
Cognitive Models
for

Training Simulations

Annerieke Heuvelink

SIKS Dissertation Series No. 2009-24.

The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Graduate School for Information and Knowledge Systems.
The research has been funded by - and conducted in cooperation with - TNO, the Nether-
lands Organization for Applied Scientific Research.

Thesis reading committee:
prof.dr. C. Castelfranchi (Institute of Cognitive Sciences and Technologies, Rome)
prof.dr. W.D. Gray (Rensselaer Polytechnic Institute, Troy)
prof.dr. F. van Harmelen (VU University Amsterdam)
dr.dr. J.F. Hoorn (VU University Amsterdam)
prof.dr. C.M. Jonker (Delft University of Technology)
prof.dr. J.-J. Ch. Meyer (Utrecht University)
prof.dr. M.A. Neerincx (Delft University of Technology / TNO Human Factors)

ISBN 9789086593484

Copyright c© 2009 by Annerieke Heuvelink

VRIJE UNIVERSITEIT

Cognitive Models
for

Training Simulations

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op vrijdag 11 september 2009 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Annerieke Heuvelink

geboren te Rhenen

promotor: prof.dr. J. Treur
copromotoren: dr. K. van den Bosch

dr. M.C.A. Klein

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Human Behavior Representation 1
1.1.2 Software Agents . 2
1.1.3 Cognitive Biases . 3
1.1.4 Cognitive Models . 3
1.1.5 Agent Requirements . 4
1.1.6 Feedback Generation . 5
1.1.7 Synopsis . 6

1.2 Research Objective . 6
1.2.1 Research Focus . 6
1.2.2 Research Questions . 8

1.3 Research Approach . 9
1.3.1 Research Methodology . 9
1.3.2 Regulative Research Cycle . 10
1.3.3 Related Research Disciplines 12

1.4 Research Scope . 12
1.4.1 Research Context . 12
1.4.2 Research Domain . 14
1.4.3 Research Task . 14
1.4.4 Agent Requirements for the Research Task 16

1.5 Dissertation Outline . 18
1.5.1 Chapter Overview . 18
1.5.2 Embedded Papers . 20

ii Contents

2 Related Research 23
2.1 Introduction . 23
2.2 Aspects of Cognition . 25

2.2.1 Cognitive Capabilities . 25
2.2.2 Cognitive Biases . 28

2.3 Models of Cognition . 34
2.3.1 Modeling Approaches . 35
2.3.2 Integrated Architectures . 39

2.4 Applications of Cognitive Models . 48
2.4.1 Human Behavior Models for Simulated Environments 49
2.4.2 Feedback Generation for Simulated Environments 54

2.5 Conclusion and Prospect . 61

3 Belief Component 63
3.1 Introduction . 63

3.1.1 Existing Methods for Belief Maintenance 64
3.1.2 Selecting an Approach . 71
3.1.3 Chapter Overview . 73

3.2 A Belief Framework for Modeling Cognitive Agents 75
3.2.1 Introduction . 76
3.2.2 Related Research . 76
3.2.3 Belief Framework . 78
3.2.4 Case Study - Iran Air Flight 655 84
3.2.5 Discussion and Conclusion . 87

3.3 BOA: A Cognitive Tactical Picture Compilation Agent 89
3.3.1 Introduction . 90
3.3.2 Research Domain . 91
3.3.3 Cognitive Agent Requirements 91
3.3.4 Cognitive Model and Agent Development 93
3.3.5 Simulation Environment . 96
3.3.6 Empirical Validation . 97
3.3.7 Results and Discussion . 99
3.3.8 Conclusion and Further Research 101

3.4 From a Formal Cognitive Task Model to an Implemented ACT-R
Model . 102
3.4.1 Introduction . 103
3.4.2 Research Domain . 103
3.4.3 Cognitive Task Model . 104

Contents iii

3.4.4 Translation Process . 107
3.4.5 Results and Discussion . 112
3.4.6 Conclusion and Future Research 113

3.5 Implementing a Cognitive Model in ACT-R and Soar: A Comparison 115
3.5.1 Introduction . 116
3.5.2 Cognitive Task and Model . 116
3.5.3 BOA . 120
3.5.4 Boar . 122
3.5.5 Conclusion and Discussion . 128

4 Memory Component 133
4.1 Introduction . 133

4.1.1 Human Memory . 134
4.1.2 Selecting an approach . 135
4.1.3 Chapter Overview . 138

4.2 A Formal Approach to Aggregated Belief Formation 140
4.2.1 Introduction . 141
4.2.2 Belief Formalism . 142
4.2.3 Belief Aggregation . 143
4.2.4 Algebraic Formalization . 145
4.2.5 Implementation . 147
4.2.6 Example Scenarios . 152
4.2.7 Related Research . 154
4.2.8 Summary and Future Research 156

4.3 An Agent Memory Model Enabling Rational and Biased Reasoning 157
4.3.1 Introduction . 158
4.3.2 Memory Model Concepts . 159
4.3.3 Implementation . 163
4.3.4 Results . 166
4.3.5 Discussion and Conclusion . 169

5 Control Component 173
5.1 Introduction . 173

5.1.1 Aspects of Control . 174
5.1.2 Existing Methods for Modeling Control 175
5.1.3 Selecting an Approach . 180
5.1.4 Chapter Overview . 182

iv Contents

5.2 Controlling Biases in Demanding Tasks 183
5.2.1 Introduction . 184
5.2.2 Human Task Performance . 184
5.2.3 Model Setup and Control Approach 185
5.2.4 Formal Analysis . 186
5.2.5 Dynamical System Models Used 188
5.2.6 Overall Cognitive Agent Model 190
5.2.7 Simulation Experiments . 192
5.2.8 Verification . 197
5.2.9 Discussion and Conclusion . 197

5.3 Modeling Human Information Acquisition Strategies 199
5.3.1 Introduction . 200
5.3.2 Task Description . 201
5.3.3 Experiment . 204
5.3.4 Task Model . 209
5.3.5 Parameter Fitting . 213
5.3.6 Discussion & Conclusion . 218

6 Cognitive Agent Capabilities 221
6.1 Introduction . 221
6.2 CaDeF: Towards a Method for Describing Cognitive Agent Capabi-

lities . 223
6.2.1 Introduction . 224
6.2.2 Related Work . 224
6.2.3 Approach . 225
6.2.4 Capability Cases . 228
6.2.5 Applying CaDeF to a Pre-Existing Agent 233
6.2.6 Discussion and Conclusion . 236

7 Feedback System 239
7.1 Introduction . 239
7.2 FeGA: a Feedback-Generating Agent 241

7.2.1 Introduction . 242
7.2.2 Types of Feedback . 242
7.2.3 Training Open Tasks . 243
7.2.4 Feedback-Generation Method 245
7.2.5 Evaluation . 249
7.2.6 Discussion and Conclusion . 252

Contents v

8 Conclusion 255
8.1 Modeling Human-Like Behavior . 255

8.1.1 Developed Cognitive Agent Capabilities 256
8.1.2 Points of Discussion . 258
8.1.3 Additional Research . 260

8.2 Describing Agent Components . 262
8.2.1 Developed Capability Description Framework 262
8.2.2 Points of Discussion . 263
8.2.3 Additional Research . 263

8.3 Generating Cognitive Feedback . 264
8.3.1 Developed Feedback System 264
8.3.2 Points of Discussion . 265
8.3.3 Additional Research . 265

8.4 Future Research . 266
8.4.1 Cognitive Agent Content . 266
8.4.2 Cognitive Agent Development 267
8.4.3 Cognitive Agent Applications 268

8.5 Concluding Remark . 269

A Overview of Software Packages 271

Bibliography 275

Samenvatting 295

Dankwoord 301

SIKS Dissertatiereeks 305

Chapter 1

Introduction

1.1 Motivation

Military organizations tend to operate in highly uncertain and dynamic environments, and
therefore require competent staff that acts adequately in any emerging situation. Compe-
tent staff members are formed and maintained by training them in their task execution.
However, the very nature of military missions makes it hard to set up real-world training.
Practical issues are that the pace of military missions is often too low for training, while
the level of danger is often too high. In addition, logistical issues play a role: mimicking
a military mission in the real world requires many people and a large amount of money.

Fortunately, scenario-based simulator training is considered an appropriate alterna-
tive approach for training decision-making in complex environments (Oser, 1999). A
main requirement for the success of simulator training is that it correctly represents these
aspects of the real world that are necessary to achieve the training objectives. Which
aspects these are varies from task to task. For example, when the simulated environment
is used to train kite flying, it is important to represent wind and its influence on the kite,
while these aspects are not required for training kite building.

1.1.1 Human Behavior Representation

The importance of validly representing the behavior of other humans in the simulated
environment also varies between tasks. To train kite flying this is not important, nor is
it for tasks in the process industry. But for a task like car driving, it is required that a
person is trained in the interaction with road users in addition to the main driving task.
Other tasks, like leading a team, solely consist of human interaction.

2 Introduction

For military tactical decision-making the behavior of other humans, e.g., team mem-
bers and opponents, is an important aspect. In order for simulator training to be an
alternative for real-world training this behavior must be validly represented, i.e., have
observational fidelity. Unfortunately, it can be hard to establish and hence to model
which behavior is valid in any situation. To ensure that the simulated humans behave in a
realistic way, Subject Matter Experts (SMEs) are often used to play these roles in tactical
training scenarios. SMEs have the expertise to take the situational context into account
and can use this understanding to representatively play a role in the training scenario.
In addition, SMEs display varied behavior. This is required for training: when trainees
are exposed to predictable behavior they might simply learn to ‘play’ with or against a
specific entity, instead of learning their task. Moreover, SMEs are able to explain their
behavior. This is a capability frequently used in the part of training called after action
review, in which the trainee’s behavior is critiqued.

Unfortunately, the logistical issues of real-world training, namely the large amount
of money and organizational effort involved, also hold for simulator training when the
attendance of SMEs is required. It would be highly beneficial when instead of SMEs
computer programs could play roles in training simulations. This software should possess
the capability of SMEs to respond in valid and varied ways to emerging situations.

1.1.2 Software Agents

Software that is capable of displaying autonomous behavior in interaction with other en-
tities is generally referred to as an agent. This term is deduced from the Latin verb agere:
to act. Agents are entities that exist in a world, and can observe, reason, and perform
actions in that world (Russell and Norvig, 2003). What further constitutes agency has
been the topic of much discussion (Franklin and Graesser, 1997).

Wooldridge and Jennings (1995) distinguish two general usages of the term agent
and define two notions of agency. Because their first notion is relatively uncontentious,
they call it the weak notion of agency. Their second notion is called strong as it is more
contentious, and requires the software to satisfy additional constraints. The weak notion
of agency defines an agent as a system that has the following properties: i) autonomy
ii) social ability iii) reactivity and iv) pro-activeness. They state that for a system to fit
into the stronger notion of agency it should further incorporate one or more concepts that
are applicable to humans, for example: v) mentalist notions (beliefs, goals, plans, and
intentions) vi) emotions vii) mobility viii) rationality or ix) adaptability.

Since no clear definition of agency exists that specifies its functionalities, many agent
subclasses have emerged. Most distinguishable is the class of rational agents, which
contains agents that only act in ways that help them achieve their goals and never in a

1.1. Motivation 3

way that prevents this achievement. Although this property is very suited for developing
software for a clear goal, it is not representative for human behavior.

1.1.3 Cognitive Biases

Task experts are expected to behave in a rational way. Unfortunately, there exist dis-
tinct and replicable ways in which human judgment and decision-making differs from
decision-making based on rational choice (Tversky and Kahneman, 1974). It is gene-
rally acknowledged that these differences stem from the fact that human cognition has
fundamental limitations (see, e.g., Miller, 1956; Kahnemann, 1973). These cognitive
limitations force humans to apply simplified rules and heuristics while processing infor-
mation for judging or decision-making. These simple rules often work well and are even
regarded as adaptive given their ecological validity (Gigerenzer et al., 1999). However,
when the outcome of such a simple rule deviates in a structural way from the rational
outcome, it is called a cognitive bias.

Human decision-making is subject to a wide variety of cognitive biases (Wickens and
Flach, 1988; Perrin et al., 1993). Such cognitive biases influence the quality of human
decision-making and are found to arise especially under stress conditions (Baron, 2000).
Military missions are generally stressful, and the decision-making processes of military
experts are structurally affected by biases (Fewell and Hazen, 2005). It is therefore im-
portant to train military personnel in recognizing and dealing with their own biases, as
well as with the biases displayed by their team mates.

1.1.4 Cognitive Models

For training military personnel in tactical decision-making in a simulated environment, it
is important to validly represent the behavior of other humans present. Human behavior
representation has a long history. Much work exists in Cognitive Science and Artificial
Intelligence on the modeling of specific aspects of human behavior, such as vision, con-
cept formation, rule learning, planning and motor control. Other work focuses on generic
mechanisms and representation forms that may be useful for modeling multiple human
behavioral aspects. Examples are logic engines, condition-action rules, neural nets and
genetic algorithms (see, e.g., Russell and Norvig, 2003).

Several researchers have focused on determining the general characteristics of human
behavior, with the goal to establish a so-called unified theory of cognition (UTC). A UTC
is a single set of mechanisms that accounts for all aspects of cognition (Newell, 1990).
These mechanisms are supposed to be constant over time, and across tasks and applica-
tion domains. When these mechanisms are implemented in software they form a cog-

4 Introduction

nitive architecture. Cognitive architectures constitute a fixed set of processes, memories
and control structures that define their underlying theory about human cognition (Lewis,
2001).

Cognitive architectures can be used to build specific cognitive software agents. A
cognitive software agent is formed by adding task-specific knowledge in the form of
facts and rules to the cognitive architecture, which results in an executable cognitive
agent model. Because theories of cognition differ, the behavior of a cognitive software
agent is influenced by the architecture it is implemented in (Jones et al., 2007).

In this dissertation we define cognitive software agents as software agents with human-
like cognitive capabilities. Note that this definition does not specify the required type of
cognitive capability, or the way in which it should be implemented. Moreover, we treat
executable agent models as synonymous to software agents: a cognitive (software) agent
is equal to an executable cognitive agent model. A cognitive agent model always incor-
porates a cognitive model, but again, it is not specified how, or which type. A cognitive
model by itself does not need to be executable, or form a complete agent model; many
cognitive models only model a specific aspect of human behavior.

There is growing conviction and evidence that cognitive software agents can validly
play roles within simulated environments instead of humans, and thus aid (military) train-
ing (Pew and Mavor, 1998; Ritter et al., 2003). However, much work remains to be done,
e.g., on the incorporation of episodic memory in agents and on the reusability of the
knowledge they embed (Langley et al., 2006).

1.1.5 Agent Requirements

In the previous sections we have implicitly discussed a number of requirements for cog-
nitive software agents that play a role in a simulated training environment: they need to
be able to show behavior that has observational fidelity, this behavior needs to vary, and
they should be able to display biased behavior. In addition, it would be useful if they
could explain their own behavior. These requirements directly correspond to the capa-
bilities of Subject Matter Experts. However, the capability of SMEs to display varied
behavior also contains a didactic disadvantage: the variability of the SMEs’ behavior in
combination with limited training time makes it hard to ensure that the trainee reaches
all the training objectives, and therefore that he or she completes every stage of training.

It is desired that the behavior of simulated entities in training simulations is in service
of the training goals. This is likely when instructors, who are SMEs that also possess di-
dactic knowledge, play the roles required for a specific training scenario. Unfortunately,
it is not realistic to require an instructor for each role. A second option would be that
instructors could constrain the behavior of simulated entities to ensure that their behavior

1.1. Motivation 5

is in service of the training objectives. Although it is hard to tune the behavior of humans,
this is possible for cognitive software agents whose behavior is programmed.

Cognitive software agents that can validly represent human behavior offer a solu-
tion to the organizational effort involved in SMEs enabled simulator training. Cognitive
agents whose varied behavior is tunable by an instructor offer a solution to the didactic
issue of having SMEs play roles within a training scenario. To ensure cognitive agents
also cut back expenses, the costs of developing them should not be too high. This entails
that it should be avoided that for every new domain, task, or even simple scenario a new
agent has to be built from scratch. Therefore, we take a component-based approach to
designing cognitive agent models. This approach facilitates the reuse of the knowledge
captured in the developed components.

1.1.6 Feedback Generation

The success of scenario-based simulator training depends not only on the valid repre-
sentation of the relevant aspects of the task environment, but also on the generation of
feedback on the trainee’s behavior (Bosch and Riemersma, 2004). Usually human in-
structors monitor the trainee, evaluate the appropriateness of his or her behavior, and
provide feedback. The use of instructors to generate feedback suffers from the same dis-
advantages as the use of SMEs or instructors to generate human behavior. Besides the
logistic issues there is a didactic issue of variability in feedback between instructors. Al-
though varied feedback is not necessarily harmful and possibly even useful, the military
organization is keen on providing training in a structured way to ensure trainees get a
comparable education.

It would be beneficial if software agents could not only replace human role players,
but also human instructors. The latter is the focus of the research field on intelligent
tutoring systems that combines knowledge and theories from Educational Science with
methods from Artificial Intelligence. Intelligent tutoring systems comprise the know-
ledge of a domain expert, and use this knowledge to generate instructions and feedback
to a trainee so he or she can learn about the domain (Polson and Richardson, 1988).

Most intelligent tutoring systems developed train procedural or simple declarative
tasks. These tasks are typically well-defined, and feedback is based on expert knowledge
in the form of rules or constraints that can unambiguously determine the correctness of
certain actions in certain states. More challenging is the generation of feedback on trainee
behavior in complex tasks like tactical decision-making. In such tasks the correctness of
a certain action in a certain state can seldom be determined in a straightforward way. In
general other aspects of the behavior should be taken into account for generating feed-
back, like the choices that were considered, or the sequential behavior.

6 Introduction

Human instructors deal with the difficulty of diagnosing the task performance of a
trainee by his or her visible actions by forming a mental model of the cognitive processes
of the trainee. Subsequently, they base their feedback on this cognitive model. In order
for a software agent to generate feedback on the (un)observable behavior of a trainee in
a similar way, it should be able to reason about a trainee’s cognitive processes. This can
be done by forming a cognitive model of the trainee.

Furthermore, due to their years of training experience, instructors have a good sense
of the kinds of errors trainees tend to make. Some of these errors are a direct result of
cognitive biases. When the behavior of a trainee coheres with one of these wrong beha-
viors it is likely that the instructor classifies it as that specific error. Next, the instructor
can provide feedback based on this match. In order for a software agent to recognize
trainee behavior as a typical (cognitive) error, it should be able to reason about typical
biased cognitive processes and their outcome. This can be supported by incorporating
several (biased) cognitive models.

1.1.7 Synopsis

Although simulator training offers an alternative for real-world training of complex mi-
litary tasks, currently such training depends on the availability of instructors and subject
matter experts. The study presented in this dissertation aims at contributing to the deve-
lopment of (cognitive) software agents that can replace these humans. The agents that
are to play a role in the simulated environment need to incorporate a cognitive model to
do this in a valid, human-like way. The agents that are to give feedback on a trainee’s
task performance in a simulated environment need to be able to form and reason about
cognitive models. Therefore this dissertation is titled Cognitive Models for Training
Simulations. The ultimate goal is to replace all humans currently involved in simulator
training, so that trainees can train by themselves at any time.

1.2 Research Objective

1.2.1 Research Focus

Many researchers share our interest in the modeling of human behavior in order to replace
humans. However, this interest is not always focused on the modeling of the cognitive ca-
pabilities of humans. For example, most tasks at assembly lines are nowadays automated
and performed by machines instead of humans. For such cases it is mainly important to
model the human ability to perform specific manual operations. This dissertation focuses

1.2. Research Objective 7

on research that concerns the modeling of internal, cognitive aspects of humans and not
on the modeling of external aspects, such as the visual system and motor behavior.

The modeling of cognition commonly services one of the following two goals. The
first goal is to better understand human cognition. A model of a cognitive process is
made with the aim to gain insight in the underlying mechanisms of that process. When
the results and the behavior of the model strictly cohere with that of the cognitive process
it aims to model, it can be deduced that the mechanisms underlying this process are
accurately modeled. This method is also described as ‘the logic of simulation’ (Gilbert
and Troitzsch, 1999), see Figure 1.1.

Simulation
Model - Simulated Data

Abstraction Similarity
6 6

Target - Collected Data
Data Gathering

Figure 1.1: The logic of simulation as a method (Gilbert and Troitzsch, 1999)

The second goal of modeling cognition is to make artificial systems operate more
intelligently, so that they can replace humans. For this it is not attempted to accurately
model the mechanisms underlying cognition, but to capture specific characteristics. It
is usually not the goal to develop a model that can replace humans in all aspects and in
all circumstances: a model is developed to replace a human for a specific task. For that
reason, the model does not need to represent all mechanisms underling human behavior,
but only those mechanisms that are relevant for the particular task, and at a suitable level
of abstraction.

These two separate goals closely follow the division made by March and Smith
(1995) between natural and design science. Natural science is concerned with ‘explain-
ing how and why things are’ and as such aims at understanding reality. Design science is
concerned with ‘devising artifacts to attain goals’, and as such attempts to create things
that serve human purposes.

This dissertation focuses on the development of software agents that can replace hu-
mans for a specific goal: for playing the role of a human in a training simulation, or for
generating feedback on the task performance of a human trainee. This research can thus
be viewed as a typical example of design science. Our aim for modeling cognition is not
to understand it better, but to equip an artificial system, the software agent, with methods
and techniques so that it can possibly replace a human.

8 Introduction

1.2.2 Research Questions

The main research objective of this study is the modeling of cognitive agents that can
generate human-like behavior for roles in training simulations of military tasks. We are
interested in the modeling of a wide variety of human-like behavior, and do not only
want to model behavior that can be considered expert behavior. In stressful situations,
frequently faced by the military, behavior is often not rational due to the emergence of
biases that influence decision-making. Biases do not always occur in the same form
and amount: their occurrence is strongly affected by task circumstances. This makes
it important to model biased behavior in training simulations, so a trainee can learn to
recognize and deal with biases. Therefore, the main research question of this study is:

Q1: How can a cognitive agent display human-like behavior with a varying de-
gree of biasedness?

This question embeds multiple aspects. First, it has to be established how an agent
can display expert behavior. Next, it has to be determined which cognitive processes can
become influenced by biases, how biases influence these processes, as well as when they
do so. In the course of the research we narrowed this broad research question down to
investigating whether it is possible to model human-like behavior with a varying degree
of biasedness by extending qualitative models with quantitative elements.

In addition to this main research question, we have explored two supplementary re-
search questions. It was mentioned that the modeling of the agents should happen effi-
ciently to reduce their development costs, which spurs a component-based approach to
the modeling of agents. In order to reuse components it is required that their properties
are described in such a manner that at a later stage it can easily be determined whether
they are suitable to be reused for a particular purpose. We hypothesize that it is a good
idea to tag cognitive agent components with the cognitive capabilities they embed. How-
ever, there does not exist consensus on a taxonomy of cognitive capabilities, or on a way
to describe them. Therefore, we start to investigate the following research question:

Q2: How can cognitive agent capabilities be described?

Besides the modeling of cognitive agents that display human-like behavior, we would
also like to model agents that can generate feedback to a trainee in training simulations of
military tasks. Previously, we explained that for an agent to generate feedback on trainee
behavior in complex tasks, it needs to be able to reason about the cognitive processes of
that trainee. This is required because the feedback for such tasks should be at the level
of the cognitive processes of the trainee, and not solely on the factual outcome of his or
her behavior. Therefore, we explore the research question:

1.3. Research Approach 9

Q3: How can an agent generate cognitive feedback on a trainee’s task behavior?

In this dissertation we particularly investigate whether it is possible to generate cog-
nitive feedback to a trainee on his or her task behavior by comparing it to the behaviors
generated by expert and deficient task models.

1.3 Research Approach

Here we elaborate on the research approach followed in this study. In particular, we
introduce the regulative research cycle, and apply it to our research objective.

1.3.1 Research Methodology

Previously, we introduced the work of March and Smith (1995) who divide research into
natural and design science. March and Smith consider research to be natural science
when it is concerned with explaining how and why things are, and as such aims at under-
standing reality. They view natural science as consisting of two activities: discovery (the
process of generating or proposing scientific claims), and justification (includes activities
by which such claims are tested for validity). These activities resemble phases within the
methodological model known as the empirical cycle (Groot, 1969), which is commonly
used to develop a theory within a dominant paradigm.

The empirical cycle includes the following phases: 1) Observation: empirical facts
are collected; 2) Induction: hypotheses are formulated on the basis of the observed facts;
3) Deduction: on the basis of those hypotheses, some specific predictions are formed; 4)
Testing: these predictions are empirically tested by collecting new data; 5) Evaluation:
the results are evaluated on their theoretical validity. In this last phase new ideas are often
generated that can be examined by a new empirical cycle.

March and Smith (1995) consider research to be design science when it is concerned
with devising artifacts to attain goals, and as such attempts to create things that serve
human purposes. They state that design science also consists of two basic activities,
namely: build (the process of constructing an artifact for a specific purpose), and evaluate
(the process of determining how well the artifact performs, which is complicated by the
fact that performance is related to intended use). These two activities resemble phases
within the methodological model known as the regulative cycle (Strien, 1997). This
methodological model is more practice oriented, and focuses on solving an individual
problem in particular circumstances.

The regulative cycle includes the following phases: 1) Problem definition: identifi-
cation of a discrepancy between an actual and a normative situation; 2) Diagnosis: clear

10 Introduction

formulation of the problem; 3) Plan: development of a solution for the identified prob-
lem; 4) Intervention: implementation of that solution; 5) Evaluation: testing whether
the proposed solution has narrowed the gap between the actual and normative situation.
The last phase may identify new or remaining problems that can be examined by a new
regulative cycle.

The regulative cycle is normative in the sense that the development of a plan is guided
by an objective derived from the problem under consideration. This makes it applicable
to design-oriented research, and stresses what Simon (1967) already expressed:

“The engineer and more generally the designer, is concerned with how things
ought to be - how they ought to be in order to attain goals, and to function (. . .)
With goals and ‘oughts’ we also introduce into the picture the dichotomy between
normative and descriptive. Natural science has found a way to exclude the nor-
mative and to concern itself solely with how things are (. . .) Artificial things can
be characterized in terms of functions, goals and adaptation.”

The research described in this dissertation is a clear example of design science and there-
fore, the research method embodied by the regulative cycle is applicable.

Although the empirical and the regulative research cycle are presented as separate
processes, they are inevitably connected. Theories that are the result of the empiric cycle
are often used within the first phases of the regulative cycle. Because of this applica-
tion of theory into practice, feedback from the intervention and evaluation phases of the
regulative cycle can in return be used to further develop theories by the empirical cycle.

1.3.2 Regulative Research Cycle

The aim of our study is to contribute to the development of software agents that can
fulfill tasks within simulator training of military tasks that are currently fulfilled by hu-
mans. This general research objective emerged from the first phase of the regulative
cycle, namely the problem definition (1). In the first section of this chapter we identified
a clear discrepancy between the actual situation in which trainees are trained for open
and complex tasks, and the desired situation. The actual situation is that other humans
are required for such training which induces high costs, great organizational effort, and
undesired training variability. The desired situation is that trainees can train by them-
selves because the humans are replaced by software agents. For this, agents 1a) should
be able to show valid behavior in a simulated task environment which can be tuned to be
more or less biased, and 1b) need to be affordable and as such be based on components
that can be found for reuse. In addition, agents 1c) should be able to give feedback on
(biased) trainee behavior in simulated task environments.

1.3. Research Approach 11

The diagnosis (2) of the problem that becomes explicit throughout this dissertation
splits the problem up in three main issues: no suitable methods exist for 2a) modeling
various required behaviors of cognitive agents in a way that that behavior is valid, va-
ried and has a varying degree of biasedness, nor for 2b) describing the developed agent
components so that they can be found for reuse. Furthermore, 2c) no method exists that
enables an agent to generate feedback on (biased) trainee behavior in open, dynamic,
complex tasks.

Therefore our plan (3), reflected in the research questions listed in Section 1.2.2,
is to 3a) develop methods with which various required behaviors of cognitive agents
participating in a military simulation can be modeled, and to 3b) investigate how the
capabilities of developed agent components can be described. Moreover, we plan to 3c)
develop a method which enables an agent to generate feedback on trainee behavior for
open, dynamic, complex tasks.

In phase (4), intervention, the developed methods are used to 4a) implement cogni-
tive agents that show (biased) behavior within a simulated environment, to 4b) describe
various capabilities of cognitive agents, and to 4c) implement an agent that generates
feedback on trainee behavior in a simulated environment.

In the final evaluation (5) phase it is tested whether our study aids in narrowing the
gap between the actual and normative situation. In other words: whether it contributes to
the future modeling of agents that 5a) can show valid, human-like behavior with a tunable
degree of biasedness in complex tasks in simulated environments, 5b) are affordable
because they are based on components that can be found for reuse, and 5c) can give
feedback on (biased) trainee behavior in complex tasks in simulated environments.

This regulative cycle is the major research cycle of the study described in this dis-
sertation. In it multiple sub-cycles are embedded, each investigating a sub-problem of a
non-existing method to model a required agent behavior (2a).

These regulative sub-cycles start in general with a problem definition in the form of:
there exists a discrepancy between the aspects of human behavior that existing methods
can model and the aspects that are required for this specific (military) task. To establish
such a discrepancy, first the cognitive properties of human behavior that are required to
validly fulfill that specific task are determined. At the same time it is determined which
cognitive properties current approaches can model. When a discrepancy is found, the
diagnosis states clearly which cognitive properties the to-be-developed method should
be able to model. Next, in the plan phase, inspiration for a solution to the problem is
drawn from theories about the underlying mechanisms of the required human behavior
developed by natural science. The solution is first logically formalized and then, in the
intervention phase, implemented for a specific case. These implementations vary from

12 Introduction

executable models for simple abstract tasks, to models implemented in existing cogni-
tive architectures for realistic tasks. Next, these agent implementations are evaluated.
These evaluations vary due to the variety in implementations. They range from checking
whether the agent’s behavior displays the cognitive properties established in the diagno-
sis phase, to checking its face validity by consulting subject matter experts.

1.3.3 Related Research Disciplines

From this regulative research cycle it follows that many research disciplines are relevant
to this study’s research objectives. Below the major ones are listed, together with a short
description of how they contribute.

• Cognitive Science - provides unified theories of cognition as well as many specific
theories on cognitive processes like planning, belief revision, attention and stress.

• Computer Science - provides a computational means to formalize and test the theo-
retical models of cognitive science. Various unified as well as specific computational
cognitive models have been developed. In addition, computer science provides meth-
ods to describe software and its working.

• Artificial Intelligence - provides various techniques for modeling intelligent beha-
vior. AI draws its inspiration from human intelligence, however, its techniques are
not necessarily cognitively valid or plausible.

• Educational Science - provides insight in how humans learn and offers guidelines
concerning the kinds of training environments and types of feedback that are suited
for training specific tasks.

1.4 Research Scope

In this section we discuss the scope of the study described in this dissertation. We start
with the context in which the study was conducted, and then elaborate on the domain
it focuses on. Next, we introduce the military task that is used throughout this study as
example of which the training can be supported by software agents. As an outlook, this
section lists the requirements for agents capable of executing or providing feedback to
the example task.

1.4.1 Research Context

The study described in this dissertation was conducted in a cooperation between the
Agent Systems Research group of the Vrije Universiteit Amsterdam and the Training

1.4. Research Scope 13

and Instruction department of TNO Human Factors. TNO Human Factors is a busi-
ness unit of TNO Defense, Security and Safety, which is one of the five core areas of
TNO, the Netherlands Organization for Applied Scientific Research. The study took
place in parallel to the TNO research program Cognitive Modeling (V524), funded by
the Netherlands Defense Organization. This program focuses on ‘Cognitive Models of
Tactical Decision-Making’ and incorporates three projects: Training, Decision Support
and Agent Architectures.

Within the Training project cognitive models are developed for training purposes; it
is investigated whether such models can make training more realistic, more traceable, and
more cost-efficient. The Decision Support project develops cognitive models for decision
support; it investigates how such models can be used to deliver adaptive support, tailored
to the operator’s decision-making process. Agent Architectures is a coordinating project;
it investigates and develops architectures required for implementing the cognitive models
into intelligent agents, and for linking these agents to simulation systems.

Predating the Cognitive Modeling research program, the researchers within the Train-
ing and Instruction (T&I) department did not have much knowledge about the develop-
ment of cognitive models and their implementation in software to form intelligent agents.
Their main expertise was the training of people, especially in complex decision-making
tasks. Researchers within the Agent Systems Research (ASR) group did not have expe-
rience with this type of training. However, they did have many years of experience with
designing intelligent agents, and in more recent years also in cognitive modeling (Bosse,
2005). One of the accomplishments of the ASR group has been the development of
component-based system design method DESIRE that explicitly models agents, their en-
vironment, and their interaction, during different phases of design (Brazier et al., 2002).

By conducting this study in a cooperation between a university and a research insti-
tute, the feedback cycle embedded in the regulative research cycle was fostered. In the
previous section we introduced the regulative research cycle. We elaborated on how the
application of theory into practice by the intervention phase can, through the final eva-
luation phase, lead to feedback on new or remaining problems that can be examined by a
new regulative cycle. In this study, we mainly developed mechanisms and techniques in
cooperation with the university, and subsequently implemented and evaluated them in co-
operation with the research institute. The experiences gained were used to formulate new
requirements for the cognitive agent models, which were succeedingly investigated by a
new research cycle. As a result of the cooperation, the T&I department of TNO gathered
knowledge concerning modeling (cognitive) agents, while the ASR group got inspired
by the possibilities to use cognitive models to support humans, not only for training but
also for decision support.

14 Introduction

1.4.2 Research Domain

The research domain of the Cognitive Modeling program is Tactical Command, which is
defined by the Oxford Essential Dictionary of the U.S. Military as:

“The authority delegated to a commander to assign tasks to forces under his or her
command for the accomplishment of the mission assigned by higher authority.”

A commander ‘assigning tasks to forces under his command to accomplish mission suc-
cess’ is executing a tactical decision-making process. A concept often applied to describe
the decision-making process in military operations is the OODA loop, which stands for
Observe, Orient, Decide and Act. The OODA loop, also called Boyd cycle, was deve-
loped by USAF Colonel John Boyd, and describes human decision-making as a recurring
cycle of observe-orient-decide-act, see Figure 1.2.

Figure 1.2: John Boyd’s OODA loop (adapted from Boyd (1996))

The main focus of the research program and this study lies on the Orient part of the
OODA-loop, which denotes the commander’s assessment of the current situation. How-
ever, the modeling of the entire loop is investigated since orientation is intertwined with
observing the environment, with making decisions, and with acting based on the assessed
situation. In addition, all these processes need to be modeled to form an executable agent.

1.4.3 Research Task

The Orient part of the OODA-loop is aimed at achieving situational awareness (SA),
which is a state of knowledge. Endsley (1995) defines SA as:

“the perception of elements in the environment within a volume of time and space,
the comprehension of their meaning, and the projection of their status in the near
future”.

1.4. Research Scope 15

Another definition is given by the US-Army (2002) who defines SA as:

“the ability to maintain a constant, clear mental picture of relevant information
and the tactical situation. This picture includes knowledge of both the friendly
and threat situations and of relevant terrain”.

The process of achieving, acquiring, or maintaining SA is referred to as situational
assessment (Endsley, 1995). It is generally recognized that lacking SA, or having inade-
quate SA, is one of the primary reasons for decision-making errors. Therefore, training
students in achieving good SA, i.e., in the situational assessment task, is a spearhead of
the Netherlands Defense Organization.

Military tactical experts achieve Situational Awareness in a quick and accurately way
by using their large knowledge base of tactical patterns gained over time. Zsambok and
Klein (1997) show that experts use this accumulated experience when making a decision:
they base their decision on recognized pattern similarities between the actual decision-
making situation and stored situations.

In order to train students to become tactical experts, they should be engaged in inten-
sive practice facing a wide variety of situations. This enables them to build up experience
in achieving SA, and to expand and sophisticate their knowledge base of tactical patterns.
This is an important motivation for our requirement that the cognitive agents that are to
display human-like behavior in training simulations, should be capable of displaying va-
ried behavior.

TNO’s Cognitive Modeling program is of interest to all three major defense areas:
the Royal NetherLands Navy (RNLN), Army, and Air Force. However, for this study
the naval domain was selected as main testbed. The Operational School of the RNLN
(Opschool) is concerned with the training of tactical decision-making. Students master
this task by learning tactical theory and practicing tactical decision-making. The training
consists of repeated practice of tactical decisions in order to improve these decisions.
For this training the Opschool uses a semi-automated system called the Action Speed
Tactical Trainer (ASTT), which can simulate the command central of a military ship in a
naval battle, see Figure 1.3.

For training tactical decision-making using the ASTT humans are required, because
the reactions of opponents and other parties to the actions of the students have to be
programmed during the exercise. The aim of our study it to develop methods and tech-
niques for modeling intelligent, cognitive agents whose behavior does not need to be
programmed, but that can autonomously act in response to the student. The Opschool
was supportive of this goal: they delivered the domain experts required for the elicitation
of task knowledge for some of the cognitive models of the agents developed, as well as
for the validation of the behavior of these agents.

16 Introduction

Figure 1.3: Students are trained in naval warfare using the Action Speed Tactical Trainer

1.4.4 Agent Requirements for the Research Task

In this study, we explicitly focus on the modeling of the cognitive processes involved in
situational assessment.

Displaying Human-Like Behavior

For agents that participate in the simulation and should be able to perform the situational
assessment task as, e.g., a team member or opponent, many aspects need to be modeled.
The agent needs to have facilities to:

• observe relevant information in the simulated world;
• interpret the observed, possibly uncertain, information;
• represent that interpretation, e.g., in the form of a belief;
• store interpretated information, i.e., some kind of memory;
• retrieve information from this memory;
• integrate information from different sources or over time;
• infer new information (beliefs) from current information (beliefs);
• be pro-active, e.g., by incorporating goals;
• form and adapt goals based on new information;
• decide which of its goals to pursue;
• decide on, i.e., plan, actions to reach a goal;
• perform actions in the simulated world.

1.4. Research Scope 17

These listed processes are minimally required for situational assessment: they all need
to be modeled to enable a software agent to execute that task. In addition, for modeling
human-like behavior that is not necessarily rational, some of the following aspects should
be modeled:

• how expectations influence the sensing of information or the formation of beliefs;
• how emotions influence the formation of beliefs or the decision on a course of action;
• how cognitive limitations influence the retrieval of beliefs or the execution of (heuris-

tic) reasoning rules;
• how stress / exhaustion / workload has effect on these cognitive limitations and

thereby influence the sensing of information, the formation of beliefs, or the deci-
sion of a course of action.

This list is not complete: more cognitive aspects, and a multitude of cognitive pro-
cesses influenced by them can be listed. Fortunately, in order for a software agent to dis-
play human-like behavior, in the sense that that is not always rational, it is not required
to model all these aspects and how they influence cognitive processes. The modeling of
a specific aspect, e.g., expectations, can suffice to create biased behavior.

In the current study we focus on a subset of these aspects and leave others, like emo-
tions, out. In particular, we examine the modeling of biased behavior by focusing on
cognitive limitations, and on the circumstances under which these limitations especially
bias behavior, e.g., when people are stressed or cognitively exhausted. Moreover, we
investigate the influence of these aspects on a number, and not all, of the cognitive pro-
cesses listed. In this dissertation, we start with the modeling of possibly biased behavior
for the interpretation of observed information, for the integration of the resulting beliefs,
and for the deduction of new beliefs from others. These processes are amongst the ones
most relevant for executing the situational assessment task. Next, we focus on the mo-
deling of possibly biased retrieval of information from memory, a process initially left
out. Last, we model a control mechanism for possibly biased belief deduction, as well as
control mechanisms for biased decision-making on actions in order to reach a goal.

Providing Feedback to Human Behavior

For providing feedback to a student performing the situational assessment task, an agent
needs to be able to reason about the cognitive processes required to perform the task.
In particular, an agent has to have access to expert task knowledge, and to knowledge
about the type of errors that students typically make (instructor knowledge). In addition,
it must be able to observe the behavior of the trainee, and to compare these observations
with the behavior of the expert and with typical errors. After diagnosing the trainee’s task

18 Introduction

performance the agent should be able to provide feedback to the student. Last, it would
be beneficial if it can store its diagnosis, so that over time it can also generate feedback
on the overall task performance.

1.5 Dissertation Outline

This dissertation consists of eight chapters. Chapters 1, 2, and 8 are umbrella chapters
in the sense that they respectively introduce, discuss related work to, and discuss and
conclude the research that is described in Chapters 3 to 7. Each of these five chapters
includes an introductory part and one to four papers. In this section we elaborate on the
content of the chapters, and list the papers embedded in them.

1.5.1 Chapter Overview

In the current chapter, Introduction, we have discussed the general motivation for this
study and listed the three research questions we aim to answer. In addition, we elaborated
on the context of this study and on the military research domain, and introduced a specific
military task as research example. Moreover, we introduced the regulative research cycle
as the research methodology that this study follows. The chapter’s first sections denote
the problem definition of our main regulative cycle, and started with a formulation of the
problem and the development of a solution for it.

Chapter 2, Related Research, discusses related research which helps to further di-
agnose the research problem. We elaborate on Cognitive Science as well as Artificial
Intelligence research concerning the modeling of (biased) cognitive behavior. In addi-
tion, we discuss research concerning the generation of feedback.

Chapters 3 to 7 all embed a regulative sub-cycle. The chapters 3, 4 and 5 investigate
the phases a of the main regulative cycle. Chapter 6 brings about phases b, while chapter
7 focuses on phases c of the main regulative cycle.

Chapter 3, Belief Component, starts with an introductory section in which we ela-
borate on the research problem, diagnosis, and plan concerning a cognitive agent’s belief
maintenance capability for situational assessment tasks. In the following section this
plan is worked out which leads to a formal belief framework for cognitive agent models,
which use is demonstrated in a simple case study (Heuvelink, 2007). Next, this frame-
work is used to develop a formal task model of a realistic military task. This task model
is implemented in the cognitive architecture ACT-R which results in the cognitive agent
BOA (Heuvelink and Both, 2007) that is subsequently validated (Both and Heuvelink,
2007). The generality of the belief framework and task model are tested by a reimple-

1.5. Dissertation Outline 19

mentation of the model in the Soar cognitive architecture, which results in the cognitive
agent Boar (Muller et al., 2008).

Chapter 4, Memory Component, introduces a memory capability for an agent in-
corporating the developed belief framework of Chapter 3 enabling it to store, retrieve,
and make inferences on its beliefs. For this, we first develop a method to perform arbi-
trary aggregations on these beliefs (Heuvelink et al., 2008b) which is later incorporated
in the memory model. The memory model supports an agent in performing human-like
(biased) reasoning as well as rational reasoning (Heuvelink et al., 2008a), among others
by introducing an availability value for beliefs.

Chapter 5, Control Component, starts with an introductory section in which we
discuss several control aspects for cognitive agents. In the following section we introduce
a formal control method that determines the kind of reasoning behavior (biased versus
rational) an agent shows. This is not necessarily fixed, but can change dynamically over
time due to internal and external aspects (Heuvelink and Treur, 2008). In the next section,
we elaborate on an information acquisition component that determines whether an agent
senses or tries to remember required information (Heuvelink et al., 2009a). For this
research we performed an experiment to deduce human information acquisition behavior
in a simple task. The experimental data served as inspiration for the modeling of various
task strategies, and was used to evaluate the developed information acquisition model.

Chapter 6, Cognitive Agents Capabilities, introduces our idea to facilitate the reuse
of components of cognitive agents by tagging them with descriptions of the cognitive
capabilities they embed (Heuvelink et al., 2009b). The preliminary Capability Descrip-
tion Framework (CaDeF) proposes a method to describe cognitive capabilities which is
demonstrated by describing two generic ones: reasoning and decision-making. In addi-
tion, CaDeF is used to describe specific instantiations of these two generic capabilities in
an implemented agent, namely BOA (Both and Heuvelink, 2007).

Chapter 7, Feedback System, introduces a multi-agent-based feedback generating
system developed to generate cognitive feedback to the behavior of trainees in open,
complex tasks. The diagnosis capacity of the feedback generating agent is evaluated by
letting it diagnose student agents (Heuvelink and Mioch, 2008).

Chapter 8, Conclusion, sums up the research and discusses its relevance and sig-
nificance in relation to the motivation and research questions established in the current
chapter. In specific, we address the points of the evaluation phase, namely whether the
research aids in the future modeling of agents that 5a) can show valid, human-like be-
havior with a tunable degree of biasedness in complex military tasks, 5b) are affordable
because they are based on components that can be found for reuse, and 5c) can give
feedback on (biased) trainee behavior in complex military tasks.

20 Introduction

1.5.2 Embedded Papers
• Heuvelink, A. (2007). A belief framework for modeling cognitive agents. In Pro-

ceedings of the 8th International Conference on Cognitive Modeling (ICCM 2007),
pages 235–240. Psychology Press.

• Heuvelink, A. and Both, F. (2007). BOA: A cognitive tactical picture compilation
agent. In Proceedings of the 2007 IEEE/WIC/ACM International Conference on In-
telligent Agent Technology (IAT 2007), pages 175–181. IEEE-CS Press.

• Both, F. and Heuvelink, A. (2007). From a formal cognitive task model to an im-
plemented ACT-R model. In Proceedings of the 8th International Conference on
Cognitive Modeling (ICCM 2007), pages 199–204. Psychology Press.

• Muller, T. J., Heuvelink, A., and Both, F. (2008). Implementing a cognitive model in
ACT-R and Soar: A comparison. In Proceedings of the 6th International Workshop
on From Agent Theory to Agent Implementation (AT2AI-6 2008) in conjunction with
AAMAS 2008.

• Heuvelink, A., Klein, M. C. A., and Treur, J. (2008b). A formal approach to belief
aggregation. In Proceedings of the 12th International Workshop on Cooperative In-
formation Agents (CIA 2008), volume 5180 of Lecture Notes of Artificial Intelligence,
pages 71–85. Springer-Verlag.

• Heuvelink, A., Klein, M. C. A., and Treur, J. (2008a). An agent memory model
enabling rational and biased reasoning. In Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT 2008), pages 193–199.

