of 500 metabolic chamber datasets were simulated to

determine the accuracy of the P-spline regression model in

estimating RMR. The simulated datasets consisted of TEE, RMR

and PA and resembled experimental data with respect to typical

activity patterns and circadian and ultradian variations in RMR

(Fig. 1). First the influence of the spline function’s knot number on

the RMR estimate was evaluated. It followed that with low knot

numbers only slowly varying components of RMR could be

estimated accurately, whereas the knot number needed to be

increased to estimate the higher frequency components (Fig. 2).

Approximately, with k knots per day the time variations in RMR

with frequencies up to 1
2
k day{1 were estimated optimally. It also

followed from these results that higher frequency components in

RMR could not be estimated accurately; therefore, in the

remainder of this study we quantified the accuracy of time-

dependent RMR estimation as the error in estimating the

frequency components in RMR under 6 day{1 (see Methods).

The performance of the P-spline model was evaluated by

considering the estimation error of the average and time-

dependent RMR, for varying sample times T of the TEE and

PA. When TEE and PA were sampled at the same rate, the Root

Mean Square Error (RMSE) of the average RMR estimate

increased monotonically from 0.5% for T~10 s to 1.5% for

T~20 min (relative to the true average RMR of 10 kcal/day).

The RMSE of the time-dependent estimate increased from 2.0%

for T~10 s to 3.1% for T~20 min (Fig. 3A). Estimation

accuracy improved when PA was sampled at TPA~10 s and

TEE at a variable rate: for TTEE~20 min, the RMSE of the

average and time-dependent RMR estimate were 0.76% and

2.7% respectively.

The origin of the estimation error that is introduced when PA is

sampled at a low rate becomes evident when comparing the time

sequence of the actual PA and the measured PA at high and low

sample rates (Fig. 3B). When PA is measured with a sample time of

TPA~20 min, there is a larger deviation from the actual PA than

when it is sampled with TPA~10 s. This effect is illustrated by the

dependency of the residual variance of the P-spline model on TPA,

which shows that there is more unexplained variance for higher

TPA (Fig. 3C). Interestingly, the effect is even stronger on the high

resolution experimental dataset, which suggests that nonlinearity

of the PA-AEE relation in combination with a low sample rate

adds to the unexplained variance.

We quantified the uncertainty in the RMR estimate due to low

sample times as the downsampling induced variability (DIV),

which we defined as the variability between estimated RMR time

sequences when based on subsequent time points (Fig. 3D). On the

simulated data the relative DIV increased linearly to 0.56% for the

average RMR and to 1.8% for the time-dependent RMR, for

TTEE~20 min (Fig. 3E). The same trend in DIV was found for

the high time resolution experimental dataset, showing that the

Decomposition of Energy Expenditure
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variance in the estimation error of the P-spline method was similar

for simulated and experimental data.

Simulating data with a higher chamber size to flow rate ratio –

which we here refer to as the washout time t2 (see Methods) – the

high frequency variations in TEE due to PA were notably reduced

(Fig. 4A). The accuracy of average RMR estimation decreased

slightly when t2 was increased from 5 to 15 min, whereas it

declined considerably for t2~45 min (Fig. 4B). Increasing t2 also
had a negative effect on the accuracy of the time-dependent RMR

estimation, but this effect was less strong due to the fact that also

high frequency variations in RMR had been filtered out. These

findings show that less accurate results are obtained when either

the chamber volume is increased or the flow rate is decreased.

Importantly, it was found that for each washout time t2 shorter

sampling times TTEE allowed for more accurate estimates. This

implies that measuring respiratory gas exchange with short sample

times is advantageous for TEE decomposition, even when the

chamber size to flow rate ratio is large.

Comparison with Other Methods
The performance of the P-spline regression model was

compared to that of the linear regression model, the method of

averaging TEE for periods of zero activity and Kalman filtering.

The RMR time sequences that were estimated by each method

gave similar results on simulated and experimental data (Fig. 5A,B),

suggesting that the time variation in the RMR had been simulated

in a realistic fashion. The estimates from the linear regression

model and the TEE averaging for zero activity method were

constant over time, making thus a relatively large error in

estimating the time-dependent RMR. The estimate of the Kalman

filter and P-spline model showed to successfully follow the

evolution of the RMR, although it exhibited more variability.