• Heuvelink, A. and Treur, J. (2008). Controlling biases in demanding tasks. In Pro-
ceedings of the 30th Annual Conference of the Cognitive Science Society (CogSci
2008), pages 1392–1397. Cognitive Science Society.

• An extended version of the paper: Heuvelink, A., Klein, M. C. A., and Lambalgen,
R. L. C. v. (2009a). Modeling human information acquisition strategies. In Proceed-
ings of the 31st Annual Conference of the Cognitive Science Society (CogSci 2009).
Cognitive Science Society. In print .

• Heuvelink, A., Mioch, T., and Doesburg, W. A. v. (2009b). CaDeF: Towards a method
for describing cognitive agent capabilities. Unpublished .

• Heuvelink, A. and Mioch, T. (2008). FeGA: a feedback generation agent. In Pro-
ceedings of the 2008 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT 2008), pages 567–572.

Chapter 2

Related Research

2.1 Introduction

The goal of this study is to contribute to the automation of military tactical simulator
training, so that in the future trainees can train at any time and by themselves. In Chap-
ter 1 we stated that for this type of training it is minimally required to validly represent
human behavior in the simulated environment, and to provide feedback to the behavior of
the trainee. As a possible solution to automate such training we introduced the notion of
software agents: we proposed that instead of humans, agents can deliver these required
behaviors. In addition, we put forward that software agents that are to display human-like
behavior should incorporate a cognitive model. The aspects of cognition that this model
needs to represent will depend on the task of the agent in the simulated environment and
the goal of the training. Moreover, the software agents that are to generate feedback on
the behavior of the trainee should be able to reason about the trainee’s cognitive pro-
cess, and can do this by means of cognitive models. Once more, the goal and task of the
training will influence the processes the agent has to reason about, and thus the cognitive
models required.

The study of cognition, the determination of its distinct capabilities, the investigation
of these separate capabilities as well as the entire system by performing experiments and
building models, is labeled Cognitive Science. The research conducted and described in
this dissertation is closely related to this field of research. When developing cognitive
models it has to be established which capabilities are required, how these should operate
together, and how all this can be modeled. The research field of Artificial Intelligence
also studies (aspects of) cognition, and determines and models its distinct capabilities
as well as the entire system. However, its experiments do not investigate whether the

24 Related Research

models validly represent human cognition, but if they display behavior at the level of
intelligence required for the task they are developed for.

Taking into account the two goals of modeling cognition described in Section 1.2.1,
Cognitive Science can be considered a natural science, while Artificial Intelligence is
its design science counterpart. Our research draws inspiration from Cognitive Science,
but ultimately belongs to Artificial Intelligence. We are concerned with the modeling
of cognition, because we want to generate human-like behavior and feedback on human
behavior, and not because we want to penetrate the processes underlying cognition.

Chapter Overview

In this chapter, we discuss research that is related to our research questions. The func-
tion of this chapter is to provide background knowledge on a wide variety of topics, to
increase the readability of the following chapters for those that are not familiar with the
topics addressed. Not only this chapter, but also the introduction sections of the coming
chapters and of the papers they embed discuss related research. However, especially in
the papers, these discussions already focus on addressing specific design issues, while
here we aim to provide a generic overview of several research topics.

We start this chapter with discussing global aspects of cognition: in Section 2.2.1 we
introduce various categorizations of capabilities that presumably constitute cognition.
Next, in Section 2.2.2, we elaborate on the origin of suboptimal task performance by
humans. This is an aspect of human behavior that our software agents should be able to
display, and provide feedback about.

Then, we discuss how cognition could be modeled. In Section 2.3.1 we shortly dis-
cuss various approaches toward the modeling of cognition, i.e., using qualitative and/or
quantitative terms, and introduce our approach to the modeling of cognition. In addition,
in Section 2.3.2, we discuss the notion of integrated architectures. We address two cogni-
tive architectures in detail: Soar (Laird et al., 1987) and ACT-R (Anderson and Lebiere,
1998; Anderson et al., 2004), and elaborate on their relevancy for our research objectives.

Next, we discuss possible application areas for cognitive models. In Section 2.4.1
we elaborate on a variety of application domains for which software agents have been
developed with the purpose to generate human-like behavior. For each domain we discuss
how the requirements of the behavior of those agents match the requirements of the
behavior of an agent for our goal: a tactical training simulation. In Section 2.4.2, we
elaborate on various methods to generate feedback, and discuss software models capable
of generating feedback.

Finally, in Section 2.5, we conclude this chapter and look forward to the next.

2.2. Aspects of Cognition 25

2.2 Aspects of Cognition

What does it actually entail ‘to be cognitive’, i.e., what kind of processes does cognition
embed? This is a hard question, since cognition is an umbrella notion. The Oxford
English Dictionary (1994) defines cognition as:

“The action or faculty of knowing taken in its widest sense, including sensation,
perception, conception, etc., as distinguished from feeling and volition.”

For the studying and modeling of cognition it is useful to divide this umbrella term in
clear conceptual parts. In this section we start with the introduction of several proposals
for the division of cognition. Next, we elaborate on the generic aspect of cognition that
it is not always rational. We introduce several examples of cognitive biases, and discuss
their (presumable) origin.

2.2.1 Cognitive Capabilities

When thinking about cognition it is easy to come up with specific cognitive processes
that humans posses, ranging from selecting a filling for their sandwich, to determining
the best time to call their grand-mother. Such processes can be categorized as being in-
stances of specific cognitive capabilities: decision-making and scheduling, respectively.
Many of these distinct capabilities have been identified and extensively researched within
Cognitive Science and Artificial Intelligence, with as respective goals to understand and
to model them.

In this section we will not elaborate on specific research projects that focused on the
studying and modeling of a specific capability. The introduction sections of Chapters 3, 4,
and 5 will, since these chapters focus on specific capabilities. Instead, we present three
research projects that have attempted to provide an overview of cognitive capabilities.
These projects serve as examples; it is not our goal to subscribe to one of these views.
They are merely provided as illustrative for the number and level of capabilities that can
be distinguished within human cognition.

Gordon (2005) states that there are sixteen functional requirements (capabilities) that
a model of human cognition should possess. In Table 2.1 we present the taxonomy of the
sixteen functional classes of cognitive models that Gordon proposes. Gordon bases this
taxonomy on formal theories of ‘commonsense psychology’ and states that each of these
functions must be encoded within an agent for it to be able to perform commonsense
reasoning. Although not all these capabilities are required for the current task, it provides
a good overview of the processes an agent should eventually be capable of in order to
mimic human behavior in all its facets.

26 Related Research

Table 2.1: The 16 Functional Classes of Cognitive Models according to Gordon (2005)

Functional Class Summary
1. Knowledge and inference Models of how people maintain and update their beliefs in the

face of new information

2. Similarity judgment Models of how people judge things to be similar, different, or
analogous

3. Memory Models of memory storage and retrieval

4. Emotion Models of emotional appraisal and coping strategies

5. Envisionment Models of how people reason about causality, possibility, and
intervention in real and imagined worlds

6. Explanation Models of the process of generating explanations for events
and states with unknown causes

7. Expectation Models of people come to expect that certain events and states
will occur in the future, and how they handle expectation vi-
olations

8. Theory of Mind reasoning Models of how people reason about the mental states and pro-
cesses of other people and themselves

9. Threat detection Models of how people identify threats and opportunities that
may impact the achievement of their goals

10. Goal management Models of how people prioritize and reconsider the goals that
they choose to pursue

11. Planning Models of the process of selecting a course of action that will
achieve one’s goals

12. Design Models of how people develop plans for the creation or con-
figuration of an artifact, process or information

13. Scheduling Models of how people reason about time and select when they
will do the plans that they intend to do

14. Decision making Models of how people identify choices and make decisions

15. Monitoring Models of how people divide their attention in ways that en-
able them to wait for, check for, and react to events in the
world and in their minds

16. Plan execution Models of the way that people put their plans into action and
control their own behavior

Not all the aspects mentioned by Gordon are required for our task, and neither are
they for many other tasks for which cognitive agents have been developed. In con-
trast with Gordon who started his listing of cognitive capabilities from a natural science,
namely psychology, Langley et al. (2006) present a list of cognitive capabilities taking
a design science approach. Langley et al. discuss the capabilities and functionalities

2.2. Aspects of Cognition 27

that a cognitive agent could embed by studying architectures developed for the goal of
intelligent behavior generation. They divide these capabilities into nine main areas, see
Table 2.2. For clarity of presentation, their last capability ‘Remembering, Reflection and
Learning’ is split into the two capabilities ‘Remembering and Reflection’ and ‘Learning’.

Table 2.2: The 9 Capabilities of Cognitive Agents according to Langley et al. (2006)

Capability Summary
1. Recognition and Categorization The ability to recognize situations or events as in-

stances of known or familiar patterns

2. Decision Making and Choice The ability to make decisions and select among
alternatives

3. Perception and Situation Assessment The ability to sense, perceive, and interpret some
external environment

4. Prediction and Monitoring The ability to predict future situations and events
accurately

5. Problem Solving and Planning The ability to generate plans and solve problems

6. Reasoning and Belief Maintenance The ability that lets an agent augment its know-
ledge state

7. Execution and Action The ability to execute skills and actions in the en-
vironment

8. Interaction and Communication The ability to communicate and transfer know-
ledge from one agent to the other

9.a. Remembering and Reflection The ability to encode and store the results of cog-
nitive processing in memory and to retrieve or ac-
cess them later

9.b. Learning The ability to generalize beyond specific beliefs
and events

We appreciate the pragmatics of the work of Langley et al. compared to that of
Gordon, and decided to take their capability classification as the basis for our Capability
Description Framework, see Chapter 6. Even more pragmatic is the division followed
by Pew and Mavor (1998), who discuss architectures for modeling individual human
behavior with the specific focus of their application to military simulations. Because
of its military focus, this piece of work functioned as one of the starting points of our
research. Pew and Mavor analyze existing architectures on six key areas, see Table 2.3.

The first five areas can be considered cognitive capabilities; the latter however is an
odd one out. Nevertheless, behavior moderators are important for modeling cognition
and human behavior, since human behavior is known to vary due to internal aspects as

28 Related Research

Table 2.3: The key areas of architectures according to Pew and Mavor (1998)

Key Area
1. Attention and Multi-Tasking
2. Memory and Learning
3. Planning
4. Decision Making
5. Situation Awareness
6. Behavior Moderators

stress and emotion. Behavior moderators enable the modeling of this variety of behavior,
making it more human-like. In the subsequent sections we elaborate on such behavior
moderators in respect to the modeling of human suboptimal task performance, with a
specific focus on the modeling of cognitive biases.

This section illustrates that there is no clear consensus on which capabilities consti-
tute cognition. Cognitive Science is occupied with clarifying this fundamental question;
Artificial Intelligence on the other hand simply models those aspects that are sufficient
for generating intelligent, human-like behavior for a given task. For our purpose it holds
that the cognitive capabilities that need to be modeled will vary between tasks and train-
ing objectives, e.g., an opposing naval force does not need to be able to communicate.

2.2.2 Cognitive Biases

Previously, we explained that the modeling of cognitive biases is relevant for the training
of military personnel. On the one hand it is important to train them in recognizing and
dealing with their own biases, on the other hand they need to be trained on dealing with
the biased behavior of their team mates.

This section elaborates on research concerning cognitive biases. It starts with several
examples of cognitive biases, after which the general limitations of human cognition are
discussed that by themselves might lead to suboptimal behavior. Although the previous
section only mentioned capabilities as the parts that make up cognition, cognitive pro-
cesses are in addition influenced by other processes, e.g., emotion and stress. At the end
of this section we elaborate on the role these so-called behavior or performance modera-
tors play in the functioning of cognition.

When the cognitive mechanisms underlying biases are known, it will be possible
to formalize these mechanisms in a cognitive agent model. This model can then be
embedded in a software agent that will therefore be able to display more human-like,
possibly biased, behavior. In addition it can be used to compare the behavior of the
trainee with, so that possible occurring biases can be detected.

2.2. Aspects of Cognition 29

Cognitive Bias Examples

Dozens of cognitive biases, operating on various levels and influencing a variety of cog-
nitive processes, have been identified. For extensive discussions on human biases see
Baron (2000), Reason (1990), who refers to them as error forms, or Pohl (2004), who
calls them cognitive illusions. To facilitate the discussion of cognitive biases we divide
them in 4 classes that differ in the level at which they operate: social (attributional),
memory, judgment, and decision-making biases. This is no clear-cut division, many bi-
ases or their underlying mechanisms overlap categories, e.g., a mechanism that leads to
a judgment bias might a the same time lead to a decision-making bias.

A social or attributional bias is a cognitive bias that affects the way it is determined
who or what was responsible for an event or action (attribution). A well-known example
is the correspondence bias, which is ‘the tendency to draw inferences about a person’s
unique and enduring dispositions from behaviors that can be entirely explained by the
situations in which they occur’ (Gilbert and Malone, 1995). In other words, people have
an unjustified tendency to assume that a person’s actions are not the result of that person’s
social and environmental situation, but of the ‘kind’ of person that person is.

A memory bias is a cognitive bias that either enhances or impairs the recall of a me-
mory, or that alters the content of memory that is claimed to be recalled. Many memory
biases are simply referred to as effects. Two well-known memory effects are primacy and
recency: the fact that respectively the first and the last items on a list show an advantage
in memory, i.e., are easier recalled than the items in the middle of the list. An example
of a memory bias is the hindsight bias, which is ‘the tendency for people with outcome
knowledge to believe falsely that they would have predicted the reported outcome of an
event’ (Hawkins and Hastie, 1990). In other words, people have an unjustified tendency
to claim after events have happened that they ‘knew it all along’.

A judgment bias is a cognitive bias that affects estimated probabilities or beliefs,
and can therefore have impact on the quality of human performance. Two examples of
judgment biases are also referred to as primacy and recency, but are now defined as the
tendency to weigh initial events more than subsequent events, and the tendency to weigh
recent events more than earlier events, respectively. Multiple researchers (Adelman et al.,
1996; Wang et al., 2000) have shown that these effects occur in tactical decision-making.
For example, when participants were presented the same friendly/neutral/hostile evi-
dence concerning yet unidentified tracks, their order influenced the participants’ final
judgment concerning the contact’s identity. Another well-know judgment bias is the
conjunction fallacy, which is the tendency to ‘regard a conjunctive event as more proba-
ble than one of its components’ (Tversky and Kahneman, 1982). For example, Tversky
and Kahneman (1982) show that people judge the probability of ‘Linda is a bank teller

30 Related Research

and is active in the feminist movement’ as being higher than the probability of ‘Linda is
a bank teller’. Several other judgment biases will be discussed in the next section.

A decision-making bias is a cognitive bias that affects the way a decision is made.
This can happen in a multitude of ways, among others by a false probability estimation,
i.e., through a judgment bias. A wide-spread decision-making bias is the confirmation
bias, which is the tendency to search for or interpret new information in a way that
confirms one’s preconceptions and opinions, and to ignore, undervalue, or not look for
information which contradicts these prior beliefs. This bias has been shown to occur
frequently in military tactical decision-making (Fewell and Hazen, 2005).

Mechanisms underlying Cognitive Biases

The study of cognitive biases progressed greatly by the work of Tversky and Kahneman
(1974) who investigated in laboratory settings human judgment and decision-making.
They compared the judgments and decisions actually made by humans with those that
should be made if they would follow the rules of rational choice theory. Rational choice
theory assumes that humans select the best option given the current circumstances, and
that that value judgment is determined by a stable preference function. However, Tversky
and Kahneman found that human choices differ in systematic and predictable ways from
the rational choice. These ways are referred to as cognitive biases.

Twenty years earlier Simon (1956) was among the first to oppose the view of humans
as rational entities that can calculate the best option; a view attributing humans with
unlimited computational powers and perfect knowledge. Norman and Bobrow (1975)
stress that human processes are limited exactly by these two factors: a process can be
limited in its performance by limits in the amount of available processing resources (such
as memory or processing effort) or by limits in the quality of the data available to it. In
his work Simon proposes that humans are rational but under the constraints of limited
time, knowledge and computational capacities. He states that humans should not aim for
an optimal solution, but search until a solution is found that is satisficing.

It is often claimed that the origin of cognitive biases lies in the limitations of hu-
man information-processing capacity. It is generally acknowledged that human cogni-
tion is limited in the amount of information it can attend to and process at a single time.
The classical paper by Miller (1956) stresses that the capacity of short-term memory
for chunks of information is limited to ‘the magical number seven, plus or minus two’.
Others have researched and identified limits in cognitive processing capacity, which in-
fluences the ability to perform multiple tasks simultaneously (e.g., Kahnemann, 1973).
The limited capacity of human cognition gives rise to specific processes, which are, or
might lead to, cognitive biases.

2.2. Aspects of Cognition 31

Heuristics Tversky and Kahneman (1974) claim that the biases they identified are,
at least partly, the result of decision-making using heuristics. Heuristics, also referred
to as rules of thumb, are mental shortcuts that humans use to speed up and simplify
their decision-making process. It is assumed that heuristics have evolved due to, and are
applied in reaction to, the limitations of cognition. Tversky and Kahneman identify three
such heuristics:

• Representativeness - the tendency to evaluate the probability of object or event A to
belong to, or originate from, class or process B by the degree to which A resembles,
or is representative for B.

• Availability - the tendency to assess the frequency of a class or the probability of an
event by the ease with which instances or occurrences can be brought to mind.

• Adjustment and anchoring - the tendency to make an estimate by starting from an
initial value and adjusting that to yield the final answer, which unfortunately leads to
an answer that is biased toward the initial value.

Heuristics speed up the decision-making process and often succeed, but sometimes
fail. The Kahneman and Tversky’s heuristics-and-biases program (Kahnemann et al.,
1982) focused on these failures by constructing decision problems that led to structural
decision errors (cognitive biases) caused by the use of heuristics. As a result heuristics
received a negative connotation.

Gigerenzer and colleagues (Gigerenzer et al., 1999) oppose this view and stress above
all the usefulness of heuristics. Their research explores ‘fast and frugal heuristics - simple
rules in the mind’s adaptive toolbox for making decisions with realistic mental resources’.
Todd and Gigerenzer (2000) state that heuristics can enable both living organisms and
artificial systems to make smart choices quickly and with a minimum of information by
exploiting the way that information is structured in particular environments. The latter
aspect is also referred to as a heuristic’s ecological rationality; the degree to which it is
adapted to the structure of an environment.

Hertwig and Todd (2003) go even further in questioning the negative status of cogni-
tive limitations and forward the thesis that they actually enable, instead of disable, impor-
tant adaptive functions. Along the same line, Schooler and Hertwig (2005) introduce a
model that suggests that forgetting facilitates human inference performance by strength-
ening the chain of correlations, linking the target criteria, environmental frequencies, and
fundamental memory-retrieval processes. Still, the argument that heuristics are adaptive
given their ecological rationality implies that when they are applied in a differently struc-
tured environment, they might lead to wrong behavior.

32 Related Research

Error Phenotype versus Error Genotype A useful distinction when talking about
biases is made by Hollnagel (1993). Hollnagel introduces the notion of error phenotype
for the observable manifestation of an error, and the notion of error genotype as the
mental activity that supposedly underlies and produces that observable manifestation.
Many cognitive biases are the phenotypes of heuristics. Tversky and Kahneman (1974)
describe the three heuristics mentioned above, but the number of biases they describe that
these heuristics lead to is significant larger. One example of a cognitive bias following
from a heuristic is the previously described conjunction fallacy. Tversky and Kahneman
(1982) note about this:

“A conjunction can be more representative than one of its constituents, and in-
stances of a specific category can be easier to imagine or to retrieve than in-
stances of a more inclusive category. The representativeness and availability
heuristics therefore can make a conjunction appear more probable than one of
its constituents.”

However, by no means does the application of a heuristic lead in all situations to the
emergence of a bias. On the other hand, for memory biases and effects it is generally
the case that they are the observed ‘error’ phenotypes from the ‘error’ genotypes that are
the basic mechanisms of memory. Therefore, memory biases and effects are a constant
finding within and between subjects.

Cognitive Biases in Real Life Most studies into cognitive biases have taken place in
laboratory settings. However, they do occur in real life, and influence human judgment
and decision-making: various famous accidents in military warfare have been attributed
to false judgments or decision-making under influence of cognitive biases. Perrin et al.
(1993) examine in an empirical study human judgment biases under conditions of un-
certainty and time pressure in surface Anti-Air Warfare (AAW). To be precise, they
studied whether the judgments of naval tactical action officers in a realistic task simula-
tion exhibit characteristics of the heuristics and biases of availability, representativeness,
anchoring-contrast, and confirmation. This is what they found:

“Our subjects ignored baseline trends when other case-specific information was
available (representativeness and availability). They were significantly influenced
by the order they received evidence, showing a recency effect characteristic of
contrast. Additionally, as is characteristic of confirmation bias, they recalled
much more of the information that was consistent with their final hypothesis and
evaluated it as more informative than the inconsistent data, regardless of which
hypothesis they had adopted.”

2.2. Aspects of Cognition 33

Manifestations of Cognitive Biases

The manifestation of cognitive biases can be discussed from two viewpoints. First, its
timing, a dynamical aspect, can be discussed. In other words; it can be investigated
which external and internal circumstances might inflict the occurrence of a cognitive bias.
Second, its positioning, a static aspect, can be investigated: which part of the cognitive
process it influences.

Positioning of Biases When we divided cognitive biases in several classes in Sec-
tion 2.2.2, we touched upon the issue of their position, namely as influencing social, me-
mory, judging or decision-making processes. Another way to position them is by means
of the Skills, Rules, Knowledge (SRK) framework developed by Rasmussen (1983) to
define three types of cognitive processes present in operator information processing. Rea-
son (1990) classifies human errors by means of these three process types as follows:

• Skill-based level: At the skill-based level, human performance is governed by stored
patterns of preprogrammed instructions represented as analogue structures in a time-
space domain. Errors at this level are related to the intrinsic variability of force,
space, or time coordination.

• Rule-based level: The rule-based level is applicable to tackling familiar problems in
which solutions are governed by stored rules (productions) of the type if (state) then
(diagnosis), or if (state) then (remedial action). Here, errors are typically associated
with the misclassification of situations leading to the application of the wrong rule,
or with the incorrect recall of procedures.

• Knowledge-based level: The knowledge-based level comes into play in novel situa-
tions for which actions must be planned on-line, using conscious analytical processes
and stored knowledge. Errors at this level arise from resource limitations (‘bounded
rationality’) and incomplete or incorrect knowledge. With increasing expertise, the
primary focus of control moves from the knowledge-based towards the skill-based
levels; but all three levels can co-exist at any one time.

Another classification that can be made is on the level at which cognitive biases have
impact: within a process, or between processes. For example, most memory biases in-
fluence the recollection process of memories, i.e., which memory is retrieved given a
certain query. Other biases might influence which recollection process executes, i.e.,
which query is executed. The confirmation bias is a good example to clarify this dis-
tinction further, as it operates within and between cognitive processes. Within a specific
cognitive process the confirmation bias influences the weight given to (dis)confirming

34 Related Research

information. On the process level it influences the next information-searching action in
the world, and biases this to confirming instead of conflicting information.

Although it might be useful to train military personnel in recognizing and dealing
with all types of cognitive biases, we focus on a subset that is relevant to the cognitive
models we develop. In Chapters 3 and 4 we focus on the development of a belief and
memory framework for cognitive agents, and model biases that occur within processes,
like in the retrieving and reasoning upon information. In Chapter 5 we focus on the
development of two control frameworks for cognitive agents, for which we model biases
and heuristics that occur between processes, so on the level of control.

Timing of Biases We have not elaborated extensively on when heuristics and biases
occur. We do have mentioned that they are generally considered to be a consequence
of the limitations of human cognition. When there is too much information to take into
account, or too little time to do so, humans apply heuristics and biases might occur.

A second generally held opinion is that they occur especially under conditions of
stress and fatigue, e.g., Cohen et al. (1986) mention that everybody finds that slips of
actions increase with tiredness and stress. The general idea behind this is that these
circumstances shrink the cognitive capacity of humans, and make the limitations of the
cognitive system more prevalent. For example, the results of a study by Harris et al.
(2005) on the influence of extended stress on human performance support the model that
stress decreases resource reserves. They state that the extended stress circumstances de-
crease the participants’ ability to continue to mobilize the resources required to perform
complex tasks. For a more detailed account of the influence of stress, workload, and
fatigue on cognition, see, e.g., Reason (1988) and Hancock and Desmond (2001).

Studying the underlying mechanisms of heuristics and cognitive biases is useful, not
only to understand them, but also to model them. In the next section we introduce various
approaches toward the modeling of cognition, as well as integrated architectures, which
are implemented theories of the mechanisms underlying human behavior. In addition, we
elaborate on the modeling and appearance of cognitive biases in two of these integrated
architectures.

2.3 Models of Cognition

The previous section elaborated on the fact that cognition comprises a wide variety of
cognitive capabilities. In addition, it discussed cognitive biases and how these, to a
smaller or larger extent, influence these capabilities. Dividing cognition in clear concep-
tual parts, like capabilities, facilitates the modeling of such parts. In particular, because

2.3. Models of Cognition 35

each of these parts can be modeled by a modeling approach most suited. However, the
definition and modeling of ‘parts of cognition’ is not enough for implementing a cog-
nitive agent model. In addition, it has to be determined how these parts interact and in
which order they operate. In the introduction of Chapter 5, Control Framework, we will
elaborate on this topic.

We start this section with a discussion of a variety of modeling approaches that have
been used to model (parts of) cognition. Next, we elaborate on integrated architectures
that stress the importance of studying the integrated architecture underlying cognition,
instead of only focusing on the modeling of its parts.

2.3.1 Modeling Approaches

Nowadays, most researchers agree that hybrid modeling is the appropriate way to model
cognition. Hybrid modeling is used as a term to express the fact that a cognitive model
embeds qualitative (symbolic) as well as quantitative (numeric) elements. In the models
developed in this study both qualitative and quantitative elements play a role; the former
to clearly label knowledge, the latter to handle this knowledge in subtle ways.

Hybrid models acknowledge the intuitive feeling that humans embed two approaches
toward the processing of cognitive tasks (Smolensky, 1988; Sloman, 1996). First, they
can reason consciously following certain rules and algorithms, and these can be captured
well by qualitative systems. But second, humans execute cognitive processes on a more
unconscious, automatic level formed by associations, which are better captured by quan-
titative means. Qualitative systems are well-suited to generate rational behavior in certain
tasks, but they usually lack the means to generate typical aspects of human behavior, like
the ability to cope with uncertain or incomplete information. In order to model human
behavior in all its aspects, a hybrid modeling approach is required (Minsky, 1992). Sun
(2002b), and more recently Bader and Hitzler (2005), provide comprehensive surveys of
various types of hybrid systems.

Qualitative Modeling Approaches

A few decades ago it was thought that ‘a physical symbol system has the necessary
and sufficient means of general intelligent action’, as expressed by the Physical Symbol
System Hypothesis of Newell and Simon (1976). This view gave rise to many qualitative
systems of cognition that solely consist of symbols and mechanisms that operate on these
symbols independent of their content.

In general, a qualitative system capable of displaying cognitive behavior embeds a
symbolic model of its environment and a symbolic specification of actions that it can

36 Related Research

perform. In addition, it should embed an inference mechanism. Qualitative systems fre-
quently use condition-action rules, in which case they are referred to as rule-based sys-
tems, or a logic engine. Other examples of qualitative modeling approaches are causal
networks whose connections denote causal relations in a binary fashion, and semantic
networks, in which the connections between knowledge elements are labeled with mean-
ingful symbols, e.g., isa, or has.

A specific subset of systems embedding qualitative elements are formed by systems
whose symbols are labeled with the mentalistic notions belief, desire and intention. The
idea that these three concepts suffice to generate intelligent action dates back to Aristo-
tle (B.C. 350) and was revived by the work of Bratman (1987) on rational agents. For
so-called BDI agents it holds, globally stated, that beliefs represent the agent’s know-
ledge (its information state), while desires represent its goals (the agent’s motivational
state). What intentions exactly represent varies between approaches, but in general the
agent’s deliberation state. In the formal BDI-framework provided by Rao and Georgeff
(1991) intentions are a separate notion which cannot be reduced to the concepts of be-
liefs and goals (desires), while Cohen and Levesque (1990) only take beliefs and goals as
primitives and consider intentions to be a subset of the goals. The main stream of agent
modelers uses intentions to express the agent’s commitments to certain plans that will
lead to achievement of the goals formed by its desires.

Using mentalist notions in agent systems has several advantages. First, the specific
representation of beliefs and goals facilitates autonomous goal-directed behavior tailored
to the current state of the world. Second, agents that are based on mentalist notions
are intuitively understandable. Notions like belief, desire, and intention stem from folk
psychology: they map easily to the language people use to describe their reasoning and
actions in everyday conversation (Norling, 2004). For a panel discussion on the BDI
model of agency, in specific on how it stands in relation to other qualitative models of
agency and on its limitations to capture certain (human-like) types of behaviors, see
Georgeff et al. (1999).

Quantitative Modeling Approaches

Previously, we stressed the benefit of hybrid cognitive models because although quali-
tative models are well-suited to model specific aspects of human behavior, they are less
suited for others. In this section we elaborate on a subset of the quantitative models that
have been proposed as alternatives for the qualitative models of cognition. For extensive
discussions on many other mechanisms to implement reasoning on quantitative data, e.g.,
fuzzy logic, frequency probability, and utility theory, see Russell and Norvig (2003).

2.3. Models of Cognition 37

Connectionist Systems Connectionism is inspired by the structure of the brain, and
views cognition as the emergence of global states in a network of simple components.
Connectionism tries to model cognitive behaviors by interconnecting many simple pro-
cessing elements, referred to as nodes, that can have a small local memory and form
together with their connections a so-called Artificial Neural Network (ANN). When the
network is active its nodes operate in parallel on their local data and the numerical (in-
stead of symbolic) information that they receive through their connections. Within a
connectionist model knowledge is distributed and resides in the weights of the connec-
tions between the simple units.

Various types of artificial neural networks can be distinguished based on their over-
all structure and way in which they are formed, see e.g. Maes (1994) and Browne and
Sun (2001). One important aspect that ANNs can vary in is on whether they incorporate
distributed or local representations. Local representation networks resemble the quali-
tative approach in that they use single nodes to represent symbols. However, the rules
operating on these symbols are not represented symbolically like in causal or semantic
networks, but formed by the numerical properties of the nodes and connections: acti-
vation thresholds and strengths respectively. Neural networks incorporating distributed
representations do not capture meaning in one single node, but let it emerge from the
interaction of multiple neurons. This makes those neural networks more biological plau-
sible, but also more complex and harder to analyze than the local representation versions.
Another drawback of such neural networks is that for forming (’training’) them a large
amount of training data, generally in the form of thousands of examples, is required.

In general, connectionist systems are formed by training them on a large amount
of data using a variety of techniques (e.g., supervised, unsupervised, or reinforcement
learning). However, this data might not always be available. An alternative approach to
ANNs to deal with the lack or ambiguity of information as often encountered in the real
world are Bayesian systems.

Bayesian systems A Bayesian system consists of a network whose nodes represent
(any kind of) variables, and whose connections encode the causal dependencies among
the variables; missing connections encode causal independencies between variables.The
dependencies are quantified by conditional probabilities for each node given its parents
in the network. Bayesian networks can be used to model a large number of cognitive
processes: reasoning (using the Bayesian inference algorithm), learning (using the ex-
pectation maximization algorithm), planning (using decision networks) and perception
(using dynamic Bayesian networks), see Russell and Norvig (2003).

38 Related Research

Dynamical Systems Although connectionist and Bayesian systems are more biologi-
cally plausible than symbolic systems, they still comply to the view of cognition as an
information processing system that converts a set of inputs into an set of outputs. In
contrast, dynamical systems view cognition as a situated activity and model it as part of
a system that also encompasses an agent’s body and world (Beer, 2000).

Dynamical system theory states that ‘Natural cognitive systems are certain kinds of
dynamical systems, and are best understood from the perspective of dynamics’ (Gelder,
1995). Dynamical Systems consider cognition to be a multiple-dimension space of
thoughts and behaviors that is explored when thinking. For modeling cognition as a
dynamical system it has to be described how this space of thoughts and behavior is ex-
plored under influence of external and internal pressures. This is usually done by dif-
ferential equations. Knowledge is distributed within a dynamical system, namely over
many different kinds of processes, each represented by a numerical equation.

Selected Modeling Approach

Most of the research on modeling synthetic entities for training simulations embed an ap-
proach that is mainly qualitative in nature, see Section 2.4.1. Reason for this is that quali-
tative models offer conceptual and practical benefits. First, ‘mental states’ are transparent
using this approach, and it is easy to backtrack which part of the model is responsible
for a certain behavior. Second, because the model is made up of discrete parts, it is easy
to access and alter one part of the model without affecting the rest. Third, discrete parts
facilitate reuse of parts of the model. However, qualitative models are not well suited for
modeling some fundamental characteristics of cognition, like the ability to learn and to
deal with uncertain or incomplete information1. To model such aspects, frequently quan-
titative elements are embedded within qualitative models. This endangers the benefits of
the latter: its functioning becomes less transparent, and the knowledge acquired during
execution and stored in quantitative terms is difficult to reuse.

Sloman (1997) argues that selecting the ‘best’ approach for modeling cognition for
a specific task is a matter of analyzing trade-offs. We know that our goal is the deve-
lopment of cognitive models that enable agents to fulfill tasks within simulator training
of military tasks currently fulfilled by humans. In Section 1.1.5, we denoted several re-
quirements for these agents. Among others, they need to reduce costs of training, which
makes it undesired that a new agent has to be developed from scratch for every scenario.
Furthermore, training requires that the behavior of such agents is varied but tunable,

1Qualitative approaches towards these aspects do exist. For example, inductive logic programming is a
type of machine-learning for logic programs, and uncertainty can qualitatively be denoted by, e.g., comparative
probability, linguistic labels, or partial preference orderings (Parsons, 2001).

2.3. Models of Cognition 39

which requires a clear understanding of the source of the behavior. These requirements
motivate us to model cognition based on qualitative representations. Another reason for
this is that we want to base our models on the mentalistic notions of beliefs and goals,
because of the benefits that mentalist notions bring to the modeling and understanding
of agent behavior. However, we are also interested in the modeling of more human-like
behavior, like the ability to deal with information with varying degrees of certainty, and
the fact that humans almost never behave in the same way. We want to model variety in
behavior due to the occurrence of cognitive biases that can influence cognitive processes
to a smaller or larger extent. These aspects are hard to model following an approach
that is purely qualitative in nature. Therefore, we also embed quantitative aspects in our
models.

As an outlook: in Chapter 3 we attach a quantitative certainty value to beliefs of
agents, and reason about the classification of a radar contact using a naive Bayesian clas-
sifier; in Chapter 4 we determine and use availability values of beliefs; and in Chapter 5
we reason about the relevancy (utility) of reasoning components, among others based on
the agent’s cognitive exhaustion level, a quantitative value.

2.3.2 Integrated Architectures

In the introduction chapter we quoted Lewis (2001) who states that ‘cognitive archi-
tectures constitute a fixed set of processes, memories and control structures that define
its underlying theory about human cognition’. This definition of cognitive architectures
supports our previous remark that for implementing a cognitive agent model not only
‘parts of cognition’ need to be modeled, but also the way in which these interact, i.e.,
their control. Newell (1990) was among the first to stress the importance of studying the
integrated architecture underlying cognition. He phrased this as the need for a unified
theory of cognition: a single set of mechanisms that together account for all aspects of
cognition, similar to the mind. A few years later Sloman (1997) expresses the same need,
i.e., the need to study architectures to research how diverse but interrelated capabilities
can be put together.

Fulfilling their call, many integrated architectures have been developed in the last
two decades that facilitate the building of software agents. An agent is formed when
task-specific declarative and procedural knowledge is added to the architecture that takes
care of everything else, like the functioning of the agent’s memory and how it decides
on its actions. How this is done greatly varies between architectures. The work of Pew
and Mavor (1998), later extended by Ritter et al. (2003), provides the most extensive and
comprehensive overview and comparison of existing architectures for modeling human
behavior to date. For another overview, see Morrison (2003).

40 Related Research

This section is about architectures, to investigate whether existing architectures can
be used to build software agents for our research objectives. We start with a general
discussion on the suitability of various architectures to model cognition and human be-
havior. To increase the readability of that section, we do not elaborate on the architectures
and software packages mentioned. Instead, Appendix A lists and shortly discusses the
various architectures and languages referred to throughout this dissertation. Next, we
elaborate in more detail on two cognitive architectures frequently used for the develop-
ment of cognitive agents, Soar (Laird et al., 1987) and ACT-R (Anderson and Lebiere,
1998; Anderson et al., 2004). We discuss their applicability in general, as well as their
relevance for our research objective. Hereby specific attention is paid to their ability to
model cognitive biases.

Suitability of Architectures

In the beginning of this study we investigated several integrated architectures to gain in-
sight in which cognitive architectures would be (most) relevant to the research questions
posed. This turned out to be a hard question, because architectures are very diverse and
comparing them is like comparing apples to pears. Simon (1997) notes about existing
integrated architectures that they can be seen to be built around a core cognitive activity,
which is then extended to handle other cognitive tasks, e.g., the core cognitive activity of
ACT-R is semantic memory, in Soar the core is problem-solving.

From reviews on the modeling of human behavior for military simulations (Pew and
Mavor, 1998; Banks and Stytz, 2003) it follows that there exists no consensus on the
way, or architecture, that is best suited for this task. Van Lent et al. (2004) subscribe to
this, as in their research three separate human behavior models are used to support three
different roles for synthetic entities in a single simulated scenario. They select for each
role an architecture suited to model the requirements posed for each role:

“The Soar architecture, focusing on knowledge-based, goal-directed behavior,
supports a fire team of U.S. Army Rangers. PMFServ, focusing on a physio-
logically/stress constrained model of decision-making based on emotional utility,
supports civilians that may become hostile. Finally, AI.Implant, focusing on in-
dividual and crowd navigation, supports a small group of opposing militia.”

Morgan et al. (2005) try to get insight into the strengths and weaknesses of architectures
by the introduction of dTank. dTank is a competitive environment which can be used
for architectural comparisons of competitive agents, and for comparisons of human and
agent behavior. They used dTank to compare models built in Java, Jess and Soar. The
development of dTank is continued (Ritter et al., 2007a) and additional models are de-
veloped, most recently a CoJACK model (Evertsz et al., 2008b). Morgan et al. (2005)

2.3. Models of Cognition 41

state that only few modelers have used the same environment to examine the behavior of
humans as well as that of agents built in different architectures.

A noticeable exception is the Agent-based Modeling and Behavior Representation
project (AMBR), initiated in 1999 by the Air Force Research laboratory (AFRL). AMBR
focused on comparing models of complex human behavior. Gluck and Pew (2005) cover
its methods and results. In short, four research groups were asked to develop models
for the same two tasks. Each group used a different architecture, which resulted in a
comparison between ACT-R, COGNET/iGEN, D-COG, and EPIC-Soar. The focus of the
first experiment was modeling multi-tasking; the second was modeling category learning.
The domain for both experiments was a simplified version of Air Traffic Control.

The conclusion of this project was that ‘the quality/acceptability/appropriateness of
a model, and any effort to rank order it relative to models developed with other archi-
tectures, depends on what one values in a model and an architecture.’ Gluck and Pew
mention several factors on which models can be evaluated and compared: goodness of fit
of the model data with the human data; the degrees of freedom available in implementing
the model; how much of the model was reused from previously implemented models; the
interpretability of the model’s behavior during run-time; and the generalization of the
model. These factors are likely to vary between the implemented models, between the
architectures used for this implementation, and even more general between the various
approaches toward the modeling of cognition implemented in these architectures.

Therefore, it is difficult to select an architecture which is best suited for modeling
cognition and thus human behavior. Fortunately, our goal is not to model cognition in all
its facets, but to develop cognitive models for tactical training simulations that will enable
software agents to play a role in a human-like way, and that aid in providing cognitive
feedback. Model requirements for these objectives are listed in Section 1.1.5, which
made us decide to model cognition using mentalistic notions and following a hybrid
approach (Section 2.3.1). Below we introduce the cognitive architectures Soar and ACT-
R, and discuss their applicability and relevancy for our research objectives.

Soar

Description The Soar architecture implements a qualitative approach toward the mo-
deling of cognition (Laird et al., 1987), and is proposed by Newell (1990) as ‘a candidate
unified theory’.

Soar’s basic assumption is that human behavior can be modeled as a set of parallel
operating and interacting processors, to be precise by a cognitive, perceptual and mo-
tor processor. Soar’s perceptual and motor processors provide the means of perceiving
and acting upon an external world. In addition, Soar incorporates an unbounded work-

42 Related Research

Figure 2.1: A simplified version of the Soar Algorithm (Laird et al., 2006))

ing memory through which the three processors communicate. This working memory
symbolically represents the current state of knowledge, which comprises the inputs of
perception, the output parameters for the motor modules, and purely internal structure.
These symbolic representations are called working-memory elements.

Soar assumes human behavior to be goal-oriented. It implements this as a search
through interacting problem spaces, where each problem space contains a set of symbolic
production rules called operators that are applied to states to produce new states. While
searching, the model learns the results of its problem solving. A task, or goal, is modeled
by the specification of an initial state and one or more desired states.

When the model is run, symbolic production rules called productions match the con-
tents of working memory and can either directly retrieve additional information from
long-term memory (automatic association; an unconscious reasoning step) or propose
to apply a certain operator (embedding a conscious reasoning step). These productions
match and fire in parallel, and therefore multiple operators might be proposed at the same

2.3. Models of Cognition 43

time. However, only one operator can execute each cycle, but the rules embedded in an
operator can fire simultaneously. Which operator is applied is determined by weighing
the operators’ preferences (qualitative labels denoting its priority), which can be added
to operators by productions.

When sufficient knowledge is available in the problem space for a single operator to
be selected and applied to the current state, the behavior of a Soar model is directed and
smooth, as in skilled human behavior. Whenever knowledge is lacking and the active
preferences are not sufficient to allow a unique choice, the architecture responds by set-
ting a subtask to resolve this state called impasse, and the entire process recurs. For a
simplified version of the Soar algorithm, see Figure 2.1.

If the recursive processing adds new preferences to operators that are active in the
original task, Soar’s learning mechanism can create a new association between those
working-memory structures in the original task that led, through a chain of associations
in the subtask, to the new preferences in the original task. This learning mechanism is
called chunking and can be turned on or off.

The initial knowledge of a Soar model has to be encoded by the human modeler
in symbolic production rules. The initial state of the model is often coded manually,
but a model can also start with no knowledge of the problem state and just acquire that
knowledge from the external environment.

Applicability Soar has been evaluated for its suitability to model human behavior for
a wide variety of tasks, among others military. It is frequently used to develop agents
that act as (large) expert systems. For this, knowledge off-line encoded in Soar is used
on-line by the agent to decide on its actions and to solve problems.

A well-known example of such an effort is TacAir-Soar (Jones et al., 1999), which
is a fully autonomous Soar system that embeds behaviors from the tactical air domain.
TacAir-Soar’s knowledge base consists of over 7500 rules, which provide agents with be-
haviors for a wide range of simulated aircraft and missions. The agents, once briefed, can
autonomously plan and execute their missions using US doctrine and tactics. TacAir-Soar
can be used to model friendly, opponent, as neutral forces in simulated environments.

Soar has also been used to model opponents (Wray et al., 2002, 2004) and subordi-
nate team members (Van Lent et al., 2004) as part of the Virtual Training & Environ-
ments (VIRTE) program of the American Office of Naval Research (ONR). This pro-
gram focuses on developing virtual trainers for Military Operations on Urbanized Ter-
rain (MOUT). For this program synthetic entities were modeled as either opponents or
members of a fire team consisting of four U.S. Marines. This fire team is situated in
a virtual urban environment and has the task to clear a building that possibly contains

44 Related Research

enemy soldiers. The environment and synthetic entities were developed using the Unreal
Tournament game environment. Wray et al. (2002) list five high level requirements for
the intelligent opponents of the fire team in the domain described: Observational fidelity;
Faster than real-time performance; Behavior variability; Transparency; and Rapid, low-
cost development. Later on Wray et al. (2004) extend this list with the requirements of
‘Competence’ and ‘Taskability’, and transform ‘Faster than real-time performance’ to
‘Minimal computational footprint’. Most of these requirements have also been listed in
Section 1.1.5 as required for the cognitive software agents that are to play a role within
a simulated training environment. Wray et al. (2004) conclude their paper with the state-
ment: ‘Achieving intelligent opponents that are fully autonomous, believable, and inter-
active, while exhibiting a variety of behaviors in similar circumstances, will require much
additional research and development.’ More specific, they mention that ‘less’ competent
behaviors (possibly representing poorly trained guerrilla’s or novices), and additional
errors in judgment and perception could be modeled.

The team members modeled by Van Lent et al. (2004) are of less interest to our
research objectives than the opponents, since these team members were not autonomous;
a human player directed their mission-specific behavior by issuing specific commands.

Relevancy The Soar architecture is interesting for our goal of modeling cognitive agents
for training simulations, since it is shown to be sufficiently powerful to generate believ-
able individual human behavior in military situations. In addition, it is sufficiently robust
to run large-scale models connected to real-world systems in real time. However, most
Soar models are developed to display only one type of behavior, namely expert behavior.

Randolph M. Jones (SoarTech, private conversation at ICCM 2007) explained that it
is hard to have the TacAir-Soar agents display wrong behavior. In one project the goal
was to train oil rig operators in handling pilots that fly in too steep. This training should
take place in a simulated environment with TacAir-Soar agents controlling these pilots.
Because TacAir-Soar agents normally display correct behavior, their procedure on ap-
proaching a platform had to be altered so they would fly in too steep. Unfortunately, this
did not work, because as soon as the behavior was obviously false, e.g., they would fly
too quick for their height, other behavior rules would take over and correct the behavior.

So, although the Soar architecture looks promising for generating human behavior, it
remains to be seen how suited it is for displaying behavior at a variety of performance
levels. One reason why this may be hard is that Soar does not embed the cognitive lim-
itations found in humans, which possibly give rise to cognitive biases. Most obviously,
it embeds an unbounded working memory while it is uncontentious that human working
memory is limited.

2.3. Models of Cognition 45

Interestingly, research has been done on embedding performance moderators in Soar.
Chong (1999) models fear in Soar. Unfortunately, this is not a dynamical model and
thus does not allow for changes in this moderator value: the models start and stay fear-
ful. Gratch and Marsella (2001) extend Soar with a model of emotional appraisal called
Émile. Émile embeds mechanisms for evaluating how environmental events relate to an
agent’s plans and goals, and how these evaluations give rise to emotions. However, the
effects of these emotions on behaviors are left to be determined by the modeler. In more
recent work, Marinier and Laird (2007) incorporated a computational model of emotion,
mood, and feeling in Soar, and demonstrate that such a model can help direct problem
solving, and speeds reinforcement learning.

Although all these models are interesting for the purpose of developing software
agents that show more human-like behavior, none of them is tailored to model the oc-
currence of cognitive biases. The modeling of more human-like behavior due to the
incorporation of emotions is not one of the topics of this dissertation. This study at-
tempts to model more human-like behavior by incorporating cognitive models that show
varied behavior, with (part of) this variety stemming from the occurrence of biases.

ACT-R

Description The ACT-R architecture implements a hybrid approach toward the mode-
ling of cognition (Anderson and Lebiere, 1998). ACT-R constitutes a unified theory of
cognition and is based on detailed findings concerning the functioning of human memory
and of learning and problem-solving processes.

ACT-R incorporates a declarative and a procedural memory module, as well as a per-
ceptual (visual) and motor (manual) module that provide the means for perceiving and
interacting with an external world. All modules, except the procedural memory module,
are accessed through a specific buffer. Buffers represent a strictly limited working me-
mory: each buffer can hold one element at maximum. Working memory is not separated
from long term memory, but is the portion of declarative knowledge that is currently ac-
tive, and represents the current state. Declarative knowledge is represented in ACT-R
as chunks of information; procedural knowledge is represented by if-then rules called
productions. For a visual overview of the ACT-R architecture, see Figure 2.2.

ACT-R’s qualitative nature is represented by the production system it embeds, its
quantitative nature by a set of massively parallel processes that can be summarized by
a number of mathematical equations. These subsymbolic equations control many of the
symbolic processes.

Models developed in ACT-R are goal-directed. Its processing consists of moving
from an initial state to a specified goal state, which is encoded as a special type of declar-

46 Related Research

Figure 2.2: The organization of information in ACT-R 5.0 (Anderson et al., 2004))

ative memory element. This movement takes place when productions fire. A production
responds to some goal, can retrieve information from declarative memory, and possi-
bly takes some action or sets a sub-goal. Created sub-goals represent intermediate steps
toward the end goal, form a hierarchy, and have to be satisfied in a bottom-up manner.

A maximum of one production can fire at a single time, so when the conditions of
more rules are met, a conflict resolution mechanism determines which one fires. It does
this using the rules’ expected gain value, determined by a quantitative utility equation,
and based on the rules’ probability of success, their costs, and the current goal’s value.

Initial knowledge, both declarative and procedural, is hand-coded by the human mod-
eler. Also many values have to be hand-coded, such as the initial numerical parameters
for the strength of productions, the cost and probability of success of these productions
with respect to a goal, and the base-level activation of declarative knowledge structures.
However, ACT-R assumes several learning mechanisms that tune these values in run-
time. For example, the activation level of declarative knowledge elements is raised the
more the element is used. Similarly, the expected gain value of productions is heightened
the more often the rule is successful, e.g., when its sub-goal is achieved.

Applicability ACT-R models have been developed and validated against human data
for a large number of tasks. Most of these efforts concern the modeling of memory tasks
or small problem-solving tasks, like the Towers of Hanoi (Gunzelmann and Anderson,

2.3. Models of Cognition 47

2001). For these tasks it is shown repeatedly that ACT-R is capable of matching human
performance data, including cognitive biases displayed by people. For example, Ander-
son et al. (1998) show that the ACT-R theory accounts for a wide variety of list memory
paradigms, including the recency and primacy effect.

In recent years, ACT-R has also been used to model human behavior in military sim-
ulations. For example, Best et al. (2002) developed as part of the Virtual Training & En-
vironments (VIRTE) program ACT-R models that control opposing and attacking forces
in the MOUT domain. Following this exercise Best and Lebiere (2006) describe a gen-
eral approach for developing ACT-R agents that have to interact in a three-dimensional
space in real-time with humans and each other. Another military task was modeled by
Anderson et al. (2004). They describe how the data of an ACT-R model practicing a
simplified Anti-Air Warfare Coordinator task strikingly matches the learning and perfor-
mance curve of humans. Juarez-Espinosa and Gonzalez (2004) discuss an ACT-R model
of situational awareness (SA) for military command and control that can reproduce a
commander’s behavior. Although their model is very simple and supported by multi-
ple information pre-processing agents, they do manage to show a relation between the
modeled commander’s memory, displaying omission errors, and SA performance.

Concerning the modeling of errors with ACT-R, Byrne and Kirlik (2005) model the
taxiing behavior of pilots from commercial airlines, and show that a variety of decision-
related errors can be correctly modeled. For this, their model assumes that when time is
short, pilots use heuristics. More precise, in these circumstances the pilot models tend to
rely on computationally cheaper, but less specific, information gained from experience
with a wider class of situations, of which their current situation is an instance. This
work resembles in some aspects the work of Schooler and Hertwig (2005) who also
focus on the modeling of heuristics within ACT-R. Fotta et al. (2005) used the ACT-R
architecture as basis to build their Human Error Modeling Architecture on, and provide
a clear overview of the types of errors that the mechanisms embedded in ACT-R can
produce. Also Lebiere et al. (1994) focus on error modeling in ACT-R and show that
omission and commission errors can satisfactory be modeled.

Besides the modeling of human behavior for synthetic entities, ACT-R has also been
used to successfully model intelligent tutors teaching mathematics and computer pro-
gramming in high schools, see (Carnegie Learning Inc., 2009). These, and other intelli-
gent tutors, are further discussed in Section 2.4.2.

Relevancy The ACT-R architecture is interesting for our goal of modeling cognitive
agents for training simulations. First, ACT-R has been shown to be sufficiently powerful
to represent individual human behavior in military situations. Although it must be noted

48 Related Research

that in all the mentioned research projects the agents simply performed doctrine behavior,
following a fixed set of rules. For example, the only variability found in the behavior rules
of the attacking forces modeled by Best et al. (2002) was whether they, after entering a
room, would clear the area to the right or left. Therefore, it remains to be seen how suited
ACT-R is for the modeling of varied behavior as required for training (Section 1.1.5).

A second reason why ACT-R is interesting for our research objective, is that it has
been extensively demonstrated that the ACT-R mechanisms give rise to many typical
cognitive biases and errors. Most of the research mentioned shows that specific (pheno-
type) errors can be explained by the specific mechanisms (error genotype) embedded in
ACT-R. An exception on this is the research on errors stemming from the use of heuris-
tics, which have to be hand-modeled by the agent designer. In the latter case an additional
mechanism is required that controls when these heuristics are used. But also in the former
case it should be so that under specific circumstances of stress and fatigue the amount of
errors increases. To model these kinds of aspects it is required that behavior moderators
are incorporated within the ACT-R framework. Ritter et al. (2007b) discuss six theories
of stress and show how four of these can be incorporated in ACT-R as overlays. An over-
lay is defined as ‘an adjustment or set of adjustments to the parameters or mechanism
that influence all models implemented in the architecture to reflect changes due to an
altered mental state or due to long term changes such as development.’ The two other
theories were not possible to model as overlays, but require a more fundamental change
in the architecture. One of the theories, named ‘the task as stressor’ has been modeled
as part of this study, see Section 5.2. The modeling of fatigue within ACT-R is done
by Gunzelmann et al. (2007). They incorporate fatigue as an overlay and show that its
effects on performance in a sustained attentional task resembles human data.

Because ACT-R is a hybrid architecture, it remains to be seen how transparent the
functioning of the models developed in ACT-R is. Related to this is the question how
reusable the knowledge embedded in the developed models is.

To get hands-on experience with the two architectures described in this section, and
to develop a sense for the kind of tasks they are suited for, we have developed cognitive
software agents in ACT-R and Soar, in addition to cognitive agent models implemented
in Swi-Prolog (Wielemaker, 2003) and LeadsTo (Bosse et al., 2007).

2.4 Applications of Cognitive Models

In this section we first discuss four application domains in which cognitive models can be
applied to model human-like behavior. Next, we elaborate on the generation of feedback
on task performance; also in this process cognitive models can play a role.

2.4. Applications of Cognitive Models 49

2.4.1 Human Behavior Models for Simulated Environments

Much of the research discussed so far focuses on the modeling of cognition or human
behavior from the perspective of natural science, i.e., to understand it better. In contrast,
here we describe four distinct research areas that develop software agents for the purpose
of generating human-like behavior for specific tasks, so from a design science perspec-
tive. This division in four areas is adopted from Ritter et al. (2003) who describe four
main application areas for human behavioral models: education and training, entertain-
ment, automated support, and systems analysis. For each area we examine to what extent
the general requirements of the behavior of the developed agents match with the require-
ments of the behavior of an agent for our goal, which is the ability to display human-like
behavior at a variety of performance levels: from rational to biased.

Training and Simulation

Nowadays, a large part of military training takes places in simulated environments, for
the reasons mentioned in Section 1.1. Tasks that are trained range from low-level tasks
such as shooting at targets, to high-level tasks such as commanding a complex military
operation. Setting up training for the last type requires many people, in particular if every
entity in the training environment has to be controlled by a human. Luckily, this is often
not required. In general soldiers do not operate alone, but as a team. Such a team is
commanded by a single entity. When this entity is human, the members of such teams
can be simulated without losing behavioral validity, since this is preserved by the human
commander. Such simulated entities are generally called Computer Generated Forces
(CGFs). CGFs that can be controlled by a human player are also referred to as Semi-
Automated Forces (SAFs). For an overview of specific programs that are developed to
create synthetic forces, see Table 2.2 in Pew and Mavor (1998). Well known are the
packages ModSaf and its follow-up OneSaf. In addition, some military training systems,
e.g., Virtual BattleSpace 2 (VBS2), also allow the programming of their virtual entities.

Because the human decides about the actions of the simulated entities, CGFs do, in
general, not posses much intelligence or reasoning capability. This is fine for most tasks,
e.g., walking from point A to point B can be done without much intelligence in most
cases. However, their behavior might turn awkward due to their limited intelligence.
A case in point is when there lays a minefield between A and B. No human soldier,
even when ordered, would keep walking forward when all its team members get blown
up before him. Unfortunately, CGFs are likely to do so. The limits in intelligence in
CGFs becomes particular prevalent when their behavior is set by a human modeler before
the training scenario starts, and is not controlled during training. Unfortunately, this is

50 Related Research

exactly the situation of much training nowadays due to limited personnel.
Anja van der Hulst (TNO Defence, Security and Safety, personal conversation) trains

military personnel for foreign peace-keeping missions by running them through a series
of tactical scenarios developed in VBS2. This software package can simulate a variety of
environments as well as human entities, and offers a scripting language to model behavior
for these simulated human entities using basic, pre-defined behaviors. Unfortunately, it
is proven time after time that the intelligence incorporated in these basic behaviors is
not sufficient to create human-like behavior, and therefore to create a realistic training
environment with according experiences. Van der Hulst discusses two cases in point,
emerging from the basic behavior incorporated in CGFs to ‘take cover when fired at’.
The first is that these CGFs will, e.g., when fired at in the middle of the desert, run
for miles and miles until this cover is reached. The second that ‘taking cover’ is also
implemented as standing with 20 other CGF’s in a market stall consisting of a cotton
cloth, given that the latter is an ‘object’.

These two examples highlight a critical aspect for the generation of human-like beha-
vior in simulated environments; the correct representation of knowledge within the agent
(first example) as well as in the simulated task environment (second example). The sec-
ond example also touches upon the topic of whether all required knowledge should be
formed by the agent on-line, or whether part of it can be put in the environment off-line.
In the first case the agent should be able to conclude, e.g., that a cotton cloth is not ap-
propriate to take cover, for which it has to have knowledge about the properties of cotton
and the ones required to be a suitable cover. In the second case it is predetermined that a
cotton cloth is not suitable for taking cover, and therefore the environment does not tag
this object with the property ‘cover against fire’.

The finding that CGFs are not able to display human-like behavior is not new. Sander-
cock (2004) identifies, using a Turing Test, several areas in which CGFs consistently
show weaknesses when compared to human players. It is found that current CGFs per-
form weakly on: environment awareness, human variance, persistence, vengeance, an-
ticipation, learning, and teaming.

Relevancy Current CGFs are in general not yet capable of displaying human-like be-
havior that is required for realistic tactical training, which includes capabilities such as
situational awareness and anticipation. They are unable to display rational behavior, let
alone more biased behavior. The military is interested in synthetic entities that do not
display the mentioned weaknesses of current CGFs. Our proposal to get there is embed-
ding valid human behavioral or cognitive models in the software agent controlling these
entities.

2.4. Applications of Cognitive Models 51

Several other researchers have attempted to do the same. Section 2.3.2 described
attempts to develop cognitive models that could control synthetic entities in Soar (Jones
et al., 1999; Wray et al., 2002, 2004; Van Lent et al., 2004) and ACT-R (Best et al., 2002;
Juarez-Espinosa and Gonzalez, 2004). In addition, Van Lent et al. (2004) developed
human behavioral models in PMFServ. The development of JACK was spurred because
of the necessity to model teams of BDI intelligent software agents for military training
simulations (Lucas and Goss, 1999).

For a more general survey on the technologies and progress made in the construction
and use of software agents controlling synthetic entities see (Stytz and Banks, 2003a,b;
Banks and Stytz, 2003). In general it can be stated that there does not yet exists a satis-
ficing solution for developing intelligent behavior for training simulations that meets our
requirements.

Entertainment

In the last two decades the entertainment industry has put much time and effort in de-
veloping intelligent software agents for simulated environments: in particular for First
Player Shooters (FPSs). FPSs are video games in which the player’s on-screen view of
the game world simulates that of a character. FPSs generally involve an avatar, one or
more ranged weapons, and a varying number of enemies (Rollings and Adams, 2003).
These enemies can be played by other humans, for example in on-line multi-player
games, but are usually played by bots. Bots are pieces of software that control simu-
lated characters in a game environment. Bots are programmed using techniques from
so-called game Artificial Intelligence, which is a subset of common, academic Artificial
Intelligence (AI). Typical examples of game AI are collision detecting techniques, and
path finding and path planning algorithms such as A* (Hart et al., 1968). In general, the
reasoning of game bots is scripted or limited to a few simple heuristics.

Dependent on the level of the human player, bots are easier or harder to beat. In
any case it holds that certain abilities of bots, such as a perfect hit rate, should be toned
down to give the human player a feeling of fairness. Laird and Duchi (2000) conclude
from their attempt to model a human-like Quake-bot using Soar that firing accuracy and
movement speed are significant determinators for the believability of the bot.

Although the firing accuracy level is constrained to preserve believability, it can still
have different values. As such, it is possible to generate behavior at different compe-
tence levels. Unfortunately, these variations often do not occur within play, but are set
beforehand. When bots do alter their competence level within play, this is not due to
human-like aspects as stress or exhaustion. They alter their level to match the level of the
human player, to increase the fun of the game (Scott, 2002).

52 Related Research

Relevancy Many techniques used in game AI might be useful for our purpose. How-
ever, reuse is not without danger, since bots are developed for simulations that have as
their primary function entertainment, and not training. For game AI it holds (Tozour,
2002):

“Our field requires us to design agents that produce appropriate behaviors in a
given context, but the adaptability of human-like ‘intelligence’ is not always nec-
essary to produce the appropriate behaviors, nor is it always desirable”.

For example, hacks and cheats are generally accepted as long as they increase game play,
and are not obvious (Scott, 2002). An example of a common cheat is that bots know
where the player is, although they have not observed that. Such cheats can easily cause
unrealistic behavior, which is fine for games as long as it enhances the fun of playing.
However, such behaviors might not always be appropriate for training simulations. For
example, when a trainee has successfully crept up on an enemy, it is undesired that this
behavior goes unrewarded because the enemy knows where the trainee is anyway.

For training simulations the main goal of modeling human-like behavior is not to
increase the fun of training, but to increase the realism. It is doubtful whether know-
ledge concerning the modeling of human-like behavior in games can aid this increase
in realism. For example, game AI has not been been used to model biased behavior.
For a survey of commercial game technologies related to behavior modeling and their
relevance for military simulations, see Diller et al. (2004).

Automated Support

The increase in system technologies over the last decades has resulted in an increase of
information that is available at any time to an operator of such a system. Unfortunately,
more is not always better. Too much information can lead to a state of information
overload. On top of this, information might be incomplete or uncertain, which further
complicates the decision-making process. As such, there has been an increasing demand
for automatic support of system operators.

Systems capable of generating support are usually referred to as intelligent decision-
support systems. The support they provide varies: some take over the task, others prepare
materials or information, yet others modify the display to help distinguish between alter-
natives, or to make performing actions easier. Some of this support can be delivered by
a software agent in the form of an intelligent assistant. An example of such an intelli-
gent assistant developed using the COGNET architecture is described by Weiland et al.
(1998). Their Naval Surface Fire Assistant helps a human gun commander to utilize a
gun system, and is understandable to its human supervisor.

2.4. Applications of Cognitive Models 53

For generating support, it is minimally required that the intelligent decision-support
system incorporates an expert model of the task to ensure that its recommendations are
justified and useful. However, by itself, this is not sufficient. Current decision-support
systems are often not used efficiently, because the operators lack confidence in the rec-
ommendations of the system (Moulin et al., 2002). To increase confidence, the system
should be able to convince its user that its suggestion is justified and useful. For this
it is important that the system incorporates a user model. A user model can be defined
as ‘a model that incorporates information about a system user to provide services that
supports its demands’ (McTear, 1993). Neerincx (2007) states that intelligent decision-
support systems for complex, military tasks have to acquire and maintain knowledge of
the cognitive and affective load of the tasks and situation, and the capacities of the user to
cope with this load. By means of cognitive and affective load models adequate decision-
support can be given that supports shared situation awareness, trust and scrutability.

Relevancy Expert and user modeling is relevant for training systems: feedback that is
provided to the user of a training system (a student) should be based on an expert model,
and tailored to the specific user. More specific, for adapting instructions and feedback to
the individual student, a student-model that incorporates the knowledge of the student is
required.

Therefore, knowledge developed within the field of intelligent decision-support sys-
tems concerning the modeling of expert and user models is relevant to our research objec-
tive. However, this knowledge might not be directly applicable and reusable. Supporting
decisions in minimal time might require a different type of expert and user model than
task training. In addition, the development of users models for decision-support is a
younger research area than the development of user models for training, which makes it
more likely that the former can learn from the latter. In Section 2.4.2 we elaborate on
methods with which expert and student models can be formed that are developed within
the research field of intelligent tutoring systems.

Systems Analysis

A last field that realistically models human task performance in simulated environments
is engineering. The field of engineering has created multiple models of users of their sys-
tems, often on a complex operator level. These simulated operators are used to evaluate
proposed human-machine designs and operator procedures.

Several general engineering-based architectures for the modeling of human operators
have been developed, see Pew and Mavor (1998) for an overview. In general the main
focus of these engineering-based architectures is the modeling of the human-machine

54 Related Research

interaction part. Therefore, they are more concerned with modeling the psychomotor
tasks of humans than with modeling cognitive processes. The main reason why it is
possible for the model developers to abstract from internal cognitive mechanisms is that
the tasks for which they model operators are commonly well-defined, procedural tasks.

Nowadays, this field starts to realize the potential of using cognitive models to eva-
luate systems for a wider range of tasks than currently looked at, i.e., ill-defined, complex
tasks instead of well-defined, procedural tasks. For a paper promoting the synergy of re-
search into cognitive modeling and human-machine interaction, especially concerning
the evaluation of user interfaces, see Ritter et al. (2001). Two examples of such research
efforts are described by Amant et al. (2007) and Ryder et al. (1998). Amant et al. describe
a cognitive model developed in ACT-R for the evaluation of cell phone menu interfaces,
while Ryder et al. describe a cognitive model developed in COGNET for the evaluation
of an integrated telephone services workstation interface.

Relevancy Human-like operators developed for system analysis could in principle be
used to play the operator role in a training simulation. Unfortunately, these models are
often task specific and connected to a simulation of the domain they are developed for.
This makes it hard to gather which aspects are relevant and reusable for our domain.

In addition, the developers of operator models are in general more interested in a
model that is usable and approximately correct, than in modeling the detailed internal
mechanisms giving rise to behavior (Ritter et al., 2003). A case in point is that specific
operator models, and engineering-based architectures in general, do not model any type
of errors.

Moreover, current operator models are often developed for tasks that are not at the
level of complexity sought after. The knowledge developed in this field concerning the
modeling of expert behavior for well-defined, procedural tasks is likely to be reusable for
training of such tasks. But for modeling operators in complex, open environments that
perform tactical tasks and make realistic mistakes, the field of systems analysis does not
offer a solution.

2.4.2 Feedback Generation for Simulated Environments

Previously, we pointed out that an important factor in task training is the generation of
feedback on the student’s task performance (Bosch and Riemersma, 2004). Training
opportunities would increase significantly when this feedback could be generated by a
system instead of a human. Automatic generation of feedback is one of the focuses of
the research field of intelligent tutoring systems (ITSs), see e.g. Polson and Richardson

2.4. Applications of Cognitive Models 55

(1988). Other focuses are the automatic construction of an individual-tailored curricu-
lum, and the ability to answer questions about the exercises or domain in general. For a
clear overview of all the capabilities an ITS can possess, see VanLehn (2006).

A system capable of generating feedback should foremost be able to diagnose the
task performance of a student. This entails assessing the actions of the students, and
deciding whether or not they are appropriate for the current task. Moreover, the system
should be able to provide the student with a motivation for its diagnosis.

In this section we aim to shed light on the current state-of-the-art concerning feedback-
generating systems, and on the relevancy of that work for generating feedback on open
complex tasks in military simulations. After distinguishing various types of feedback, we
discuss which feedback type is required, or suitable for, which task type. Subsequently,
we elaborate on the models and techniques that are currently used by ITSs to diagnose a
student’s task performance and to generate appropriate feedback.

Feedback and Task Types

Three types of feedback can be distinguished that are relevant in the context of simulation-
based training systems (Mioch et al., 2007). They differ in the types of information that
they take into account, and in the level of sophistication of the feedback they generate.

• Result-based feedback: This type of feedback is based solely on the result of the
task behavior of the student. Feedback is generated by comparing this result with
the correct result, which is often hard-coded and formulated beforehand by domain
experts. The feedback states only whether the student has completed the task suc-
cessfully, and if not, which result would have been correct.

• Model-based feedback: This type of feedback is not only based on the result of the
student’s behavior, but also on contextual knowledge of the simulation environment
and explicit task knowledge. Feedback is generated by reasoning about the result of
the student and why it was good or false, for which it uses an expert model and the
task circumstances.

• Cognition-based feedback: This type of feedback is also based on the student’s
result, the context of the task, and explicit task knowledge, but additionally takes a
student model into account. This student model tracks behavior of the student over
time and makes it possible to infer the cognitive strategies of the student. Using
this extra knowledge, feedback can be generated not only on the final result of the
student’s behavior, e.g., the selected action, but also on the process, e.g., how he or
she selected this action.

56 Related Research

These types of feedback can be further illustrated by an example from a traditional
domain of feedback-offering training systems: mathematics. In mathematics, tasks have
to be trained for which the interpretation of the result is deterministic: a result is either
correct or false. An example of such a task is addition. The correct answer for adding 9
to 32 would be 41. In case a student arrives at the result of 31, the result-based feedback
would entail something like: ‘No, your answer is wrong, the correct answer is 41.’ The
model-based feedback would for example be: ‘No, your answer is wrong. The correct
answer is 41. You calculate this by first adding 2 to 9 which gives you 11, after which
you note down 1 and subsequently add the left over 1 to 3, which gives you 4.’ On the
other hand the cognition-based feedback might entail: ‘No, your answer is wrong. The
correct answer is 41. After adding the 2 to the 9 and noting down 1, you probably forgot
to carry over the remaining 1 and add it to the 3.’

Another division of feedback types is given by VanLehn (2006), who distinguished
two types: minimal and error-specific feedback. Minimal feedback is another word
for result-based feedback, while error-specific feedback refers to both model-based and
cognition-based feedback.

Most ITSs have been developed for the training of tasks in well-structured and small
domains, like the addition example above. Such domains have little indeterminacy and
are relatively closed. Therefore, they can be represented by a small number of rules.
Moreover, the tasks that are trained are often individual, procedural and static. For these
types of tasks and domains it is relatively easy to deduce all three types of feedback,
although in general the feedback is limited to result- or model-based feedback. Feedback
can be based on expert knowledge in the form of rules or constraints that can unam-
biguously, due to the task’s nature, determine the correctness of certain actions in certain
states.

More challenging is the generation of feedback on student behavior in simulated en-
vironments. The types of tasks that are commonly trained in simulation-based training
systems share few of the properties mentioned above. In general, these tasks are dy-
namic, open, and complex, since they take place in the (simulated) world which shares
these properties. This entails that the task domain cannot be represented by a small num-
ber of rules. A task is called dynamic when it takes place in an environment that changes
constantly and independent of the task performer. It is called open when multiple correct
options exist to reach its goal. It is called complex when in every situation multiple ac-
tions are possible, that lead to new situations in which again several actions are possible.
The dynamic nature of a task makes that for evaluating a student’s performance not only
its actions, but also the timing of its actions needs to be taken into account. The open
and complex nature of a task makes that no single correct behavior exists at any moment,

2.4. Applications of Cognitive Models 57

which makes performance diagnosis hard. Moreover, the correctness of a certain action
often depends on the correctness of the actions that follow it. In other words, on the
strategy that is followed by a student.

ITSs that have been developed for training dynamic, open, and complex tasks gene-
rally limit themselves to providing model-based feedback (Stottler and Vinkavich, 2000).
However, it would be beneficial if feedback is provided at the level of cognition, e.g., on
the appropriateness of the followed strategy. For this, cognitive models can be used.

Ryder et al. (2000) compare several uses of cognitive models in ITSs, and focus
on expert performance models and instructional agents in particular. The models they
review are all based on the cognitive modeling framework COGNET and provide feed-
back at various levels. For example, the described Advanced Embedded Training System
(AETS) (Zachary et al., 1998) provides model-based feedback, while the feedback pro-
vided by the instructional agent embedded in their Electronically Assisted Ground Based
Learning Environment (EAGLE) is sometimes cognition-based.

Other well-known research on cognitive models for training cognitive tasks is per-
formed by Anderson and colleagues (Anderson et al., 1990, 1995). They successfully
implemented several cognitive tutors that were developed around task-specific cognitive
models in the form of production system models in ACT. The cognitive task models
and thus tutors were developed for were well-defined tasks, namely LISP programming,
high-school geometry, algebraic manipulation, and word problems.

Required Models

The generation of feedback to a student on his or her task performance has much in
common with the generation of support to a user on the basis of his or her performance.
For this, it is first of all important to incorporate an accurate and complete task knowledge
model, i.e., a so-called expert model. Moreover, it is important to tailor the feedback
to the user, for which a student model is required. Last, an instructional, also called
pedagogical, model should be incorporated to determine the form of the feedback (Polson
and Richardson, 1988).

Expert Model Anderson (1988) identifies three approaches to encoding expert know-
ledge. The first is independent of the way it is present in human intelligence. For exam-
ple, in some domains it is possible to build a mathematical model whose subsymbolic
equations deliver the same results as reached by humans after symbolic reasoning. The
second is by building a standard (rule-based) expert system. The knowledge is extracted
from a human expert, but the representation and the way it is applied does not neces-
sarily have to correspond to the way it is represented and applied by humans. The third

58 Related Research

possibility is to build a cognitive model that simulates the way humans use and apply
knowledge. On the whole, it is important that the feedback generating system incorpo-
rates a knowledge representation that facilitates the abstraction from low-level knowledge
to high-level knowledge, since the latter is often required for feedback (Gomboc et al.,
2005).

Which specific approach to encoding expert knowledge should be followed depends
on the type of feedback that has to be based on it, and the method that is used to generate
this feedback. For generating result-based feedback the ‘final’ observable result of a stu-
dent’s task behavior has to be compared with that of the expert. How this expert result is
determined is unimportant, so the first method to encode expert knowledge suffices. For
generating model-based feedback, task knowledge and contextual circumstances have to
be taken into account in addition to the final result. This can be done when expert know-
ledge is encoded following the second approach. The rules of the expert model embed the
task knowledge, and give insight in the relationship between the current context and the
correctness of the result of the student’s behavior. For generating cognition-based feed-
back, the cognitive strategies followed by the student have to be addressed as well. In
order to do so, expert knowledge should be encoded as a cognitive model, because such a
model provides the required insights in the cognitive reasoning processes for generating
this type of feedback.

Student Model Feedback should not be based solely on the expert model, but should
be adapted to the individual knowledge state of the student. Therefore, the feedback gen-
erating system needs to keep a model of the student’s knowledge, ideas, and beliefs. This
model should be dynamic since these aspects change constantly during task execution.

VanLehn (1988) introduces two types of student models. The first are student models
that can only represent which task conceptions the student is missing. Such models are
also called overlay models, since they represent the overlay of the student’s knowledge
with the domain knowledge, i.e., it models the student’s knowledge as a subset of the
domain knowledge. A system taking this approach requires a knowledge base that con-
tains the domain knowledge, i.e., the facts, rules, and competences that the student has
to learn, and the ability to mark the content that the student has mastered. The second
type of student models are those that can represent besides missing conceptions also the
student’s misconceptions. The way in which these can be diagnosed is the topic of the
next section, which describes several diagnostic techniques.

An important factor for diagnosing a student’s current knowledge-state is the level
of input that is available to the diagnostic module, also called the bandwidth of the in-
formation (VanLehn, 1988). Broadly stated, three categories of information bandwidth

2.4. Applications of Cognitive Models 59

exist. The lowest category is final states. This category is applicable when the diag-
nostic module only has access to the final state of the task execution process, i.e., its
result. The second category is intermediate states, which is applicable when besides the
result of the task execution process also intermediate steps toward reaching this result
are available. The third category is (approximate) mental states. For this category to
apply, the diagnostic module should know about the mental states the student traverses
while performing the task. These states are obviously not directly observable, so should
be inferred. The derivation of a student’s mental state from his or her behavior is called
cognitive diagnosis.

Techniques for Diagnosing Student Performance

For a detailed overview of nine diagnostic techniques, each of them useful for a spe-
cific type of information bandwidth system, see VanLehn (1988). Here we elaborate on
the two techniques that have surfaced in the last decades for generating cognition-based
feedback, as this is the type of feedback that is required for open, complex military tasks.
These two techniques are model-tracing and constraint-based modeling.

Model-Tracing Model-tracing is a technique that follows a process-centric approach.
The diagnostic module tries to infer the (erroneous) process by which a student arrived at
a solution, and bases its feedback on this. Famous examples of ITSs that took a model-
tracing approach are the cognitive tutors developed at the Pittsburgh Advanced Cognitive
Tutor Center at Carnegie Mellon University (see, e.g., Anderson et al., 1990, 1995). This
group also developed Cognitive Tutor Authoring Tools (CTAT) that assist in the creation
and delivery of ITSs based on model tracing (Aleven et al., 2005). Zachary et al. (1999)
also followed this approach for their Advanced Embedded Training System (AETS).

An ITS that embeds the model-tracing approach incorporates an executable cogni-
tive expert model that possesses correct declarative and procedural domain knowledge.
Using this knowledge, the system can simulate adequate task behavior. In addition, the
system incorporates false domain knowledge, which can simulate typical mistakes made
by students. Moreover, the ITS has the capability to trace the student’s behavior step-
by-step, and to compare these steps with the correct and false steps that are dynamically
generated by the expert rules and so-called buggy rules, respectively. Feedback on the
student’s process can be generated at every step, based on the rule with whose result the
student’s behavior matches.

The main advantage of model-tracing is that following this technique, error-specific
feedback can be generated. Another advantage is its modularity: buggy rules are easily
added. However, relying on buggy rules to generate feedback also has several disadvan-

60 Related Research

tages. First, feedback can only be given when the student’s behavior matches that of one
of the modeled rules. Hence, it is important that all possible errors are represented by
buggy rules, which can be a hard and time-consuming effort. In addition, it is possible
that the student’s behavior matches that of multiple rules. In that case, it is a complex
task to ascertain what the student’s knowledge state is.

Research, among others the projects mentioned above, has shown that the model-
tracing methodology of following a student’s behavior step-by-step, possibly generating
feedback at every step, is applicable for well-structured, procedural tasks. However,
whether this is also the case for open, complex tasks is yet unclear.

Constraint-Based Modeling Constraint-based modeling is a technique that follows
a result-centric approach. The diagnostic module bases its feedback solely on the final-
state the student arrived at, independent of the process that led him or her there. Nonethe-
less, this feedback is different from result-based feedback: the diagnosis does not only
say whether this final-state is correct or what the final-state should have been, it also
gives feedback on the type of error the student has made.

Constraint-based modeling is based on the idea that students learn from performance
errors, and that those errors are the result of declarative knowledge that has not yet been
internalized by the student. This approach assumes that correct solutions all satisfy the
general principles of the domain, which can be described by constraints. When the stu-
dent’s final state violates one these constraints, this signals an error. The violated con-
straint gives direction to the incomplete or incorrect knowledge the student has, which
can be used as basis for feedback.

Well-known examples of constraint-based tutors are those developed at the Intelligent
Computer Tutoring Group at the University of Canterbury (see, e.g. Mitrovic et al., 2007).
This group also developed a tool that assists with the creation and delivery of constraint-
based tutoring systems, named ASPIRE (Mitrovic et al., 2006). The constraint-based
modeling approach is also used by Ryder et al. (2000) to construct the instructor agent
embedded in their Electronically Assisted Ground Based Learning Environment (EA-
GLE) for the training of UAV operators, see page 57.

Comparison of Techniques A significant advantage of constraint-based modeling over
model-tracing is the smaller required development effort. There is no need to specify an
executable expert model, nor a complete set of buggy rules. Moreover, the student is
not constrained in the process leading to its results. As long as its final-state does not
violate a constraint, the student is free to think of new solutions. However, the fact
that a student’s process is not constrained has raised discussion on the applicability of

2.5. Conclusion and Prospect 61

constraint-based modeling to the training of procedural tasks (Kodaganallur et al., 2005).
Moreover, Kodaganallur et al. question its capability to generate error-specific feedback,
in specific whether it is possible for all types of tasks to specify abstract constraints that
must always hold for a solution. This last point is relevant to our research objective.
For training open, complex tasks in which not the outcome of a decision is of main
importance, but the reasoning-process leading to this decision, it might be difficult to
specify such constraints. For extensive comparisons of the model-tracing and constraint-
based modeling techniques and discussions on their suitability for various types of tasks
and domains, see Mitrovic et al. (2003); Kodaganallur et al. (2005); Mitrovic and Ohlsson
(2006); Kodaganallur et al. (2006).

2.5 Conclusion and Prospect

In this chapter we introduced and discussed research from various research fields. We
introduced this wide variety of research topics because the research described in the rest
of this dissertation is related to it all. We took the freedom given by the general topic
of ‘cognitive models for training simulations’ to perform a PhD study spanning several
research topics and research fields.

In the coming chapters we address five different research topics. Each chapter embeds
papers that are all but one published, and starts with an introductory section. In these
introductions we link the papers within the chapter to each other and place them within
the general research framework as introduced in this chapter. When required, we also
elaborate on more specific related work than described in the current chapter.

Although the topics addressed are quite diverse, the same research thread is prevalent
in them all: using natural science knowledge concerning cognition and education and
design science knowledge concerning artificial intelligence and software engineering to
construct models that, when implemented in software, form agents that can display, or
provide feedback to, human (biased) behavior.

Chapter 3

Belief Component

3.1 Introduction

Previously, we introduced the regulative research cycle that describes the general course
of action followed in this study (Section 1.3.2). The cycle consists of five phases. First,
a research problem is defined in the form of a discrepancy between the aspects of human
behavior that existing methods can model and the required aspects. Next, it is diag-
nosed what this discrepancy exactly entails, and which (cognitive) properties the to-be-
developed method should be able to model. Then, a solution to the problem is proposed,
for which we use theories on the underlying mechanisms of the required behavior.

These first three phases of the regulative research cycle are shortly discussed in the in-
troduction and related work sections of the four research papers embedded in this chapter.
However, due to the limited space available there to discuss these three phases, we elabo-
rate in this introduction section on which behavior is required for our research objective,
what the current state of the art is for modeling such behavior, and how we propose to
model it. The last two phases of the research cycle, the implementation of the solution
proposed and the evaluation of this implementation, are described in the papers.

In the beginning of this dissertation we elaborated on the decision to model the cog-
nitive processes underlying situational awareness (SA, see Section 1.4). SA is a state
of knowledge; situational assessment is the process that achieves, acquires, or maintains
that state (Endsley, 1995). The maintenance of a knowledge state is considered to be a
cognitive capability, see Section 2.2.1. Gordon (2005) labels this capability ‘Knowledge
and Inference’ and defines it as ‘models of how people maintain and update their be-
liefs in the face of new information’. Langley et al. (2006) label it ‘Reasoning and Belief
Maintenance’ and define it as ‘the ability that lets an agent augment its knowledge state’.

64 Belief Component

The ability to maintain beliefs is a fundamental capability underlying human cogni-
tion, and should therefore be modeled. Previously, we explained our decision to model
cognition using symbolic mentalistic notions such as beliefs (Section 2.3.1). Beliefs are
used to denote an agent’s knowledge state, the definitions given above by Gordon (2005)
and Langley et al. (2006) also mention both beliefs and knowledge.

In this chapter we develop, implement, and validate a belief framework for cognitive
agents that will enable them to maintain their beliefs. Because we want cognitive agents
to be able to display varied behavior, the framework supports rational as well as biased
belief maintenance. Military situational assessment tasks are used as research context.

3.1.1 Existing Methods for Belief Maintenance

In this section we describe existing methods for maintaining beliefs. First, methods stem-
ming from Artificial Intelligence are discussed, next methods developed in Cognitive
Science, and last the methods incorporated in Soar and ACT-R. In the next section we
discuss the relevancy of the introduced methods to the current research context.

Belief Maintenance within Artificial Intelligence

To ensure that an intelligent agent selects the proper intentions (plans) for fulfilling its
desires (goals), its set of beliefs concerning its own status and that of the world should
be consistent and correct. Many researchers in AI have investigated how to maintain a
correct and consistent belief database when an agent receives new information.

Belief maintenance actually combines two capabilities: the handling of information
received from different sources, also referred to as source-integration, and the handling of
information received over time. For an overview of research into integrating pieces of in-
formation issued from several sources, see Bloch et al. (2001). For handling information
received over time there exist, broadly stated, two generic approaches: belief revision vs.
belief updating. Belief-update mechanisms assume that upon receiving new information
relating to a changed world, the agent’s belief set has become obsolete. They therefore
alter the agent’s beliefs in such a way that its belief base incorporates the change. Belief-
revision mechanisms assume that new information as well as the agent’s current belief set
are about the present, although the latter might be less reliable. When new information
is inconsistent with the information already stored in the agent’s belief base, they restore
consistency by changing the old information set as minimally as possible.

How the beliefs of an agent can be changed depends on the agent’s belief type. The
simplest type is the binary one: in that case an agent believes the stored information to
be either true or false. More complex are the belief types that represent the fact that an

3.1. Introduction 65

agent holds a statement to be more or less true. Such belief types can be implemented
by attaching a degree of belief to the information stored. This degree can be a numerical
value or a conceptual label, e.g., ‘perhaps’ and ‘likely’.

The formation and interpretation of the agent’s degree of belief in stored information
can vary in a number of ways. For example, the degree of belief attached to informa-
tion elements can be absolute, or it can depend on the other information elements the
agent holds, in which case it is relative. In addition, the degree of belief can denote the
(un)certainty about the total belief, e.g., I am quite sure (with p = 0.9) that the speed of
contact1 is 20 knots, or it can denote the dispersion of the value believed: I believe that
the speed of contact1 is about 20 knots (20±2 knots). Moreover, the attached degree of
belief can represent the probability of that information being true, or it can represent the
plausibility of that information (Dubois and Prade, 2001). In the former case a single
value denotes how probable information is, i.e., how sure the agent is of the truth value
of the belief. In the latter case two concepts are used: the possibility and the necessity of
information, which together denote a range of belief.

Belief maintenance techniques have been developed for all types of belief. Belief
maintenance techniques that operate on binary beliefs are activated when an agent re-
ceives information that is inconsistent with its current beliefs. Frequently, such an in-
consistency is resolved by deleting some of the beliefs that cause the inconsistency. This
strategy is for example implemented in the dominant AI theory on belief maintenance
for binary beliefs, the so-called AGM postulates. These postulates formulate properties
that an agent should satisfy in order to be considered rational (Alchourròn et al., 1985).

The AGM postulates illustrate when AI considers behavior to be intelligent: when
it is rational. In contrast, we are interested in modeling human-like behavior including
human-like belief maintenance, which is not always rational. In addition, the deletion
of beliefs, which entails that an agent forgets what it believed to be true, is not human-
like, nor desirable (Byrne and McEleney, 2000). Also the fact that many belief revision
techniques offer a single way to resolve inconsistencies is debatable, since it is shown
that the nature of the beliefs forming an inconsistency influences the way humans deal
with them, see the following section.

Also for graded beliefs a wide variety of belief maintenance techniques have emerged.
Within AI techniques are based on, e.g., probability theory, fuzzy logic, possibility
theory, and Bayes’s theorem (Bayes, 1763). Belief maintenance techniques based on
Bayes’s theorem are also frequently used by Cognitive Science, because they are suited
for modeling normative, rational belief maintenance.

For example, Bayesian inference is a technique based on Bayes’ theorem that can
be used to implement belief maintenance for belief types of which the attached degree

66 Belief Component

denotes the probability of that information being true. Bayesian inference infers the prob-
ability that a hypothesis (information) may be true based on (observed) evidence. The
Bayesian inference process takes as input a hypothesis with a certain numerical degree
of belief and some new information, and outputs a new degree of belief that takes this
evidence into account. In intelligent agents this mechanism can be used to control the
collection of evidence; information of which it is known that it is strongly consistent
or inconsistent with a hypothesis might be especially important to check. Starting from
the hypothesis that humans also have the intention to collect information to check their
beliefs, this control process can be subject to biases (e.g., the confirmation bias, see Sec-
tion 2.2.2). Although easy to understand, Bayes theorem has one major disadvantage: for
its application the probability of the hypothesis before the new evidence, and the proba-
bility of the occurrence of that evidence given the hypothesis, need to be specified. In the
case of open, dynamic, and complex tasks this entails the specification of a multitude of
probabilities, with as main problem that many of them are likely to be unknown.

Another technique that can be used to implement belief maintenance by calculat-
ing the probability of an event (information) by combining pieces of evidence is the
Dempster-Shafer theory, developed by Dempster (1968) and Shafer (1976). The Dempster-
Shafer theory (D-S theory) is a generalization of Bayes’ theorem, with as main compu-
tational advantage that not all prior and conditional probabilities need to be specified:
missing information is simply not used. Unlike Bayesian inference that is used for be-
lief types of which the degree denotes the probability that that information is true, D-S
theory is applicable to belief types of which the degree denotes the possibility of that
information being true. For this, the degree of a proposition is represented as an interval
[Bel, P l]. Bel is interpreted as the degree of belief and Pl as the degree of plausibility.

D-S theory is often used to integrate information from different sources. The so-
called Dempster’s rule of combination is used to integrate beliefs corresponding to in-
dependent pieces of information. This rule emphasizes the agreement between multiple
sources, and ignores all the conflicting evidence through a normalization factor. A dis-
advantage of using the D-S theory is that it requires all evidence to be independent.
Although in specific cases this might be realistic, it is not realistic for a cognitive agent’s
beliefs about information from different sources which might be all biased by, e.g., an
expectation about the situation. So, D-S theory might be applicable to model perfect,
rational source integration, but is less applicable for modeling human source integration.

Belief Maintenance within Cognitive Science

AI pursues a belief maintenance model that enables cognitive agents to maintain their
beliefs in an ‘optimal’ way, i.e., rational and computationally feasible. Cognitive Science

3.1. Introduction 67

on the other hand pursues a model that validly represents the way in which humans
maintain their beliefs, which might not be rational. In this section we first shortly discuss
some results of experimental research on human belief maintenance. Next, we discuss
several existing models on human belief maintenance developed by cognitive science.

Human belief maintenance is typically studied by presenting subjects a categorical
statement (e.g., A is true) and a conditional statement (e.g., if A then B). Next these
subjects are confronted with new information (e.g., not B), which is inconsistent with the
information that can be derived from the categorical and conditional statement (in this
case B). It is then checked whether and how the subjects revise their beliefs in order to
maintain a consistent belief set.

Elio and Pelletier (1997) found that humans tend to revise the conditional statement
over the categorical statement. Dieussaert et al. (2000) refined Elio and Pelletier’s belief
revision experiments, and conclude that the more certain humans are about the condi-
tional, the less they are prepared to reject it, so the initial strength of the belief in the
conditional is important for its revision. Also the source of beliefs is important for their
revision. Mercier and der Henst (2005) show that humans are less likely to revise a set of
beliefs obtained on their own when it is contradicted by communicated information, than
to revise a set of beliefs obtained by communication when it is contradicted by informa-
tion obtained on their own. In addition, they show that the potential manipulativeness of
the communication source influences the degree to which existing beliefs are endorsed
and the likeliness that beliefs are revised. Byrne and Walsh (2002) claim that the way
humans revise beliefs depend on whether they made a modus ponens inference (from A
to B) or a modus tollens inference (from not B to not A). In the first case they tend to
revise their belief in the categorical statement, in the latter case they revise their belief in
the conditional statement.