The performance of the four estimation methods was assessed

by considering the estimation error of average RMR (Fig. 5C) and

time-dependent RMR (Fig. 5D), for varying sample times of the

TEE. Since we focused on estimating the low frequency

components in the RMR, the high frequency variability in the

Kalman filter estimate was filtered out. To obtain an insight into

the origin of the differences in estimation accuracy, the estimation

error of average RMR was decomposed into a bias and variance

term (Fig. 5E). The P-spline model and Kalman filter performed

equally well in estimating the average RMR for TTEE under

10 min, while the Kalman filter was little less robust for lower

sample rates, amounting to a RMSE of 1.0% at TTEE~20 min.
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Figure 1. Estimation of resting metabolic rate in experimental and simulated data. Mouse metabolic chamber datasets were simulated,
consisting of the total energy expenditure (TEE), resting metabolic rate (RMR) and physical activity (PA) (A). The simulated data shows to be similar to
the experimental data (B), exhibiting a diurnal rhythm in activity patterns and RMR, and high frequency time variations in the TEE that are due to PA.
Simulated datasets were used to evaluate the accuracy of the estimated RMR time series (RMR est) by means of penalised spline regression. For
details regarding the simulation procedure, see the Methods section and Supplementary Text 4.
doi:10.1371/journal.pone.0036162.g001
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The bias in the average RMR estimate for both methods was

negligible with respect to the variance component. The linear

regression and zero activity TEE averaging method had

considerably larger errors, which was mainly caused by the larger

bias. For the estimation of time-dependent RMR, it was found that

the accuracy of the P-spline model was considerably higher than

that of the other methods: linear regression and averaging TEE for

zero activity had a relative error of 5.8% for all sample rates, while

the estimation error of the Kalman filter ranged between 3.2% for

TTEE~10 s and 4.8% for TTEE~20 min.

Case Study
The P-spline regression model was applied to data from an

indirect calorimetry experiment involving high fat diet fed male

and female mice. Average daily TEE in male mice was found to be

higher, while levels of PA were lower (Fig. 6C,E). From the P-

spline model it followed that the higher TEE in male mice was

explained by the fact that their RMR was higher, while average

AEE was the same in both groups. The reason that the higher level

of PA in female mice did not give rise to a higher AEE was that

male mice had a significantly higher cost of activity than female

mice (Fig. 6E). Inspecting the group averages of the time-

dependent RMR and AEE it followed that male mice had a higher

level of RMR during each period of 24 h, while AEE was overall

similar (Fig. 6A,B). The time-dependent RMR of both groups

showed a clear circadian rhythm; no difference was found in the

peak-to-peak amplitude in RMR between groups (Tab. 1).

Since male mice were significantly heavier than female mice, an

important part of the observed difference in energy expenditure

was likely due to the difference in body weight. A widely used

statistical technique to separate group effects on energy expendi-

ture from body weight effects is analysis of covariance [19–21].

Unfortunately, analysis of covariance was not possible on our data

since the within group variance in the body weight was too small,

which caused the corresponding covariate term to be non-

significant. Therefore, we merged both groups and performed

regression analysis for each metabolic parameter with body weight

(Tab. 2). It was found that body weight correlated positively with

TEE (r2~0:47), RMR (r2~0:43) and caloric cost of activity

(r2~0:50), indicating that heavier animals needed more energy to

move. Interestingly, activity levels were inversely correlated with

body weight (r2~0:70), suggesting that heavier animals are less

prone to physical activity.

Discussion

In this work, we have shown that the time dynamics present in

data from metabolic chamber experiments can be exploited to

decompose the total energy expenditure into a resting and activity

related component. We propose a method to decompose the TEE

in a time dynamic fashion that is based on penalised spline (P-

spline) regression. Penalised splines have found wide application in

the field of smoothing and semiparametric regression [17,22], and

have a strong base in statistics because of their link to mixed-effects

models. Here, the smoothness of the spline functions was exploited

to model the slow time variations in the RMR, while the

penalisation factor served to prevent overfitting to noise. In

addition, we modelled inaccuracies in the activity measurements

with a multiplicative errors-in-variables model, which reduced the

bias due to regression dilution.

Method Validation
We validated our method by determining its accuracy in

estimating the RMR on 500 simulated metabolic chamber

datasets. The simulation parameters were based on experimental

data in order to ensure realistic results. It was found that the P-

spline regression model was particularly accurate in estimating the

average RMR and the low frequency components in the RMR,

whereas the higher frequency components were more difficult to

estimate due to noise interference. Investigating the effect of the

number of knots on the RMR estimate, it was found that a larger

number of knots was required to estimate the higher frequency

components. Importantly, no other model parameters were

needed to be chosen a priori by the user to obtain optimal results.