Many of the studies into human belief revision conclude that often humans do not end
up disbelieving one of the statements, but rather revise them, e.g., extend the conditional
rule with an extra condition or an exception (Walsh and Sloman, 2004). Hasson and
Johnson-Laird (2003) stress in their paper that humans are able to reason about their
beliefs and that they have multiple strategies to recognize the inconsistencies and that
these can yield different belief revision patterns. Despite this, some general tendencies
can be distinguished, e.g., the previously introduced order effects (Section 2.2.2). The
fact that the order in which information is received influences the final belief of a person
is a typical example of judgment bias (Section 2.2.2).

Cognitive Science has developed various models of human belief revision in order to
get insight in the cognitive processes underlying the experimental results found. Hogarth
and Einhorn (1992) present the belief-adjustment model that displays order effects in

68 Belief Component

belief maintenance, and accounts for them as arising from the interaction of information-
processing strategies and task characteristics. In their model, all the information an agent
has is represented by its degree of belief in the pieces of information, and can be written
as Sk = Sk−1 + wk[s(xk)−R] with:

Sk = degree of belief in some hypothesis, impression or attitude after evaluating
k pieces of information (0 ≤ Sk ≤ 1).

Sk−1 = anchor or prior opinion. The initial strength of belief is denoted S0.

s(xk) = subjective evaluation of the kth piece of information.

R = the reference point or background against which the impact of the kth piece
of information is evaluated.

wk = the adjustment weight for the kth piece of information (0 ≤ wk ≤ 1).

The model facilitates for different outcomes of the subjective evaluation of the kth piece
of information depending on whether information is processed in a Step-by-Step or End-
of-Sequence manner, which are two different information-processing strategies. The
belief-adjustment model has been shown to be able to replicate, as well as predict, belief
maintenance effects based on the order of beliefs and task characteristics. This has been
shown among others in tactical decision-making (Adelman and Bresnick, 1992; Adel-
man et al., 1993; Zhang et al., 1998), although contradictionary results have been found
as well (Adelman et al., 1996). Hogarth and Einhorn’s belief-adjustment model accounts
for order effects by incorporating graded beliefs and an anchoring and adjustment pro-
cess, which is one theory of belief maintenance.

Thagard (2000) holds a different theory of belief maintenance: Thagard claims that
much of human cognition, including human beliefs and inferences, can be understood
in terms of coherence as constraint satisfaction. His theory of coherence operates over
a set of representational elements (e.g., propositions representing binary beliefs) which
can either fit together (cohere) or resist fitting together (incohere). If two elements p and
q cohere they are connected by a positive constraint (p, q) ∈ C+, and if two elements p
and q incohere they are connected by a negative constraint (p, q) ∈ C−. Furthermore,
constraints are weighted, i.e., for each constraint (p, q) ∈ C+ ∪ C− there is a positive
weight w(p, q). Coherence maximization involves the division of the set with all ele-
ments into an accepted (A) and a rejected (R) set in such a way that a maximum weight
of constraints is satisfied. Thus, the higher the summed weights of the satisfied con-
straints, the more coherent the solution to the coherence problem is. A question remains
how such an optimal coherent set can be found. One of the options Thagard proposes is
a connectionist algorithm that uses an artificial neural network to assess coherence.

3.1. Introduction 69

Thagard’s theory of explanatory coherence in implemented in the Echo model (Tha-
gard, 1992), which is a model of abductive reasoning and incorporates binary beliefs.
Although Echo captures many aspects of human abductive reasoning, it does not account
for order effects. Wang and Johnson (1998) introduce UEcho as extension of the Echo
model with the motivation that Echo fails to sufficiently manage the uncertainty in ab-
duction. UEcho incorporates a dynamic processing mechanism for belief revision and
graded beliefs, and does display order effects. Later, Wang et al. (2000) further extend
UEcho to embed a distinction between the probability and confidence of information.
This extension was required to model human data in an military situational assessment
task. Wang et al. used a modified version of the CIC (Combat Information Center) as
task domain. In the CIC task the goal of the participant, acting as a commanding officer
of a naval ship, was to collect two pieces of information sequentially about an aircraft in
the radar area and accurately identify its intention. Wang et al. (2000) show that both the
experimental results and the UEcho modeling results display order effects in belief revi-
sion at the early stage of training when the confidence level is low, but that these effects
tend to disappear later when the confidence increases.

Paglieri (2004) offers a quite different approach to belief maintenance: he proposes
a model based on a distinction between data (information stored by an agent) and beliefs
(information accepted as reliable). Paglieri actively opposes the common AI approach of
maintaining binary beliefs by throwing away inconsistent ones and states:

“Belief change should not be understood as a mere process of gathering new in-
formation and removing old ones from a given knowledge base, but rather as
a two-layered dynamic, which involves both changes in the available data (due
to information update, inferential reasoning and oblivion), and the resulting out-
comes in the selection of acceptable information (i.e. beliefs) - plus changes in
the selection process itself, since different agents might apply different selection
strategies (e.g. skeptical vs. trustful agents), and the same agent might modify
its strategy according to context (e.g. preferring caution in unknown situations,
while behaving more confidently in familiar domains.)”

The distinction between data and beliefs enables the agent to preserve all the relevant
information, including contradictionary ones, but at the same time to select a subset of
them as beliefs where it can base its decisions and actions on. Belief change will typically
involve an update in the data and a modified selection of this data as beliefs. So it might
be that a belief is discharged, but this does not cause the forgetting or deletion of the
corresponding datum. However, Paglieri’s model does not account for the storing of
what was previously believed, so when a belief is discharged, it is forgotten that that
datum was once believed.

70 Belief Component

The last model of belief maintenance presented in this section explicitly takes into
account the sources of the beliefs while maintaining them. Castelfranchi (1997) argues
that the sources of beliefs are remembered and play an important role in their acceptance
and revision. For this, Castelfranchi distinguishes three types of beliefs: a belief about
the source (S-belief) that together with a belief about the reliability of the source (R-
belief) leads to a resulting belief (O-belief). Perception, communication, and inferential
processes are all possible options for a belief’s source. We adopted a similar approach,
incorporating the same types of belief sources and that their reliability influences the
acceptance of the belief, in the belief framework introduced in Section 3.2.

Belief Maintenance within Integrated Architectures

The cognitive architectures developed in Cognitive Science often embed a single, or no
belief maintenance mechanism at all. Frequently, the modeler is left with the task to
maintain a consistent belief base. For example, Soar (see Section 2.3.2) supports two
types of working-memory elements (WMEs): WMEs created by an operator and WMEs
created by an elaboration rule. A WME that is created by an operator will stay in working
memory (WM) until an explicit change is made. A WME created by an elaboration only
exists as long as the conditional part of the elaboration matches the content of WM. This
aspect of Soar is referred to as its Truth Maintenance System, because it automatically
updates beliefs about the world. However, there is no restriction on the WMEs that can
be posted in WM by elaborations and operators given the currently present WMEs. It is
therefore possible to believe, e.g, that a surface radar contact is hostile as well as friendly:
it is up to the modeler that such a situation does not occur.

ACT-R (see Section 2.3.2) embeds a specific mechanism for retrieving beliefs in WM.
All beliefs stored in long-term memory (LTM) have an activation-value that reflects their
use in the past (frequency and recency) and their current ‘relevancy’ in the sense how
related they are with other currently active chunks (e.g., in the vision buffer). When a
query is posed to LTM, only one belief can be retrieved which is the one that matches the
request and has the highest activation. So, although it is possible that inconsistent beliefs
exist in LTM, only one, thus consistent, belief is retrieved. Which belief is retrieved is
determined by the belief’s activations, so it is not possible to actively revise beliefs, let
alone in various ways.

Both Soar and ACT-R do not lay down that the knowledge of an agent receives a
degree of belief, nor that its specific source is represented. However, because the slots in
the chunks of ACT-R and in the WMEs of Soar are undetermined, it is possible for the
modeler to fill these slots with values denoting these aspects.

3.1. Introduction 71

3.1.2 Selecting an Approach

All the models and techniques introduced in the previous section have one thing in com-
mon: they are designed to bring about a specific type of behavior. For example, the
AGM postulates (Alchourròn et al., 1985) ensure ‘rational’ belief revision, while the
belief-adjustment model of Hogarth and Einhorn (1992) ensures the emergence of or-
der effects in belief revision. Which model or technique should be used to model belief
maintenance depends on what is required of its behavior and its scope. Many models
and techniques have a small scope and are only fitted to bring about a specific type of
behavior suited for that narrow domain.

A main requirement for using cognitive agents in training simulations is that they are
capable of producing varied behavior. So in some cases beliefs should be maintained in
an optimal, rational way. In other cases belief maintenance should result in beliefs that
reflect the, possible irrational, beliefs held by humans. The challenge is to develop a
framework that supports the variety of ways in which beliefs can be maintained. In addi-
tion, for reasons of development, the framework should be able to support the processes
required for the situational assessment task. Taken together, this results in the following
choices for the framework.

Time

Because the agent should be able to display rational as well as biased behavior, beliefs
are not deleted. By retaining all beliefs, it is possible to retrieve what was believed
before. This enables the modeling of perfect memory and rational behavior, as well as the
modeling of the influence of old beliefs on current reasoning. A practical consequence
of this choice is the emergence of a large, possibly inconsistent belief base. Therefore,
it is necessary to denote when what was believed. We propose to do this by adding an
argument to the belief predicate denoting the time at which the belief is formed.

Time-stamped beliefs enable the reasoning over beliefs in time. Reasoning over be-
liefs formed at different time points can be used to to determine what is currently believed
to be the case. This process implements belief maintenance, and can be done in a variety
of ways supporting varied behavior. Time-stamped beliefs also enable reasoning about
(values of) beliefs in time, which is required for the research task. For situational as-
sessment it is important to reason about time in an absolute way. For example, from the
time that passes between the formation of two beliefs about a vessel’s position and their
respective values, its speed can be deduced. So for situational assessment it is required
to reason quantitatively about the time passed between various beliefs about events, e.g.,
for deducing a new belief that explains them.

72 Belief Component

Another way to reason over beliefs in time is doxastic logic in combination with
modal temporal logic. Doxastic logic is a modal logic concerned with reasoning about
beliefs. Doxastic logic typically uses ’Bx’ to mean ‘It is believed that x is the case’, and
treats ’B’ as a modal operator. Using a modal temporal logic, which views time as a
sequence of states, it is possible to reason about beliefs over time. However, the temporal
operators embedded in modal temporal logics have a relative nature. For example, they
denote that a certain belief is always the case, until or after another belief holds, or
sometime in the future. In contrast, we require the reasoning over beliefs in an absolute
way and use belief to denote a predicate logic expression that might incorporate variables
and values. Recently researchers have focused on developing modal predicate temporal
logics that do enable the reasoning about variables and values (Areces and ten Cate,
2006), but this line of research is not yet fully developed. Therefore, we decided to
explicitly add a time stamp to beliefs to enable (varied) quantitative reasoning over beliefs
over time within a temporal predicate logic setting (Galton, 2006).

Source

Beliefs do not only need to be maintained based on time aspects, another important aspect
is their source. For example, when source S1 states at T1 that the speed of X is 20
knots, and at T2 that it is 15 knots, the former can be discarded because it is obsolete.
However, when instead of source S1 source S2 stated at T2 that the speed was 15 knots,
the former cannot be discarded that easily. Instead, the two pieces of information should
be integrated. In this process various factors can play a role, e.g, the trust in the sources,
or the time passed between T1 and T2.

In situational assessment, information is generally obtained from a wide variety of
sources. Sources range from memory to reference works as books and maps, and from
systems like radar and sonar to humans in a variety of roles. The agent should be able
to distinguish and integrate the information gathered from these different sources. We
propose to support this by denoting the source of every belief, which can be external as
well as internal. This explicit reference to the source of a belief also enables the modeling
of the influence this source may have on the acceptance of its information.

Certainty

When assessing a situation, humans often have to deal with uncertain information. This
is especially true in military contexts. The cognitive agents should therefore be able to
represent and reason about uncertain beliefs. To facilitate this it is proposed to attach
an absolute, numerical certainty value to beliefs, ranging from 0 to 1. 1 denotes a total

3.1. Introduction 73

certainty in the (value of) the belief, 0 denotes complete uncertainty, i.e., that the value
of the belief in unknown.

In case the value of a belief’s predicate is numerical, the certainty label denotes the
dispersion of the value believed. To model this, it is required to denote for each belief
predicate the amount with which the standard deviation of its value increases when its
certainty decreases. For example, every 0.1 with which it is less certain that the speed of a
contact is 20 knots adds an additional dispersion of 1 knot. This choice of implementing
uncertainty enables computation over these uncertainties when forming new beliefs (see,
e.g., Figure 3.6 on page 118).

Selected Approach

Based on our prerequisites to model belief maintenance for the situational assessment
task and to support a variety of ways to maintain beliefs, the choice is made to add a
time stamp, source label, and certainty value to the beliefs of an agent. These arguments
should enable the modeling of a variety of belief maintenance techniques.

We do not prescribe which belief maintenance techniques should be modeled. In the
papers embedded in this chapter we propose certain options, but these are not firm. It is
the explicit idea that the agent modeler can use the belief arguments to maintain beliefs
in a variety of ways. For example, when it is desired to model rational source integra-
tion, Dempster’s rule of combination could be applied as belief maintenance technique.
Because the existing belief maintenance techniques and models presented in the previ-
ous section all embed a fixed way to maintain beliefs, none of them is simply adopted.
Another reason is that none of them supports the explicit (quantitative) reasoning over
beliefs in time, which is required for modeling the situational assessment task.

3.1.3 Chapter Overview

This chapter presents four papers. The first paper (Section 3.2) introduces the developed
belief framework incorporating time, source, and certainty stamped beliefs. The frame-
work is evaluated for its suitability to model biased behavior by implementing a cognitive
agent that replicates the biased behavior that supposedly underlies the historic case of the
U.S.S. Vincennes. In 1988 the commander of the U.S.S. Vincennes decided to engage an
incoming aircraft that turned out to be an Iranian Airliner. This tragedy is often quoted
as example of faulty decision-making under stress (Klein, 1998).

The belief framework is developed with the situational assessment task in mind. An
example of this task is the compilation of a tactical picture of surface contacts in naval
anti-surface warfare as trained by the Royal Netherlands Navy in the Action Speed Tacti-

74 Belief Component

cal Trainer (see Section 1.4.3). This Tactical Picture Compilation Task (TPCT) entails the
classification and identification of surface contacts, which is a situational assessment pro-
cess. The second paper (Section 3.3) describes the development of two cognitive agents
capable of executing the TPCT, as well as the evaluation of their behavior by military
experts. For the development of these agents, first a formal task model was developed
based on expert knowledge and the belief framework. Two agents were implemented
to evaluate the ability of the framework to produce on-line rational as well as biased
behavior. The first agent BOA-R produces rational behavior, the second agent BOA-B
incorporates typical biases and produces biased behavior.

The third paper (Section 3.4) provides further details concerning the translation pro-
cess from the formal task model of the TPCT to the two software agents. The two BOA
agents are implemented in ACT-R 6.0, unlike the cognitive agent presented in Section 3.2
that is implemented in LeadsTo (Bosse et al., 2007). LeadsTo is a language with support-
ing software developed to simulate dynamic processes in terms of both qualitative and
quantitative concepts. This software is not suited for implementing an agent performing
a cognitive task in real time in a simulated environment.

Our decision to implement the two BOA agents in ACT-R was dictated by an objec-
tive of the Cognitive Modeling program, namely to ‘investigate existing architectures for
implementing the cognitive models into intelligent agents, and for linking these agents
to simulation systems’ (Section 1.4.1). With the fourth paper (Section 3.5) we further
carry out this objective: in this paper we present and discuss the reimplementation of the
formal TPCT model in Soar. This reimplementation enables us to compare ACT-R and
Soar with respect to the developed task model and underlying belief framework.

Additional Remarks

Because the papers embedded in this chapter have been written over a period of time,
minor discrepancies exist in the notations used. To be precise, the first two papers denote
a belief by belief(p, a, v, t, s, c), while the last two write belief(P(A, V), T, S, C). However,
both denote using variables that it is believed by the agent at time T, based on source S
and with certainty C, that predicate P holds for attribute A with value V.

In addition, Section 3.2 is the only section that actively denotes that a belief b is held
in memory by the two-place predicate holds at: holds at(b, t). The other sections simply
assume this. Moreover, the first section of this chapter gives a new label to specific types
of beliefs, e.g., lastbelief. In the task model presented in the other sections these types
are represented implicitly by specific conventions. For example, a last belief is denoted
by a time variable ending at a 1 (e.g., T1), a second-last by a 2 (e.g., T2), and a random
belief before a relative one by ’ (e.g., T2’).

3.2. A Belief Framework for Modeling Cognitive Agents 75

Research Paper

3.2 A Belief Framework for Modeling Cognitive Agents

Abstract

Simulation-based training in complex decision-making can be made more effective by
using intelligent software agents to play key roles. For successful use in training, these
agents should show representative behavior. Representative behavior may reflect expert
behavior, but may also be far from optimal, especially under stress conditions. Current
agent architectures hardly offer support to model cognitive properties that are essential to
human decision-making. The present paper describes a framework in which agent’s be-
liefs are extended with additional arguments with which such dynamic cognitive proper-
ties can be formalized. An historic military event is used to demonstrate that the resulting
framework is capable of modeling representative behavior.

This section is published as:

Heuvelink, A. A Belief Framework for Modeling Cognitive Agents. In R. L. Lewis, T. A. Polk, and J. E. Laird

(Eds.), Proceedings of the 8th International Conference on Cognitive Modeling (ICCM 2007), Psychology

Press, p. 235-240. July 26-29 2007, Ann Arbor - Michigan.

76 Belief Component

3.2.1 Introduction

Organizations that operate in highly uncertain and dynamic environments, such as the mi-
litary, require competent staff personal. However, the very nature of their missions makes
it hard to setup real-world training. Scenario-based simulator training is considered
an appropriate approach for training decision-making in complex environments (Oser,
1999). A main requirement of simulator training is that it correctly represents these as-
pects of the real world that are necessary to achieve the learning objectives. Perhaps
the most important aspect of human decision-making is the interaction with other hu-
mans, e.g., team members. In order for simulation-based training to be an alternative
of real-world training, simulated entities must be able to respond naturally and validly
to any emerging situation. Therefore our goal is to develop agents that are capable of
generating behavior that is representative for the human they represent.

There is growing conviction and evidence that we can develop such agents by captur-
ing the human cognitive processes in a cognitive model. The research fields of Artificial
Intelligence (AI) and Cognitive Science (CS) have yielded various architectures that can
be used to develop cognitive models (Pew and Mavor, 1998).

We start this paper with describing properties of architectures that are currently used
for cognitive modeling. We then elaborate on various typical features of human cognition
and argue that these architectures lack the mechanisms to model these features. Next, we
explain how more human-like behavior can be achieved by formalized reasoning rules
on beliefs with additional arguments. We illustrate the strength of this belief framework
by implementing a cognitive model of a key player in a historic military incident. Finally
we draw conclusions on the significance of our work and propose future research.

3.2.2 Related Research

The potential and benefits of representing human behavior in (training) simulations by
cognitive models of key players is generally recognized. As a result several models have
been developed that can play such key roles (see, e.g., Gluck and Pew, 2005). In general
these models are either implemented in a cognitive architecture, like ACT-R or SOAR,
or in an agent architecture such as JACK or JADEX. Cognitive architectures embody
a theory of cognition, while agent architectures often encapsulate Beliefs, Desires and
Intentions (BDI) (Georgeff and Lansky, 1987). For all architectures it holds that they
themselves are not a model, but that they offer the constructs to build a model. The most
basic construct is a declarative information entity with which the knowledge of the agent
can be represented. We will refer to these knowledge entities as beliefs.

Since it is important for an agent to have a correct and consistent view of the world, a

3.2. A Belief Framework for Modeling Cognitive Agents 77

central issue is how an agent keeps a consistent belief database upon receiving informa-
tion that is inconsistent with its current beliefs. Within AI the problem is generally solved
by throwing away beliefs that cause the inconsistency. By doing so, the agent no longer
has access to what it believed before, which is not very human-like. Cognitive archi-
tectures tend not to eliminate inconsistent beliefs but deal with them when they retrieve
beliefs into working memory (e.g., Anderson and Lebiere, 1998; Paglieri, 2004). Mech-
anisms differ between architectures, but often the way they revise and retrieve beliefs is
fixed. This aspect restrains the agent from having access to his old, possibly currently
disbelieved, beliefs.

Research in cognitive science shows that the nature of the beliefs that form the in-
consistency influence the way humans solve the inconsistency. For example, the time on
which information is received has a large influence on the belief formation of humans.
Famous temporal order effects in the updating of beliefs are primacy and recency (e.g.,
Anderson, 1981), which are considered to be typical human biases. Dieussaert et al.
(2000) found that when a belief is deduced from a conditional statement (e.g., if A then
B), that then upon receiving a categorical statement (not B) the initial strength of the
belief in the conditional (A) is important for the revision of belief B. Another major find-
ing is that the source of the beliefs is very important for how they are treated. Humans
are biased to believe information that is obtained by one’s own over information com-
municated by others. The trust of a human in the source of the information is another
important factor for its believability (e.g., Mercier and der Henst, 2005).

Many more cognitive biases are found in the formation of and reasoning on be-
liefs (Wickens and Flach, 1988). The availability bias denotes the tendency of humans
to focus on the most salient outcome, which is time related. The confirmation bias func-
tions on two levels; it denotes the tendency to only search for information that confirms
the current hypothesis as well as the tendency to give congruent information more weight
than incongruent information. The latter strongly influences the strengths of beliefs. The
as-if bias denotes the tendency of humans to treat sources ‘as if’ they are the same.

Cognitive biases influence the quality of human decision-making and are found to
arise especially under stress conditions (see e.g., Baron, 2000). Since we want our agent
to generate representative human behavior under a variety of stress conditions, we need
to be able to model the before mentioned processes. Current architectures don’t offer
support to model (biased) reasoning over beliefs taking their initial time, their source and
their certainty into account. In the next section we propose a framework with which such
processes can be formalized.

We are not the first to tackle the problem of modeling biased reasoning and belief
revision. However, as mentioned above most cognitive belief models adept the strengths

78 Belief Component

of beliefs upon receiving new information and by doing so loose access to what was
believed before. Moreover, stress is often not a factor in the revision or retrieval of
beliefs.

3.2.3 Belief Framework

We want to develop a decision-making agent that reflects a human in the way it acts and
reasons. For this goal we develop a logical framework in which beliefs represent the
agent’s declarative information entities. We decide to represent beliefs in predicate logic
since this format enables formal verification of global properties which is useful for train-
ing. To ensure that an agent can have an up-to-date consistent belief set without loosing
access to its old beliefs, we propose to time stamp each belief at the time it is formed
with that time. With this feature it is possible to model (biased) reasoning over beliefs
over time. We found only one other paper that proposes to time-stamp beliefs. Sripada
(1993) took this approach in search of a more efficient belief revision technique, but only
looked at binary beliefs.

We on the other hand want our agent to have graded beliefs like a human and there-
fore further propose to certainty stamp beliefs. The certainty stamp of a belief denotes
the strength of the agent’s belief in its truth value at the time captured in the time stamp.
Last we propose to source stamp each belief, by which the origin of the information is
captured. Using these three extra arguments various cognitive processes can be formal-
ized as will be shown in the next sections.

Belief Predicate

A belief can be seen as a collection of properties that can be captured with the following
belief predicate:

∀p ∀a ∀v ∀t ∀s ∀c [belief(p, a, v, t, s, c) ↔
∃b ∃e [beliefhasterm(b, e) ∧

termhaspredicate(e, p) ∧
termhasattribute(e, a) ∧
termhasvalue(e, v) ∧
beliefhastimestamp(b, t) ∧
beliefhassource(b, s) ∧
beliefhascertainty(b, c)]]

The core of a belief is a term that denotes the information that is believed, e.g., that
the identity (p) of track2 (a) is hostile (v). Besides this term a belief consists of three
extra arguments denoting the time it was formed (t), its source (s) and how certain the
agent is of that belief (c).

3.2. A Belief Framework for Modeling Cognitive Agents 79

To formalize relations between beliefs over time it is necessary to have a reference
to time that specifies the time at which a certain belief was held by the agent. For this
we introduce a two-place predicate HoldsAt. When we reify the belief predicate of the
object language to a propositional term b, we can state using this meta-language predicate
at which time the belief is held: HoldsAt(b, t).

For every belief(p,a,v,t,s,c) that can be found in the agent’s database it can stated that
HoldsAt(belief(p,a,v,t,s,c),t), since the t of the belief denotes that it was then formed and
thus logically holds.

Formation of Beliefs

By using the aforementioned belief system we can model relevant cognitive properties
and processes. The first interesting process is the transfer of information from the outside
world into a belief. Research in cognitive science mentioned above pointed out that the
source of the information as well as the current state of beliefs (confirmation bias) is
relevant for this process. These two aspects influence the strength with which an agent
ends up believing that information, i.e., the certainty of its belief. We accommodate these
aspects by transferring information from the world into a belief in three stages.

First, a presourceexpectancybelief is formed:

∀p ∀a ∀v ∀t ∀s ∀c [

HoldsAt(input from world(p, a, v, s, c), t)

→
HoldsAt(presourceexpectancybelief(p, a, v, t, s, c), t)]

Secondly, the influence of the source on the believability of the given information is
determined, by using the agent’s trust level in that source. In how far this bias occurs,
i.e., how much this process moves the perceived certainty away from the actual certainty,
is influenced by the current stress level of the agent.

∀p ∀a ∀v ∀t ∀s ∀c ∀tr ∀st [

HoldsAt(presourceexpectancybelief(p, a, v, t, s, c), t) ∧
HoldsAt(trust in source(s, tr), t) ∧ (−1 ≤ tr ≤ 1)

HoldsAt(stress(st), t) (0 ≤ st ≤ 1)

→
HoldsAt(preexpectancybelief(p, a, v, t, s, c+ tr × c× st), t)]

Thirdly, the current state of beliefs is taken into account. This is not done directly, but
through the notion of expectancies. The expectancy predicate has 4 arguments, denoting
the expected term (p, a, v) as well as a certainty. Expectancies differ from beliefs in that
they are formed automatically and can be considered unconscious.

80 Belief Component

Expectancies are formed in two ways; each term that is currently believed gets trans-
ferred to an expectancy that will hold the next time step. The strength of the expectancy
is a function of the strength of the belief and the persistence of the predicate; we will
elaborate on the latter later on. Secondly, certain (combinations of) beliefs can yield new
expectancies. The certainty of expectancies decays over time and the expectancy ceases
to exist when its certainty becomes equal to zero.

To determine the final certainty of the belief existing congruent and incongruent ex-
pectancies are taken into account. The extent to which these expectancies bias the cer-
tainty of the agent in the final belief is influenced by the current stress level. Since
multiple situations are possible multiple rules are needed to formalize this process:

∀p ∀a ∀v ∀t ∀s ∀c [

HoldsAt(preexpectancybelief(p, a, v, t, s, c), t) ∧
¬∃w ∃d [HoldsAt(expectancy(p, a, w, d), t)]

→
HoldsAt(belief(p, a, v, t+ 1, s, c), t+ 1)]

∀p ∀a ∀v ∀t ∀s ∀c ∀d ∀st [

HoldsAt(preexpectancybelief(p, a, v, t, s, c), t) ∧
HoldsAt(expectancy(p, a, v, d), t) ∧
HoldsAt(stress(st), t)

→
HoldsAt(belief(p, a, v, t+ 1, s, c+ d× st), t+ 1)]

∀p ∀a ∀v ∀t ∀s ∀c ∀u ∀d ∀st [

HoldsAt(preexpectancybelief(p, a, v, t, s, c), t) ∧
HoldsAt(expectancy(p, a, u, d), t) ∧ u 6= v ∧
¬∃e [HoldsAt(expectancy(p, a, v, e), t)] ∧
HoldsAt(stress(st), t)

→
HoldsAt(belief(p, a, v, t+ 1, s, c− d× st), t+ 1)]

Intermediate rules (not denoted) handle new (pre)beliefs whose certainties lie outside
the certainty range. An agent can also form new beliefs using conditional statements and
its current beliefs. These rules, together with believed categorical statements, make up
the task specific knowledge of an agent. The formation of a new belief by a conditional
statement happens in two stages. First a preexpectancybelief is formed, which is than
transferred into a belief using the mechanisms described above. A belief formed by a
reasoning rule receives that rule’s name as it source. An example rule is the following:

3.2. A Belief Framework for Modeling Cognitive Agents 81

∀c [HoldsAt(belief(weather, local, raining, t, integratedsources, c), t)

→
HoldsAt(preexpectancybelief(status, street, wet, t, deduce wet from raining, c), t)]

Note that this rule requests as input a just formed belief (denoted by t) whose source
is equal to integratedsources.

Belief Integration

An important aspect of the belief framework is that reasoning rules request beliefs as
input that have as time argument the current time and as source argument integrated
sources. The requested time argument denotes the claim that the belief should just
be formed and thus holds (present in working memory) while the source denotes the
claim by which rule it should be formed. The reasoning rule that produces beliefs with
integratedsources as source argument deduces what exactly is currently believed by the
agent. This rule deals with any inconsistencies in the belief set formed by beliefs from
different sources or at different times. The retrieval of a belief into working memory can
be seen as its human equivalent.

To implement this process we first implement the agent’s memory by the following
simple rule, which assumes that beliefs are never forgotten.

∀p ∀a ∀v ∀t′ ∀s ∀c ∀t [

HoldsAt(belief(p, a, v, t′, s, c), t)

→
HoldsAt(belief(p, a, v, t′, s, c), t+ 1)]

To facilitate the formalization of reasoning rules that use the agent’s memory we
introduce the lastbelief predicate, which denotes the most recent belief in the agent’s
memory for given specifications. Its definition is:

∀p ∀a ∀v ∀t ∀s ∀c ∀n [

HoldsAt(lastbelief(p, a, v, t, s, c), n)

↔
[HoldsAt(belief(p, a, v, t, s, c), t) ∧ t ≤ n ∧
¬∃t′ [HoldsAt(belief(p, a, v, t′, s, c), t′) ∧ t′ ≥ t ∧ t′ ≤ n]]]

To determine what exactly is believed by the agent, it is relevant to consider that
a belief’s validity over time is strongly influenced by its predicate. Values of certain
predicates are much more persistent than others; consider the chance that a person’s sex,
marital status or mood changes over time. An agent’s certainty level in a belief whose
predicate is very persistent does not change much over time. However, beliefs about

82 Belief Component

predicates of which the values are likely to change will quickly loose certainty. The
persistence level of a predicate also influences the decaying factor of expectancies about
it. The rule that determines what exactly is believed, so that is responsible of deducing
the current belief from old beliefs, is formalized as:

given(p, a)

∀v1 ∀t1 ∀s1 ∀c1 ∀t ∀pd ∀c′ [

HoldsAt(lastbelief(p, a, v1, t1, s1, c1), t) ∧
HoldsAt(persistence decay(p, pd), t) ∧ (0 ≤ pd ≤ 1)

¬∃c′′ ∃v2 ∃t2 ∃s2 ∃c2
[HoldsAt(lastbelief(p, a, v2, t2, s2, c2) ∧
c2− pd× (t− t2) > c1− pd× (t− t1)]

→
HoldsAt(belief(p, a, v1, t+ 1, integratedsources, c1− pd× (t− t1)), t+ 1) ∧
. . .

HoldsAt(belief(p, a, v1, t+ 1, integratedsources, c1− pd× (t− t1)), t+ 10)]

Also in this case there is an intermediate rule that handles beliefs whose certainties
lie outside the certainty range.

Following this rule, the agent ends up believing the value of the belief whose certainty
is the greatest after taking into account the time passed since it was formed and the
persistence of the predicate. This might entail that an older belief with a higher certainty
is believed over a newer belief from a different source or the other way around, it depends
on the nature of predicate. The determination of the new certainty is currently kept
straightforward; it is equal to the highest one after taking the time into account. Other
sources that claim the same do not contribute to its certainty.

A belief that is consciously deduced using this rule is stated to hold for ten follow-
ing time points. This reflects the fact that items retrieved by humans also stay a while
in working memory. The above rule takes many aspects into account and is cognitive
expensive. As mentioned on page 77 humans display a bias to treat all sources as equally
likely. With this simplification a decision can be made much cheaper, for example, by
simply taking the most recent one. In such cases the antecedent becomes:

HoldsAt(lastbelief(p, a, v1, t1, s1, c1), t) ∧
HoldsAt(persistence decay(p, pd), t) ∧ (0 ≤ pd ≤ 1)

¬∃v2 ∃t2 ∃s2 ∃c2
[HoldsAt(lastbelief(p, a, v2, t2, s2, c2) ∧ t2 > t1]

Which rule is applied is influenced by the agent’s stress level and should be deter-
mined at the control level.

3.2. A Belief Framework for Modeling Cognitive Agents 83

Reasoning over Beliefs over Time

With the given belief predicate we can deduce whether an agent believes something for
a longer period of time. The timecertaintyintegratedbelief predicate denotes the time
when the term of the current integratedsources-belief was believed for the first time.
Furthermore it should hold that no other value was believed in the mean time and that it
did not become unknown caused by the time passed and the decay of certainty:

given(p, a, pd)

∀n ∀c ∀t ∀d [

HoldsAt(belief(p, a, v, n, integratedsources, c), n) ∧
HoldsAt(belief(p, a, v, t, integratedsources, d), t) ∧
∀v′ ∀t′ ∀c′ [

HoldsAt(belief(p, a, v′, t′, integratedsources, c′), t′) ∧
v 6= v′ ∧ t′ < n ∧ t > t′ ∧
¬∃t′′ ∃e [

HoldsAt(belief(p, a, v, t′′, integratedsources, e), t′′) ∧
t′′ > t′ ∧ t′′ < t]]

∀t′ ∀c′ [

HoldsAt(belief(p, a, v, t′, integratedsources, c′), t′) ∧
t 6= t′ ∧ t′ < n ∧
¬∃t′′ ∃e [

HoldsAt(belief(p, a, v, t′′, integratedsources, e), t′′) ∧
t′′ > t′ ∧ c′ − pd× (t′ − t′′) > 0]]

→
HoldsAt(timecertaintyintegratedbelief(p, a, v, t), n)]

Note that this rule can be made executable by replacing the HoldsAt(b, tx) statements
with HoldsAt(b, n), given that a memory system is in place. This should obviously hold
for an implemented model, as presented in the next section.

This extra object predicate is useful for modeling the deduction of a belief based
on the persistence of another, e.g., position stays equal → speed = 0. The predicate is
also very useful to model the reasoning over belief patterns over time. E.g., to determine
whether a ship zigzags the beliefs over time concerning its headings have to be integrated.
The following rule depicts the principle, but should be filled with more domain specific
knowledge.

given(p, a, v1, v2)

∀t1 ∀t2 ∀t3 ∀n [

HoldsAt(timecertaintyintegratedbelief(p, a, v1, t1), n) ∧

84 Belief Component

HoldsAt(timecertaintyintegratedbelief(p, a, v2, t2), t1′) ∧ t1′ < t1 ∧
¬∃t1′′ ∃v ∃t [

HoldsAt(timecertaintyintegratedbelief(p, a, v, t), t1′′) ∧
t1′′ < t1 ∧ t1′′ > t1′] ∧

HoldsAt(timecertaintyintegratedbelief(p, a, v1, t3), t2′) ∧ t2′ < t2 ∧
¬∃t2′′ ∃v ∃t [

HoldsAt(timecertaintyintegratedbelief(p, a, v, t), t2′′) ∧
t2′′ < t2 ∧ t2′′ > t2′]

→
HoldsAt(preexpectancybelief(pp, a, vp, n, this rule, c), n)]

3.2.4 Case Study - Iran Air Flight 655

To illustrate our approach we present an historic case for which we developed and im-
plemented a cognitive model of a human decision maker. It concerns the Identification
Designation Supervisor (IDS) aboard the combat information center of the USS Vin-
cennes cruiser that in 1988 erroneously shot down an Iranian Airbus (Fogarty, 1988).
This accident has been widely referred to as an example of faulty decision-making under
stress (Klein, 1998). Using this case, we want to investigate whether our approach can
be used to model the behavior of the IDS-officer.

Table 3.1 gives a short description of the sequence of most relevant events that led
to the wrong identification of the airbus by the IDS, which contributed to it being shot
down. This description mixes facts about the behavior of the IDS with assumptions about
his reasoning. We deduced both from the formal investigation rapport (Fogarty, 1988).

Cognitive Model of the IDS

Our approach focuses on formalizing belief predicates and processes on beliefs with
which we can model how humans process information. The formalization of when they
do that has not been tackled. However, to simulate a cognitive model that demonstrates
the former, an implementation of the latter is needed. To simulate human control we use
a simple goal-directed reasoning strategy. For this strategy to work we abstracted the
necessary in- and output of each rule, added the goal it contributes to, and specified what
satisfies that goal. For the example rule on page 80 two of these constructs would be:

input of rule goal(deduce wet from raining, determine status(street),

belief tc(local, weather, raining, integratedsources))

satisfies goal(determine status(street), belief vtsc(status, street))

3.2. A Belief Framework for Modeling Cognitive Agents 85

Time Events
10.47 AM • The IDS is focused on an Iranian P-3. Since the P-3 belongs to hostile

country Iran and is a patrol aircraft that can guide other aircraft on hostile
missions, the IDS expects hostile aircrafts.

• The radar reports a new track of interest (track2) at a range of 47nm and
bearing 025, which corresponds to the runway of Iranian airport Bandar
Abbas. The IDS observes the new track and based on the fact that the
track’s origin is an Iranian airport also used for military aircrafts, he be-
lieves it might be hostile.

• In order to determine whether the track represents a commercial aircraft,
the IDS checks the Bandar Abbas commercial airline departure times
schedule. However, the time of departure and scheduled time differ too
much to make the neutral identification.

• In order to obtain more information the IDS sets its remote control indica-
tor (RCI) challenge gate at the track, so it can pick up the track’s Identify
Friend or Foe (IFF) Mode, a system all planes are equipped with. Based
on his hostile assumption he expects to receive mode II or mode III.

• The IDS picks up the neutral IFF Mode III-6675. However, all aircrafts
can emit Mode III and therefore this information is not conclusive for a
neutral identification.

10.48 AM • The IDS observes from its Large Screen Display (LSD) that track2 is
locked on by the USS Sides, however does not react. When military air-
crafts are locked on to, they tend to change behavior. Non-military air-
crafts do not notice when they are locked-on and therefore is unchanged
behavior an indicator of a neutral aircraft. However, the IDS keeps believ-
ing the track might be hostile.

10.50 AM • The IDS sees a Mode II-1100 on its RCI-display. He expected this re-
sponse from the last track he queried and simply assumes that the signal
comes from that track.

• Since the IDS knows that a Mode II-11XX block is used by Iranian F-14’s
he reports track2 as ‘possible F-14’.

Table 3.1: Description of Events that led to the wrong identification of the airbus

Furthermore we added backwards-reasoning rules as:

∀g1 ∀p1 ∀a1 ∀r1 ∀p2 ∀a2 ∀s ∀r2 ∀g2 ∀t [

HoldsAt(goal(g1), t) ∧
HoldsAt(satisfies goal(g1, belief vtsc(p1, a1)), t) ∧
¬∃v ∃s ∃c [HoldsAt(belief(p1, a1, v, t, s, c), t)] ∧
HoldsAt(output of rule goal(r1, g1, belief tsc(p1, a1)), t) ∧
HoldsAt(input of rule goal(r1, g1, belief vtc(p2, a2, s)), t) ∧
HoldsAt(output of rule goal(r2, g2, belief vtc(p2, a2, s)), t) ∧
¬∃v ∃c [HoldsAt(belief(p2, a, v, t, integratedsources, c), t)]

→
HoldsAt(goal(g2), t)]

86 Belief Component

The main goal of the IDS-officer is to identify each track in the environment as
quickly as possible in terms of hostile, neutral or friend. From this main goal all other
relevant sub goals are determined each time step by backtracking, using the agent’s task
knowledge as well as its current belief state.

The model is implemented using the LEADSTO language with which temporal de-
pendencies between two state properties can be modeled and depicted graphically (Bosse
et al., 2007). The modeled dynamic properties have the following executable format: Let
α and β be state properties of the form ‘conjunction of atoms or negations of atoms’, and
e, f , g, h non-negative real numbers. In the LEADSTO language α→e,f,g,h β means:

If state property α holds for a certain time interval with duration g

Then after some delay (between e and f) state property β

will hold for a certain time interval of length h

In the following figures traces are shown that visualize the IDS properties (on the
vertical axes) over time (horizontal axes). Dark boxes on top of a line denote that the
property HoldsAt that time, light boxes below that it does not. In all traces the certainty
and persistence decay parameters range from 0-10 instead as proposed in the text from
0-1. For displaying purposes the integratedsources beliefs that hold for 10 timestamps
are summed up in one predicate belief t.

We lack the space to show all the reasoning steps of the IDS model, so we focus on the
events of bullet 2. Figure 3.1 shows a trace depicting that the IDS actively observes the
altitude of the track from its screen (ownCROD) and forms a belief about its value. This
trace shows how the IDS’s trust in his CROD (0.8) given his stress level (0.5) influences
the certainty of the final belief (7 instead of 5).

Figure 3.1: Observation of World and Formation of Belief

Next he reasons about the track’s origin taking into account the track’s position and
altitude he just observed. The outcome, a belief about the airport it departed from, leads
together with beliefs about the nature of that airport to a belief about the track’s identity
which is biased by the existing expectancy of hostile tracks (bullet 1), see Figure 3.2.

In the following time steps the IDS performs various actions that lead to new beliefs

3.2. A Belief Framework for Modeling Cognitive Agents 87

Figure 3.2: Formation of New Belief and Expectancy

that contribute to the reasoning about the track’s identity. Unfortunately the IDS biased
reasoning caused by his stress level causes him to belief he is dealing with a hostile F-16.

To illustrate one important aspect of our framework a bit further we made a trace
that displays the source-integration process on two different types of belief predicates:
see Figure 3.3. It can be seen that based on the nature of their predicate the beliefs are
treated differently.

Figure 3.3: Source Integration on Two Predicate Types

3.2.5 Discussion and Conclusion

We developed a framework for cognitive modeling based on beliefs with a time, source
and certainty label attached. These extra labels enable the formalization of various pro-

88 Belief Component

cesses on beliefs that lie at the basis of human cognition. Interactions between the time,
source and certainty of beliefs has been made explicit, which is not possible in other ar-
chitectures. Moreover, the influence of these parameters on each other is made tunable
by the introduction of a stress level parameter.

The model of the IDS-officer shows that the framework is capable of generating
human-like behavior. Agents modeled with this framework will be capable of gener-
ating more human-like behavior than, e.g., standard BDI agents. The fact that they are
able to show behavior that is more representative for humans will make the agents more
believable to the trainee that interacts with them. Since the believability of a training en-
vironment influences the effectiveness of the training, the modeling of agents using our
framework will contribute to the effectiveness of the training and achievement of training
objectives.

Our research does not stop here. The current framework will be extended by adding
formal specifications of other relevant cognitive processes, such as attention and trust.
Although the latter is already represented in the framework the current trust of an agent
in sources is static. In reality however, trust is a dynamic property which is strongly in-
fluenced by experience. An agent capable of reasoning over its experiences with sources
would be able to adapt its trust in sources. Stress level is another parameter that is cur-
rently fixed and that we would like to formalize as a dynamic property. Also the persis-
tence values of properties are currently given and static, which is reasonable assuming
that humans have learned them during their lifetime. However, when an agent would be
capable to determine these values based on experiences with the environment, it would
be much more adaptable to new environments.

As the next research step we will tackle the control of the agent. The simple control
implemented in this paper was sufficient for demonstrating the reasoning rules. How-
ever, real humans have to deal with a limited amount of attention and processing power
and therefore make many decisions on the control level. We like to develop a control
framework in which we can capture these, probably biased, processes.

The cognitive validity of the model is debatable. However, by incorporating more
outcomes of cognitive science research in our approach, we hope to approach our goal:
the modeling of agents that can correctly represent human behavior in specific task train-
ing environments.

Acknowledgments

The author likes to thank Jan Treur for many fruitful discussions during this research and
assisting on formal details, Tibor Bosse for clarifying aspects of the LEADSTO language
and Karel van den Bosch for commenting an earlier draft.

3.3. BOA: A Cognitive Tactical Picture Compilation Agent 89

Research Paper

3.3 BOA:
A Cognitive Tactical Picture Compilation Agent

Abstract

Simulation-based training in complex decision-making can be made more effective by
using intelligent software agents to play key roles, such as teammates, opponents and
instructors. This paper presents a cognitive software agent that is capable of compiling a
tactical picture in the domain of naval Anti-Surface Warfare. The agent is implemented
in ACT-R and can perform this task in a simulated environment with a varying degree
of quality, so it can play all the roles in a representative way. The agent’s behavior was
evaluated in a session with military experts and although much work remains to be done,
the research was positively evaluated.

This section is published as:
Heuvelink, A., and Both, F. BOA: A Cognitive Tactical Picture Compilation Agent. In Proceedings of the
2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2007), IEEE Computer
Society Press, p. 175-181, November 2-5 2007, Silicon Valley - California.

90 Belief Component

3.3.1 Introduction

Military organizations tend to operate in highly uncertain and dynamic environments
and therefore require competent commanders. However, the very nature of military mis-
sions makes it hard to setup real-world training. Scenario-based simulator training is
considered an appropriate approach for training decision-making in complex environ-
ments (Oser, 1999). A main requirement of simulator training is that it correctly repre-
sents these aspects of the real world that are necessary to achieve the learning objectives.

Perhaps the most important aspect of tactical decision-making is the interaction with
other humans, e.g., teammates or opponents. It is well known that the decision-making of
humans in such contexts is structurally affected by biases (Fewell and Hazen, 2005). In
order for simulation-based training to be an alternative for real-world training, simulated
entities must be able to respond naturally and validly to any emerging situation. In light
of the above this response may reflect expert behavior, but might also be far from optimal,
especially under stress conditions.

In general, it is difficult to develop such autonomous virtual entities. Therefore, in
training, Subject Matter Experts (SMEs) often control these entities. SMEs have the
expertise to take the situational context into account and use this understanding to repre-
sentatively play a role in the training scenario or evaluate (on-line) the appropriateness
of trainee behavior. The benefit of using SMEs is that it is possible to deliver realistic
tactical training scenarios. The main disadvantage of this approach is that the need for
SMEs to deliver training elevates costs of training and requires high organizational and
logistic efforts.