The sample time with which the TEE and PA were measured

was found to be a major determinant of the estimation accuracy of

the P-spline model. With a lower sample time less datapoints were

obtained which caused a higher degree of uncertainty in the
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Figure 2. Knot number selection. The time variations in the RMR that are estimated by the penalised spline model depend on the number of
knots used in the spline function: 4 knots/day are sufficient to capture the diurnal rhythm in the RMR, whereas more knots are needed to estimate
faster time variations (A). Calculating the root mean square estimation error (RMSE) for a range of frequency components in the RMR shows that
more accurate estimates of high frequency components are obtained when the knot number is increased (B). Roughly, 2f knots=day are needed to
estimate frequency components in the RMR of up to f day{1 . However, higher frequency components are estimated with a relatively larger error.
doi:10.1371/journal.pone.0036162.g002
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regression estimate. Similar findings have been reported by

Cooper and Withers, who have shown that the sample time can

affect estimates of the basal metabolic rate [23]. An advantage of

the P-spline model is that it, as a result of its non-causal design, can

exploit the entire TEE and PA sequence for estimating the RMR

at each single time point, making it relatively robust to low sample

rates.

Interestingly, the simulation study showed that the estimation

accuracy was improved when PA was sampled at a higher rate

than the TEE. The reason for this is that when both TPA and

TTEE are large, then infrared beam breaks are binned into

relatively long time intervals, which means that information is lost

about when a beam break actually occurred. As a result, the time

dynamics in the PA are measured with less precision. In contrast,

when PA is measured at a higher rate than the TEE, then it is

possible to convolve the PA time series with the gas diffusion

impulse response hdelay(t) before it is downsampled to the time

resolution of the TEE. The resulting time series correlate much

better with the TEE as is illustrated in Fig. 3C, and therefore yield

a better estimate of the AEE and RMR. Importantly, since the PA

sample rate is typically not limited in any way as is the case for the

O2 and CO2 measurements, these findings imply that PA should

preferrably be sampled at a higher rate than the respiratory

exchange.

We evaluated the effect of the chamber size and the flow rate on

the performance of the P-spline model by simulating data for

various washout times t2. For metabolic chamber systems for small

rodents t2 typically lies in the range of several minutes. For

instance, U.S. guidelines suggest a minimal cage size of

330 cm2|12:7 cm for mice [24], which results in a value of

t2~10:5 min when the flow rate is set to 0.4 l/min. In contrast,

for larger metabolic chambers, such as those employed for large

mammals and humans, t2 can amount up to several hours [25].

From the simulation study it followed that when t2 was increased

from 15 to 45 minutes, the estimation accuracy decreased

considerably. This suggests that for these values of t2 the fast

time variations in the TEE that are due to activity are filtered out.

As a result, the time-dependent AEE and RMR both approximate
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Figure 3. Estimation accuracy of the penalised spline model and dependency on the sample rate. The accuracy of the penalised spline
model in estimating the average and time-dependent RMR deteriorates when TEE and PA are sampled at a lower rate (A). This effect is less strong if
TEE has been sampled at a low rate but PA at a high rate. The effect of sampling PA at a low rate is that fast transitions between active and inactive
periods are not rendered faithfully (B). These inaccuracies result in a larger unexplained variance of the fitted penalised spline model on both the
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doi:10.1371/journal.pone.0036162.g003
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For the estimation error in the average RMR the bias-variance decomposition was calculated to gain more insight in the origin of the error (E). Error
bars indicate half the standard deviation.
doi:10.1371/journal.pone.0036162.g005
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Table 1. Comparison of metabolic parameters of male and
female C57Bl/6J mice after a 10 week high fat diet.

Male (n=8) Female (n=7) P-value

Body weight [g] 36.7964.49 23.6661.20 4.1?10–5

TEE [kcal/day] 11.7860.26 11.2460.45 0.020

RMR [kcal/day] 10.1960.33 9.6660.49 0.034

AEE [kcal/day] 1.5960.15 1.5860.13 0.91

CCA [A.U.] 1.9960.16 1.5760.13 7.3?10–5

PA [A.U.] 0.8060.06 1.0160.03 6.5?10–6

RMRpeak{peak [kcal/day] 0.8760.31 1.0060.34 0.44

Table shows body weight, total energy expenditure (TEE), resting metabolic
rate (RMR), activity related energy expenditure (AEE), caloric cost of activity
(CCA), physical activity (PA) and the peak to peak amplitude in the RMR for male
and female mice. Interestingly, even though PA was higher in female mice, this
did not engender a difference in AEE since CCA was higher in male mice.
doi:10.1371/journal.pone.0036162.t001

Figure 6. Case study: energy expenditure and activity of male and female mice after a 10 week high fat diet. Time-dependent group
averages are shown of TEE and RMR (A) and AEE (B) for male and female mice. Lines indicate group averages and gray bands represent standard
error of the mean; black-white bars indicate the dark-light periods. The P-spline model contained 15 knots/day. The TEE of male mice was higher
during most of the day, except for the start of the dark period. The RMR of male mice was higher than that of female mice during each period of the
day, whereas AEE was overall similar, except for the start of the dark period. Group differences were also present in average daily TEE and RMR,
whereas no differences were found in average daily AEE (C). Time-dependent group averages of spontaneous PA show that female mice were more
active, especially during the first phase of the dark period (D). The reason that the higher activity of female mice did not engender a difference in
energy expenditure is that the caloric cost of activity (CCA) was lower in this group (E). (error bars represent standard error of the mean; *P,0.05,
**P,0.001).
doi:10.1371/journal.pone.0036162.g006

Table 2. Correlation of metabolic parameters with body
weight (n= 15).

intercept6SE slope6SE r2 P-value

TEE [kcal/day] 10.2960.38 0.040660.0120 0.47 5.0?10–3

RMR [kcal/day] 8.65560.425 0.042060.0135 0.43 8.2?10–3

AEE [kcal/day] 1.63160.155 –0.001560.0049 0.01 0.77

CCA [A.U.] 1.04060.216 0.024660.0069 0.50 3.4?10–3

PA [A.U.] 1.30960.076 –0.013460.0024 0.70 9.2?10–5

Table shows regression coefficients (+ standard error; SE) of the linear
correlation between body weight and total energy expenditure (TEE), resting
metabolic rate (RMR), activity related energy expenditure (AEE), caloric cost of
activity (CCA) and physical activity (PA). Male and female mice were merged
into a single group.
doi:10.1371/journal.pone.0036162.t002
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a sine-shape, which makes it difficult to separate them by means of

regression.

Interestingly, the simulation study also predicted that more

accurate estimates of RMR could be obtained for shorter sample

times TTEE, irrespective of the chamber size. This finding was

surprising at first sight, since from Nyquist’s sampling theorem it

follows that there is no point in sampling low pass filtered (i.e.

bandlimited) signals at a high rate [26]. However, since

measurement noise is present on the TEE, short sample times

have the function of noise attenuation and hence improve the

estimation accuracy.

Comparison of Estimation Methods
We compared the performance of the P-spline regression model

with that of conventional methods for estimating AEE and RMR.

It was found that the errors made by linear regression and the

TEE averaging for zero activity method were considerably larger

than that of the P-spline model, both in estimating average and

time-dependent RMR. The large error in the time-dependent

RMR estimate could be explained by the fact that these methods

did not take the time variations in the RMR into account. In

contrast, the inaccuracies in the average RMR were caused by the

bias in these approaches, which can be attributed to the diurnal

correlation between RMR and PA (i.e. mice are more active and

have a higher RMR during the night) and to the non-negligible

measurement error in the PA.

In contrast, a higher overall accuracy was obtained by the

Kalman filter. The estimation error of the average RMR was

comparable to that of the P-spline method for sample times under

10 min, while it was slightly larger for higher TTEE. However, the

estimation error of the time-dependent RMR of the Kalman filter

was considerably larger than that of the P-spline method for both

high and low sample rates. A possible explanation for this is that

the Kalman filter is less able to cope with activity data that has

been measured with infrared beam sensors, because of the high

degree of noise on this data. Another explanation could be that the

Kalman filter corresponds to a causal filter and bases its

predictions on only a few past measurements, which means that

there is a relatively large uncertainty in the RMR estimate for each

time point. In contrast, by its design the P-spline model bases its

estimates on a larger set of local data points, making it therefore

more robust under both frequent and infrequent sampling

regimes.

We also observed that the estimation error of the Kalman filter

increased more rapidly with the sample time. This larger

sensitivity to low sample rates is probably due to the fact that

the Kalman filter requires the activity and TEE data to be

measured with the same sample rate, which means that it cannot

properly exploit high time resolution activity measurements. In

fact, as we argued before, increasing the sample time of the activity

measurements decreases its correlation with the energy expendi-

ture and therefore increases the estimation error of the RMR

(Fig. 3A–C).

Finally, a difficulty that we encountered with the use of the

Kalman filter is that the filter parameters (i.e. the process noise

variances) needed to be determined a priori by the user. In the

simulation study we fitted these parameters for each sample rate as

to minimise the estimation error, such that we could compare the

P-spline regression model with the optimal performance of the

Kalman filter. In practice, however, one may not be able to attain

the same accuracy with the Kalman filter on real data, because no

criteria exist for automatic selection of the filter parameters and

manual selection is difficult [14].