It would therefore be highly beneficial if we could develop software agents that are
capable of generating representative and varied behavior like the SMEs can. There is
growing conviction and evidence that we can develop such agents by capturing human
cognitive processes in a cognitive model, and by implementing this model in a cognitive
architecture (Pew and Mavor, 1998; Ritter et al., 2003).

This paper presents our research that has as goal the development of a cognitive agent
capable of generating (online) representative behavior for a specific task in a simulated
environment. The agent should in the future be usable for any of the introduced roles.
For this reason it should be possible to adept the quality of its behavior to the role it plays.
As task the compilation of a tactical picture is selected, which is a very important task in
naval Anti-Surface Warfare (ASuW). The developed agent might in the future aid ASuW
training by performing this task in a role as opponent or as own teammate. Its behavior
might also be used for instruction by comparing the behavior of a trainee to it.

The paper starts with the introduction of the research domain and task. Then, by
analyzing task and future role characteristics, various model requirements are discovered.

3.3. BOA: A Cognitive Tactical Picture Compilation Agent 91

After elaborating on the cognitive model the translation of the model into ACT-R is
described. For the evaluation of the resulting cognitive agent by SMEs a simulation
environment is developed, which will be introduced and followed by a description of the
performed evaluation. Finally the results of the evaluation are described and discussed.

3.3.2 Research Domain

The Royal Netherlands Navy (RNLN) supports research into the development of cogni-
tive agents for training, stimulated by the potential of future integration with their training
simulator, the Action Speed Tactical Trainer (ASTT). The ASTT represents a Command
Center (CC) on a ship and can be used to train, among others, Command Central Officers
(CCO).

The CCO aboard a ship is responsible for Anti-Surface Warfare (ASuW). For good
performance the CCO has to have good situational awareness, which requires an up-to-
date tactical picture of the situation. The currently described Tactical Picture Compilation
Task (TPCT) entails the classification (e.g., is it a fisher, merchant or military ship) and
identification (e.g., is it a neutral or hostile ship) of surface contacts.

The TPCT consists of the following subtasks:

• Observing direct classifiable behavior, e.g., speed of contacts or whether they fire.
• Matching observed behavior with information about the environment as well as in-

telligence, e.g., position relative to sea-lanes or expected threat direction.
• Monitoring all other behavior over time, e.g., sailing patterns or variations in speed.
• Classifying information using identification criteria (IDCRITS).

Besides the information that can be observed from the Large Screen Display (LSD) in the
CC, the CCO can gain extra information and thus certainty about the identity of contacts
by sending a helicopter for visual identification. Furthermore, it can be decided to change
the Emission Control strategy (EMCON), which specifies the status of the own sensors.
An active sensor can gain more information about the environment, but at the same time
also emits information to the environment which can be undesired.

3.3.3 Cognitive Agent Requirements

The task characteristics introduced in the last section set some requirements for the cog-
nitive agent. For correctly performing the TPCT the agent should at least be capable
of:

• Observing information, e.g., a contact’s speed.

92 Belief Component

In addition it should be capable of reasoning about the observed information, which can
be divided in three subcapabilities derived from the last three subtasks. The agent should
be capable of:

• Deducing new information by combining various pieces of information, e.g., whether
a contact’s position lies within a sea-lane.

• Deducing new information by integrating information over time, e.g., the maneuver
a contact makes by integrating its positions.

• Classifying information, e.g., whether the known information is sufficient for identi-
fying a contact as hostile.

Furthermore, the agent should be capable of performing actions that will actively yield
new information. To be specific it should be capable of:

• Selecting the best action, e.g., where to send its helicopter to.

For this it should be capable of:

• Reasoning about the possible consequences of certain actions, e.g., which visual iden-
tification will decreases the uncertainty threat the most?

In order to generate behavior the agent should not only posses the capabilities to sense,
reason, and act, it should also know when to bring which capability into action. For this
it is required that the agent is equipped with a control function.

Additional cognitive agent requirements are set by the future applications of the
agent. For fulfilling the role of a teammate or instructor it might need to explain its own
behavior. To facilitate this future interaction between the cognitive agent and the trainee,
it was decided to model the agent using Beliefs, Desires and Intentions (BDI) (Georgeff
and Lansky, 1987). The BDI framework is well known within AI for modeling proactive,
goal-directed agents. Since its terms are closely related to notions in Folk Psychology
the explanation of the behavior of a BDI agent is intuitively understandable by humans.

Depending on its future application, the agent either needs to perform the task in a
rational expert-like manner (e.g., generating expert behavior for comparison with trainee
performance), or perform the task like a real person, including commonly made mistakes
(e.g., generating biased behavior to train the trainee to deal with faulty teammates). In
general there are two types of mistakes humans make: a) mistakes that result from un-
known or false task knowledge and b) mistakes that result from inherent properties from
human cognition. The latter type of mistakes may arise at the beginning of training when
a task is new, requires much attention and is thus stressful. It may, however, also occur
by well trained people, especially under stress conditions. For generating representative
behavior it is therefore required to incorporate the mechanisms causing such mistakes in
our agent.

3.3. BOA: A Cognitive Tactical Picture Compilation Agent 93

3.3.4 Cognitive Model and Agent Development

Dam and Arciszewski (2002) elicited most of the task knowledge necessary for perform-
ing the TPCT from SMEs. The few knowledge gaps that were discovered were filled
in by further expert consultation. As a result this research could focus on capturing
the elicited task knowledge in a cognitive model that, when implemented, is capable of
showing representative task performance that can vary in quality.

As mentioned before it is well known that human situation assessment and decision-
making is structurally affected by bias (Fewell and Hazen, 2005; Perrin et al., 1993). For
example, humans tend to regard an experienced event as typical for the whole population,
even if they are told that the experienced event was untypical (representativeness bias).
Another well-known bias is the tendency of humans to focus on cues that support their
current hypothesis, no matter how tentatively held, and disregard contradictory cues (con-
firmation bias). Many other cognitive biases affecting the soundness of decision-making
have been identified and are found to arise especially under stress conditions (Baron,
2000).

In meetings with instructors of the naval Operational School we identified common
mistakes of trainees. Next, we coupled these mistakes to general biases that are likely to
be their source. For example, trainees tend to focus solely on contacts that come from the
expected threat direction, which is an expression of the confirmation bias. We want to
incorporate the mechanisms that generate common mistakes in our cognitive model, so
we can generate biased, student-like, as well as rational, expert-like, behavior. To model
this variety in cognitive behavior we developed a framework that supports the modeling
of (biased) reasoning over beliefs by taking their initial time, source and certainty into
account. For details see (Heuvelink, 2007).

Beliefs form the basis of the logical framework and represent the agent’s declarative
information entities. Beliefs are denoted with the belief predicate: belief(p, a, v, t, s, c).
Beliefs have as their core a term that denotes the believed information, e.g., that the
identity (predicate p) of contact x (attribute a) is hostile (value v). Besides this term a
belief consists of three extra arguments denoting the time it was formed (t), its source (s)
and how certain the agent is of that belief (c).

In addition to declarative knowledge that can be captured with the introduced belief
predicate, the cognitive model also needs procedural knowledge. An agent capable of the
TPCT needs rules that embody the six subcapabilities necessary for the task mentioned
in the previous section, as well as a control function that determines when it should apply
which rule.

The first subcapability - the observation of information and transformation of it into
a belief - is general and task independent, see (Heuvelink, 2007). In the process of

94 Belief Component

transforming information into beliefs the certainty of the belief to be constructed can be
biased by the trust of the agent in the source of the information. The other subcapabilities
require and incorporate elicited task knowledge. The belief arguments introduced by the
belief framework enable and facilitate reasoning. An example rule of subcapability 2 -
the deduction of a new belief by combining various beliefs - is:

Determine In Sea Lane Contact(x)

∀t ∀p ∀s ∀c ∀s1 ∀cd ∀t1 ∀r ∀c′ [

[belief(position contact, x, p, t, s, c) ∧
belief(sealane coordinates, sl, cd, t1,map, 1) ∧
Possible Positions(p, c, [r]) ∧
c′ = (number of [r ∈ cd]) / (number of [r]) ∧
c′ > 0 ∧ time(t)]

→
[belief(in sea lane contact, x, sl, t+ 1, determine in sea lane contact, c′)]]

This rule deduces whether the agent beliefs that a certain contact (x) is in a sea-lane.
Possible-Positions is a function that uses a position value and a certainty of that value
and provides a list with possible position values. Given this list it is determined how
certain the agent beliefs the contact is positioned within a sea lane.

The modeling of rules embodying subcapability 3 - the deduction of a new belief by
integrating beliefs over time - is facilitated by the time label of beliefs:

Determine Coherent Sea Lane Contact(x)
∀t ∀l ∀s1 ∀c1 ∀t1sc ∀s2 ∀c2 ∀c3 [

[time(t) ∧
belief(in sea lane contact, x, l, t, s1, c1) ∧ c1 > 0 ∧
belief(in sea lane contact, x, l, t1sc, s2, c2) ∧ c2 > 0 ∧
c3 = (t− t1sc) / uncertainty time coherent sea lane]

→
[belief(coherent sea lane contact, x, l, t+ 1, determine coherent sea lane contact, c3)]]

This rule deduces whether the agent believes that a contact’s positions over time are
coherent to a sea-lane. With t1sc we denote the retrieval of the oldest belief on whether
contact x is in sea-lane l after which the s2 and c2 may have changed but it kept holding
that c2 > 0. The variable uncertainty-time-coherent-sea-lane determines how quickly
the agent becomes certain of that a contact is coherent to a sea-lane, based on the time
it already beliefs it is in there. The confirmation bias may influence this value based on
whether coherence is expected.

Subcapability 4 entails the reasoning process concerning a contact’s classification and
identification and is implemented using a Naive Bayesian Classifier. This mechanism
forwards the certainty of relevant beliefs to the certainty of a contact’s classification or

3.3. BOA: A Cognitive Tactical Picture Compilation Agent 95

identification. This final certainty may be biased by the confirmation bias on the basis of
existing beliefs.

As stated before, procedural knowledge consists besides (biased) reasoning rules also
of knowledge about when to apply these rules. This control function is implemented in
the cognitive model by the desires and intentions it can have. The main desire of the
agent responsible for the TPCT is the correct and quick identification of all contacts. The
agent can perform three activities that will help him in reaching its main desire; it can
reason about contacts’ information accessible through its LSD, it can reason about and
decide to send the helicopter to identify certain contacts, and it can reason about and
decide to change its EMCON. When one of these activities has the agent’s attention we
say it is the agent’s current intention.

The goal of our research is the development of a cognitive agent capable of generating
representative task behavior. In the current study we focused on the development of the
belief framework with which we can model the (biased) reasoning rules of the agent. It
was decided to only model a simple control function. The basic intention of our agent is
reasoning about information that is accessible through its LCD and it performs this task
for each contact by looping through a list of all known contacts. At regular times, after
checking ten contacts, the agent’s attention shifts and it becomes its intention to reason
about sending the helicopter. When that task is finished it becomes its intention to check
whether it should change EMCON, after which it returns to its basic intention.

It would be more realistic when the agent is triggered to start reasoning about sending
the helicopter or changing EMCON by a change in the environment. However, that
requires a constant checking of whether that trigger happened, i.e., parallelism. True
parallelism is hard to implement, we therefore simulate it by switching between the tasks
at a regular basis.

Translating the cognitive model to ACT-R

A cognitive agent is a cognitive model implemented in software. We named our agent
BOA, which is the Dutch abbreviation of Picture Compilation Agent. We decided to
implement our cognitive model in ACT-R (Anderson and Lebiere, 1998), which is a
software architecture embodying a theory of cognition.

In this paper we will not go into great detail concerning the translation process from
our model to ACT-R, for details see (Both and Heuvelink, 2007). In general it turned
out that it is well possible to translate the model’s declarative knowledge to ACT-R;
each belief can be captured by a chunk in ACT-R’s declarative memory. In addition the
modeled control could be translated to reasoning rules about the agent’s goals in ACT-R’s
procedural memory without much difficulty.

96 Belief Component

An example of such a control rule in ACT-R is:

(p select-next-contact-goal1
=goal>

ISA commitment1
goal monitor-contacts
state next-contact
contact =contact1

==>
!bind! =contact2 (determine-next-contact)
!bind! =new-intention (= (mod *contact-counter*

max-number-of-contacts) 0)
=goal>

plan read-basal-info
state start-step
contact =contact2
new-intention =new-intention)

The antecedent of the rule requires that the agent is currently committed to moni-
toring contacts and that the agent is going to select a new contact. In the consequent,
the agent determines whether to select the next contact, or to start a new intention. The
slot new-intention of the goal chunk is filled with either true or false, influencing the
production rule that can fire.

In contrast with the above it turned out to be hard to translate the model’s reasoning
rules into ACT-R’s production rules. The main reason for this is that typically in the
antecedent of a reasoning rule of our model, multiple (arguments of) existing beliefs
are compared to generate a new belief, i.e., the rule’s consequent (see the examples at
page 93). However, a main characteristic of ACT-R is that a maximum of one chunk, i.e.,
belief, can be retrieved from declarative memory, and reasoned upon in working memory.
To work around this problem the multiple beliefs that are needed in a reasoning rule are
serially retrieved and temporarily stored in the goal buffer. They are then reasoned upon
in LISP, the programming language in which ACT-R is implemented.

3.3.5 Simulation Environment

In order to test whether BOA indeed displays representative cognitive behavior we need
to couple it with an environment that it can observe and where it can perform actions
in. For this purpose we have build a simulation environment resembling the ASTT in
GameMaker (Overmars, 2009), see Figure 3.4.

The basis of the environment is a 2D representation consisting of land and water and
tactical markers like territorial waters, sea-lanes (the ‘high ways’ of the sea, often con-
necting harbors) and furthest on circles (FOC, circle showing the possible locations of

3.3. BOA: A Cognitive Tactical Picture Compilation Agent 97

Figure 3.4: The Large Screen Display simulated in GameMaker

the enemy calculated from the last seen location and its maximum speed.) In the environ-
ment the following entities are modeled: ships, a helicopter, and a Marine Patrol Aircraft
(MPA). These entities can carry the modeled systems passive and active radar. With
passive radar other entities that use their active radar can be detected and it is possible
to determine their approximate location and radar type. With active radar it is possible
to detect any entity within radar range and to locate its position, speed, and heading.
Furthermore, it is possible for friendly entities to share radar information.

Through a coupling between ACT-R and GameMaker, BOA can observe the infor-
mation visible at the LSD, select a contact and observe its available information, and
change its classification and identification. Furthermore, BOA can control the radar of
the own ship and order its helicopter to visual investigate certain contacts.

Two windows show the viewer what is happening in the simulation. One window
displays notifications from the modeled entities and systems, e.g., the loss of a radar
contact or a visual identification report from the helicopter. The other window displays
the radar contact currently selected by the agent with its available information, e.g., its
speed and radar type. Assessments and/or assessment modifications made by the agent
are also displayed in the second window.

3.3.6 Empirical Validation

Before we can use our agent in training applications we have to be sure its behavior
is valid. In a study we assessed the face validity of our agent, being the subjective
experienced similarity between the agent’s behavior and the behavior of the human it

98 Belief Component

represents.
Our subjects were instructors of the naval Operational School. Their years of expe-

rience in training the TPCT ranged from 0.5 to 4 (avg. 2.6), their years of practicing the
task from 2 to 10 (avg. 5).

We developed three scenarios for the task environment simulated in GM. In each
scenario a friendly MPA was present flying a predetermined route while building up an
image of the environment with its active radar, and sharing this information through the
LSD. Using two of these scenarios we made four films, depicting either the behavior of
the rational agent (BOA-R) or that of the agent with biases (BOA-B) during the course of
a scenario. We made BOA perform the task in 5 times real-time, but due to the length of
the scenarios (approximately 7.5 and 10.5 hours) there were long void periods in between
assessments. To make matters practical the play back speed of the film was increased 4
more times, creating two films of 22 and two of 31 minutes. Next, we extended the films
with balloons that elaborated on the agent’s reasons for its performed actions.

We developed three types of questionnaires for evaluating respectively the simulation
environment, the agent, and the scenarios. The questionnaires with which we wanted to
evaluate the behavior of BOA were tailored to the behavior of the agent seen on film.
The general structure of the questions was:

• Boa did so and so: do you consider it plausible a student would have made that
decision?

• Would you as an expert have made that decision and if not, why do you think a student
would have done so?

• Would you as an expert have made any other decision during the last period?

The questions were to be answered with yes or no together with an explanation, for
which we provided blank space. At the end we also asked them to grade BOA with
a mark between 0 and 10. The two other questionnaires also consisted of open yes / no
questions and of questions in which the subjects were asked to grade certain aspects from
0 to 10.

The experiment was set up as a 2x2 design assuming the participation of eight sub-
jects. Each subject viewed two films, one depicting BOA-R and one BOA-B, and one
displaying scenario 1 and one scenario 2. To correct for order effects half of the subjects
viewed the rational agent before the biased agent; the other half viewed the biased agent
before the rational one. The same procedure was followed for the scenario order.

Our experiment started with introducing the subjects to the simulation environment
in GM by asking them to perform the TPCT themselves in the third developed scenario.
After completing the scenario we administered the questionnaire about the environment.
Next, we played the two films that would stop after approximately every five decisions

3.3. BOA: A Cognitive Tactical Picture Compilation Agent 99

made by BOA concerning the classification or identification of contacts or the deploy-
ment of the helicopter or radar. At every break we asked our subjects to fill in the ques-
tions of the questionnaire about the behavior of the agent. At the end we administered
the third questionnaire in which we asked the subjects about the quality of the scenarios
and the research in general.

3.3.7 Results and Discussion

Six participants completed the experiment.

Grade for: Grade Standard Deviation
Quality Simulated Environment 7 1.3
Quality Scenario 1 7.3 2.1

Behavior BOA-R in Scenario 1 5.7 1.5
Behavior BOA-B in Scenario 1 6 2.0

Quality Scenario 2 7.3 1.2
Behavior BOA-R in Scenario 2 5.3 2.1
Behavior BOA-B in Scenario 2 6.7 1.5

Usefulness Research Project 8.3 1.0

Table 3.2: Graded expert opinions

The grade given to the simulated task environment by the subjects (7), as well as their
answers to the open questions, indicate that the developed environment can be used for
training the TPCT. On the other hand, subjects mentioned some aspects that could be
improved. The suggested improvements are mainly the addition of functionalities to the
MPA and helicopter, which would increase the validity of the task.

The subjects graded both scenarios as suitable for training the TPCT (2 x 7.3). Fur-
thermore, they stated that the scenarios and the behavior of the modeled entities were
realistic enough, but that the scenarios should be made more difficult for advanced train-
ing.

The most interesting result is that the BOA in which we implemented the mechanisms
that can lead to typical mistakes, i.e., biases, outperforms the rational BOA (6 and 6.7
versus 5.7 and 5.3 in the respective scenarios). The answers to the open questions indicate
that the subjects in general agreed with the classifications and identifications that both the
BOAs gave to contacts. However, they did not agree with the timing and order of these
decisions: they often considered the BOAs to be too slow.

A combination of two factors causes BOA to react slower to changes in the environ-
ment than humans would. First, the translation of the cognitive model into ACT-R turns
out to be slow. It takes BOA several seconds to reason about an identification or about

100 Belief Component

sending the helicopter. Second, BOA has a linearly control structure. When it is its in-
tention to check and reason about information of contacts it does so by looping through
a random list of known contacts. The consequence of these factors is that it simply takes
time for BOA to reach a contact in the list, to start reasoning about it and to notice any
relevant changes. And when BOA is slow in noticing relevant changes, it is also (too)
slow in making decisions based on these changes.

A second consequence of the random order of contacts in the list is that BOA con-
cordantly turns its attention to contacts at random. This behavior is very different from
humans whose attention is influenced by, e.g., the closeness and importance of contacts.
Moreover, humans treat members of a group simultaneously and do not alternate them
with others like BOA did, and which was considered as unnatural.

BOA’s decisions concerning the deployment of its helicopter were received with
mixed feelings. In general the subjects would have sent the helicopter airborne much
sooner, and most of them would not have let it return to the ship. This indicates that the
threshold that determines whether the helicopter should go or stay airborne given a cer-
tain threat was modeled with a wrong value. However, the subjects did agree with BOA’s
choice of helicopter targets, which it makes by assessing the threat level of a (group of)
contact(s) by their distance and current identification.

The biased version of BOA deployed the helicopter quicker than the rational BOA.
This was probably the reason why subjects favored the biased version over the rational
one. The reason that BOA-B was quicker than BOA-R lies within the implemented bias-
mechanisms. Tactical knowledge was available in both the scenarios (e.g., knowledge
concerning the possible position of the hostile contacts), which caused that some con-
tacts (e.g., within the FOC) were already slightly believed to be hostile by BOA. The
confirmation bias present in BOA-B causes it to give more weight to information that
confirms a current hypothesis than to information that disconfirms it. This resulted in
that given some other suspicious behavior, BOA-B quickly considered these contacts as
very suspicious, and therefore as posing enough threat to send its helicopter airborne for
visual identification. BOA-R on the other hand was less sure of their hostility, and did
not consider it necessary to send the helicopter.

An interesting question is whether after decreasing the helicopter-threat-threshold,
BOA-B will still be judged better. It might be that the confirmation bias makes BOA-B
jump to conclusions about identifications and therefore too quick in selecting helicopter
targets.

At just one moment in the scenarios it was relevant for BOA to make a decision about
its radar status. The subjects’ judgment varied; some judged its behavior as valid, others
would have done something different.

3.3. BOA: A Cognitive Tactical Picture Compilation Agent 101

The highest mark (8.3) was given to the usefulness of this kind of research for the
navy. The subjects consider the future possibility of replacing (part of the) human agents
by software agents as very beneficial for training. They were most enthusiastic about the
idea of on-board training requiring nothing but a laptop.

3.3.8 Conclusion and Further Research

We build an agent in ACT-R that is capable of performing the tactical picture compilation
task in a simulated task environment in a rational or biased manner, and evaluated its
performance in a pilot study with naval experts. The study made clear that for future use
in training applications, or in the related field of decision-support, an agent should show
behavior that represents an expert or trainee better than BOA-R and BOA-B respectively
currently do. Part of this is likely to be achieved by fine-tuning model parameters and
by implementing the cognitive model in other, faster, software. Furthermore, the study
showed that much can be gained by the implementation of valid, cognitive control.

Our next research step therefore consists of the development and implementation of
a cognitive control framework. With such a framework it is not only possible to model
biases that take place on the level on individual rules, but also on the level of control, e.g.,
which contact or task receives attention. When the rational agent will perform the tactical
picture compilation task at the level of an expert, it will be possible to research how
suited the mechanisms implemented in the biased agent are for generating representative
common mistakes.

Overall, the naval experts were enthusiastic about BOA and could imagine such a
cognitive agent aiding the training of the tactical picture compilation task in the future.
With this research we have set a perhaps small, but certainly a definite step into the future
in which training can take place at any time and at any place thanks to always available,
capable, and willing role players.

Acknowledgments

The authors like to thank the instructors of the Opschool, especially LTZ 2OC Daan Smit,
for their cooperation with this research, Willem van Doesburg for developing an initial
version of the training environment and Karel van der Bosch for coaching this project as
well as commenting an earlier draft.

102 Belief Component

Research Paper

3.4 From a Formal Cognitive Task Model to an
Implemented ACT-R Model

Abstract

In order to generate behavior that can be validated, a cognitive task model needs to be im-
plemented in software. This paper first introduces a cognitive task model based on a BDI
framework and then focuses on the translation of that model into the ACT-R theory and
software. Problems encountered during this translation process are described and further
implications are discussed. It is found that the model’s control structure matches well
with ACT-R, but that the translation of its reasoning rules is complex. ACT-R’s theory of
cognition does not match with properties of our task model on three issues: 1) the num-
ber of memory items that can be stored in working memory, 2) the way memory items
are retrieved from long-term memory, 3) the ability to execute complex computations.

This section is published as:
Both, F., and Heuvelink, A. From a Formal Cognitive Task Model to an Implemented ACT-R Model. In R.
L. Lewis, T. A. Polk, and J. E. Laird (Eds.), Proceedings of the 8th International Conference on Cognitive
Modeling (ICCM 2007), Psychology Press, p. 199-204. July 26-29 2007, Ann Arbor - Michigan.

3.4. From a Formal Cognitive Task Model to an Implemented ACT-R Model 103

3.4.1 Introduction

The development and implementation of cognitive task models in order to create agents
that can replace humans for performing certain tasks in certain environments is a promis-
ing research activity (Gluck and Pew, 2005). Two important activities in the development
of a cognitive model are the modeling of relevant task knowledge and the modeling of
a cognitive valid theory of task execution. These modeling activities typically yield a
formal design on paper of the cognitive task model. However, for studying the model’s
behavior and, to use the model as a replacement for a human in a certain environment it
needs to be implemented in software.

The work presented in this paper is part of a greater research project that has as
its goal the development of a cognitive agent that can perform the task of compiling a
tactical picture on board of a ship in a training simulation. The current paper describes
and reflects on the translation of the cognitive task model into the cognitive architecture
ACT-R (Anderson and Lebiere, 1998). It will not go into details of the task, or into the
validity of the behavior that the resulting cognitive agent shows.

First, we will briefly introduce the developed cognitive task model with its main prop-
erties concerning task knowledge and task control. Next, we discuss the translation of
this model into ACT-R. To test the resulting cognitive agent we coupled it to an external
simulation environment. This coupling and the general task performance of the ACT-
R model are discussed. Furthermore, we reflect upon problems encountered during the
translation as well as their implications. Finally, we lay down further research plans.

3.4.2 Research Domain

The task we modeled is the Tactical Picture Compilation Task (TPCT) within the domain
of naval warfare. This task revolves around the classification and identification of enti-
ties in the surroundings. The warfare officer responsible for the TPCT monitors the radar
screen for radar contacts and reasons with the available information in order to determine
the type and intent of the contacts on the screen. The cognitive model of the TPCT is
based on a Belief, Desire and Intention (BDI) framework (Georgeff and Lansky, 1987).
This choice facilitates the translation of domain knowledge into the model since domain
experts tend to talk about their knowledge in terms similar to beliefs, desires and inten-
tions. The domain knowledge needed for performing the TPCT has been elicited from
naval experts by van (Dam and Arciszewski, 2002).

The goal of our research is the development of cognitive agents that can be used
for training purposes. We therefore want to model cognitive behavior, which can vary
in level of rationality. To make this possible, we developed a specific belief frame-

104 Belief Component

work (Heuvelink, 2007). Three arguments are added to beliefs: a time stamp, the source
of the information and a certainty level. Usually in BDI models, beliefs are thrown away
as soon as a new belief is created that causes an inconsistency. However, because we
want to reason over time, every belief is labeled with the time it is created and is never
thrown away. The source and certainty labels make it possible to model an agent that can
reason about information from multiple sources and with uncertainty, and that might do
this in a biased way. A belief according to this new framework consists of a predicate P
with an attribute A and value V , a time stamp T , source S and certainty C. An example
belief is: belief(identification(contact1, friendly), 12, determine id, 0.7)

3.4.3 Cognitive Task Model

A cognitive task model typically consists of declarative knowledge, denoting facts, as
well as procedural knowledge, denoting reasoning rules. Besides modeling how to rea-
son, it is also necessary to model when to reason about what. In this paper, we mainly
address the modeling of the declarative and procedural knowledge necessary for perform-
ing the TPCT. The modeling of cognitive control is not our current focus, and therefore
we limit the complexity of our control structure. First, we describe the format of the
declarative and procedural knowledge embedded in the cognitive model. Then we ela-
borate on the control structure of the model and at the end, we present the conceptual
design of our agent.

Reasoning over Beliefs

The goal of the TPCT is to correctly classify and identify all contacts in the surroundings.
To draw these kind of conclusions about contacts, the agent needs knowledge about their
behavior. There are two ways to gather such information. The first is from the external
world, e.g., the agent can watch the screen that displays information from sensors such
as the radar system. Additionally, the agent can decide to perform actions that lead to
more knowledge about the situation, such as activating radar or sending a helicopter to
investigate a contact. The second method to gain information is through the internal
process of reasoning about beliefs to deduce new beliefs. In the reasoning process, often
multiple beliefs form the evidence for the formation of a new belief. Any uncertainty in
the source beliefs will be transferred to the new belief.

The following rule is an example of how a new belief is derived using other beliefs
and domain knowledge. The position of the contact that the agent is currently reasoning
about is compared to the position of every other contact that is detected by the radar
system. A new belief is created for every pair that indicates how certain the agent is that

3.4. From a Formal Cognitive Task Model to an Implemented ACT-R Model 105

they are within formation distance. Names of functions are depicted bold and names of
parameters are not italic.

Determine Within Formation Distance Contact(X)
FOR ALL Y

IF

(belief(position contact(X,P1), T1, S, C1),

belief(position contact(Y, P2), R1, S, C2),

Position Difference(P1, P2, D),

Certainty Handling Positions Difference(C1, C2, D,C3),

Possible Distances(D,C3, [R]),

M = maximum distance relevant for formation,

C4 = (number of [R ≤M]) / (number of [R]))

THEN

Reason Belief Parameter(within formation distance contact(X,Y),

determine within formation distance contact, C4)

The function Position Difference calculates the distance between two positions, Cer-
tainty Handling Difference Between Positions calculates the certainty of the distance
given the certainties of the positions, Possible Distances returns all possible distances
given the calculated distance and certainty, and the rule Reason Belief Parameter adds
the time stamp and stores the belief in long-term memory. In this example, the latest be-
liefs about the positions are used. In other rules, beliefs are used that ever had a specific
value, or those beliefs the agent is most certain about.

Control of Reasoning

Control is an important aspect of a cognitive agent; it determines when the agent does
what. The TPCT has one main goal, which is considered a desire in the BDI model: to
identify all contacts correctly. The three subtasks that the agent can perform in order to
fulfill this desire are 1) processing information about contacts from the screen, 2) chang-
ing the activity of the radar system, and 3) sending the helicopter on observation missions
to gain more information about a specific contact. These subtasks are the intentions of
the BDI model that the agent can commit to.

A cognitive valid manner to determine when which intention becomes a commitment
is to have events in the world trigger an intention. For example, when a contact suddenly
changes its behavior, the attention of the agent should be drawn to this contact, regardless
of the current intention. However, this type of control requires a parallel processing of
all events in the world and a parallel checking of relevancy for all subtasks, which is very
difficult to implement. That is why currently, we chose to implement a simpler, linear
control system. To simulate parallel processing we let the agent alternately commit to

106 Belief Component

one of the three intentions. Within the subtasks, the control is also kept simple, e.g., in
the first subtask all contacts on the screen that are stored in a random list are monitored
consecutively.

The following reasoning rule is an example part of the simple control structure. It
determines when the agent starts committing to a new intention.

Determine New Intention(I)
FOR ALL Y

IF

(I = monitor contacts,

belief(number of contacts monitored(X), T1, S, C),

X = maximum number of contacts to monitor)

THEN

Start New Intention Selection(I)

ELSE IF

(I = monitor contacts,

belief(number of contacts monitored(X), T1, S, C),

X < maximum number of contacts to monitor)

THEN

(Select Next Contact To Monitor(),
Reason Belief Parameter(number of contacts monitored(X + 1),

determine new intention, 1))

The input parameter I is the current intention, the rule Start New Intention Selec-
tion determines which intention is selected next depending on beliefs about contacts, and
the rule Select Next Contact To Monitor selects the next contact from the list.

Conceptual Agent Design

We have made a conceptual design of the agent capable of performing the TPCT using
the DESIRE (DEsign and Specification of Interacting REasoning components((Brazier
et al., 2002) method. DESIRE’s view of an agent is that of a composed structure consist-
ing of interacting components. This conceptual agent model in DESIRE completes the
formal model of the TPCT with the control of the different subtasks. DESIRE enables us
to model the flow of information within the agent and between the agent and the exter-
nal world. The agent components of the conceptual model are displayed in Figure 3.5,
representing different kinds of tasks at different levels.

At the top level, there are two components: Warfare Officer and External World.
This makes it possible to model communication between the agent and the external
world. At the second level, three components are selected from the Generic Agent Mo-
del (GAM) (Brazier et al., 2000): (1) Own Process Control, (2) Maintenance of World

3.4. From a Formal Cognitive Task Model to an Implemented ACT-R Model 107

Figure 3.5: Process decomposition for the agent

Information and (3) World Interaction Management. The component Own Process Con-
trol, responsible for desire, intention and belief determination, is refined according to the
addition to GAM for BDI models (Brazier et al., 2001). The component Maintenance of
World Information stores the beliefs created by a subcomponent of Own Process Con-
trol. The last GAM component, World Interaction Management, manages communica-
tion with the external world via two subcomponents, Action and Observation Request
Management. The fourth component at the second level, Agent Specific Task, performs
tasks that require an internal decision to be made (Decision Control), and tasks that re-
quire reasoning about beliefs to derive new beliefs (Reasoner).

3.4.4 Translation Process

This section first introduces ACT-R and than continues with a description of the transla-
tion process of the reasoning rules and the control of these rules into the ACT-R archi-
tecture. Finally, it introduces the environment with which the resulting agent interacts.

108 Belief Component

ACT-R

ACT-R incorporates two types of memory modules: declarative memory and procedural
memory. Declarative memory is the part of human memory that can store items; proce-
dural memory is the long-term memory of skills and procedures. ACT-R consists of a
central processing system, where the production rules representing procedural memory
are stored and executed. The central processing system can communicate with several
modules through buffers. One of those modules is the declarative memory module where
memory items are stored. These memory items, called chunks, are of a specific chunk-
type, which can be defined by the modeler. In a chunk-type definition, the modeler
defines a number of slots that chunks of this type can assign values to. Chunks from
the declarative memory module can be placed in the retrieval buffer if they match a re-
trieval request made by a production rule. A retrieval request must contain the requested
chunk-type, and may contain one or more slot-value pairs that the chunk must match.
The matching chunk is then placed in the retrieval buffer, so it can be read by a produc-
tion rule. All buffers in ACT-R, including the retrieval buffer, can only store one chunk
at a time, even when more chunks match the conditions of the request.

Reasoning Rules

In the following paragraphs, the implementation of the reasoning rules of the formal task
model in the declarative and procedural memory modules is described.

Declarative Memory The cognitive model of the TPCT requires the ability to retrieve
beliefs with specific time and certainty constraints. The rule Determine Within Forma-
tion Distance Contact for example, requires the latest beliefs about the position of two
contacts. Because beliefs are not thrown away, there may be many older beliefs about
the positions of these contacts. It is therefore necessary to retrieve the latest belief of
both contacts in order to determine the current distance between them. In ACT-R, cre-
ation and retrieval times of chunks are registered, but these properties are not available to
the modeler. There is also no feature that enables the agent to retrieve a chunk with the
highest value of a slot.

The method ACT-R provides for retrieving chunks from memory is an activation
function for chunks. The activation of a chunk indicates how easy it should be to retrieve
it. Every chunk that matches a retrieval request receives an activation score based on
three components: a base level activation, a context component and a noise value. The
base level activation uses the number of representations and the time since the representa-
tions. Representations are the initial entry in the declarative module and a retrieval in the

3.4. From a Formal Cognitive Task Model to an Implemented ACT-R Model 109

declarative buffer. The context component is based on the activation of related chunks.
The noise value adds a random factor to the activation value.

Our task model assumes that when the last belief is required for a reasoning process,
that the last belief is always retrieved. In ACT-R, it is possible that an older chunk has
been retrieved more often than the latest chunk, which results in a higher activation value.
Although there are several parameters that can be set, the activation function cannot
guarantee that the latest chunk is always the most active. To meet the requirements of the
task model, it is therefore necessary to implement the retrieval process of those beliefs
using LISP, the language ACT-R is built in.

Procedural Memory There are several theories about working memory (WM), most
of which agree on the idea that multiple memory items can be stored at the same time in
WM (Miller, 1956; Baddeley and Hitch, 1974; Hulme et al., 1995; Cowan, 2005). The
number of items that can be stored in WM ranges from two to seven in these theories.
ACT-R’s theory of WM is that there can only be one chunk of memory stored in WM at
a time. This representation of WM is not consistent with the most commonly accepted
cognitive theories of WM, as well as with the formal task model based on the developed
belief framework.

In the formal task model, several beliefs need to be in WM at the same time to be able
to reason. For instance, different positions over time are compared in order to determine
a contact’s heading and speed. To implement such a rule in the ACT-R model, multiple
production rules are needed to retrieve all required beliefs. Each production rule would
have to draw a sub conclusion about the retrieved information so far. This method is
inefficient for this task and it is inconsistent with the reasoning methods described by the
naval experts. Therefore, we have tried two different methods to solve this problem. The
first solution is to merge all the beliefs that need to be compared into one chunk. This
solution however, still requires many production rules to retrieve all the necessary beliefs
and undermines the ACT-R theory of WM being able to store only one chunk at a time.

The second method, used in the final model, consists of two parts: using the goal
buffer for temporary storage and using LISP functions to retrieve beliefs. The goal buffer
can hold just one chunk, so the different memory items need to be stored in the slots of the
goal chunk. Many ACT-R modelers use this solution to be able to compare information
items (see e.g., the tutorials of ACT-R 6.0). For example, in our task model several
beliefs about the location of a contact at different time points form the antecedent of
the logical rule that calculates the belief about the speed of a contact. These different
locations can be stored in the goal buffer until all relevant locations are retrieved and the
speed can be calculated. The second part of our solution is that we used LISP functions

110 Belief Component

instead of production rules to access chunks in the declarative module of ACT-R. LISP
functions can be called within a production rule that is firing. Then, the LISP function
can retrieve multiple beliefs at the same time, compare them, and return the result to the
active production rule.

The many calculations the task model requires, e.g., for calculating the certainty of a
new belief from the uncertainties of the beliefs it is derived from, is a second problem we
encountered during translation. In most ACT-R models of low-level tasks, calculations
are modeled in production rules. The addition of three and four for example, would
take ten rules: one for the initialization, two for every addition step (increment by one,
remember how much has been added) and one for the finalization. It would take many
more production rules to calculate the speed of a contact from its positions over time.
In addition, most of the calculations are not an exact representation of the cognitive
processes of a warfare officer, but are a more abstract representation. It is therefore not
necessary and not efficient to model all computations in production rules. We chose to
use LISP functions for those calculations.

By executing the above processes in LISP functions instead of in production rules,
the amount of production rules is reduced to half of the programming code of the agent.
The other half consists of supporting LISP functions. The following ACT-R production
rule is an example of how we implemented the task model rule Determine Within
Formation Distance Contact and how we solved the problems described above.

(p determine-within-formation-dist-goal1-plan6
=goal>

ISA commitment1
goal monitor-contacts
state determine-formation-distance
contact =contact

==>
!bind! =within-dist (calc-within-formation-distance =contact)
!bind! =next-step (if =within-dist *determine-formation*

determine-classification)
=goal>

state =next-step
result =within-dist)

The antecedent of the rule requires that the agent is currently committed to commit-
ment1; processing information about contacts from the screen, and that the agent is going
to determine whether the current contact is within formation distance of any other con-
tact. In the consequent, the agent uses a LISP function to find all contacts within forma-
tion distance (function calc-within-formation-distance). In this LISP function,
multiple beliefs with the latest time stamp are retrieved, and calculations are performed to
determine the distance. If a contact exists that is close enough to the current contact, the

3.4. From a Formal Cognitive Task Model to an Implemented ACT-R Model 111

agent starts with determining whether they actually are moving in formation. Otherwise,
the next step is to determine the classification of the current contact.

Control of Reasoning Rules

As explained above we implemented a simple, linear control structure, in which the agent
alternately commits to its various subtasks. We showed the reasoning rule Determine
New Intention, which determines that after reasoning about a number of contacts one of
the other subtasks becomes the agent’s intention. We did not run into any problems when
implementing these task model control rules in ACT-R. In ACT-R, the control structure
is also linear: only one production rule can fire at a time. The antecedent determines
which rule matches the current contents of the buffers. The current intention and current
step in the plan can be stored in the goal buffer. The consequence of a fired rule can
influence which production rule will fire next. In our agent, this was generally done by
changing the contents of the goal buffer. The following ACT-R production rule shows
how we implemented the rule Determine New Intention.

(p select-next-contact-goal1
=goal>

ISA commitment1
goal monitor-contacts
state next-contact
contact =contact1

==>
!bind! =contact2 (determine-next-contact)
!bind! =new-intention (= (mod *contact-counter*

max-number-of-contacts) 0)
=goal>

plan read-basal-info
state start-step
contact =contact2
new-intention =new-intention)

The antecedent of the rule requires that the agent is currently committed to moni-
toring contacts, and that the agent is going to select a new contact. In the consequent,
the agent determines whether to select the next contact or to start a new intention. The
new-intention of the goal chunk can be true or false, influencing the next production
rule that can fire.

Coupling Environment

ACT-R has different modules for simulating visual and aural stimuli and vocal and man-
ual actions. The visual module can be used to show letters and numbers in a window,

112 Belief Component

for example to simulate the Stroop-task. However, the current task requires the visual-
ization of a naval scenario and the features of the visual module are too limited for this.
Therefore, a coupling has been made between ACT-R and an external simulation envi-
ronment: Overmars (2009). The simulation environment we developed in Game Maker
consists of a screen that shows radar contacts. An additional screen displays detailed
information about a contact when it is selected by a mouse click. This same window can
be used to change the classification and identification value of the selected contact.

ACT-R and Game Maker communicate through two text files. In the first file, the
ACT-R agent writes information and action requests, which Game Maker reads and per-
forms. This can be, for instance, a request for detailed information, simulating a mouse
click on a contact. In the other file, Game Maker writes the requested information and
feedback about the performed action, which ACT-R reads and processes. The response
of Game Maker to the mouse click would be to write the detailed information of the
contact in the text file.

3.4.5 Results and Discussion

Now that we have implemented the TPCT model in ACT-R and coupled the resulting
agent with a simulation environment, we can test the behavior of the agent. In this sec-
tion, we will describe and discuss the results of the translation process and the coupling
with Game Maker.

Before translating the task model into ACT-R, we developed a conceptual agent mo-
del in DESIRE that gave us a structured overview of the control and information flows
within the task model. We find that the structure of this conceptual agent model matches
well with ACT-R. Each of the components of the conceptual model (see Figure 1) can be
identified in the ACT-R code. This made the conceptual model a useful structure to base
the ACT-R model on.

In addition, the serial control was easily translated from the DESIRE model to ACT-
R production rules. In ACT-R, one production rule can fire at a time. This principle is the
same as we chose for our agent. However, if we had chosen a more complex control, we
probably would have had more trouble translating the conceptual model to ACT-R. For
example, a function that determines which contact on the screen deserves attention re-
quires calculations. Since we have already shown that calculations are difficult to model
in ACT-R, a more complex control system will be more difficult to implement.

During the implementation process, we encountered some problems when translat-
ing the reasoning rules of our model to ACT-R production rules. The ACT-R theory
entails that one chunk can be stored in WM, that the chunk with the highest activation
value is retrieved, and that it is difficult to combine low-level calculations and high-level

3.4. From a Formal Cognitive Task Model to an Implemented ACT-R Model 113

reasoning rules in one model. Our solution has been to implement those processes in
LISP functions. However, by using so much LISP code and by not using the declarative
memory module properly, the structures built into ACT-R that constitutes its theory of
cognition are denied. It is likely that both theories are incomplete. ACT-R should sup-
port the storage of multiple chunks in the retrieval buffer at the same time since most
researchers agree that human WM can store multiple beliefs. We should reconsider the
many calculations performed in the rules of the cognitive task model.

A more practical issue we encountered during implementation concerns the number
of chunks in ACT-R’s memory. Every couple of minutes the agent is active, its number of
chunks doubles. As a result, ACT-R becomes very slow when the agent tries to retrieve
a chunk from memory. We partly solved this by creating fewer chunks during reasoning.
In the original task model, every reasoning step resulted in a new belief. We identified
types of beliefs that were never retrieved by the agent, and stopped adding them to ACT-
R’s memory. For example, only the result of a calculation is remembered, instead of all
steps leading to this result. Furthermore, we deleted irrelevant chunks from the agent’s
memory. For instance, if the speed of a contact has been constant for a long time, the
first and last beliefs about that speed provide all the information ever needed.

The coupling of the ACT-R agent and the simulation environment Game Maker con-
sists of communication through text files; one file in which ACT-R writes its requests
and. one file in which Game Maker writes its results. It is computationally impossible
for both Game Maker and ACT-R to check the text file constantly for new information.
The less often the text file is checked for new information, the slower the communication
process becomes. However, if Game Maker and the agent would check it more often, the
entire simulation would slow down.

We tried to find a balance by having Game Maker read the text file every second.
The agent only reads the text file when it expects new information. Thus, when the agent
communicates a request to Game Maker, it keeps reading the text file until the new infor-
mation has arrived. In practice, this means that ACT-R reads the text file approximately
every half second. In the future, we would prefer a different type of coupling that en-
ables streaming of information, so the two parties do not have to actively check for new
information.

3.4.6 Conclusion and Future Research

We implemented a cognitive task model in ACT-R and tested how it functioned. During
implementation, we found that the DESIRE control model fits well with ACT-R, but that
the model’s reasoning rules that are based on the developed belief framework do not fit.

ACT-R is a cognitive architecture that consists of several modules. Two of those

114 Belief Component

modules are used for the agent: the declarative memory module and the procedural me-
mory module. The communication with the chunks in the declarative memory module is
not done by the use of the retrieval buffer, but through LISP functions. LISP functions
are used to solve three issues. First, the task model requires the comparison of more than
one belief, and ACT-R can only hold one belief in the representation of WM. Second, the
task model requires the latest or most certain belief to be retrieved, and ACT-R does not
offer a function to request beliefs with these specifics. Third, the task model describes
many calculations, which are difficult to implement using ACT-R’s production rules. Be-
cause only part of the theory of ACT-R matches the formal cognitive task model, this
cognitive architecture is not very well suited for this kind of task model and this forced
us to implement a great part of the agent in LISP code.