Analysis of Experimental Data
We illustrated the value of our method in a case study where we

calculated AEE and RMR in male and female C57Bl/6J mice that

had been put on a 10 week high fat diet. Since mice were housed

below their thermoneutral zone, the estimated RMR also included

energy expenditure for thermoregulation [9]. We found that TEE

in male mice was higher due to a difference in RMR and that even

though female mice were more active, the lower caloric cost of

activity in female mice caused AEE levels to be similar in both

groups. The most probable cause of this effect was the difference in

body weight, since heavier mice are known to be less prone to

physical activity [27], but also need more energy to move. This

study demonstrates the importance of including TEE decompo-

sition in the analysis of indirect calorimetry data, as it permits to

explain observed differences in TEE and to determine the effect of

PA on energy expenditure.

Interestingly, we found a strongly nonlinear relationship

between the number of infrared beam breaks and the energy

expenditure. There are several possible explanations for this

phenomenon. First of all the nonlinearity could be an inherent

property of the activity sensor. For instance, activity bouts that are

characterised by typical non-displacement types of behaviour as

grooming or eating may yield relatively few beam breaks per

expended energy while displacement types of behaviour as

foraging or exploring can yield more beam breaks. Another

explanation could be that since under room temperature

a considerable part of RMR in mice is due to nonshivering

thermogenesis, this energy component is temporarily down-

regulated during periods of activity because enough waste heat is

produced due to activity. Both hypotheses will need to be

investigated further in future studies in which other activity

sensors are used and the ambient temperature is changed.

From the data generated in the case study we could not

conclude that the lower level of activity in male mice had also

played a causal role in their increased weight gain, as has been

reported elsewhere [6]. In fact, from short indirect calorimetry

experiments it is difficult to explain weight gain in terms of

adaptations in RMR or PA, since both RMR and PA correlate

with body weight [27,28]. We therefore envisage that applying

the P-spline model to longitudinal indirect calorimetry datasets

(i.e. for a period of several weeks) will permit to estimate the

gradual changes in RMR and AEE and will provide a better

insight into the causal factors of the development of overweight

in rodents.

In addition, estimation of the time-dependent RMR enables

a detailed analysis of energy metabolism. For instance, the RMR

time sequence can be used to quantify the presence of circadian

rhythm, which permits to investigate the effect of genetic [29] and

dietary factors [30] on circadian rhythm in energy expenditure.

Furthermore, the response in RMR due to experimental

interventions can be determined, which permits to measure the

effect of caloric restriction on energy expenditure [31,32] and to

quantify the thermic effect of food as the increase in RMR

following a feeding bout [16,33,34]. Clearly, in order to be able to

assess transient effects in the RMR with a reasonable amount of

precision, it is important that both activity and respiratory

exchange are measured with a high enough sample rate and that

a high knot number is chosen.

A possible extension of our method is to incorporate activity

data from different sensors. If a metabolic chamber is equipped

with both infrared beam sensors and a running wheel, the number

of wheel revolutions can be included in the P-spline regression

model as an additional activity signal. In this way, a distinction can

be made between AEE from spontaneous physical activity (SPA),
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i.e. non-exercise activity thermogenesis (NEAT), and AEE from

voluntary exercise [35–37]. Future research will need to establish

how the delay in oxygen consumption due to anaerobic energy

expenditure and excess-post exercise oxygen consumption can be

modelled reliably such that accurate estimates of exercise related

energy expenditure can be obtained.

In conclusion, we have developed a method for estimating AEE

and RMR from activity and indirect calorimetry data that is based

on regression with penalised splines. Our method gives robust

results even in cases when activity measurements are noisy and

respiratory exchange is sampled at a low rate. We validated the P-

spline estimation method extensively on simulated datasets and

illustrated the value of TEE decomposition in a case study

involving high fat diet fed male and female C57Bl/6J mice. Since

we have developed our method based on a general mathematical

model that involves the time variation in RMR, the effect of gas

diffusion on the measured TEE and the measurement error in

TEE and PA, we are confident that its applicability extends to

other indirect calorimetry systems.

Methods

Ethics Statement
The institutional Ethical Committee on Animal Care and

Experimentation from Leiden University Medical Center has

approved all experiments under permit number 07007 (high fat

diet case study) and 10093 (high time resolution metabolic

chamber experiment).