Overall, the implemented agent is slow. ACT-R is a software package that uses about
half of the computer’s CPU power, and Game Maker uses the other half. In ACT-R
the slow speed is mainly due to the extensive search for specific beliefs caused by the
exponential grow of chunks. To improve the performance of the agent it is necessary to
extend the task model with a cognitive model for the decay of beliefs, or with a system
that throws away beliefs that are not relevant for the task anymore.

In the future, we want to translate the cognitive task model to SOAR to research
how well it matches with that cognitive architecture. This activity will yield a SOAR
agent whose performance we can compare with the current ACT-R agent. To increase
the cognitive validity of the task model we also want to focus on the development of a
more cognitive plausible control system.

Acknowledgments

The authors like to thank Tibor Bosse and Karel van der Bosch for their guidance during
this research project. Furthermore we like to thank Jan Treur for commenting an earlier
draft, Willem van Doesburg for developing an initial version of the training environment,
and the naval instructors of the Opschool for providing domain knowledge and for taking
part in the experiment.

3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 115

Research Paper

3.5 Implementing a Cognitive Model in ACT-R and Soar:
A Comparison

Abstract

This paper presents an implementation of a cognitive model of a complex real-world task
in the cognitive architecture Soar. During the implementation process there were lessons
learned on various aspects, such as the retrieval of working memory elements with rel-
ative values, alternative approaches to reasoning, and reasoning control. Additionally,
the implementation is compared to an earlier implementation of the model in the ACT-R
architecture and both implementations are discussed in terms of cognitive theories.

This section is published as:
Muller, T. J., Heuvelink, A., and Both, F. Implementing a Cognitive Model in ACT-R and Soar: A Comparison.
In Jung, Michel, Ricci and Petta (Eds.), Proceedings of the 6th International Workshop on From Agent Theory
to Agent Implementation (AT2AI-6 2008) in conjunction with AAMAS 2008. May 13 2008, Estoril - Portugal.

116 Belief Component

3.5.1 Introduction

People performing tasks in uncertain and dynamic environments require much training
in order to gain the necessary expertise. However, the nature of these tasks makes it hard
to set up real-world training. An appropriate alternative for training decision-making in
complex environments is scenario-based simulation training (Oser, 1999). To create a
useful training, a simulation needs to represent the aspects of the real world that are vital
for achieving the learning objectives. One of these aspects is human interaction; there-
fore, simulated entities that respond naturally and validly are needed. These entities,
known as agents, can be used to simulate team members, opponents or bystanders. There
is growing conviction and evidence that cognitive agents can be developed by captur-
ing human cognitive processes in a cognitive model and implementing it in a cognitive
architecture (Pew and Mavor, 1998; Ritter et al., 2003; Gluck and Pew, 2005).

An architecture poses constraints on the implementation of a model and therefore
influences design choices. This paper reports the experiences of implementing the same
formal cognitive model in two different cognitive architectures. First, the implementation
of the model in the cognitive architecture Soar (Laird et al., 1987) is presented. This agent
performs a real-world task in a complex environment. Implementing the cognitive model
provides insights into the use of Soar for agent applications and it may be used to validate
the model’s behavior in future research. Next, the Soar implementation is compared to an
earlier implementation of the same model in the cognitive architecture ACT-R (Anderson
and Lebiere, 1998). This allows for the second goal of this paper: the comparison of Soar
and ACT-R.

The next section presents the cognitive task and the formal model. Section 3.5.3
presents the ACT-R architecture and the implementation, BOA. Section 3.5.4 elaborates
on the implementation in Soar, which resulted in the agent named Boar. The paper con-
cludes with a comparison of both implementations on various aspects and their connec-
tion to the cognitive theories.

3.5.2 Cognitive Task and Model

The real-world task that has been modeled is the tactical picture compilation task (TPCT)
from the naval warfare domain. In this task, a navy operator sees a large number of radar
contacts on his display. Each contact indicates a detected vessel in the vicinity of the
own ship. The identities and classifications of these vessels are unknown. The operator
can obtain information on these tracks by monitoring the radar screen, such as speed,
course, distance to own ship and adherence to shipping lanes. The task of the operator
is to use this information to determine both the identity (e.g. hostile, friendly) and the

3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 117

classification (e.g. frigate, fishing boat) of each contact.
A complete cognitive model of the TPCT is constructed using the principles de-

scribed in this section. The model is based on an extended Belief, Desire and Intention
(BDI) framework (Georgeff and Lansky, 1987). BDI facilitates the translation of do-
main knowledge into a model since domain experts tend to talk about their knowledge in
terms similar to beliefs, desires and intentions. The domain knowledge needed to model
the TPCT has been elicited from naval experts (Dam and Arciszewski, 2002).

In order to develop cognitive agents for training purposes, cognitive behavior that
can vary in level of rationality needs to be modeled: agents that can perform a task on
different levels of expertise are needed. To make this possible, a belief framework was
developed (Heuvelink, 2007). Three arguments are added to beliefs: a time stamp, the
source of the belief and a certainty level. BDI models usually throw away beliefs as soon
as a new belief is created that causes an inconsistency. However, to enable reasoning
over time, every belief is kept and labeled with the time of creation. The source and
certainty labels make it possible to reason about information from multiple sources and
with uncertainty, and reasoning can be done in both a rational and a biased way.

A belief belief(P (A, V), T, S, C) has a predicate P with attribute A and value V ,
a time stamp T , source S and certainty C. Below is an example belief – there was
an identification of contact1 as friendly with certainty 0.7, done by reasoning rule
determine id on time stamp 12:

belief(identification(contact1, friendly), 12, determine id, 0.7)
A cognitive model typically consists of declarative knowledge, denoting facts, as well

as procedural knowledge, denoting reasoning rules. Besides modeling how to reason, it is
also necessary to model the control on when to reason about what. The next subsection
presents the format of the declarative and procedural knowledge and subsection 3.5.2
explains the control structure of the model.

Reasoning over Beliefs

The goal in the tactical picture compilation task is to correctly classify and identify all
contacts. In order to fulfill this goal, the agent needs information about the contacts’
behavior. There are two ways to gather such information. The first is from the external
world, e.g., the agent can watch the screen that displays information from sensors such
as the radar system. Additionally, the agent can decide to perform actions that lead to
more knowledge about the situation, such as activating its radar or sending a helicopter
to investigate a contact. The second method to gain information is through the internal
process of reasoning about beliefs to deduce new beliefs. In the reasoning process, often
multiple beliefs form the evidence for the formation of a new belief. Any uncertainty in

118 Belief Component

the source beliefs will be transferred to the new belief.
An example of this type of deduction is reasoning about formations. If a number of

vessels have the same course and are close to one another (source beliefs), they might
move in formation (new belief). Moving in formation is an indication that these vessels
are frigates. Figure 3.6 contains an example rule that is part of reasoning about forma-
tions. The position of the contact that the agent is currently reasoning about is compared
to the position of every other contact that is detected by the radar system. A new belief is
created for every pair that indicates how certain the agent is that they are within a distance
that can indicate a formation.

The function Position Difference calculates the distance between two positions, Cer-
tainty Handling Positions Difference calculates the certainty of the distance given the
position certainties, Possible Distances returns all possible distances given the calcu-
lated distance and certainty, and Reason Belief Parameter adds the time stamp and
stores the belief in long-term memory. In this example, the latest beliefs about the po-
sitions are used. In other rules, beliefs are used that ever had a specific value, or those
beliefs the agent is most certain about.

Determine Within Formation Distance Contact(X)
FOR ALL Y

IF

(belief(position contact(X,P1), T1, S, C1),

belief(position contact(Y, P2), R1, S, C2),

Position Difference(P1, P2, D),

Certainty Handling Positions Difference(C1, C2, D,C3),

Possible Distances(D,C3, [R]),

M = maximum distance relevant for formation,

C4 = (number of [R ≤M]) / (number of [R]))

THEN

Reason Belief Parameter(within formation distance contact(X,Y),

determine within formation distance contact, C4)

Figure 3.6: Rule for determining if two contacts are within formation distance

Control of Reasoning

Control is an important aspect of a cognitive agent; it determines when the agent does
what. In the TPCT there is one main goal, which is considered the navy operator’s desire
in the BDI model: to identify all contacts correctly. The three subtasks that the agent can
perform in order to fulfill this desire are:

1. processing information about contacts on the screen;

3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 119

2. changing the activity of the radar system; and

3. sending the helicopter on observation missions to gain more information about a
specific contact.

The subtasks above are the intentions of the BDI model that the agent can commit to.
A valid manner in cognition to determine when which intention becomes a commitment
is to have events in the world trigger an intention. For example, when a contact suddenly
changes its behavior, the attention of the agent should be drawn to this contact, regardless
of the current intention. However, this type of control requires a parallel processing of all
events in the world and a parallel checking of relevancy for all subtasks, which is hard to
implement. This is why currently a simpler, linear control system is modeled. The agent
alternately commits to one of the three intentions to simulate parallel processing. Within
the subtasks, the control is also kept simple, e.g. in the first subtask all contacts on the
screen are monitored consecutively.

The rule in Figure 3.7 illustrates a part of the simple control structure. It determines
when the agent starts committing to a new intention. The input parameter I is the cur-
rent intention, the rule Start New Intention Selection determines which intention is
selected next depending on beliefs about contacts, and the rule Select Next Contact
To Monitor selects the next contact from the list.

Determine New Intention(I)
FOR ALL Y

IF

(I = monitor contacts,

belief(number of contacts monitored(X), T1, S, C),

X = maximum number of contacts to monitor)

THEN

Start New Intention Selection(I)

ELSE IF

(I = monitor contacts,

belief(number of contacts monitored(X), T1, S, C),

X < maximum number of contacts to monitor)

THEN

(Select Next Contact To Monitor(),
Reason Belief Parameter(number of contacts monitored(X + 1),

determine new intention, 1))

Figure 3.7: Rule for determining a new intention

120 Belief Component

3.5.3 BOA

In order to execute the model that was presented in the previous section, a cognitive
agent needs to be implemented; cognitive architectures are a suitable platform for this
purpose. Such an architecture specifies a fixed set of processes, memories and control
structures (Lewis, 2001) that define the underlying theory about human cognition. The
architecture limits implemented cognitive models by this set and consequently imposes
its cognitive theory on these models: it should make correct models easier and incorrect
models harder to build. Moreover, the actual behavior of the agent is influenced by the
architecture (Jones et al., 2007).

The presented model has already been implemented in the cognitive architecture
ACT-R (Both and Heuvelink, 2007) – this implementation was named BOA. Since this
research has been done earlier, several new developments in ACT-R are not taken into
account (Anderson, 2007). However, the insights reported here are nevertheless of inter-
est from an agent-application perspective: several of the issues mentioned in this paper
have been changed in the latest version of ACT-R. These developments in ACT-R seem
to support our experiences that the architecture was too restrictive on some aspects.

ACT-R

The theory of ACT-R incorporates two types of memory modules: declarative memory
and procedural memory. Declarative memory is the part of human memory that can store
items; procedural memory is the long-term memory of skills and procedures. ACT-R
consists of a central processing system, where production rules, representing procedural
memory, are stored and executed. The central processing system can communicate with
several modules through buffers. One of those modules is the declarative memory module
where memory items are stored. These memory items, called chunks, are of a specific
chunk-type, which can be defined by the modeler. In a chunk-type definition, the modeler
defines a number of slots that chunks of this type can assign values to. Chunks from the
declarative memory module can be placed in the retrieval buffer if they match a retrieval
request made by a production rule. A retrieval request must contain the requested chunk-
type, and may contain one or more slot-value pairs that the chunk must match. The
matching chunk is then placed in the retrieval buffer, so it can be read by a production
rule. All buffers in ACT-R, including the retrieval buffer, can only store one chunk at a
time, even when more chunks match the conditions of the request. If more chunks are
available, an activation function defining the accessibility of chunks is used to select a
single candidate.

3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 121

Implementation Issues

The implementation of the cognitive model in ACT-R resulted in three main observations.
The first focuses on the limit of one chunk in the retrieval buffer. The model prescribes
access to multiple beliefs in the working memory at the same time in order to reason
over them. For example, different positions in time are compared in order to determine a
contact’s speed. The ACT-R implementation supported this by using the goal buffer for
temporary storage and LISP functions to retrieve beliefs.

The second observation was the fact that retrieving a belief with specific features (for
example, the belief created last, i.e. with the highest value for the time slot) is not guar-
anteed by using ACT-R’s activation function. For example, the agent often uses the latest
position of a contact, so he needs the latest belief with predicate position-contact

for a specific contact. It may however be that an older chunk has been retrieved more
often than the latest chunk, resulting in a higher activation score and subsequently the
older chunk being retrieved. As a solution, LISP functions were created as substitute to
the activation function.

The third issue is about the many calculations the cognitive model requires: these
can only be modeled in a low-level manner, making it inefficient to implement them
in the architecture. For example, calculating the speed of a contact from its positions
over time would require many production rules, while it would not represent the actual
cognitive processes of a warfare officer. Here too LISP functions were used for these type
of calculations. As a result of this problem and the previous problem, about half of the
programming code consists of ACT-R production rules and the other half of supporting
LISP functions.

Control

Control in the context of BDI agents aims at specifying the commitment of the agent at a
certain time. The intentions to which the agent can commit and the type of control in the
cognitive model were described in section 3.5.2. The BOA agent implements a simple,
linear control system. The agent commits alternately to each intention and within the
intention of processing screen information, the contacts are monitored sequentially. This
is illustrated by the rule in Figure 3.8.

The rule requires the agent to be committed (commitment1) to monitoring contacts and
be ready to select a new contact to monitor. This new contact is determined by the
user-defined LISP function determine-next-contact, which loops through the list
of contacts. The *rate-other* variable defines the number of contacts after which the

122 Belief Component

(p select-next-contact-goal1
=goal>

ISA commitment1
goal monitor-contacts
state next-contact
contact =contact1

==>
!bind! =contact2 (determine-next-contact)
!eval! (determine-rate-other-desires)
!bind! =eop (= (mod *counter* *rate-other*) 0)
=goal>

plan read-basal-info
state start-step
contact =contact2
eop-marker =eop

)

Figure 3.8: ACT-R code for intention selection

agent switches to another intention: if this number is reached, the end-of-process marker
(eop) is set to true. The agent will then consider committing to sending the helicopter,
followed by considering to commit to changing the radar. After these considerations
and, possibly, reasoning and actions, the agent continues monitoring contacts. Reacting
to events in the environment is limited to altering the order of the list of contacts in
the ‘monitor contacts’ intention: if a contact has been identified by the helicopter, that
contact is moved to the top of the list to force the agent to monitor it next.

3.5.4 Boar

This section presents the Boar agent, which is the implementation of the model from
section 3.5.2 in Soar. The next subsection will explain this architecture in more detail
and subsection 3.5.4 describes several implementation issues.

Soar

Soar, like ACT-R, is a well-known cognitive architecture. Soar defines the world as a
large problem space with states and goals. It considers behavior as movement in the
problem state by performing actions, either internal (mental activity) or external (observ-
able in the environment). In Soar, this is done by operators; in a single cycle, more
operators can be proposed, one of these is selected and eventually applied, changing the
state of the environment. Goal-directed behavior states that the agent will choose those
operators that lead to a goal state (Lehman et al., 2006).

3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 123

The memory structure of Soar is somewhat similar to that of ACT-R. It specifies
two types of memory: the long-term memory, consisting of procedural, semantic and
episodic knowledge, and the working memory, corresponding to ACT-R’s declarative
memory module. The working memory consists entirely of working memory elements
(WMEs), which are attribute-value pairs. The attributes of a WME need not be defined
beforehand, as is the case with the slots of a chunk. Additionally, the number of WMEs
that can be accessed at one moment is not limited – there is no such thing as a retrieval
buffer in Soar.

In long-term memory, the procedural knowledge is primarily responsible for the be-
havior of an implemented model and is defined in terms of productions. When condi-
tions apply, a production either proposes the execution of an operator or it executes some
reasoning independent from an operator – both may result in changes to the working
memory. The difference lies within the persistence of the changes: a WME that was
created by an operator will stay in working memory until an explicit change is made. A
production without operator reference, also called elaboration, creates WMEs that only
exist as long as the conditional part of the elaboration matches. The first is said to have
operator support or o-support, while the latter has instantiation support or i-support.

Soar’s productions fire in parallel: all productions that have one or more matches
for their conditional part in the current state will execute. Consequently, many operators
may be proposed at a single moment. Which operator is selected is resolved by means of
preferences, which can be added to an operator.

The fact that Soar allows more production rules to fire simultaneously is in contrast to
ACT-R’s procedure: here, only one production rule can fire at a single moment. If more
chunks are available for retrieval by this production, the activation function determines
beforehand which chunk is picked.

If a task is too complex to solve by simply adding some beliefs to the working me-
mory, it can be decomposed in subtasks. An example is reasoning about the usage of
the helicopter. In order to decide which contact the helicopter is sent to, all contacts
are scored. The rule for proposing the operator that scores a single contact is shown in
Figure 3.9. If this operator is chosen, there is no immediate score available to be added
as belief: it needs to be calculated. As a result, there is an impasse and a new substate
is created which has the goal to calculate this score. Various operators are available to
calculate a part of the score; after each operator calculated its part, the score is available
and the attribute heli-score will have a value. Consequently, the operator shown in
Figure 3.9 will be retracted, having achieved its goal.

124 Belief Component

Propose to score a contact
sp {consider-heli*propose*score-contact

(state <s> ˆname consider-heli
ˆcontacts.contact <contact>
ˆtop-state.constants <const>)

(<constants ˆmax-distance <max>)
No score, no visual id

and in range of self
(<contact> -ˆheli-score

-ˆvisual-id-belief
ˆdistance-to-self <= <max>)

-->
(<s> ˆoperator <op> + =)
(<op> ˆname score-contact

ˆcurrent-contact <contact>)
}

Figure 3.9: Soar code for proposing to score a contact

Implementation

Retrieving Beliefs In section 3.5.2 we argued that the model needs to be able to rea-
son over time. For example, in Figure 3.10 the latest position of the own ship (self) is
retrieved, i.e. the belief with the maximum value for the time attribute. This is an exam-
ple where a belief with a relative value is needed for a certain attribute and the absolute
value is of no importance. However, it is not easy to match such a belief if no absolute
value is available. We tackled this problem by ordering the beliefs with greater-than and
smaller-than relations. In order to retrieve the last-but-one belief a new production needs
to be added, another for the last-but-two, and so on.

Reasoning Efficiency Two alternatives arise when generating new knowledge by means
of reasoning (i.e. internal action). As explained in subsection 3.5.4, there are two ways
of adding new elements to the working memory: either with o-support or with i-support.
The advantages of using i-supported WMEs are:

1. they are created automatically if the conditions or the creating production apply in
the current state;

2. they are removed if this not the case anymore and thus are not valid in the current
state; and

3. they are updated automatically if new information is available.

The advantage of o-supported WMEs is that they are only created when the operators
are proposed explicitly, so only at these times some reasoning is done.

3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 125

Calculate distance of contact to self.
sp {boar*elaborate*contacts*distance-to-self

(state <s> ˆname boar
ˆbeliefs <beliefs>
ˆcontacts.contact <contact>)

Retrieve latest position of self
(<beliefs> ˆbelief (ˆpredicate position-contact

ˆattribute self
ˆtime <time>
ˆvalue <self-pos>))

-(<beliefs> ˆbelief (ˆpredicate position-contact
ˆattribute self
ˆtime > <time>))

Retrieve position of contact
(<contact> ˆposition-belief.value <pos>)

-->
(<contact> ˆdistance-to-self (float (exec

calcPositionDifference
<self-pos> |;| <pos>)))

}

Figure 3.10: Soar code for retrieving the distance between contact and own ship

If the beliefs that are used for reasoning stay the same for some time, it is more ef-
ficient to use elaborations and thus create i-supported WMEs, because if operators are
used for this reasoning, they may perform the same reasoning steps multiple times. If
beliefs change continuously, the use of elaborations may become computationally ex-
pensive, because they perform the reasoning at every change, even if the results are not
used. In this case using operators and o-supported WMEs is more efficient. There is no
clear procedure for choosing i-support or o-support: one should think about the trade-offs
for every situation in order to pick the most efficient option.

To draw the differences between creating i-supported and o-supported WMEs more
clearly, an implemented example of both types is given. First consider the production in
Figure 3.10. It continuously creates an i-supported WME with the distance of contact
<contact> to the own ship. Every time a new position is observed, either from the
own ship (<self-pos>) or the contact (<pos>), the conditional part of the production
for the old WME does not match the current state anymore and the WME is discarded.
At the same time, the newly observed information is used to create a new WME for
the contact with the distance-to-self attribute, and thus the knowledge has been
automatically updated. For this reasoning step the i-supported option has been chosen,
since the distance is needed continuously for other reasoning. Using an operator would
mean that this operator needs to calculate this distance every time the information is

126 Belief Component

needed.
Now consider the production in Figure 3.9. This production sets in the creation of

knowledge with o-support: it proposes an operator that, when applied, will assign a
certain score to a contact. This score is used for considering to send a helicopter to the
contact for identification. This scoring is only done incidentally, which makes the use of
an operator a better choice. An elaboration would update this score continuously, even
while it is not needed most of the time.