Penalised Spline Regression Model
Problem statement. We first provide a formalisation of the

decomposition of total energy expenditure that is based on

estimation theory. Letting tTEE be a vector of dimension n61 that

contains the time instants at which TEE has been sampled, we

formulate the decomposition of TEE into RMR and AEE as

TEE(tTEE)~RMR(tTEE)zAEE(tTEE) ð1Þ

where TEE(tTEE), RMR(tTEE) and AEE(tTEE) are n61 vectors

that represent the time series of TEE, RMR and AEE respectively,

at sample times tTEE. Obtaining estimates of the terms on the

right-hand side of (1) is based on the additional knowledge that is

available of the AEE, namely that its variation in time correlates

with the measured physical activity. In the specific case that

a linear relationship exists between PA and AEE, we have

AEEinst(tPA)~a PA(tPA) ð2Þ

where tPA is an m|1 vector that contains the time instants at

which PA has been sampled and a the caloric cost of activity

(CCA), i.e. the conversion factor between measured activity and

the expended energy related to this activity. In practice, however,

the relation between PA and AEE may be nonlinear, in which case

the raw PA measurements need to be preprocessed by an

appropriately chosen function such that Eq. (2) holds; see

Supplementary Text S2 for details.

Since activity measurements are instantaneous, (2) is an

expression of the activity related energy expenditure as it would

be measured at the level of the cell (indicated by the subscript inst).

In contrast, the respiratory exchange of the subject as it is actually

picked up by the gas sensors has been distorted by diffusion effects

[14,19,20,38]. Assuming that the gas diffusion can be modelled by

two linear compartments, representing the subject and the

chamber, the signal deformation is characterised by the transfer

function

hdelay(t)~
1

t1{t2
e
{

t{t3
t1 {e

{
t{t3
t2

� �
t§t3

0 tvt3

8<
: ð3Þ

where t1 is the washout time introduced by the subject, which

mainly depends on the amounts of O2 and CO2 that are dissolved

in the blood, t2 is the washout time of the chamber, which equals

the ratio of the chamber volume to the air flow through it, and t3
the time delay that is introduced by the tubing and gas dryers that

are located between the chamber and gas sensors. It is important

to note that for the purpose of TEE decomposition, t2 may not be

too large because otherwise the high frequency variations in TEE

that result from activity are filtered out.

Having an expression for hdelay(t), the activity related energy

expenditure as it would be measured at the level of the gas sensors

can be inferred by convolving AEEinst(t) with hdelay(t). Approx-
imating the continuous time convolution by summing over the

discrete sample times tPA, we obtain the matrix multiplication

AEE(tTEE)~a H PA(tPA) ð4Þ

with H the n6m matrix with elements Hij~hdelay(tTEE½i�{tPA½j�),
where square brackets denote the position within a vector.

Inserting (4) into (1) gives a general formulation of TEE

decomposition as an estimation problem

TEE(tTEE)~RMR(tTEE)za H PA(tPA)ze ð5Þ

The term e refers to the random errors that are due to

measurement errors in TEE and to the approximation made by

modelling AEE as a function of PA. Estimation methods of AEE

and RMR from the TEE and PA time series can be seen as specific

approaches to solve (5).

Penalised spline regression. The regression model that we

propose for TEE decomposition is based on the assumption that

the time variation in the RMR can be modelled by means of cubic

spline functions

RMR(t)~
Xk
i~1

biBi(t) ð6Þ

with Bi(t) the cubic B-spline basis functions with coefficients bi
and with knots at equidistant locations. The number of knots k has

to be chosen a priori based on the frequency components in RMR

that one wants to estimate (see Results). Inserting (6) into (5), we

obtain the model

y~x azZ bze ð7Þ

with y~TEE(tTEE) the measured TEE time sequence,

x~H PA(tPA) the time sequence of the intensity of activity that

accounts for gas diffusion effects, Z the n6k design matrix

containing the spline basis functions evaluated at the sample times

zji~Bi(tTEE½j�), a the cost of activity and b the k61 vector of

spline coefficients.

Assuming the error vector e to be normal, zero mean and

independent and identically distributed e*N (0,s2e I), with I the

identity matrix, a and b can be estimated from the penalised least

squares criterion
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minimise jjy{x a{Z bjj2zl2bTDb ð8Þ

with l the smoothing parameter and D the k|k penalisation

matrix. The second term in (8) corresponds to the roughness

penalty that is used in nonparametric regression to reduce the

variability of the spline coefficient estimates [17,22,39]; hence, (7)

corresponds to a penalised spline regression model. We here

propose to penalise the square of the first derivative of the RMR

time series; from (6) it then follows that D is defined as

dij~
Ð
B’i(t)B’j(t)dt. Solving (8) for b gives the estimate b̂b of the

spline coefficients

b̂b(a)~ ZTZzl2D
� �{1

ZT(y{x a) ð9Þ

Since in practice the measured level of physical activity is not an

exact predictor of the AEE, the term x in (7) is only known

approximately. From regression theory it is known that when there

is uncertainty in the predictor variables, the conventional least

squares approach (8) will yield biased results [40]. As it is evident

that the uncertainty in x is larger during periods of activity than

during inactivity, we propose a multiplicative error model

xmeas~x0 1zdð Þ ð10Þ

with xmeas the n|1 vector containing the measured activity, d the

measurement error that reflects the uncertainty in xmeas and 0 the
entry-wise (Hadamard) vector product. In practice d reflects

inaccuracies in the measurement of PA and variations in the cost

of activity.