identify all contacts
HHHH
����

monitor contacts send heli change radar
PPPPP

```````̀

contact1 contact2 . . .

Figure 3.11: Overview of intentions

Control The Soar architecture does not provide the means to easily keep a list of con-
tacts, which makes it hard to implement a sequential control for committing to the three
intentions described in subsection 3.5.2. Alternatively, it easily allows the creation of
subgoals, as explained in subsection 3.5.4. By defining the monitoring of every contact
as a subgoal of the ‘monitoring contacts’ intention, the structure of goals and subgoals
becomes as shown in Figure 3.11.

The commitment to one of the three intentions is decided as follows: if an event
triggers the intention to send a helicopter or change radar activity, the agent commits
to this intention. Otherwise it will first monitor all contacts, then consider sending the
helicopter and finally consider changing radar activity. The linearity of this cycle is
forced by explicitly remembering the control status in WMEs. Figure 3.12 shows the
commitment to monitoring contacts: when a new cycle starts, the time is saved in the
start-process-passive attribute. Then every contact not checked after this time
(-ˆchecked > <starttime>) is monitored and gets tagged with a new time, until all
contacts have been checked this way. After completing the helicopter and radar inten-
tions, a new cycle is started. The order of checking contacts is random and may be
different each cycle.

An example of an event triggering the ‘send heli’ intention is shown in Figure 3.13.
It simply states that if the helicopter is airborne and does not have a mission, for example



3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 127

sp {boar*propose*process-passive-information
(state <s> ˆname boar

ˆstart-process-passive <starttime>
ˆcontacts.contact <contact>)

(<contact> -ˆchecked > <starttime>
ˆid <contact-id>)

-->
(<s> ˆoperator <op> + =)
(<op> ˆname process-passive-information

ˆcurrent-contact <contact>)
}

Figure 3.12: Soar code for proposing to monitor a contact

just after identifying a specific contact, the agent should commit to reasoning about what
it should do. This commitment can break into the aforementioned cycle at any time the
conditions apply.

# A heli is considered when it has no mission and is airborne.
sp {boar*propose*consider-heli*airborne

(state <s> ˆname boar
ˆhelis.heli <heli>)

(<heli> ˆid <heli-id>
# Heli has no mission and is airborne
ˆmission free
ˆstatus airborne)

-->
(<s> ˆoperator <op> + =)
(<op> ˆname consider-heli

ˆheli <heli>)
}

Figure 3.13: Soar code for the event-driven selection of the ‘send heli’ intention

External Functions The simulation environment for performing the tactical picture
compilation task is created in Game Maker (Overmars, 2009). It simulates a radar screen
with information about the contacts in the surroundings. The simulation environment
reacts on certain actions, e.g. clicking on a contact will provide detailed information
about it.

For letting Soar communicate with this Game Maker environment an interface is
needed, which is implemented in Java. The actions of the agent are written to a text file by
the Java interface, read by Game Maker and consequently performed in the environment.



128 Belief Component

An example of an agent action is the request for detailed information, which simulates a
mouse click by a human. Any input from the environment, such as a new contact or the
position of the own ship, is written to a text file by Game Maker, read by the Java interface
and presented as input for the agent. This form of communication slows the execution of
the agent down, since it continuously waits for reactions from the environment.

To perform complex calculations, user-defined functions in Java are needed, simi-
lar to one of the issues when implementing the formal model in ACT-R (see subsec-
tion 3.5.3). These functions are called from inside the agent, but can only be used in the
actions of a production. Consequently, if a calculation needs to be performed as part of
the condition of a production, it has to be executed by another production and the result
needs to be made available through the working memory.

3.5.5 Conclusion and Discussion

This paper presents an agent built in the cognitive architecture Soar, capable of perform-
ing a complex real-world task. The implementation is based on a formal model of the
task and has previously been implemented in ACT-R. The remainder of this paper will
present the lessons learned on several aspects of agent practice and links them to cogni-
tive theories.

Two implementations of a single cognitive model give only one point of view: a dif-
ferent model may have different demands, especially when a different framework is used.
Additionally, the implementations have not been validated – further work in this direc-
tion may consist of experiments with subject-matter experts comparing the performance
of BOA, Boar and humans performing the tactical picture compilation task.

Nevertheless, this paper shows that one should consider the functionalities requested
by the model and the possibilities an architecture offers to implement those demands.

Working Memory Access Most of the cognitive theories about human working me-
mory agree on a storage capacity of multiple but limited amount of items (Miller, 1956;
Baddeley and Hitch, 1974; Hulme et al., 1995; Cowan, 2005). This assumption was
used in designing the cognitive model: several rules in the cognitive model need multiple
beliefs at the same time for reasoning (an example of such a rule is in Figure 3.6).

The ACT-R theory used for implementing BOA proved to be too restrictive: access to
only one chunk at a time is allowed. In order to access more beliefs, a work-around was
used in the ACT-R implementation. On the other hand, Soar does not limit the number of
accessible working memory elements, so this did not pose any problems implementing
Boar. Different approaches to the working memory theory result in different types of
behavior: if only a limited number of elements is accessible, reasoning will be restricted



3.5. Implementing a Cognitive Model in ACT-R and Soar: A Comparison 129

to these elements, which can cause a different way of acting than when all elements are
available.

Retrieving Beliefs In order to reason over time the retrieval of specific beliefs with
a relative value is needed, such as the ‘last’ or ‘one-but-last’ belief of some kind – a
capability humans apply unconsciously. Unfortunately, this type of retrieval operator is
not yet available in either architecture.

In ACT-R the working memory items are retrieved by means of an activation function.
However, this function does not guarantee the retrieval of a memory item based on such
a relative value. The solution was to create LISP functions for retrieving beliefs. Soar
allows ordering the beliefs in the conditional statement of a production rule, making it
possible to retrieve beliefs with a relative value. However, operators need to be created
for each relative value, making the translation from model to Boar somewhat inefficient.

Control A linear control was modeled in favor of event-driven parallel control. This
choice was made in order to simplify the process of committing to an intention, even
though human decision-making will be more reactive to cues from the environment.
ACT-R’s sequential execution of production rules fits this simplified model, but as a
result the BOA agent reacts slowly on important changes in the environment, because
the agent’s behavior cannot be interrupted by these external events (Heuvelink and Both,
2007). In Soar the sequential execution of plans is forced by letting production rules
fire in an explicit order (as shown earlier in Figure 3.9), but this architecture more easily
allows event-driven control.

Calculations The tactical picture compilation task contains many situations in which
the human expert makes estimations, for example on how close a ship is to the the own
ship or whether ships are moving in formation. Currently there is no method available
to model the process of these estimations. Instead, the estimations are replaced by exact
calculations and made into an ‘estimation’ by adding the notion of uncertainty to the
resulting belief. Modeling these calculations as cognitive tasks in an architecture would
require an infeasible amount of productions, without actually copying human behavior.
Therefore, the execution of complex calculations is done externally by LISP functions or
Java methods.

Speed Humans are able to use multiple beliefs that were gathered over time for reason-
ing. This is represented in the belief framework by adding a time tag to every belief and
storing all beliefs in memory. As a result, the agent can access multiple beliefs over time



130 Belief Component

for reasoning. For example, it can access several beliefs about the position of a contact
to reason about the contact’s speed and movement behavior.

Unfortunately, this creates a practical problem: there is an exponentially growing
amount of beliefs, which means no system will eventually be able to cope with the re-
sulting CPU-expensive searches for the necessary beliefs during real-time simulation. It
is necessary to deal with this more efficiently. Even though certain facts in the past need
to be remembered by the agent, it is not necessary to remember every specific detail,
which is the case in this implementation. Humans do not remember every detail exactly,
but compress their memories by conceptualizing or clustering them. Future agents that
incorporate the belief framework used in this research will need some form of compres-
sion or smart discarding of beliefs to copy this behavior. We are currently developing a
method to cluster and abstract beliefs over time, sources and certainties, in order to form
a more realistic model of episodic memory.

Clearly, this problem has its effect on the implementations. The ACT-R agent be-
comes slow over time, even though some functionality to remove unimportant beliefs
had been implemented. This slowness makes the observed behavior of the agent not
very human-like, especially in reacting to changes in the environment (Heuvelink and
Both, 2007). On the other hand, Boar has been used in a demonstration of about twenty
minutes, in which the agent showed no reduction in speed. To draw general conclusions
about the performance of both architectures, further research is needed.

Acknowledgments

This research has been supported by the research program ‘Cognitive Modeling’ (V524),
funded by the Netherlands Defense Organization.







Chapter 4

Memory Component

4.1 Introduction

In the previous chapter we introduced a belief component for modeling rational and bi-
ased behavior, for which it was proposed to attach a time stamp, a source label, and a
certainty value to beliefs. The agents we implemented embedding this belief component
received an unlimited belief base, and no devision was made between long term memory
and working memory: all beliefs ever stored were always available to reason upon.

During task execution, beliefs were constantly added to the belief base. The conse-
quence of this rapidly growing, single belief base was that querying the database for a
specific belief required ample processing time. Because a large part of the agent’s be-
havior involved reasoning upon stored beliefs, this increase in query time had as effect
that the agents slowed down over time. This effect was substantial for the agent BOA,
implemented in ACT-R (see Section 3.4). The ad-hoc solution implemented in BOA to
deal with this increase in execution time was to throw away beliefs of which it was deter-
mined from the task perspective that they would not be required at any later time point.
The agent Boar implemented in Soar (see Section 3.5) did not noticeably slow down
over time. However, it is likely that when the period during which Boar has to operate
increases, its execution time will eventually increase as well.

In this chapter we focus on solving this increase-in-execution-time problem of agents
embedding our belief component by developing an accompanying memory component.
Besides the goal of decreasing the time required to query the agent’s belief base, we also
want the memory model to be able to support varied behavior. In particular, we want to
develop it in such a way that it can provide ‘perfect’ memory and rational retrieval, as
well as ‘human-like’ memory, which includes forgetting and biased retrieval of beliefs.



134 Memory Component

In the next section we provide a short overview of ideas on the functioning and struc-
ture of human memory. Subsequently, we describe the ideas that we have selected to
embed in our memory model. Once more we would like to point out that our research is
a typical example of design science (Section 1.2.1). We do not aim to present a universal
cognitive valid model of human memory. Merely, we want to model a practically usable
construct, called memory, which enables an agent to deal with the encoding, storing, and
retrieving of time, source, and certainty labeled beliefs in a variety of human-like ways.

4.1.1 Human Memory

Memory enables humans to store information, to retain it, and to retrieve it. Multiple
memory classifications are possible.

A common way to classify various types of memory is on the duration of memory
retention, by which usually three types are distinguished: sensory memory, short-term
memory and long-term memory. Sensory memory denotes the ability to retain for a very
short period of time (< 1 sec), accurate, but unprocessed, impressions of sensory infor-
mation. Short-term memory (STM) denotes the ability to retain for a somewhat longer,
but still short period of time (< 1 min), a small amount of conscious, readily available
information. The opinions about the exact capacity of STM vary, but a frequently cited
number of elements it can hold is 7 ± 2 (Miller, 1956). Long-term memory (LTM) de-
notes the ability to store and retain large amounts of information for very long periods
of time (< life time). Information stored in LTM is not readily available, but needs to be
retrieved.

The information retained in Sensory memory resides in some kind of sensory buffer
and is not conscious. Because we are interested in a memory model for conscious in-
formation in the form of beliefs, this memory type is not relevant. Therefore, we do not
further discuss this type of memory.

The STM concept is generally treated as similar to working memory (WM), which
is a more specific model of the temporary storage of readily accessible information. The
WM model was proposed by Baddeley and Hitch (1974) and consisted originally of three
components: the central executive, the phonological loop and the visuo-spatial sketch-
pad. Recently, Baddeley (2000) extended the WM model with an additional component:
the multi-modal episodic buffer. The central executive is held responsible for coordinat-
ing the other three ‘slave’ systems.

The LTM concept is usually subdivided into declarative (explicit) and procedural
(implicit) memory (Anderson, 1976). Declarative memory consists of information that
is explicitly stored and retrieved, while procedural memory consists of information that
cannot be explicitly verbalized, but is learned implicitly, e.g., how to ride a bike.



4.1. Introduction 135

Declarative memory is usually further subdivided into semantic memory and episodic
memory (Tulving, 1972). Semantic memory concerns information independent of a con-
text, e.g., an oak is a tree, while episodic memory concerns information specific to a
particular context such as a time and place, e.g., the tree that stood in our garden in my
childhood was an oak. So, semantic memory is used to encode abstract knowledge about
the world while episodic memory is used to encode ‘personalized’ knowledge. However,
these two memory types are related: semantic knowledge is not innate, but somehow
emerges from episodic knowledge stored over time.

4.1.2 Selecting an approach

We want to develop a memory model that decreases the query time of the agent’s belief
base, and that supports rational as well as biased behavior. In this section we first elabo-
rate on the way we propose to model memory so it decreases the query time of beliefs.
Next, we discuss the way in which we plan to embed human-like aspects in the memory
model. Subsequently, we compare the proposed model to the memory models embedded
in current integrated architectures, and last to human memory.

Decreasing Query Time

The reason why the query time of the belief base increased was because beliefs were
only added. One of the motivations to not throw away beliefs was that for the modeling
of rational behavior, it should be possible to retrieve when what was believed. However,
even for rational task behavior it is not required to be able to retrieve all beliefs, but only
those that are relevant given the task perspective. For biased behavior it is definitely not
required to be able to retrieve all beliefs, since humans simply forget things.

Here we propose a memory model that embeds mechanisms to make the beliefs pos-
sibly required for the task readily available for retrieval, while others (e.g., redundant
ones) become much harder to retrieve. For this, we propose to divide memory into long-
term memory (LTM) and short-term memory (STM), also referred to as working memory
(WM). In the previous chapter all beliefs ever formed always held at the current time t:
holds at(b, t). In this chapter all beliefs are stored in LTM as holds at(b, t*), with t*
being the time they were held in STM. From this it logically follows that STM is made
up by the beliefs b that holds at(b, t), where t is the current time.

In addition, we introduce the concept of complex beliefs, which can be formed by
aggregations on other beliefs, and are therefore also referred to as aggregated beliefs.
Complex beliefs are introduced because we realize (due to our previous studies) that
often specific types of beliefs are required, e.g., the last belief about a certain predicate



136 Memory Component

and attribute, or the most certain belief. In the previous chapter, these types of specific
beliefs had to be deduced at the moment they were required by querying the belief base.
However, many of them stayed, at least for a while, the same. When we would store the
result of a specific query, this would decrease the query time for specific types of beliefs.
This is what we use complex beliefs for. Complex beliefs denote specific types of beliefs
that cluster basic information at a level at which reasoning rules can directly operate on
them. The formation of complex, or aggregated beliefs speeds up the query time. Not
because fewer beliefs are present (the aggregated beliefs only add to the amount), but
because they form a significantly smaller top level of beliefs that are actually required
for task execution and which can be queried in a faster way.

Complex beliefs are formed by complex aggregations that function as unconscious
reasoning templates for deducing specific complex beliefs from other beliefs. Complex
aggregations are controlled by setting an in-task-focus predicate to an aggregated belief
type. When a complex belief is in-task-focus, i.e., required for task execution, the me-
mory model first attempts to retrieve it from its belief base. When this is not possible,
the complex belief is deduced. For this, the complex aggregation has to query the belief
base, which requires the same amount of time as before.

Various mechanisms are possible to speed up this process: we decided to speed it
up by attaching an availability value to all the beliefs. This value is currently based on
the base-level activation-formula embedded in ACT-R, which is claimed to be cognitive
valid (see Anderson and Schooler, 1991). In short, this formula attaches a higher avail-
ability value to recent and frequently used beliefs. When specific types of beliefs are
important for the task execution, they are frequently placed in-task-focus, and as such
have a high availability value. The availability value of beliefs that are not important,
and thus not reused, will decrease over time. As such, this process mimics in a neater
way the BOA solution of throwing away the redundant beliefs.

Implementing Human-Like Aspects

The availability value introduced can be used to influence the likelihood of retrieving a
belief by setting a specific retrieval threshold, and can thus be used to model forgetting
of beliefs. In addition to this basic aspect of human memory, we would like to model
more sophisticated aspects. In particular, the phenomenon that over time details of an
event are forgotten and only abstractions are remembered, and that semantic memories
are formed out of episodic memories. We propose to model these aspects by using the
availability value attached to beliefs in combination with the notion of abstract beliefs.

Aggregated beliefs can be complex beliefs as introduced above, but also abstract
beliefs. Basic aggregations form abstract beliefs by abstracting from specific values of



4.1. Introduction 137

arguments. The basic aggregations are controlled by setting an in-memory-focus pred-
icate to an abstraction type. When a specific abstraction type is in-memory-focus, that
abstracted belief type is deduced for the beliefs active in WM.

Abstract beliefs receive a slightly higher base-level activation than the beliefs they
are abstracted from. This fact and the fact that the abstraction of a variety of beliefs can
result in the same abstract belief, causes abstract beliefs to be more available than more
detailed beliefs. As such, beliefs of which details are ‘forgotten’, i.e., abstract beliefs,
might still be retrievable while the basic beliefs are not. In addition, when abstract beliefs
have abstracted from the time, source, and certainty labels of beliefs, they have effectively
made a transformation from an episodic to a semantic memory.

The memory model can be used to model two types of biased behavior. First, the
memory model is able to display biased retrieval, because ACT-R’s base-level belief
activation-function accounts for order effects. Second, the model is able to support biased
behavior because it supports the retrieval of abstract beliefs. The memory model’s in-
task-focus predicates determine which beliefs are retrieved for task execution. These
predicates are in turn determined by the conscious reasoning rules that are selected for
execution. These reasoning rules can request as input ‘perfect’ queried information (basic
or complex beliefs), which makes them rational and expensive. On the other hand they
can also request as input information that can retrieved quick and dirty (abstract beliefs),
making them cheaper to execute, but possibly leading to biased behavior.

Comparison with Integrated Architectures

Although all integrated architectures embed a memory, none embeds a memory model
similar to the one proposed by us. The architecture that comes the closest is CLAR-
ION, which offers an episodic memory as part of its non-action-centered subsystem in
which beliefs can be stored with a time stamp (and other labels) attached. However, this
architecture constitutes a dual-layer model of cognition, while we focused on a single-
layer model. In addition, CLARION has not been applied to model this high-level type
of tasks, the most complex tasks it has modeled are the Tower of Hanoi and minefield
navigation tasks.

Soar has been applied to model high-level tasks, and its latest versions embed an
episodic memory. However, this memory does not encode memories that are tempo-
rally indexed, so does not support the reasoning over beliefs over time in an absolute
way (Nuxoll and Laird, 2004). In addition, it does not account for forgetting and general-
ization (Nuxoll and Laird, 2007), although in related work the working memory elements
of Soar were extended with an activation value, which could be used for modeling the
first aspect (Nuxoll et al., 2004).



138 Memory Component

The fact that current architectures do not embed the proposed memory model does not
mean that it is impossible to implement it in them. We have implemented the developed
belief framework in Soar and ACT-R and it would probably be possible to implement
this memory model in other architectures. However, this would require a lot of work and
the circumvention of the memory processes that they do embed.

Memory Model compared to Human Memory

Human sensory memory retains sensory information which is not yet processed by the
cognitive system. We do not take this type of memory into account, because we are in-
terested in a memory for conscious information, i.e., beliefs. In addition, at this moment
we do not incorporate procedural memory. We decided to focus on declarative memory
first because the situational assessment task is mainly a conscious, knowledge-intensive
task, and not a, e.g., motor task.

We do make a division between an agent’s long term memory (LTM), and its short
term memory (STM) (in Section 4.2) or working memory (WM) (in Section 4.3). We
use these names as constructs to denote whether the beliefs are currently available to the
agent to reason upon (present in STM/WM) or whether they were once available and
now stored away, with the possibility to retrieve them (present in LTM). We do not aim
at participating in a discussion on the nature of the various types of memory, and on the
best way to model them. For a good overview of current approaches within cognitive
science to modeling WM, see Miyake and Shah (1999).

Because the beliefs in our belief framework receive a time, source, and certainty
label, they resemble episodic knowledge more than semantic knowledge. Actually, we
propose a memory model for agents that is purely episodic in nature. However, semantic
knowledge is accounted for by incorporating aggregations that combine and abstract from
episodic memories. As such, our memory model not only supports the existence of
semantic memories, it supports their formation as well.

4.1.3 Chapter Overview

This chapter embeds two papers. The first paper (Section 4.2) introduces the belief alge-
bra that constitutes a generic approach to form any specific type of aggregated (complex
or abstract) belief out of stored beliefs. The generic approach entails that for forming an
aggregated belief, a specific constraint is taken into account that defines certain properties
for (a subset of) the belief arguments.

In the second paper (Section 4.3) we use the belief algebra to develop the memory
model for agents incorporating beliefs with times, sources, and certainties attached. This



4.1. Introduction 139

model controls the complex aggregations that form complex beliefs by incorporating
in-task-focus predicates; it controls the basic aggregations that form abstract beliefs by
incorporating in-memory-focus predicates. In addition, it embeds a mechanism that de-
termines and attaches an availability value to all the beliefs. This availability value is
used to model biased retrieval of beliefs, as well as the forgetting of beliefs.

Additional Remarks

This chapter embeds beliefs that are slightly different notated than before. Previously, we
wrote a belief as belief(p, a, v, t, s, c) or belief(P (A, V ), T, S, C). Both denoted, using
variables, that it is believed by the agent at time T , based on source S and with certainty
C, that predicate P holds for attributeAwith value V . In this chapter, beliefs are denoted
by belief(p, o, v, t, s, c) or belief(P,O, V, T, S, C). Instead of talking about a predicate
P which holds for attribute A with value V , we now describe beliefs as a determinable
property P which holds for object O with value V .

Another difference between the current and previous chapter is the use of the two-
place predicate holds at. In Section 3.2 we used this predicate to implement ‘memory’,
for which no difference was made between LTM and STM/WM. In contrast, in Sec-
tion 4.2 of the current chapter we use the holds at(b, t) predicate to denote that belief b
held at time t in STM.

In addition, due to the development of a memory model that incorporates availability-
values of beliefs, we decided for Section 4.3 to state that a belief b does not hold, but is
active at a specific time in STM/WM: active at(b, t). In addition, the structure that de-
notes that a belief is active is in this section referred to as WM instead of STM, although
nothing changed in the way it operates.



140 Memory Component

Research Paper

4.2 A Formal Approach to Aggregated Belief Formation

Abstract

This paper introduces a formal method to aggregate over basic beliefs, in order to de-
duce aggregated or complex beliefs as often used in applications. Complex beliefs can
represent several things, such as a belief about a period in which other beliefs held or
the minimal or maximal certainty with which a belief held. As such they contain richer
information than the basic beliefs they are aggregated from and can be used to optimize
an agent’s search through its memory and its reasoning processes. The developed method
can also aggregate over aggregated beliefs, hence nested aggregations are possible. An
implementation in Prolog demonstrates its operationality.

This section is published as:
Heuvelink, A., Klein, M. C. A., and Treur, J.* A Formal Approach to Aggregated Belief Formation. In M.
Klusch, M. Pechoucek, and A. Polleres, (Eds.), Proceedings of the 12th International Workshop on Cooperative
Information Agents (CIA 2008), p. 71-85, Lecture Notes in Artificial Intelligence, vol. 5180, Springer Verlag.
September 10-12 2008, Prague - Czech Republic.
* Authors are listed in alphabetic order and can be regarded as having made a comparable contribution.



4.2. A Formal Approach to Aggregated Belief Formation 141

4.2.1 Introduction

Agents in applications commonly store beliefs about the state of the world in what is often
called a world model or belief base. This belief base is usually a set of atomic beliefs
that grows over time. There are several potential problematic issues related to such a
belief base. First, after some time the size of the belief base can result in the practical
problem that retrieval and inferences will become time expensive: the time needed will
grow with the size of the belief base. Second, some inferences result in intermediate
results that might be useful again at a later point in time. When the intermediate results
are not stored, they have to be recalculated, while when they are stored, they will add
to the size problem. Third, this way of storing beliefs seems not very similar to the
human way of using memory. For example, humans often forget specific details, but still
remember aggregated abstractions or consequences of specific facts. Taking this as a
point of departure, it may be explored how aggregated beliefs can be formed and stored
within an agent as new entities.

Fact is that aggregations can be formed from many different perspectives and at mul-
tiple levels. Which perspectives are chosen and which level of aggregation is needed,
is application and task dependent. Therefore a general approach that distinguishes all
possible types of aggregations one by one, may become quite complex; for example, if
m different aggregation types are possible, and n levels of aggregation, then the number
of aggregation types is mn, which already for relatively low numbers such as m = 10
and n = 5 leads to a high number (100.000) of aggregated beliefs. To avoid this explo-
sion, in this paper an algebraic approach is adopted that distinguishes a general notion of
aggregation operator that (1) is parameterized by the specific constraint that is used in an
aggregation process, and (2) can be used in a recursive manner. Thus the combinatorics
induced by different levels is replaced by term expressions that can be formed by nesting
a number of (parameterized) variants of the aggregation operator.

The presented formalism allows for the specification of complex beliefs at a higher
level of aggregation than the basic atomic beliefs. Such aggregated belief representations
have the advantage that they are often closer to the level of aggregation that is used in
specification of reasoning steps, and are therefore often more useful. For example, it is
more convenient to specify reasoning steps based on an aggregated belief such as the ‘last
most certain belief’, than based on a long list of atomic beliefs at different time points and
with different certainties. Moreover, some aggregations are used several times. In this
case, the aggregation functions as a reasoning template that specifies how a new belief
can be deduced from other beliefs. This template only has to be specified once and can
be reused later on.

The remainder of the paper is structured as follows. First, Section 4.2.2 introduces an



142 Memory Component

application domain and the basic belief formalism that is used. In the subsequent section,
the algebraic approach to belief aggregation is described, which is formalized as a term
algebra in Section 4.2.4. Section 4.2.5 and 4.2.6 demonstrate the operationality of the ap-
proach, by presenting a Prolog implementation and showing how the algebra allows the
formation of several useful complex beliefs, which are defined as specific aggregations.
Section 4.2.7 relates the work to other research, both in the area of knowledge compila-
tion and temporal abstraction. Finally, in Section 4.2.8 the research is summarized and
future research plans exposed.

4.2.2 Belief Formalism

In (Heuvelink and Both, 2007) a software agent was developed that compiles a tactical
picture of its environment, which entails the classification and identification of surface
radar contacts. For modeling its behavior the need was identified to explicitly represent
the time at which a belief was held by the agent in its short term memory (STM). In
other words: when it believed it. The main reason to represent this, was to enable the
(biased) reasoning over (possible inconsistent) beliefs over time (Heuvelink and Both,
2007). For example, when at time t it is believed that the position of a contact is [x1, y1],
while at time t + n it is believed to be position [x2, y2], the average speed of the contact
can be inferred. This is useful because the speed on a contact might contain information
concerning its identity, e.g., large ships that are neutral usually do not sail faster than 20
knots. In the same way a contact’s maneuvering pattern can be inferred, which is relevant
as it gives away much information concerning a contact’s intent.

In order to logically represent other aspects, namely uncertainty of information, and
the fact that information can come from various sources, every belief also received a
source and a certainty label. As a result, the basic knowledge entity of the agent is rep-
resented by belief(P,O, V, T, S, C), which denotes the belief that the indeterminable
property P holds for object O with the value V at time T, based on source S and with
certainty C. An example belief denoting that it is believed at time 8 with high cer-
tainty that the identity of the radar contact1 is friendly because of radio conservation
is: belief(identity, contact1, friendly, 8, radio, 0.9).

The value, time, and certainty label of beliefs about a specific property and object
are often used to reason about trends in those beliefs, which can lead to new beliefs. For
example, a new belief can be formed about a contact being a merchant, and therefore
neutral, due to beliefs about it sailing in a straight line. The certainty of the belief that
the contact is a merchant is determined by the period, as by the certainty, with which it is
believed that it does this. For the deduction of other beliefs it is often important to deduce
what the last, or most (un)certain belief about a specific something was. For example,



4.2. A Formal Approach to Aggregated Belief Formation 143

the highest certainty with which it was once believed that a contact fired is relevant for
deducing whether it might be hostile.

The beliefs formed by the agent over time are stored in the agent’s belief base, repre-
senting long term memory (LTM). When storing beliefs in LTM, it is important to denote
when they were formed or retrieved in STM. For this a new reference to time is intro-
duced, the two-place predicate holds at. When the basic belief predicate of the object
language is reified to a term b, the time at which the belief is held in STM can be ex-
pressed by holds at(b, t). For every belief(p, o, v, t, s, c) that is found in the agent’s
belief base it holds that holds at(belief(p, o, v, t, s, c), t), since the t of the belief de-
notes the time it was formed (was present in STM).

4.2.3 Belief Aggregation

Unfortunately, the storage of time-stamped beliefs led to the problematic issues mention
in section 4.2.1 (Both and Heuvelink, 2007). Therefore, this paper focuses on the de-
velopment of a generic, formal approach to the formation of arbitrary aggregations over
these basic beliefs, to form all kinds of so-called aggregated or complex beliefs. Com-
plex beliefs abstract or cluster information of the lower level. They form a solution for
keeping the amount of time required to search through the agent’s belief base within lim-
its. Furthermore, they can be used to model specific properties of human memory, like
the forgetting of specific details.

Aggregation Examples

An example of a complex belief that an agent can form was mentioned in Section 4.2.2,
namely a belief about the period during which a certain belief held. That complex belief,
about the duration of the straight maneuvre of a contact, can be used directly to infer a
new belief, e.g., that that contact might be a merchant.

While specifying the formal model underlying the reasoning and behavior of the
cognitive agent described in (Heuvelink and Both, 2007), it was found that often specific
types of information are required to deduce new beliefs. To be precise, often the last,
earliest, most certain or uncertain, increasing in certainty, or longest held belief was
required. In addition, it was noticed that the deduction processes of several of these
beliefs are very similar, e.g. the deduction of a last belief (belief with highest T) is very
similar to the deduction of a most-certain belief (belief with highest C).

These observations spurred the development of an generic approach to belief aggre-
gation in which a complex belief is defined as an aggregation that takes the form of a
constraint (e.g., highest) that must hold for a certain variable (e.g., T) of a certain more



144 Memory Component

of less specified belief (e.g., belief(identity, contact1, friendly, T, S, C) in which the P, O,
and V are specified while the T, S, and C are left variable). The term algebra formalizing
this approach to the formation of aggregated beliefs is introduced in Section 4.2.4, while
the section after that discusses an implementation of the approach in Prolog.

Complex Belief of Type Integrated Sources

The integrated sources belief was the most important complex belief the developed
agent in (Heuvelink and Both, 2007) reasoned with instead of with its basic beliefs. This
complex belief represents which value is currently believed by the agent to hold for a
certain property and object, and with which certainty. To determine this, inconsistencies
formed by beliefs from different sources, with different certainties, and held at different
times, have to be resolved. Much research has been done on how to deal with such
inconsistencies, (see, e.g., Castelfranchi, 1997; Bloch et al., 2001).

In (Heuvelink and Both, 2007) a relative simple procedure was introduced to de-
termine which value V was currently believed to held with certainty C by an agent for
a given P and O. This procedure takes into account that a belief’s validity over time is
strongly influenced by its predicate type (property) P. Values of some predicates are much
more persistent than others; consider the chance that a contact’s position, speed, or intent
changes over time. The following logical expression denotes the meaning of the complex
belief called integrated sources:

given(p, o)

∀v1 ∀t1 ∀s1 ∀c1 ∀t ∀pd [

holds at(complex belief(integrated sources, for(p, o), has values(v1, c1− pd ∗ (t− t1))), t)

↔
holds at(complex belief(last, for(p, o, s1), has values(v1, t1, c1)), t) ∧
holds at(persistence decay(p, pd), t) ∧
¬∃s2 ∃v2 ∃t2 ∃c2 [

holds at(complex belief(last, for(p, o, s2), has values(v2, t2, c2)), t) ∧
c2− pd× (t− t2) > c1− pd× (t− t1) ] ]

This expression specifies that the agent believes at time t that for a given P and O,
for(p, o), the value v1 holds, which is the value of the belief about P and O whose
certainty is the greatest after taking into account the time passed since it was formed and
the persistence of the property; c1 − pd ∗ (t − t1). This might entail that the value of
an older belief with a certain certainty is believed over the value of a newer belief that
has a lower certainty. It might also be the other way around; it depends on the nature
(persistence) of the property. In this expression another complex belief was used of the
type last, which has as exact definition:



4.2. A Formal Approach to Aggregated Belief Formation 145

∀p ∀o ∀v ∀t ∀s ∀c ∀n [

holds at(complex belief(last, for(p, o, s), has values(v, t, c)), n)

↔
[ holdsat(belief(p, o, v, t, s, c), t) ∧ t ≤ n ∧
¬∃t′ ∃v′ ∃c′ [

holdsat(belief(p, o, v′, t′, s, c′), t′ ∧ t′ ≥ t ∧ t′ ≤ n ] ] ]

This last expression specifies that the agent believes at time n that t is the last time
at which a belief incorporating the given P, O, and S, for(p, o, s), held. This is the case
since t is the time label of a belief with that given P, O, and S, for which it holds that no
other belief exists with the same P, O, and S, but a higher T (t′). This complex belief of
type last is defined as an aggregation of all the beliefs with the given P, O, and S, and the
constraint Highest for their time label T. Besides a specification for T, this aggregation
also specifies the free variables V and C. This is a quite standard aggregation, considering
the limited complexity of the constraint that it takes into account. The aggregation as
which the complex belief of type integrated sources is defined, is much less standard.
The constraint that has to be taken into account in that aggregation is much more specific
and not likely to be reusable, see Section 4.2.5.

The current paper focuses on the development of an algebraic approach to have an
efficient representation of aggregated beliefs. For demonstration purposes it elaborates
on several possible types of these aggregated beliefs, which are defined as specific ag-
gregations. Notice that the introduced aggregations simply serve as examples, and that
many more are possible. The approach is set up in such a generic way that all kinds of
constraints that lead to all kinds of complex beliefs can be expressed with it.

4.2.4 Algebraic Formalization

The algebra specification of the aggregation functions on beliefs is defined by a basic
ontology, by means of which its objects and relations can be expressed. The primitive
terms used in the algebra are defined by a many-sorted signature. The signature takes
into account symbols for sorts, constants, functions and relations. Examples of sorts are:
LABEL, CONSTRAINT, TIME, TYPE, AGGREGATIONBASE, AGGREGATEDBE-
LIEF, ARGUMENTLIST, BASICBELIEFBASE, PROPERTY, or OBJECT. Constants
are names of objects within sorts; examples are ‘speed’, ‘20’, or ‘fast’. Functions denote
mappings from a (combination of ) sort(s) to another sort; examples of function symbols
are agg, holdsat, + and ∗. Relations symbols (relating different sorts) used are, for ex-
ample = and<. Logical relationships involve conditional statements involving relations.
Figure 4.1 depicts a large part or the algebra specification with the definitions used listed
below. Arrows with no label are defined by e which denotes (injective) embedding.



146 Memory Component

agg: LABEL x CONSTRAINT x AGGREGATEDBELIEF→ AGGREGATIONNAME
e: AGGREGATIONBASE → AGGREGATEDBELIEF
e: BASICBELIEFBASE → AGGREGATEDBELIEF
e: COMPLEXBELIEFBASE → AGGREGATEDBELIEF
holdsat: AGGREGATIONNAME x TIME→ AGGREGATIONBASE
definedas: COMPLEXBELIEFBASE x AGGREGATIONBASE
holdsat: COMPLEXBELIEF x TIME→ COMPLEXBELIEFBASE
complexbelief : TYPE x ARGUMENTLIST x RANGELIST→ COMPLEXBELIEF
e: PROPERTY → ARGUMENTLIST
e: OBJECT → ARGUMENTLIST
e: VALUE → ARGUMENTLIST
e: TIME → ARGUMENTLIST
e: SOURCE → ARGUMENTLIST
e: CERTAINTY → ARGUMENTLIST
e: RANGE → RANGELIST
holdsat: BASICBELIEF x TIME → BASICBELIEFBASE
belief : PROPERTY x OBJECT x VALUE x TIME x SOURCE x CERTAINTY

→ BASICBELIEF
abstraction1: LABELTYPE x VAR → LABEL
abstraction2: LABELTYPE x LABELTYPE x VAR x VAR → LABEL
constraint: NAME x VARIABLE x AGGREGATEDBELIEF → CONSTRAINT
forall, exists: VAR x FORMULA → FORMULA
definedas: CONSTRAINT x FORMULA
<,>,≤,≥: TERM x TERM → ATOM
e: ATOM → FORMULA
not: FORMULA → FORMULA
and, or, implies: FORMULA x FORMULA→ FORMULA

A number of sorts are considered primitive; they only contain constants such as
names and values: LABELTYPE, VARIABLE, PROPERTY, OBJECT, VALUE, TIME,
SOURCE, CERTAINTY, RANGE, and TYPE. Some other sorts are more or less stan-
dard, and/or may depend on application dependent functions: ATOM, TERM, FOR-
MULA.

Sort ARGUMENTLIST 1 contains terms listing 6 arguments with at each of the 6
positions instances. Two special instances exist; free and range, which denote that
the argument of that position is variable. The sort RANGELIST contains terms listing
the 6 ranges for the 6 arguments of ARGUMENTLIST 1. The range is only relevant
for the arguments with the special instance range. In the case of a normal instance the
corresponding range is nr (not relevant) while in the case of the special instance free, the
corresponding term is any. Sort ARGUMENTLIST 2 contains terms listing 6 arguments
with at each of the 6 positions instances. Two special instances exist: given and nr,



4.2. A Formal Approach to Aggregated Belief Formation 147

Figure 4.1: Overview of the algebra for belief aggregation

which denote respectively that the argument of that position was already specified in
ARGUMENTLIST 1, or is no longer relevant given the TYPE.

Note that the function agg can be used in a recursive manner together with the func-
tion holdsat. The nested term structures that result, represent beliefs at different levels
of aggregation: the level is the number of nested agg functions occurring in the term.

The area of algebraic specification has a long history. From the extensive literature
techniques can be borrowed to obtain an implementation of calculations in the algebra,
for example in a functional or logic programming language. If relations are involved,
an implementation has to take into account both functional and logical aspects; (e.g.,
Drosten, 1988; Hanus, 1994). Following this tradition, the next section introduces an
implementation of the developed algebra in the logic programming language Prolog.

The algebra is considered a term algebra, which specifies the different variations of
aggregated belief expressions that can be formed. The current Prolog implementation
generates such expressions, but does not perform evaluations of whether two different
expressions should be considered as having the same content or meaning. In future work
it is planned to extend this approach to an algebra for which also equations are specified,
and an implementation where such equations are incorporated.

4.2.5 Implementation

The algebra of section 4.2.4 is implemented in SWI-Prolog (Wielemaker, 2003). In this
section, the implementation choices are explained. For the readability of this section,
only parts of the Prolog program are shown. The complete source code can be down-



148 Memory Component

loaded from: http://human-ambience.few.vu.nl/docs/CIA-AggregationAlgebra.pl.

Controlling Aggregations

The current implementation does not incorporate automatic control of aggregations. In-
stead two ‘programs’ are implemented that can be called from the Prolog-shell: holds
and post. The holds program is shown below and can be used to request the results
of a specific aggregation, or to request the values for which a specific complex belief
holds. Notice that complex beliefs are defined as aggregations and are as such inter-
changeable. When no holds_at attribute is included in the query, it is assumed that the
query requests the result of the aggregation or complex belief at the current time. When a
holds_at is included, the query requests the result of the aggregation or complex belief
that holds at the specified time.

holds(B):- Query about B,
B = complex_belief(_,_,_,_), B is a complex belief,
current_time(N), and is checked for the current time N.
complex_belief_is_defined_as( The definition of the

holds_at(B,N), complex belief B is
holds_at(agg(L,C,A),N)), the aggregation agg(L,C,A),

holds_at(agg(L,C,A),N). which is requested for time N.
holds(B):- Query about B,

B = holds_at(X,N), B is whether X holds at time N,
X = complex_belief(_,_,_,_), with X being a complex belief.
complex_belief_is_defined_as( The complex belief X within B

B, holds_at(agg(L,C,A),N)), is defined as an aggregation.
is_time(N), When N is an actual time,
holds_at(agg(L,C,A),N). that aggregation is requested for N.

holds(B):- Query about B,
B = agg(L,C,A), B is an aggregation,
current_time(N), and is checked for the current time N,
holds_at(agg(L,C,A),N). and therefore requested at N.

holds(B):- Query about B,
B = holds_at(agg(L,C,A),N), B is whether agg(L,C,A) holds at
is_time(N), N, when this is an actual time
holds_at(agg(L,C,A),N). agg(L,C,A) is requested at N.

The holds program does not alter the belief-base and as such can be used to investi-
gate ‘what-if’ questions. Besides the holds program also a post program exists whose
procedure is almost identical, except each of its rules is extended with the extra condition
assert(_). This adds the complex belief, defined as the aggregation that is checked to
hold at N, to the belief base.



4.2. A Formal Approach to Aggregated Belief Formation 149

Free and Bounded Variables

Complex beliefs do not have 6 atomic arguments like basic beliefs, but are made up
of four arguments. The first of these is atomic and specifies a name for the complex
belief, which is also referred to as its type. The latter three arguments are predicates;
each embeds 6 arguments whose positions respectively represent the P, O, V, T, S, and C.
So a complex belief is represented by complex_belief(Type, For(...), With_

Ranges(...), Has_Values(...)) , which denotes that it is believed by the agent
that for that complex belief Type and for the given constants in For , taken into account
the With_Ranges in which the free variables in For have to lie, the constants in Has_

Values count.
An example complex belief denoting that it is believed that the last time at which a

belief was held about the hostile identity of contact1 is 7, and that was with a certainty
0.6 and based on radio contact is:

complex_belief(last,

for(identity, contact1, hostile, free, free, free),

with_ranges(nr, nr, nr, any, any, any),

has_values(given, given, given, 7, radio, 0.6)).

Such a complex belief is the result of the agent reasoning about what the last time, i.e.
highest T, was that it believed that the identity of contact1 was hostile. When it would
have reasoned about what the last time was that it believed with less than 0.5 certainty
that that was the case, the following complex belief might have hold:

complex_belief(last,

for(identity, contact1, hostile, free, free, range),

with_ranges(nr, nr, nr, any, any, [0, 0.5]),

has_values(given, given, given, 4, vision, 0.4)).

Given this representation of complex beliefs, an example of a complex_belief_is_

defined_as relation which defines a complex belief as a specific aggregation is:

complex_belief_is_defined_as(

holds_at( complex_belief(

last,

for(P,O,V,free,S,C),

with_ranges(nr,nr,nr,any,nr,nr),

has_values(given,given,given,X,given,given)),N),

holds_at( agg( temporal_aggregation(T),

highest_free(X,any,P,O,V,S,C),

holds_at(belief(P,O,V,T,S,C),N)),N)).



150 Memory Component

The aggregation shown here will return the highest T that it can find for the given P, O,
V, S, and C. When it does not matter what the S and C are, but it is required to find the
highest (last) T that is now restrained to a certain time range [Tb, Te] for a given P, O,
and V, the following aggregation is applicable:

complex_belief_is_defined_as(

holds_at( complex_belief(

last,

for(P,O,V,range,free,free),

with_ranges(nr,nr,nr,[Tb,Te],any, any),

has_values(given,given,given,X,Y,Z)),N),

holds_at( agg(

temporal_source_certainty_aggregation(T,S,C),

highest_range_free_free(X,[Tb,Te],Y,any,Z,any,P,O,V),

holds_at(belief(P,O,V,T,S,C),N)),N)).

This aggregation will return the highest T that it can find for the given P, O, and V. The S
and C that it returns are those of the belief with that highest T. This aggregation example
demonstrates that variables can be free or that they can be restricted to a specific range.
When it is checked whether a certain aggregation holds at a certain time the following
clause executes:

holds_at(agg(L,C,A),_):- To determine the agg(L,C,A) at time ,
term_variables(L,V), the variables in L are listed in V.
constraint_is_defined_as The definition of the constraint C for

(constraint(C,A,V),F), the subject A and the variables in V is F,
F. which is consequently requested.

The first condition term variables(L,V) is a built-in Prolog predicate that unifies V
with a list of variables, each corresponding with a unique variable of L and ordered in
order of appearance in L. So for the example above it holds:
?- term_variables(temporal_certainty_source_aggregation(T,C,S),V).

V=[G34,G35,G27], T=G34, C=G35, S=G27.

The second condition is a user-defined predicate that defines what the constraint C
entails for the aggregated belief A with its free variables listed in V; namely F, which
forms the last condition. On the next page, an example constraint_is_defined_as
is shown for the constraint that is required to deduce the first complex belief of type last
introduced in this section. Notice that this highest_free constraint can be reused, e.g.,
to deduce a complex belief of type surest when it is combined with a certainty_

aggregation . Its logical expression is:
given A, ∀x [ highest free(x, any) ↔ A(x) ∧ ∀x1 [ A(x1) → x1 ≤ x ] ]



4.2. A Formal Approach to Aggregated Belief Formation 151

constraint_is_defined_as( Definition (
constraint( constraint (

highest_free(X,any,F1,F2,F3,F4,F5), C,
A1, [X1]), A, V ),

and( copy_term( (A1,X1,F1,F2,F3,F4,F5),
(A,X,F1,F2,F3,F4,F5)), F ).

and(A, forall(A1, X1=<X)))).

The constraint that was required to deduce the second complex belief of type last

introduced in this section, is shown next. It can be seen that this constraint only considers
options A1 whose values X1 for the variable X lies within the range [Xb, Xe] specified
for it.

constraint_is_defined_as( Definition (
constraint( constraint (

highest_range_free_free(
X,[Xb,Xe],Y,any,Z,any,F1,F2,F3), C,

A1, [X1, Y1, Z1]), A, V ),
and( copy_term( (A1,X1,Y1,Z1,F1,F2,F3),

(A,X,Y,Z,F1,F2,F3)),
and(A, and( X>=Xb, and( X<Xe, F ).

forall( and(A1, and( X1>=Xb, X1<Xe)),
X1=<X)))))).

Nested Aggregations

The reason that in the constraint_is_defined_as Prolog clauses the values F1, ...,
Fn are embedded is that although they are usually instantiated, they do not have to be.
When they are not, and are left out of the query, they do get instantiated when Prolog
requests A. However, when next is asked whether for all X1 in A1 X1 ≤ X holds, this
probably fails. This is because the left-out variable that now is instantiated in A, is still
free in A1, so much more A1’s are checked than there should be.

The reason why variables are allowed to exist in places where atoms are expected is
because this freedom enables nested aggregations. An example of a nested aggregation
is the complex belief integrated_sources introduced in Section 4.2.3:

complex_belief_is_defined_as(

holds_at( complex_belief(

integrated_sources,

for(P,O,free,free,free,free),

with_ranges(nr,nr,any,any,any,any),

has_values(given,given,X,nr,nr,Y)),N),



152 Memory Component

holds_at( agg(

certainty_temporal_source_value_aggregation(C,T,S,V),

highest_free_after_free_for_free_free_for_predicate_&_time

(Y,any,_,any,_,any,X,any,P,O,N),

holds_at(complex_belief(

last,

for(P,O,free,free,S,free),

with_ranges(nr,nr,any,any,nr,any),

has_values(given,given,V,T,given,C)),N)),N) )

In this clause a complex belief of type last functions as aggregated belief for the aggre-
gation that deduces the complex belief of type integrated_sources . This latter ag-
gregation aggregates over values, times, sources, and certainties of beliefs about a given
property and object, in order to retrieve a specific value and certainty. The aggregation
belief it needs as input is a complex belief of type last that aggregates over values,
times and certainties for a given property, object and source. However, the latter (S) is
not given but variable, because the top-aggregation needs this last type for all possible
sources. Note that instead of the complex belief of type last also the aggregation as
which it is defined could have been used as input.

The constraint used within the aggregation to deduce the complex belief integrated_
sources is much more specific and therefore less reusable than, e.g., the highest_

free constraint. These two examples nicely illustrate the reach of the proposed aggrega-
tion mechanism. In principle all possible constraints can be added and used to form new
types of complex beliefs that in turn can be used in other aggregations.

4.2.6 Example Scenarios

From http://human-ambience.few.vu.nl/docs/CIA-AggregationAlgebra.pl the source code
of our Prolog program can be downloaded. In the case presented, an agent attempts to
infer the identity of a radar contact. Information about this contact can be gathered by
the radar as well as by the agent’s own vision. Furthermore, the agent can generate new
beliefs by reasoning over other beliefs. Over time the following basic beliefs have held
in STM and are now stored in LTM:
holds_at(belief(identity,contact1,neutral,2,vision,0.5),2).

holds_at(belief(identity,contact1,neutral,3,radar,0.3),3).

holds_at(belief(speed,contact1,20,3,radar,0.9),3).

holds_at(belief(identity,contact1,hostile,4,vision,0.9),4).

holds_at(belief(identity,contact1,hostile,4,id_from_speed,0.4),4).

holds_at(belief(speed,contact1,28,6,radar,0.9),6).



4.2. A Formal Approach to Aggregated Belief Formation 153

holds_at(belief(speed,contact1,30,7,vision,0.5),7).

holds_at(belief(identity,contact1,hostile,8,vision,0.7),8).

holds_at(belief(identity,contact1,hostile,8,id_from_speed,0.8),8).

At current time 10, two of the nine beliefs stored in the agent’s LTM are formed by
the agent’s reasoning rule id_from_speed , which forms the source of those beliefs. At
this moment the agent might start another reasoning process for which it requires the last
belief about a hostile identity of contact1. This query results in:

By chance, two sets of atoms are found that both adhere to this query. In such case
the agent might be interested in the surest one of these two last beliefs. This complex be-
lief of type surest_last is formed by aggregating the label certainty_temporal_
source_aggregation and the highest_free_free_free constraint with that com-
plex belief of type last as aggregated belief. The query for complex belief of type
last_surest yields a totally different result: it is an aggregation of the same con-
straint but in combination with a temporal_certainty_source_aggregation and
on complex beliefs of the type surest .

Another possibility would be that the agent’s superior asks the agent what it believes
that contact1’s identity is. At that moment the agent will retrieve its last beliefs about
the identity of that contact and form an answer. In the current case the agent believes
contact1 might be neutral based on what it saw of the vessel, as on the radar-emission-



154 Memory Component

pattern it received from the contact. However, it also believes it might be hostile, due
to its high speed. In order to give its superior an answer the agent has to form a belief
about the contact’s identity by integrating the retrieved last information about its identity
from the different sources. Given that the persistence-decay of a contact’s identity (see
Section 4.2.3) is 0, the agent reports it believes the contact to be hostile since it was most
sure of that. The agent’s superior could also have asked what the agent believes that

the speed of contact1 is. Again the agent needs to integrate information from different
sources and times. However, because the persistence-decay of speed is larger than 0, say
0.05, it also has to take into account how long ago it was that it believed that information.
The answer it will give is 28, see below. This knowledge is deduced from the basic belief
at time 6 that its speed was 28, but notice that the certainty with which it is believed
has decayed; from 0.9 to 0.7. Moreover, a newer belief concerning the contact’s speed
existed. However, even though the predicate’s certainty decreases over time, still the
value of the older belief is believed because the certainty of the new belief was very low.

4.2.7 Related Research

The technique for pre-processing a knowledge base to derive intermediate conclusions
that is presented in this paper is related to the area of knowledge compilation. Knowledge
compilation is defined in (Cadoli and Donini, 1997) as ‘methods of processing off-line
a knowledge base in such a way that the output of such a pre-processing can be used
to speed up on-line answering for a class of queries, where the pre-processing should
take an finite amount of time’. Within the area of knowledge compilation a distinction is
made between exact methods (which are sound and complete) and approximate methods,
which either reduce the complexity by expressing the knowledge or query in a simpler
language or by leaving out some (complex) parts of the knowledge base.



4.2. A Formal Approach to Aggregated Belief Formation 155

Our approach is an exact technique, as it only results in sound intermediate results.
However, a difference with common techniques for knowledge compilation is that our
method does not strive to derive all intermediate results, whereas knowledge compilation
techniques usually try to find a representation of all theorems of the initial knowledge
base. For example, they transform a knowledge base to normal form and compute all
implicants or implicates. In contrast, our approach is driven by specific queries whose
results are likely to be useful for the task execution. In that sense, our method is not
complete, as it does not aim to represent all knowledge in a different representation.
Moreover, our aggregations are usually more complex (and thus richer in information),
whereas knowledge compilation techniques often result in simpler representations. Last,
our aim is to compile new knowledge on-line instead of off-line.

Shahar (1997) presents a framework for knowledge based temporal abstraction from
time-stamped data. His formal specification of a domain’s temporal-abstraction know-
ledge supports acquisition, maintenance, reuse, and sharing of that knowledge. His aim
is partly the same as our, however, his framework allows for temporal abstractions only,
whereas our algebra allows for arbitrary abstractions.

The area of belief revision is also related to our work. In belief revision, the ques-
tion is how existing beliefs are influenced when new pieces of information are taken into
account, for example when information is added, removed or changed. The dominant
theory on belief revision, the so-called AGM model (Alchourròn et al., 1985), formulates
properties that an operator that performs revision should satisfy in order for being con-
sidered rational. Similarly, related work on belief merging focuses on the consequences
of combining belief bases for the integrity of a belief base, for example, see (Konieczny
and Pino Prez, 2002). In our work the logical consequences of the aggregations are
not relevant, as no new knowledge is added. There is no inconsistent information that
is merged and it does not happen that old information changes because all information
is time-stamped. This is comparable to what Sripada (1993) describes, who also uses
time-stamped beliefs. He proposes a technique for the efficient revision of beliefs in
knowledge bases for real-time applications, but only looked at binary beliefs.

Another type of related work is formed by approaches for memory storage in existing
(cognitive) agent architectures. In a recent review study on computer-based human beha-
vior representations (Morrison, 2003) it was generalized that ‘all the (human behavior)
models can represent either short term memory (STM) or long term memory (LTM).’
However, the ways in which these memories function differ greatly. For example, ACT-
R’s STM is formed by a retrieval buffer that can hold one chunk, which it retrieves
using an activation function from its declarative memory module (LTM) (Anderson and
Lebiere, 1998), while Soar’s STM is formed by its working memory that is not limited



156 Memory Component

in the number of elements it can hold (Laird et al., 1987). Related to the differences in
memories, differences exist in the representation of the declarative information entities
stored in such modules. These representations range from nodes in a network with an
activation value to first-order propositions.

The functioning of the various memories are in general fixed and tuned to bring about
the behavior for which the architecture was developed. No existing architecture is build
to specifically deal with time-labeled constructs, let alone in the algebraic approach as
introduced in this paper. Despite this, it might be possible to map the specific belief
construct to the memory construct of an architecture, prohibited the form of the latter has
a certain degree of freedom (Both and Heuvelink, 2007; Muller et al., 2008). Moreover,
the constraints that are needed to infer required (possibly domain-specific) aggregations
have to be implemented in the architecture as well, as the aggregation algebra.

4.2.8 Summary and Future Research

In this paper a method and a term algebra is presented to form arbitrary aggregations
of beliefs in a knowledge base. The aggregations can be formed at different levels and
from different perspectives, i.e. time aggregations, source aggregations, certainty aggre-
gations, etc. A Prolog program is used to illustrate the feasibility of the approach. The
motivation of this work is twofold: it should help to improve the computational prob-
lems when reasoning over a knowledge base, and it should reflect a more human way of
storing information in memory. As such, the goal is to ‘validly’ represent aggregations
of humans over beliefs, both conscious as subconscious, which can be used in agent
applications where agents should behave in a human-like way.

Up to now, the control of the formation of aggregations is not yet implemented. Fu-
ture research will investigate the control of aggregations from two perspectives. The first
will be inspired by the human processes of forgetting and remembering, the second by
the human processes of attention and focusing in task execution.



4.3. An Agent Memory Model Enabling Rational and Biased Reasoning 157

Research Paper

4.3 An Agent Memory Model Enabling Rational and Bi-
ased Reasoning

Abstract

This paper presents an architecture for a memory model that facilitates versatile reason-
ing mechanisms over the beliefs stored in an agent’s belief base. Based on an approach
for belief aggregation, a model is introduced for controlling both the formation of ab-
stract and complex beliefs and the retrieval of them based on their activation history. An
implementation of the presented mechanisms illustrates how it can be used in intelligent
agents that exhibit human-like (biased) reasoning as well as rational reasoning.

This section is published as:
Heuvelink, A., Klein, M. C. A., and Treur, J.* An Agent Memory Model Enabling Rational and Biased Reason-
ing. In Proceedings of the Seventh IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT 2008), p 193 - 1999, IEEE Computer Society Press. December 9 - 12 2008, Sydney, Australia.
* Authors are listed in alphabetic order and can be regarded as having made a comparable contribution.



158 Memory Component

4.3.1 Introduction

Agents commonly store beliefs about the state of the world in what is often called a world
model or belief base that grows over time. Reasoning can be done by applying inference
rules to the stored beliefs. This way of storing and using beliefs seems not very similar
to the human way of using memory. For example, humans often forget specific details,
but still remember aggregated details or abstractions of specific facts. Therefore, human
reasoning is not always sound and rational, but sometimes heuristically or biased, based
on abstractions or generalizations that are (more easily) available.

A notion describing the human way of using memory is ‘episodic memory’ (Tulving,
2002). This refers to the memory of events, times, places, associated emotions, etcetera
in relation to an experience, which is formed automatically. Episodic memory is con-
trasted to semantic memory, which is the memory of factual or conceptual knowledge.
It is sometimes believed that episodic memories are converted into semantic memories
over time. In this process, most knowledge about the specific event is generalized, and
abstractions are stored in the semantic memory. Nuxoll and Laird (2004) distinguish 4
phases in episodic memory, namely encoding, storage, retrieval, and use of the retrieved
memories.

Taking these ideas about human memory as a point of departure, it has been explored
how an agent may form, store, retrieve, and use aggregated beliefs, which can be abstract
or complex, see Section 4.3.2. Which perspective and level of aggregation is needed, is
application and task dependent. For that reason, an algebraic approach was developed
in (Heuvelink et al., 2008b) that can form arbitrary aggregations over beliefs. For this,
it uses a general aggregation operator parameterized by a specific constraint that can
be used in a recursive manner. The formalism allows for the specification of complex
beliefs, e.g., a ‘last most certain belief’.

In this paper, a memory model is proposed that also controls the formation and use
of these aggregations. The control mechanism it embeds has a hybrid nature: abstract
beliefs are automatically generated, while complex beliefs are only generated if the agent
has a specific focus, induced by the task of the agent. Retrieval of the various belief types
is based on their availability, which depends on their activation history, and on the task
focus of the agent.

The model builds on the long-standing idea that forgetting is the key to proper func-
tioning of memory (James, 1890). Recently, Schooler and Hertwig (2005) performed
simulation experiments that demonstrate that forgetting might facilitate human inference
performance. To implement forgetting in a computational model, beliefs usually get an
availability value that decays over time. However, it is human-like that although specific
details cannot be remembered, abstractions of beliefs can. Such beliefs are more avail-



4.3. An Agent Memory Model Enabling Rational and Biased Reasoning 159

able than the more detailed beliefs they are abstractions of, especially in case of multiple
detailed instances. This feature of memory is taken into account by the approach intro-
duced.

4.3.2 Memory Model Concepts

This section introduces the memory model predicates that bring about the aspects men-