Following the approach of Nakamura and Zhong et al. [41,42],

a corrected least squares function for a multiplicative errors-in-

variables model can be constructed, yielding an unbiased estimate

of a

âa�~ xTmeas A{
s2d

1zs2d
A0

� �
xmeas

� �{1

xTmeasAy ð11Þ

with A~I{Z(ZTZzl2D){1ZT and A0 the n|n matrix that

contains the diagonal elements of A and zeros otherwise. See

Supplementary Text S1 for a derivation of (11).

The estimates âa and b̂b depend on the smoothing parameter l
and on the measurement error variance s2d. Since generally these

parameters are unknown, values need to be derived from the data.

For nonparametric regression models the optimal degree of

smoothing l is typically found by maximising some appropriately

chosen measure of goodness of fit, such as Akaike’s Information

Criterion [22,43], Generalised Cross Validation [18,44] or

maximum likelihood [17]; in this work we have used the

Generalised Cross Validation criterion. An estimate of s2d can be

obtained from the model’s residuals e~y{xmeasâa
�{Zb̂b. As the

residuals vary heteroskedastically depending on the size of the

measurement error variance, it is possible to construct a likelihood

function that permits to estimate s2d. See Supplementary Text S1

for details.

Data Acquisition
Simulated indirect calorimetry data. Energy expenditure

and physical activity datasets were simulated attempting to

resemble experimental indirect calorimetry data from mice as

closely as possible. In short, a total of 500 datasets of a length of 3

days were simulated, consisting each of a TEE, AEE, RMR and

PA time series that were sampled with a time interval of 10 s.

Activity patterns were simulated as a sequence of activity bouts of

varying intensity and duration, which served to derive the AEE

and PA time sequence. The AEE was calculated from the activity

pattern by multiplying it with the cost of activity, which was varied

between activity bouts. The PA was calculated by scaling the

activity pattern function to a probability function and by

subsequently randomly drawing infrared beam breaks, which

were then binned into 10 s time intervals. The RMR time

sequence was modelled as a cosine function to mimic the typical

day-night variation and a Gaussian stochastic process filtered by

a low pass filter to simulate additional slow time variations. The

average RMR was assumed to be 10 kcal/day for each of the 500

datasets. The TEE was calculated as the added AEE and RMR

time series, plus measurement noise. See Supplementary Text S4

for details.

High time resolution indirect calorimetry data. Energy

metabolism of a single male C57Bl/6J mouse (age 12 weeks; chow

diet) was measured by means of indirect calorimetry. The mouse

was housed at a temperature of 210C and subjected to individual

indirect calorimetry measurements for a period of 4 consecutive

days under a 12h light-dark cycle (07:00–19:00) (Comprehensive

Laboratory Animal Monitoring System, CLAMS; Columbus

Instruments). The first 24 hours of the experiment served to

allow acclimatisation of the animal to the cage and were not

included in the analysis. Food and water were available ad libitum

during the whole experiment, and intake was analysed every 10

seconds. Spontaneous PA was measured as infrared beam breaks

in X and Z direction every 10 seconds. The interbeam space was

12 mm in X direction and 38 mm in Z direction. Total PA was

taken as the total of counts in X and Z direction divided by the

sample time expressed in minutes. Oxygen consumption and

carbon dioxide production rate measurements were performed at

intervals of 10 seconds throughout the whole period. A single

measurement of the external air was taken at the start of the

experiment to serve as reference. Total energy expenditure was

calculated according to Lusk [45]. During the experiment

situations were avoided that could interfere with the TEE and

PA measurements and compromise their time correlation. It was

ascertained that no infrared beams were occluded and that the

cage was not opened more than once a day for replenishment of

the feeder.

Case study. Energy metabolism of 8 male and 7 female

C57Bl/6J mice (age 24 weeks) that had been put on a 10 week

high fat diet (D12451, Research Diet Services) was measured in

the indirect calorimeter as stated above, with the exception that

PA was measured at 60 second intervals and O2 consumption,

CO2 production and reference air concentrations were measured

every 7.5 minutes.

Data Analysis
The simulated data served to determine the accuracy of the P-

spline method in estimating the average and time-dependent

RMR. The estimation error was calculated as the Root Mean

Square Error (RMSE) and reported as either the absolute RMSE

or the relative RMSE, i.e. the RMSE divided by the average RMR

which was 10 kcal/day for all simulated datasets.

Knot number selection. Influence of the knot number k on

the performance of the P-spline method was determined by

estimating time-dependent RMR with k ranging between 1 and

100 knots/day. For each estimated RMR time sequence, the error

time sequence was calculated by subtracting the actual RMR.

Since the fast time variations in the TEE were due to both RMR

and AEE, the high frequency components in RMR were more
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difficult to estimate. Therefore, we calculated the RMSE for 5

different frequency ranges: for f~0 day{1, fv1 day{1,

fv6 day{1, fv24 day{1 and for all frequencies f . In detail,

for a given cutoff frequency f the discrete Fourier Transform of

the error time sequence was calculated and frequency components

above f were removed [46]. Subsequently, the inverse Fourier

Transform was calculated and the RMSE was determined. Note

that the first frequency range corresponds to estimating the

average RMR. Since the high frequency components in the RMR

could not be estimated accurately because of interference of

the measurement error in PA and TEE, for the remainder of the

validation study it was chosen to evaluate the performance of the

time-dependent RMR estimation by focusing on frequency

components below 6 day{1. The knot number of the P-spline

method was set to 15 knots/day.

Validation of the P-spline model. Influence of the sample

rate of TEE and PA on the accuracy of the P-spline model was

determined by calculating the RMSE of the average and time-

dependent RMR first in the situation where TTEE and TPA were

equal and ranged between 10 s and 20 min and second in the

situation where TPA was set to 10 s and TTEE ranged between 10 s

and 20 min. In the first situation also the standard deviation in the

residuals of the P-spline model was calculated, such that it could be

determined whether the unexplained variance increased with TPA

and whether this was similar for the experimental high time

resolution dataset. Lower sample rates of PA were emulated by

taking every N-th data point and adding the previous N{1 data

points to it since beam breaks were reported cumulatively by the

CLAMS metabolic chamber system.

The effect of TTEE on the estimation accuracy was assessed by

calculating the downsampling induced variability (DIV) for

simulated and experimental data. In short, lower sample rates of

TEE were emulated by taking every N-th data point in the time

series data, which was carried out N different times creating N
separate downsampled datasets from the original data. The

variation between the N distinct estimates was taken as a measure

of the estimation error that was introduced by a reduction in

sample resolution. See Supplementary Text S5 for details.

Influence of the chamber size and flow rate on the estimation

accuracy was determined by simulating datasets for different

washout times t2~5, 15 and 45 min and subsequently by calcu-

lating the RMSE for the average and time-dependent RMR

estimate.

Performance comparison with other methods. The

performance of the P-spline model was compared with that of

three other TEE decomposition methods: linear regression, zero

activity TEE averaging, and Kalman filtering (Supplementary

Text S3). The performance was evaluated as the accuracy in

estimating average and time-dependent RMR for TTEE ranging

between 10 s and 20 min. Bias in the average RMR estimate of

each method was determined by calculating the mean error in

average RMR for all n~500 datasets.

Experimental data. The high time resolution experimental

data served to determine whether the measured PA required

preprocessing for our metabolic chamber system and how this

function should be parameterised. Also, the data was used to infer

the parameters with which the time-dependent RMR was

generated in the simulation study. See Supplementary Text S2

and S4 for details.

From the experimental data generated for the case study the

average RMR, AEE, CCA and time-dependent RMR and AEE

were determined separately for each mouse by means of the P-

spline model. Time-dependent estimates of RMR were used to

determine the presence of circadian rhythm by fitting a cosine

function of a 24 h period, after linear and quadratic trends had

been removed. Body weight, CCA, circadian amplitude in the

RMR and average TEE, RMR, AEE, PA were compared between

male and female mice with a two-tailed t-test assuming unequal

variances. Correlations of the metabolic parameters with body

weight were tested with a one-way analysis of variance. P-values
less than 0.05 were considered statistically significant.

The validation study and statistical analyses were performed in

MATLAB (The MathWorks). The P-spline regression model and

other TEE decomposition algorithms were also implemented in

MATLAB. Details regarding the calculations performed for each

method can be found in the Supplementary Text S1 and S3. The

developed MATLAB functions for performing TEE decomposi-

tion – in particular, the functions for fitting the P-spline regression

model and the activity preprocessing parameters – are available

upon request.
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