tioned in 4.3.1.

Basic Belief Type

The need for a memory model as proposed in this paper was identified in the context
of military training simulation (Heuvelink and Both, 2007). An example agent task is
the formation of a tactical picture of the environment, which entails the classification
and identification of surface radar contacts. For modeling its behavior it is needed to
explicitly represent the time at which a belief was actually believed by the agent, to
enable (biased) reasoning over (possible inconsistent) beliefs over time. For example,
when at time t it is believed that the position of a contact is [x1, y1], while at time t + n it
is believed to be position [x2, y2], the average speed of the contact can be inferred. This
is useful because the speed may contain information concerning its identity, e.g., large
ships that are neutral usually do not sail faster than 20 knots.

In order to logically represent time and other aspects, such as the uncertainty and
source of information, every belief receives a number of labels, and is represented by
belief(P,O, V, T, S, C). This denotes the belief that property P holds for object O with
value V at time T, based on source S and with certainty C. An example belief denoting
that it is believed at time 8 with high certainty that the identity of contact1 is friendly be-
cause of radio conversation is: belief(identity, contact1, friendly, 8, radio, 0.9). The
value, time, and certainty label of basic beliefs about a specific property and object are
often used to reason about trends in those beliefs, which can lead to new beliefs. For
example, a new belief can be formed about a contact being a merchant, and therefore
neutral, due to beliefs about it sailing in a straight line. The certainty of the former is
determined by the period, as by the certainty, with which the latter is believed. For the
deduction of other beliefs it is often important to deduce the last, or most (un)certain be-
lief about something. For example, the highest certainty with which it was once believed
that a contact fired is relevant for deducing whether it might be hostile.



160 Memory Component

Types and Control of Aggregations

The need was identified for the memory model to support besides the conscious reasoning
processes on beliefs, more unconscious processes on beliefs, referred to as aggregations.
The approach introduced in (Heuvelink et al., 2008b) allows for the formation of arbi-
trary aggregations over beliefs, which result in aggregated beliefs. In this approach an
aggregated belief is defined as an aggregation that takes the form of a constraint (e.g.,
highest) that must hold for a certain variable (e.g., T ) of a partially specified belief (e.g.,
belief(identity, contact1, friendly, T, S, C) in which the P, O, and V are specified
while the T, S, and C are left variable). Examples of aggregated beliefs that an agent can
form are mentioned in the previous section, e.g., a belief about the highest certainty with
which something was believed.

In this paper two types of aggregations are distinguished. The first aggregates over
beliefs with many detailed arguments to form an abstract belief that ‘forgets’ certain
details. Such a process is referred to as a basic aggregation. This process simply
abstracts from a belief occurrence by leaving one or more of its arguments free. The basic
aggregation process generates an abstract belief(AbstractionType, ForArguments,
WithRanges) as output and requires a belief(P,O, V, T, S, C), or another abstract
belief as input.

For example, the basic belief belief(identity, contact2, hostile, 4, vision, 0.9) can
be abstracted into:

abstract belief(certainty temporal abstraction,
for(identity, contact2, hostile, free, vision, free),
with ranges(nr, nr, nr, any, nr, any))

by executing the following aggregation:

agg(certainty temporal aggregation(C, T ),
abstract free free( , any, , any, P,O, V, S),
is available at current time(belief(P,O, V, T, S, C)))

These abstract beliefs are formed in an automatic way, as a feature of memory. How-
ever, which abstractions happen and the amount of detail that is abstracted from, might
be susceptible to certain internal aspects, e.g., stress. Therefore, it is required that
these basic aggregations can be controlled at each time point. For this the predicate
in memory focus at(B, T ) is used. When a certain belief is in memory focus at a
certain time, the aggregation at which it is defined will execute; this determines which
aggregations happen automatically (bottom-up). It is assumed that only abstract beliefs



4.3. An Agent Memory Model Enabling Rational and Biased Reasoning 161

can be in memory focus, since their formation is unconscious and a general characteris-
tic of the functioning of memory. Note that only a limited number of basic aggregations
exist, due to the limited number of arguments that can be abstracted from.

The second process type that the memory model supports is complex aggregation,
and aggregates over retrievable beliefs to form a complex belief . A complex belief
aggregates information from the level of the beliefs that were the input of the com-
plex aggregation that formed it. These can be basic or abstract beliefs, as other com-
plex beliefs. A complex aggregation reasons over arguments of beliefs taking a spe-
cific constraint into account. An example of a complex belief is: complex belief(last,
for(identity, contact2, hostile, free, free, free), with ranges(nr, nr, nr, any, any,
any), has values(given, given, given, 4, vision, 0.9)). It is formed by the following
aggregation:

agg(temporal source certainty aggregation(T, S,C),
highest free free free( , any, , any, , any, P,O, V ),
is available at current time(belief(P,O, V, T, S, C)))

Many complex aggregations exist, due to the wide variety of possible constraints. The
constraint that is taken into account will be situation and task dependent. Therefore,
whereas the process itself is automatic, the start of a formation of a complex belief is
controlled.

For this the predicate in task focus at(B, T ) is used. Which beliefs are in task
focus at a certain time should be determined top-down, based on the current goals of the
agent. Complex beliefs that are in task focus are either retrieved from memory, or actively
formed by the aggregation as which they are defined. In either case, their occurrence is
always tailored to the current (part of the) task that is attended to. Basic beliefs in task
focus are always attempted to be retrieved.

Activation History and Availability

All beliefs are at the time of their formation present in the part of the agent’s memory
referred to as its working memory (WM). In addition, it is possible that they are present in
WM at a later time, after they have been retrieved from long term memory (LTM). When
transferring beliefs from an agent’s WM into its LTM, it is important to indicate when
they were formed or retrieved in WM. For this the two-place predicate active at(B, T )
is used. For every belief(P,O, V, T, S, C) that is found in the agent’s belief base it
holds that active at(belief(P,O, V, T, S, C), T ), with T the time it was formed, thus
active in WM. This explicit reference to the time at which a belief is active in WM, is
required to determine for later time points whether it is possible to retrieve it from LTM



162 Memory Component

and how easy this is. Those aspects depend on the availability of a belief, denoted by
has availability at(B,A, T ).

In the literature many theories can be found on the factors that influence the chance
that a belief is retrieved from LTM, and also a few computational models. It was decided
to base the beliefs’ availability determination on the one embedded in the cognitive the-
ory and architecture ACT-R (Anderson et al., 2004). In ACT-R declarative knowledge is
presented by chunks, whose activation values determine their availability. The full equa-
tion that determines a chunk’s activation takes into account several aspects, but for this
paper only the base-level activation is taken into account. The base level activation Bi

reflects the recency and frequency of use of the chunk, and is calculated by:

Bi = ln(
n∑

j=1

t−d
j ) + βi

n: The number of presentations for chunk i.
tj : The time since the jth presentation.
d: The decay parameter. Standard this one is set at 0.5 (Anderson et al., 2004).
βi: A constant offset.
In the memory model proposed here, chunks are replaced by beliefs. A belief B’s

presence in WM , i.e., each active at(B, T ), is interpreted as a ‘presentation’ of a
chunk. The constant offset βi varies between the belief types. For basic and com-
plex beliefs it holds that βi represents the belief’s initial impression value, denoted by
has impression value(B, I). For abstract beliefs, βi represents its deduced impression
value: has deduced impression value(B, I).

The latter is the summation of the impression value of the belief that it was abstracted
of, with an additional amount that depends on its abstraction type. Currently, each free
argument of an abstract belief adds 0.2 to the deduced impression value of that abstract
belief, so for an abstract belief of type temporal source certainty abstraction, this
amounts to 0.6. This ensures that in principle beliefs at a certain abstraction level, i.e.,
beliefs of which some details are forgotten, are more available than beliefs at a lower
level of abstraction.

The impression values of beliefs can be influenced by various factors, e.g., by the
emotional response it triggered, or by its importance for the agent’s current task. For
the current paper it was determined that the impression value of new basic beliefs is
determined by its importance for the current task, expressed by has importance for
task at(B, I, T ). The complex beliefs that are top-down determined to be required for
the task, and are therefore in task focus, inherit the same importance value as the basic
belief from which their determination stems. The model has the ability to determine such



4.3. An Agent Memory Model Enabling Rational and Biased Reasoning 163

an initial value based on the context of the task; currently all new basic beliefs receive
the same impression value of 2.

Retrieval and Aggregation Costs

In ACT-R a chunk’s activation value does not only determine which chunk will be re-
trieved, but also how long it will take. The proposed memory model does not reason
about the durations of specific retrieval processes, instead it attaches ‘cognitive costs’
to reasoning or retrieval actions. Intuitively, the costs to retrieve a belief should de-
pend on its availability, therefore it was decided that its retrieval costs are inversely
proportional to its availability. In addition, a threshold is required that denotes the
minimal availability a belief should have in order to be retrievable. This threshold
is arbitrary; for mathematical reasons it was set at 1. The costs of a complex ag-
gregation are determined to be equal to the costs of the retrieval of all relevant be-
liefs, i.e., beliefs that it takes into account for its formation. So the costs of forming
complex belief(last, for(identity, contact2, hostile, T, S, C), with ranges(nr, nr,
nr, any, any, any), has values(given, given, given,X, Y, Z)), is equal to the summa-
tion of the retrieval costs of all retrievable beliefs belief(identity, contact2, hostile, T,
S, C).

4.3.3 Implementation

The developed model was implemented in Prolog (Wielemaker, 2003): http://human-
ambience.few.vu.nl/docs/IAT-MemoryModel.pl. In this section, the implementation choi-
ces are explained using fragments of the program.

A run of the agent starts by requesting the start of a specific scenario. This sets the
current time at 0, fills the agent’s LTM with certain beliefs relevant for that scenario, and
starts the agent’s execution cycle by calling the scenario_loop clause:

scenario_loop(N):-

current_time(T1),

retract(current_time(T1)),

T2 is T1 + 1,

assert(current_time(T2)),

determine_availabilities_beliefs,

determine_availabilities_abstract_beliefs,

sense_and_form_beliefs(N),

set_task_focus(N),

retrieve_beliefs,

deduce_complex_beliefs,



164 Memory Component

reason_and_form_beliefs(N),

set_memory_focus(N),

deduce_abstract_beliefs,

scenario_end(N).

The scenario loop starts by propagating the current time with 1 time step. Next, the
availabilities of basic and complex beliefs are determined following the ACT-R formula.
The determination of the availability of abstract beliefs varies slightly from that of ba-
sic beliefs, and is therefore called separately. Basic beliefs always have a maximum
of one impression_value attached to them, which is determined at their formation
time. However, abstract beliefs might have multiple deduced_impression_value ’s
attached to them, because various basic beliefs may be abstracted into the same abstract
belief. Therefore, the constant offset βi of an abstract belief is determined to be the
average of all its deduced_impression_value ’s.

Next, a predicate is called with a specific reference to the scenario N that is executed;
sense_and_form_beliefs(N) . Its clauses constitute the agent’s working memory
input stemming from the agent’s interaction with the outside world. They define for each
time step of a specific scenario which beliefs enter memory, together with their costs
(fixed at 1) and impression value (fixed at 2).

After this, another scenario-specific predicate is called; set_task_focus(N) . Its
clauses define for each time step of a scenario which beliefs are required from the task’s
perspective, and with which importance, see Section 4.3.2. The in_task_focus_at

predicates embed belief templates of which an instantiation has to become active in . In
case of a basic belief template this is attempted by a retrieval action. In case of a complex
belief template it is first attempted to retrieve it, and when this fails, it is actively formed
by executing the aggregation as which it is defined.

Because complex beliefs have a temporary nature their retrieval, instead of formation,
allows for biases. Therefore, it is desired that this retrieval can be influenced, e.g., by
stress. To enable that, the retrieval process of complex beliefs takes a specific, tunable,
threshold into account. In the current scenarios this threshold is fixed at 100, so complex
beliefs can never be retrieved and are always newly formed.

The retrieve_beliefs clauses try to retrieve instances from the agent’s LTM for
all the beliefs that are currently in task focus. For each of them it executes:

determine_retrieval_of_belief(BT):-

current_time(N),

retrieval_action(BT, B, RB),

has_availability_at(B, A, N),

assert(active_at(B, N)),



4.3. An Agent Memory Model Enabling Rational and Biased Reasoning 165

assert(active_at(RB, N)),

K is 1 / A,

assert(costs_to_retrieve_at(B, K, N)),

assert(costs_to_ perform_retrieval_at(RB, K, N)).

The retrieval_action(BT, B, RB) determines which belief B from LTM is re-
trieved based on the belief template BT that is in focus. Retrieved belief RB denotes the
instantiation of BT with the values of belief B . The retrieval action retrieves that belief
that is coherent to the requested belief template and has the highest availability value of
all the coherent beliefs. Next, both B and RB are asserted to the agent’s memory. The first
because it is again active in WM, the second as a short cut for the reasoning process that
will operate on it later. Then, the availability of belief B is queried and used to determine
its retrieval costs, and thus of the formation of retrieved belief RB , which is the inverse
of its availability.

An important feature or the memory model is the way in which the retrieval ac-
tion operates when a basic belief is the object of retrieval, e.g., BT is belief(new_

detected,contact2,_,free,_,_) . This template can be filled by a basic belief,
but also by an abstract belief, as long as the arguments that are designated as free in the
template are among those where the latter abstracts from. This feature implements that,
given that abstract beliefs have multiple instances and are as such more available that the
specific beliefs they were abstracted from, abstract beliefs might still be retrievable while
the detailed beliefs may not.

The execution cycle of the agent continues with the deduce_complex_beliefs

predicate. Its clauses execute the aggregations as which the complex beliefs are defined
that are in task focus, but could not be retrieved. For the details concerning the execution
of these aggregations, see (Heuvelink et al., 2008b). Note that when an aggregation
requires a complex belief as input, it is first attempted to retrieve it. When that fails, the
required complex belief is formed by execution the aggregation at which it is defined.
The result, so the complex belief that was formed as an intermediate step to the required
complex belief which is in task focus, is also memorized. The costs of the formation of
a complex belief by an aggregation are equal to the sum of all the basic beliefs that were
retrieved for it, as explained in Section 4.3.2.

After all the beliefs that are required for reasoning have been retrieved or formed
by aggregation in WM, the reason_and_form_beliefs(N) predicate is called. Its
clauses specify for each time step of a scenario the specific reasoning rules that execute.
These rules operate on the beliefs in WM and enter one or more new beliefs into memory,
together with the costs of their generation. The latter is the summation of the costs to
retrieve and/or aggregate the beliefs that functioned as the rule’s input.



166 Memory Component

At the end of the scenario loop the memory’s intrinsic feature of performing basic
aggregations to form abstract beliefs is executed. The basic aggregations that happen
are defined by the predicate in_memory_focus_at , and these are set by calling the
scenario-specific predicate set_memory_focus(N) . In the current model it is assumed
that at each time step all possible basic aggregations of the T, S, and C arguments of
beliefs are in memory focus. This entails that from a single basic belief seven abstracted
beliefs of different types are formed. The number of abstract beliefs that can be formed
from an abstract belief depends on the abstraction level of the latter.

When deduce_abstract_beliefs is called, the basic aggregations that are in me-
mory focus execute for each of the basic and abstract beliefs that are in WM. The process
of abstracting basic beliefs into abstract beliefs that, when formed on the basis of multiple
basic beliefs, are more and therefore longer available, resembles the transfer of episodic
to semantic memory.

The last predicate of the scenario loop, scenario_end(N) , ensures that as long
as the current_time is not equal to the defined end time of scenario N, scenario_
loop(N) keeps being called.

4.3.4 Results

This section presents a scenario from the domain of (Heuvelink and Both, 2007) to
demonstrate the results of the various processes within the memory model. The results
here are obtained from the Prolog program. The table below shows for each time point 1)
the beliefs that are newly formed based on input from the environment, and 2) the beliefs
that the agent wants to form by reasoning.

How the beliefs are formed by reasoning depends on the reasoning rules that execute.
This paper does not focus on the way in which it is determined which rules may execute,
or whether rational or biased rules are selected. For a model that does cover the latter
aspects, and can be used in conjunction to the memory model, see (Heuvelink and Treur,
2008). For the current research it is assumed that the selection of reasoning rules is
simply done, and that these can either be rational or biased reasoning rules.

To demonstrate that the memory model can support rational and biased reasoning,
two scenario versions are developed, named rational and biased. In the rational version
the rational reasoning rules always require complex beliefs are input, which thus become
in task focus. Given that the retrieval threshold of complex beliefs is set at a 100, these
beliefs are always newly formed. This ensures that always the latest, most correct infor-
mation is used for reasoning and therefore, this scenario performs rational reasoning.

The total costs of the rational scenario mount to 22.0445, which sums the costs to
form the basic beliefs by sensing (set at 1: so 7 in total) and to form them by reasoning.



4.3. An Agent Memory Model Enabling Rational and Biased Reasoning 167

time Sensed and Required Beliefs
1 belief(position, self, [0,0], 1, gps, 1.0)
2 belief(position, contact1, [4, 3], 2, radar, 0.9)
3 belief(distance, contact1, , , , )
4 belief(position, contact2, [3, -1], 4, radar, 0.9)
5 belief(distance, contact2, , , , )
6 belief(within weapon range, contact2, , , , )
7 belief(position, contact1, [4, 2], 7, radar, 0.9)
8 belief(position, self, [0,1], 8, gps, 1.0)

belief(within weapon range, contact1, , , , )
9 belief(distance, contact1, , , , )

10 belief(behavior, contact1, , , , )
11 belief(position, contact2, [2, -2], 11, radar, 0.9)
12 belief(distance, contact2, , , , )

belief(behavior, contact1, receding, 12, officer, 0.6)
13 belief(behavior, contact2, , , , )
14 belief(threat, contact1, , , , )
15 belief(threat, contact2, , , , )
16 . . .

The cost to form a belief by reasoning depends on the costs to retrieve the input that is
required for the rule that forms it.

The screenshot below shows the costs to form for times 2-5 beliefs concerning con-
tact1’s en contact2’s position and distance. Notice that the formation of the distance
belief is cheaper for contact2 than for contact1. This is the case because of the formation
of one of the required beliefs to determine this; the most certain belief about the ships
own position taken into account the time passed since the formation of the basic beliefs
about this. For this, all these basic beliefs are retrieved. Therefore, when later the same
belief is required for determining the distance to contact2, its formation is cheaper. This
is because the basic beliefs it is based on now have a higher availability value, and are
thus easier to retrieve.



168 Memory Component

The rational reasoning that happens also ensures that when at time 14 the threat of
contact1 has to be determined, this is based on the information that that contact is ap-
proaching, even though at time 12 an officer said the contact is receding. This is because
the agent has deduced at time 10 that it is approaching, based on its beliefs about the
contact’s distances. Because these beliefs are based on beliefs about its positions, which
are retrieved from radar and therefore have a high certainty, the belief about the contact
approaching also receives a high certainty. The belief stemming from the officer on the
other hand, received a lower certainty. Therefore, when at time 14 a complex aggre-
gation reasons about which value of the belief about the behavior of contact it is most
certain, it is correctly deduced that the contact is approaching, and consequently that it is
threatening.

The reasoning rules in the biased scenario version do often not require complex be-
liefs are input, but simple basic beliefs, whose template thus become in task focus. As
explained in Sections 4.3.2 and 4.3.3, basic beliefs in task focus are attempted to be re-
trieved from memory. In this version no conscious complex beliefs are formed to reason
about a contact’s distance. Instead of aggregating the last radar belief about a contact’s
position, it simply attempts to retrieve any belief about its position. Often this will be
the latest, since this is likely to be the most available. However, this does not need to be,
e.g., in the case an earlier belief has been retrieved more often.

Notice that biased rules do sometimes need a complex belief as input, e.g., for the
rules that determine a contact’s behavior. For that it uses the last, as well as second last
belief about its distance. Such beliefs could never be retrieved by a basic belief template,
since that only enables the retrieval of the belief with the highest availability and not also
the second highest one. This problem was exactly the reason to implement the beliefs
are they are; time-stamped (Heuvelink and Both, 2007). However, the aggregation that
executes to determine the last and second-last belief in the biased scenario takes abstract
beliefs as input, compared to basic beliefs in the rational scenario.

The total costs of the biased scenario mount to 20.1549, which sums the costs to form
all the basic beliefs. The costs to form the beliefs at time 3 and 5 about contact1’s and
contact2’s distances are 0.818635 and 0.757405 respectively. This is a bit cheaper than
by rational reasoning. However, these costs will diverge much further when multiple
basic beliefs exist concerning their, as well as the own position, which are required as
input for deducing the distance. Multiple beliefs on the one hand decrease the costs of
the retrieval of an abstract belief about them, which due to the multiple presentations has
a higher availability. On the other hand they increase the costs of retrieval of the latest
radar contact about it, since now more beliefs are retrievable and thus considered, which
add to the cost.



4.3. An Agent Memory Model Enabling Rational and Biased Reasoning 169

As result of the biased reasoning that happens in the second version of the scenario, it
is at time 14 simply retrieved what the behavior of contact1 is. Since the belief stemming
from an uncertain source is the most available one due to its recentness, it is in this
scenario falsely deduced that contact1 is not threatening.

4.3.5 Discussion and Conclusion

The memory model described in this paper is specifically designed to allow for both
rational and biased reasoning, and can be used to form any type of aggregation. In these
aspects it differs from most related work on memory models.

Memory storage is an element in all existing (cognitive) agent architectures. In a re-
cent review study on computer-based human behavior representations (Morrison, 2003)
it was generalized that ‘all the (human behavior) models can represent either short term
memory (STM) or long term memory (LTM)’. However, the ways in which these mem-
ories function differ greatly. For example, ACT-R’s STM is formed by a retrieval buffer
that can hold one chunk, which it retrieves using an activation function from its declara-
tive memory module (LTM) (Anderson et al., 2004), while Soar’s STM is formed by its
working memory that is not limited in the number of elements it can hold (Laird et al.,
1987). Although those architectures are designed to bring about a specific behavior and
are not built to handle the abstractions and aggregations as described in this paper, it
might be possible to map the specific belief construct to the memory construct of an ar-
chitecture, provided that the form of the latter has a certain degree of freedom (Muller
et al., 2008). For further mapping of the proposed memory model, the control mechanism
for the formation of aggregations needs to be incorporated in the architecture, as well as
the retrieval mechanism of beliefs from LTM into WM.

In addition to the general memory models, there exist specific ‘episodic memory’ mo-
dels. In (Hintzmann, 1986) a simulation model of episodic memory is developed, which
is used for the learning of concepts. Similar to the approach presented, it is assumed
that abstracted knowledge is derived from a pool of episodic traces. The model exhibits
basic findings from the schema-abstraction literature, such as differential forgetting of
prototypes and old instances. But it does not allow for arbitrary aggregations, controlled
by the agent’s task.

As already mentioned in the introduction, Nuxoll and Laird (2004) also provide a
model of episodic memory, which has been implemented in Soar (Laird et al., 1987).
The model is based on the framework that they present, in which the most important
design choices for each of the phases of episodic learning are described. Their framework
allows for many possible events that could trigger automatic formation of episodes, and
also for decay and removal of elements of the episode. However, in their model the



170 Memory Component

decay has not been implemented yet. Also, there is no abstraction or aggregation in their
implementation: all details of an episode are always retrieved.

There are a number of considerations about the implementation of the model pre-
sented in this paper that are worth discussing. First, currently all the beliefs that are used
to form an aggregation are retrieved into WM. This is done because it is desired that their
availability is increased, i.e., they become more easily retrievable afterwards. Although
the latter seems a natural choice, it might be more valid to implement a semi-retrieval,
which increases their availability without actual retrieving them.

Secondly, the costs of forming a new basic belief by reasoning are currently equal
to the costs of the retrieval and aggregation of its inputs. This means that the costs of
the reasoning process itself are ignored. It is an implementation decision to take those
costs also into account. Related to this, the costs of basic aggregations are also zero in the
current implementation, and all basic aggregations happen automatically. Another choice
would be to assign different costs to different aggregations. This would allow controlling
the formation of basic aggregations by certain factors, e.g., stress: if the stress factor is
high, only cheap aggregations are formed. This would implement another type of bias.

In the current stage of the work, the control of the formation and retrieval is parame-
terized, but the values for the parameters are not yet automatically set. An aim of future
work is to extend the current model with a mechanism to automatically derive the values
of the control parameters from task and situation aspects.

In addition, stress might be included to allow for agents that exhibit even more
human-like reasoning. There are several ways in which a stress parameter might in-
fluence the process: first, it can influence which complex beliefs are formed; second, it
can influence the reasoning rules that are executed and thus the beliefs that are set in task
focus; finally, it could even determine which basic aggregations happen.







Chapter 5

Control Component

5.1 Introduction

In the previous two chapters we introduced a belief component and accompanying me-
mory component that support the modeling of rational and biased behavior in military
situational assessments tasks. Whether the agent would show rational or biased behavior
was left unspecified. In this chapter we investigate how the control of an agent’s reason-
ing process can be modeled in such a way that it dynamically determines, depending on
the circumstances, whether the agent behaves rational or biased. In addition, we investi-
gate information acquisition mechanisms that control whether the agent will attempt to
retrieve required information from memory, or sense it in the world.

In Section 2.2.2 we made a distinction between 1) biases that operate within a pro-
cess and influence how it executes, e.g., how in belief formation the trust in a source
influences the believability of its information, and 2) biases that operate between pro-
cesses and influence which executes, e.g., which source is checked. So far we modeled
biases that take place within specific cognitive processes. In this chapter we model the
reasoning control and information acquisition control of an agent in such a way that they
determine which process executes. The control models thus operate between processes
and can bias behavior by selecting a non-optimal process.

We start this section with discussing various aspects of control methods. Next, we
present a quick overview of existing control methods, followed by an account of the
approaches we selected for our studies.



174 Control Component

5.1.1 Aspects of Control

A large variety of agent control methods have been proposed in the literature. In table 5.1
we specify four dimensions on which control methods can be classified. The dimensions
denote properties at different levels, which means that their combination defines a spe-
cific method, and that all combinations can be found.

Centralized vs. Decentralized
Centralized agent control embeds one central information processing system in an agent. This
information processor operates on the information from the agent’s perceptual modules and
generates outputs for its action modules through the fixed activation of various modules.
Decentralized agent control does not equip the agent with one central information processor.
Instead, the agent embeds multiple information processors, each of them capable of operating
on (as subset of) the information received from the agent’s perceptual modules, and of generat-
ing outputs for (as subset of) its action modules.
Reactive vs. Deliberative
Reactive agent control denotes that the behavior of the agent is steered by the input that its
information processor(s) receives. A method that implements such behavior is called data-
driven reasoning.
Deliberative agent control denotes that the behavior of the agent is steered by certain desires or
goals an agent has. A method that implements such behavior is called goal-directed reasoning,
or means-end analysis.
Declarative vs. Procedural
Declarative agent control denotes that the agent can explicitly reason about which behavior it
will display. For this it is required that the actions it can execute are declaratively specified.
Procedural agent control denotes that the agent does not explicitly reason about which behavior
it will display, but that this is predetermined by the agent modeler, or learned implicitly.
Type 1 vs. Type 2 vs. Type 3
These three types of control were recently distinguished by Gray (2007a).
Type 1 control denotes the execution loop of an agent: it specifies which output of one func-
tional module is provided as input to another, which is usually fixed within an agent.
Type 2 control denotes the execution loop within a functional module. Gray (2007a) distin-
guishes three subtypes. First, there exist non-cognitive modules. The internal control of these
modules that transforms the module’s input to its output is not based on a cognitive theory,
but is formed by, e.g., a mathematical formula or machine learning algorithm. Such a control
predicts, but does not explain human behavior. Second and third there exist two types of cog-
nitive modules which do embed a theory of internal control based on cognitive science. These
two types differ in how they form their output: the internal control of the first type can deter-
mine on-line which output is appropriate given the module’s input; for the second type this is
predetermined off-line.
Type 3 control denotes the execution loop to perform a specific task. It embeds task-specific
knowledge about which strategy or method to apply to accomplish a given task in a given
task environment. This execution loop is not independent of the Type 1 and Type 2 controls
embedded in the agent: the Type 3 control should fit within the constraints delivered by them.

Table 5.1: Aspects of Control Methods



5.1. Introduction 175

5.1.2 Existing Methods for Modeling Control

We start this section with control methods developed by Artificial Intelligence. Next, we
shortly describe some human control characteristics, and introduce various control meth-
ods from Cognitive Science. Last, we discuss control within integrated architectures.

Existing Methods for Modeling Control within AI

In traditional AI systems, e.g., the General Problem Solver (GPS) (Newell and Simon,
1963; Ernst and Newell, 1969), control is in general centralized and implementing a
deliberative, Type 2 reasoning method. In GPS this reasoning method was procedural ;
the means-end analysis that it implemented for finding operations that could be done
on objects to bring the current state closer to the goal state, received a priori knowledge
about which operations would aid for certain specific differences between the current and
the goal state. As such this module is, according to Gray (2007a), a cognitive module for
which it is determined off-line what the appropriate output is given the input.

The early AI system MYCIN (Shortliffe, 1976) also utilized centralized control im-
plementing deliberative, procedural, Type 2 reasoning. MYCIN was developed as expert
system to support physicians in identifying bacteria’s causing infections and by suggest-
ing treatments. It did this by asking questions about the situation. Later on, NEOMYCIN
was developed incorporating a declarative reasoning method, enabling the reasoning over
which questions to ask to the physician to diagnose the bacteria. By implementing this
declarative reasoning method, the inability to reason explicitly over the possible actions
(questions to ask) as found in procedural control systems was overcome.

STRIPS (Fikes and Nilsson, 1971), developed for automated planning, is another
classical AI system implementing centralized control, utilizing a deliberative (means-
end analysis), Type 2 reasoning method, but in a declarative way. This entails that it is
declaratively specified which effects the performance of an action, implemented as an
application of an operator, in a certain state has. This enables the explicit reasoning over
which operator to select to decrease the gap between the current and goal state.

In reaction to this centralized, deliberative view of control Brooks (1986, 1991) in-
troduced his subsumption architecture. Instead of one central processor that operates on
input from an agent’s sensors to generate output for its actuators, Brooks assumes mul-
tiple modules. Each module forms a behavior-producing system, and directly connects
perception to action. So, Brook’s subsumption architecture composes intelligent beha-
vior into many ‘simple’ behavior modules, and incorporates decentralized control. In
addition, it implements reactive, procedural, Type 2 reasoning methods: the behavior
modules connect limited, task-specific perception directly to the actions that require it.



176 Control Component

Around the same time of Brooks’s subsumption architecture blackboard systems
emerged (see, e.g. Hayes-Roth, 1985; Engelmore and Morgan, 1988). Blackboard sys-
tems embed a central (passive) unit, the blackboard, whose content can be inspected
and updated by the modules of the system. The blackboard serves as a common know-
ledge base through which the various modules can communicate. The control in black-
board systems is decentralized as the system embeds multiple information processors
that usually implement a reactive (to the content of the blackboard), procedural, Type 2
reasoning method. Because all these components react independently to the content of
the blackboard, some form of global control is required that determines which module
may interact with the blackboard. Therefore, each blackboard system also incorporates
a module that embeds a declarative, Type 3 reasoning method that keeps the behavior on
track of the task.

Systems that combine deliberative and reactive control are generally referred to as
hybrid control systems. The main idea behind hybrid control architectures is that the
reactive part of the agent, which takes precedence over the deliberative one, ensures ro-
bustness, fast response times, and adaptability. The deliberative part of the agent ensures
that longer term goal-oriented issues can be handled (Nwana, 1996).

Maes (1991) was among the first to bring some of the strengths of the deliberative
and the reactive control paradigms together. She implemented an agent as a set of com-
petence modules, each with STRIPS-like pre- and post-conditions, that are linked in a
network. An example of a link between two modules is the successor-link, i.e., the post-
condition of one is the pre-condition of the other. Modules receive an activation level
that represents the relevance of the module in the current situation, which is determined
by a spreading activation process operating on the network. The higher the activation
level of a module, the more likely it is that this module determines what the agent will
do. Based on experience, the competence module network is developed and changed,
e.g., by adding or deleting links.

In the last two decades many agent designers have embraced the Beliefs, Desires, and
Intentions (BDI) framework for modeling human behavior (see Section 2.3.1). Agents
based on the BDI framework embed a centralized, deliberative control, supported by the
desires and intentions. Whether the type 2 reasoning method it embeds is declarative
or procedural differs on whether the intentions (plans) are dynamically formed, or are
pre-established: most BDI agents embed a database of prefixed plans, and thus embed
procedural control.

Another recent development in agent control methods is the development of coor-
dination languages. The origin of coordination languages lies in theoretical informatics
that is concerned with verification of agent behavior and evaluation of agent performance.



5.1. Introduction 177

Coordination languages explicitly distinguish coordination from computation, i.e., they
separate the control of the modules of a system from their internal functioning. This
separation facilitates the replacement of modules, and enables the executing of modules
whose internal functioning is unknown. Coordination languages have been developed
that allow for the specification of centralized control (Bonsangue et al., 2000; Ciancar-
ini, 1996) as well as decentralized control (Barbuceanu and Fox, 1996), referred to as
control-driven and data-driven coordination languages respectively. Bosse et al. (2007)
developed a coordination language that can be used to specify both types of control ap-
proaches. Coordination languages usually specify Type 1 control.

View on Control from Cognitive Science

Humans seem to possess central control (consciousness) but also decentralized control,
e.g., when touching a hot stove the hand is retracted before the mind becomes conscious
of the heat. In addition, humans display a combination of deliberative and reactive con-
trol. On the one hand humans are capable to guide their attention, e.g., they can decide
where to look at. On the other hand, this deliberative control is limited in the sense that
there exist so-called ‘enduring dispositions’ which humans automatically attend to (re-
active), e.g., flashing lights (Kahnemann, 1973). Moreover, humans seem to be able to
declaratively decide where to look at, e.g., when trying to find differences between two
pictures, or more procedural, e.g., while scanning a new person. Last, it is self-evident
that humans possess Type 1, Type 2 and Type 3 controls.

Davis (2004) investigated differences in the nature and requirements of biological
and synthetic minds in terms of control: control over what is sensed; control over how
that is perceived; control over how those perceptions are processed; and control over how
this epistemic flow leads to control over actions. Davis does not provide answers how
these various control mechanisms should be modeled, but put forward the thesis that they
can be modeled using a systematic control language based on affects and affordances.
‘Affect’ is a more general concept than emotion since it covers other things besides emo-
tions, including moods, attitudes, desires, preferences, intentions, dislikes, etc. (Sloman
et al., 2005). Previously we mentioned that many agents are nowadays based on the
BDI framework and as such embed a control method based on desires (goals). Also we
followed this approach when modeling the agents introduced in the previous chapters.

Castelfranchi and Paglieri (2007) explore the structural interdependency of beliefs
and goals in cognitive agents, and provide a model of the interplay of beliefs and goals in
deliberation, planning and action. They define goal processing as ‘the cognitive transition
that leads from a mere desire to a proper intention’. They consider a goal as transferring
through several states, see Table 5.2: from active goal (after its generation caused by a



178 Control Component

Goal Type Process Stage Supporting Beliefs Beliefs sub-classes +/-

ACTIVATION Motivating beliefs Triggering beliefs +
Conditional beliefs +

Active Goals ( = desires)
Self-realization beliefs -

EVALUATION Assessment beliefs Satisfaction beliefs -
Impossibility beliefs -

Pursuable Goals
Cost beliefs -

DELIBERATION Incompatability beliefs -
Preference Beliefs Value beliefs +

Urgency beliefs +
Chosen Goals ( necessary for future-directed intentions)

Precondition beliefs Incompetence beliefs -
CHECKING Lack of conditions beliefs -

Means-end beliefs +
Executive Goals ( necessary for present-directed intentions)

ACTION→ Feedback and subsequent
(1) belief revision and (2) plan diagnosis

Table 5.2: Model of belief-based goal processing from Castelfranchi and Paglieri (2007)

motivating belief) through a goal that the agent judges pursuable (through assessment
beliefs about that the goal does not yet exist, or is self-fulfilling or impossible) to a goal
that the agent actually chooses (with the help of preference beliefs that might use costs
and incompatibility beliefs) and might execute (given that there is no belief about the
incompetence of the agent or lacking preconditions).

Castelfranchi and Paglieri (2007) also introduce a constructive theory of intentions.
In their view a goal becomes an intention only after passing the above mentioned series
of screening tests, in which specific beliefs act as filters. Moreover, an intention can be
future-directed or present-directed. An intention is future-directed when it is a chosen
goal but not yet realizable, i.e., because preconditions miss. It is present-directed when
it stems from an executive goal, i.e., a chosen goal that is immediately realizable.

Although an intention requires a goal at a specific stage of processing, Castelfranchi
and Paglieri do not say that such a goal is the corresponding intention. Instead, they
state that when a chosen goal becomes an intention a crucial transformation occurs and
it immediately becomes in effect of that choice a double-faced entity. This entity in-
cludes both a target (what the agent wanted to achieve in the first place) and a vehicle
(the action or plan that will achieve it). They refer to the closely related distinction be-
tween intention-that and intention-to but do not consider them as two different types of



5.1. Introduction 179

intentions (as is customary), but as the two necessary elements of any intention.
They spell it out as follows: whenever an agent has the intention of doing something

intentionally, this requires both the intention-to perform that action (Int-Act) and the
intention-that one of the expected results of the action will hold after execution (Int-
End). Each of these ‘intentions’ can be analyzed in terms of goals at a given stage of
processing, but it is only the combination of the two of them that captures the exact
meaning of intending. Moreover, the agent must be aware of the means-end relationship
between doing A and achieving p, i.e., he must have the belief that doing A is a means to
bring it about that p. They state that these three conditions, i.e. Int-Act, Int-End, plus the
belief on Int-Act being a means for Int-End, are not only necessary for intentional action,
but also jointly sufficient. In the next section we will elaborate on how these ideas relate
to the work presented in this chapter.

Existing Methods for Modeling Control within Integrated Architectures

The Type 1 control that integrated architectures incorporate is procedural of nature. We
are not familiar with any architecture whose general execution cycle is specified declar-
atively so it can be varied. Also many of the Type 2 reasoning controls embedded in cur-
rent integrated architectures are procedural. This is the case for Soar, which evolved from
the GPS paradigm and embeds prefixed preferences for operators, but also for ACT-R,
which embeds prefixed, or implicitly learned utility values of productions. An excep-
tion is CLARION, which supports declarative reasoning about what to do through its
meta-cognitive subsystem.

A consequence of the procedural, so fixed control structures embedded in cognitive
architectures is that the behavior of the agent cannot be varied on-line: it behaves, given
a certain input, in a fixed way. This became a problem for the developers of ACT-R when
they wanted to use it to model task learning behavior. For task learning it is required
to model explorative behavior, but modeling explorative behavior is incompatible with
embedding a fixed way to select actions based on the utility values of productions. They
circumvented this problem by attaching a random noise-value to the utility of produc-
tions.

Another consequence of procedural control structures is that it is important for a
modeler to select the ‘right’ architecture whose Type 1 and Type 2 control matches with
the Type 3 control required for the task he or she wants to model. This is important
because the Type 3 control should fit within the constraints delivered by these procedural,
thus fixed controls. For example, because the Type 1 and Type 2 controls embedded in
the ACT-R theory determine that a maximum of one production rule can fire at a time,
this also holds for every Type 3 control model implemented in ACT-R.



180 Control Component

5.1.3 Selecting an Approach

In this chapter we develop two control methods for cognitive agents, one Type 2 control
for reasoning and one Type 3 control for information acquisition. These two methods al-
low for the modeling of more human-like behavior because they incorporate the finding
that human behavior varies, not only based on external task aspects, but also on inter-
nal cognitive aspects such as personality, stress, and exhaustion. Such internal aspects
are often not supported by integrated architectures, and caused us to develop these two
control methods that enable cognitive agents to (dynamically) display varied behavior.

The control methods we develop are centralized : all the information is processed
centrally after which a choice is made. We made this choice because it facilitates the su-
pervision of which behavior will be displayed, which is required for training simulations.
In addition, the control methods both incorporate a deliberative reasoning method. With
this choice we subscribe to our previous choice to model agent behavior using mentalistic
notions as beliefs and goals, which was applied in the agents developed in the previous
chapter. The incorporation of goals enables the explicit reasoning over which actions
to execute to reach that goal. In order to do this the controls incorporate a declarative
reasoning method, providing the means to reason about the processes.

In the first paper of this chapter we model the control of an agent’s reasoning process.
In order to determine on-line which cognitive processing component should be executed,
it is important to denote declaratively which components are possible. In addition, for
modeling deliberative control, it is required to denote the types of beliefs a component
has as output, as well as the belief types it requires as input, which is done using STRIPS-
like pre- and post-conditions. For modeling varied behavior it is in addition required to
attach a value to a component that denotes how desired it is that it executes. This value is
not prefixed based on the current goal (as the preference labels of Soar, or utility values
of ACT-R), but is determined on-line based on the internal state. For the specific details
concerning this process, see Section 5.2.

Various aspects of this reasoning control model are compatible with the ideas of
Castelfranchi and Paglieri (2007), whose model of goal processing based on a frame of
supporting beliefs was introduced above, but not yet known to us when we started to
work on the research presented in Section 5.2. Here we shortly discuss how the work of
Castelfranchi and Paglieri relates to this work.

First, Castelfranchi and Paglieri (2007) make a distinction between an intention’s tar-
get (Int-End) and vehicle (Int-Act). A similar distinction is made in the papers presented
in this chapter: an agent’s goal (in the form of a belief) can be considered an Int-End, be-
cause a goal represents the status of the world that is desired by the agent (a belief about
specific information). The Int-Act can be considered, in the case of the reasoning control,



5.1. Introduction 181

as the cognitive processing component that the agent desires to execute because of the
chance that it brings the desired world status about. The belief that a certain component
c can bring about the goal g is formed by a belief that component has output(c, g),
which is equal to the means-end beliefs of Table 5.2.

Second, the reasoning control framework embeds constructs that could be considered
equivalents of the assessment beliefs of Table 5.2. In specific: the reasoning control only
gives priority to components (Int-Act) if their attached goal (Int-End) is not believed to
be already the case, to be impossible, or to become true without interference.

Third, in order to start planning for a specific goal (when the selected component is
not executable so the goal is future-directed) it is determined that it should not be the case
that a plan for that goal already exists (in which case component for goal(c, g) exists).

Fourth, when cognitive processing components are selected to become active, it is
a condition that an active component’s outcome cannot be something whose opposite is
currently desired to be reached by another active component with a higher priority. This
is an implementation of the incompatibility beliefs of Table 5.2.

We appreciate the work of Castelfranchi and Paglieri, because they explicate the
states a goal transfers through. All these steps are required for every goal-directed agent,
but are often modeled implicitly. Castelfranchi and Paglieri make these steps explicit, by
specifying the supporting roles of beliefs in the phases of a goal. This has several bene-
fits: first, it can guide the designer of a goal-directed agent in which aspects (supporting
beliefs) need to be specified. Second, these supporting beliefs can be used to explain why
an agent does, or does not have a goal in a specific state. For example, for explaining
why an agent does not adopt a desire as a pursuable goal, it is possible to refer to the
existence of a ‘self-realization’ belief about it.

In the second paper of this chapter we model the control of information acquisition
for a specific task. This control determines, in terms of Castelfranchi and Paglieri, which
Int-Act, i.e., a memory retrieval or sense action, to couple to a chosen Int-End because of
the chance that it results in a belief about the desired information. When we started this
research we aimed at developing a generic, type 2 information acquisition component
that could determine the best way to acquire required information; either by retrieving it
from memory of from sensing it in the world. The idea was that this component would
deliberate on the possible actions to acquire the required information and on their re-
spective costs and benefits, and then make a (possibly biased) choice. Although we did
develop this component, referred to as ‘rational’ strategy in Section 5.3, we discovered
that it was unable to represent the observed behavior of people executing a simple task.
Instead, we hypothesize that the participants followed a strategy that did take some of
the task circumstances into account, but for a large part pre-determined their behavior.



182 Control Component

Therefore, we also developed several task-specific (type 3) control strategies that on av-
erage better captured the behavior of humans, see Section 5.3.

5.1.4 Chapter Overview

This chapter embeds two papers. The first paper (Section 5.2) focuses on the develop-
ment of a generic approach to control the emergence of decision-making biases based on
external and internal factors. For this we implement 1) a centralized, deliberative, declar-
ative, type 2 control for the agent’s reasoning process, and 2) a method that dynamically
determines the agent’s cognitive exhaustion level. The reasoning control selects which
cognitive processing components execute, and can control the emergence of biases by
applying heuristics while performing the task. For determining whether to apply rational
or biased components, the reasoning control takes into account the agent’s current, dy-
namic cognitive exhaustion level, as well as the cognitive costs of the (possibly biased)
cognitive processing components.

The second paper in this chapter (Section 5.3) focuses on the development of task-
specific approaches to control the way in which required information is acquired. For
this we implement centralized, deliberative, declarative, type 3 controls for information
acquisition that determine whether required information is best gathered 1) externally
by sensing, or 2) internally by retrieving it from memory. First, we develop a rational
control strategy that weights the pros and cons of these two types of actions by taking
into account aspects as the chance of success and costs of failure. In addition, we develop
more fixed ‘heuristic’ control strategies. The task model in which these control strategies
are embedded is based on the memory model developed in Section 4.3.

In this paper we do not only develop models of human behavior, but also investigate
human behavior in a simple task. This experimental data serves as inspiration for the
development of the ‘heuristic’ control strategies. Moreover, we use the experimental
data to determine for each person the best fitting parameters of the task model, among
others the followed control strategy. When the developed task model is able to mimic
human behavior, we are a step closer to the modeling of cognitive agents that can display
human-like behavior.



5.2. Controlling Biases in Demanding Tasks 183

Research Paper

5.2 Controlling Biases in Demanding Tasks

Abstract

Many aspects affect the way humans perform tasks, among others somebody’s personal-
ity and current exhaustion level. Under varying conditions the quality of the performance
is known to vary as well, for example, due to biases that occur. This paper introduces a
cognitive control model addressing these aspects. It has been formally specified, tested
in simulations for various scenarios, and formally analyzed.

This section is published as:
Heuvelink, A., and Treur, J.* Controlling Biases in Demanding Tasks. In B. C. Love, K. McRae, and V. M.
Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (CogSci 2008),
Cognitive Science Society, p. 1392-1397. July 23-26 2008, Washington, District of Colombia.
* Authors are listed in alphabetic order and can be regarded as having made a comparable contribution.



184 Control Component

5.2.1 Introduction

Humans show a great variety in how they perform tasks. This variability in task perfor-
mance may affect the quality of the performance. It is well-known that stress, fatigue,
or high task demands can deteriorate task performance (Sanders, 1983). At the basis of
these findings lies the fact that humans have a limited amount of cognitive resources.
When a task becomes more demanding, these resources might become insufficient. To
deal with this, humans tend to perform a task by applying cheaper cognitive reasoning
steps, such as heuristics. These shortcuts often work well and might even be regarded
as adaptive given their ecological validity (Gigerenzer et al., 1999). However, when the
outcome of such a reasoning step deviates in a structural way from the rational outcome,
it is called a bias.

The challenge addressed in this paper is to design a computational model for task
performance that controls the occurrence of biases based on internal and external factors
as mentioned. Various applications may benefit from such a model of human-like task
performance. For example, it can be used to design virtual characters that play a role in
simulations in which human aspects are important, like in realistic training environments
and social games. Furthermore, such a model may help a software agent to better under-
stand human behavior in cooperative task performance, and thus aid decision support.

In the next section various findings on human task performance are described in more
detail. After this, a control approach is introduced that can generate variable task beha-
vior. Next, this approach to control is applied to the control of biases in task execution,
which results in a formally specified cognitive agent model. This model is tested in a
case study, in which the agent operates in several scenarios under a variety of internal
and external aspects. Finally, the model is evaluated and the research discussed.

5.2.2 Human Task Performance

Individual differences in cognitive characteristics entail variety in human task perfor-
mance. In general some humans are more gregarious, impulsive, distractable, and less
patient than others (Shields, 1983). At the same time humans manage the limited re-
sources they have in certain ways, see e.g., (Johnston and Heinz, 1978). The allocation
of cognitive resources is claimed to be flexible and under own control

Kahnemann (1973) stresses the idea that humans have a limited amount of cognitive
resources. He states that there is no exact fixed amount, but that it is influenced by the
arousal level of a person: the higher the arousal level, the more resources can be made
available, up to a certain point. From that point on an increase in arousal may not result in
an increase of available resources. McBride et al. (2007) reaffirm this and point out that



5.2. Controlling Biases in Demanding Tasks 185

humans are able to perform multiple tasks at once, as long as the total sum of processing
demands does not exceed the available resources. When the total sum does exceed this
level of available resources, task performance will decline (Posner and Boies, 1971).

A method humans apply to bring down the cognitive demands of a task is the use of
heuristics. These rules of thumb often work well in certain types of situations. Character-
istics of heuristics are, besides context dependency, their simplicity and speed. However,
when they deliver incorrect or inaccurate results they are also referred to as biases, for an
overview see (Wickens and Flach, 1988). Cognitive biases are known to arise especially
under stress of overload conditions (Baron, 2000) and have an immediate impact on the
quality of task performance.

Hancock and Warm (1989) acknowledge that demanding tasks over time do, through
some kind of physiologically mediator, influence cognition. They forward the thesis that
tasks themselves are the major sources of cognitive stress, which others support (e.g.,
Matthews and Desmond, 2002).

5.2.3 Model Setup and Control Approach

Our research focuses on designing a cognitive agent model that can mimic the variability
in human task performance. Therefore, it possesses multiple cognitive processing com-
ponents that can perform the same task. Moreover, these components vary in content, so
the model can also mimic the variability in the quality of the task performance. Some
components are rational and generate the output in a correct way, others represent typical
biases and ‘forget’ to take certain factors into account. Components that perform biased
processing require less processing resources than rational ones, but they may generate
incorrect outputs.

Furthermore, the model possesses a control method to determine which of the cog-
nitive processing components may become active to generate a required output, see Fig-
ure 5.1. On the top level, above the dashed line, the control processes are shown, distin-
guished from the component processing. Input for this control process is coordination
information about the various components and their input-output connections. The out-
put of this control level is control information on which components should become
active. Each component has two input layers: one for coordination information (the up-
per square at the left side of the component), and one for data information (the lower
square). Output is also generated at both levels, depicted by the squares at the right side
of a component.

The cognitive agent model decides which component(s) may become active based
on the current external, as well as internal states. A major constraint is that the required
processing resources of the to-be-selected components have to lie within the available



186 Control Component

Figure 5.1: Control Approach

processing resources.
As discussed above, cognitive biases arise in human task performance under overload

conditions. Since the model is about mimicking human (biased) task performance, the
same principle should hold for an agent incorporating the model. The idea is that, when
faced with high task demands, the agent will be motivated to operate on a high cognitive
processing level. Over time, this will result in it becoming exhausted, which entails less
available processing resources. The latter will affect the control decisions made. More
specifically, when the agent becomes more exhausted, components with lower processing
costs will be chosen, which usually implies a higher level of biases.

5.2.4 Formal Analysis

The cognitive agent model is expected to show certain behavioral properties as discussed
above. Here such properties are identified and formalized, enabling automated verifica-
tion. The first property relates task demand to biases:

HTDtoHB Higher task demand leads to higher biases.

This global property can be related to more local properties relating task demand to
exhaustion, exhaustion to selection of less demanding components, and less demanding
components to biases:

HTDtoHX Higher task demand leads to a higher exhaustion level.

HXtoLDC Higher exhaustion level leads to less demanding components.

LDCtoHB Less demanding components lead to higher biases.

The relationship between these behavioral properties is:

HTDtoHX & HXtoLDC & LDCtoHB⇒ HTDtoHB



5.2. Controlling Biases in Demanding Tasks 187

For formalization of these properties a reified temporal predicate logical language
was used; see e.g., (Galton, 2006). Expressions are built on atoms referring to state
properties, time points, and traces. The properties can be formalized by comparing for
one given trace the levels (of task and component demand, exhaustion level and biases)
to certain bounds, or by comparing these levels in a relative manner in two traces. The
following abbreviations are used:

aboveduring(γ, t, D, a(V), M) ≡ ∀t1,V1 [ t≤ t1≤ t+D & at(γ, t1, a(V1))⇒ V1≥ M

belowduring(γ, t, D, a(V), M) ≡ ∀t1,V1 [ t≤ t1≤ t+D & at(γ, t1, a(V1))⇒ V1≤ M

aboveleadstoabove(γ,D1, a(V), M1, E, D2, b(V), M2) ≡

∀t [ aboveduring(γ, t, D1, a(V), M1)⇒ aboveduring(γ, t+E, D2, b(V), M2) ]

aboveleadstobelow(γ,D1, a(V), M1, E, D2, b(V), M2) ≡

∀t [ aboveduring(γ, t, D1, a(V), M1)⇒ belowduring(γ, t+E, D2, b(V), M2) ]

belowleadstoabove(γ,D1, a(V), M1, E, D2, b(V), M2) ≡

∀t [ belowduring(γ, t, D1, a(V), M1)⇒ aboveduring(γ, t+E, D2, b(V), M2) ]

ishigherduring(γ1, γ2, t, D, a(V) ≡

∀t1, V1, V2 [ t≤ t1≤ t+D & at(γ1, t, a(V1)) & at(γ2, t, a(V2))⇒ V1 ≥ V2 ]

higherleadstohigher(γ1, γ2, D1, a(V), E, D2, b(V)) ≡

∀t [ ishigherduring(γ1, γ2, t, D1, a(V))⇒ ishigherduring(γ1, γ2, t+E, D2, b(V)) ]

higherleadstolower(γ1, γ2, D1, a(V), E, D2, b(V)) ≡

∀t [ ishigherduring(γ1, γ2, t, D1, a(V) )⇒ ishigherduring(γ2, γ1, t+E, D2, b(V)) ]

Based on these, properties are formalized as follows:

HTDtoHBwithin(γ, D1, M1, E, D4, M4)
If in a trace γ for some time duration D1 the task demand is higher than M1, then after some delay E for

some time duration D4 biases are higher than M4.
aboveleadstoabove(γ, D1, taskdemand(V), M1, E, D4, biaslevel(V), M4)

HTDtoHBbetween(γ1, γ2, D1, E, D4)
If in trace γ1 for some time duration D1 the task demand in γ1 is higher than the task demand in γ2, then

after some time delay E, for some time duration D4 biases in trace γ1 are higher than biases in trace γ2.
higherleadstohigher(γ1, γ2, D1, taskdemand(V), E, D4, biaslevel(V))

HTDtoHXwithin(γ, D1, M1, E1, D2, M2)
If in a trace γ for some time duration D1 the task demand is higher than M1, then after some delay E1 for

some time duration D2 the exhaustion level is higher than M2.
aboveleadstoabove(γ, D1, taskdemand(V), M1, E1, D2, exhaustionlevel(V), M2)

HTDtoHXbetween(γ1, γ2, D1, E1, D2)
If in trace γ1 for some time duration D1 the task demand in γ1 is higher than the task demand in γ2,

then after some time delay E1, for some time duration D2 the exhaustion level in trace γ1 is higher than the
exhaustion level in trace γ2.

higherleadstohigher(γ1, γ2, D1, taskdemand(V), E1, D2, exhaustionlevel(V))



188 Control Component

HXtoLDCwithin(γ, D2, M2, E2, D3, M3)
If in a trace γ for some time duration D2 the exhaustion level is higher than M2, then after some delay E2

for some time duration D3 the demand of selected components is lower than M3.
aboveleadstobelow(γ,D2, exhaustionlevel(V), M2, E2, D3, componentdemand(V), M3)

HTDtoHXbetween(γ1, γ2, D2, E2, D3)
If in trace γ1 for some time duration D2 the exhaustion level in γ1 is higher than the exhaustion level in

γ2, then after some time delay E2, for some time duration D3 the demand of selected components in γ1 trace
is lower than the demand of selected components in trace γ2.

higherleadstolower(γ1, γ2, D2, exhaustionlevel(V), E2, D3, componentdemand(V))

LDCtoHBwithin(γ, D3, M3, E3, D4, M4)
If in a trace γ for some time duration D3 the demand of selected components is lower than M3, then after

some delay E3 for some time duration D4 the biases are higher than M4.
belowleadstoabove(γ,D3, componentdemand(V), M3, E3, D4, biaslevel(V), M4)

LDCtoHBbetween(γ1, γ2, D3, E3, D4)
If in trace γ1 for some time duration D3 the demand of selected components in γ2 is lower than in γ1,

then after some time delay E3, for some time duration D4 the biases in trace γ2 are higher than the biases in
trace γ1.

higherleadstolower(γ1, γ2, D3, componentdemand(V), E3, D4, biaslevel(V))

Automated verification of these properties has been performed against generated sim-
ulation traces.

5.2.5 Dynamical System Models Used

In the next section the overall executable cognitive agent model is described. It includes
some computational models in dynamical system style (based on difference / differential
equations), which are introduced in this section.

The model is based on literature from cognitive science and human factors research.
Hancock and Meshkati (1988) define mental workload as: ‘The operator’s evaluation
of the attentional load margin (between their motivated capacity and the current task
demands) while achieving adequate task performance in a mission-relevant context.’ An
elaboration on their figure illustrating this principle is shown in Figure 5.2.

Basic concepts used in our model are:
x(t): the exhaustion level at t
mp: maximal cognitive processing level if no exhaustion exists
rp: relaxed cognitive processing level if no exhaustion exist
td(t): the externally determined task demand at t
ptd(t): the internally perceived task demand at t
em(t): the effort motivation level at t
β: parameter determining source of effort motivation
ap(t): the available processing level at t
cp(t): the current processing effort at t



5.2. Controlling Biases in Demanding Tasks 189

Figure 5.2: Cognitive processing levels over time

The exhaustion level x(t) is assumed to be normalized between 0 (no exhaustion) and
1 (complete exhaustion). As exhaustion affects possible processing levels, the maximal
cognitive processing level at some time point t is taken to be mp(1 − x(t)), and the
relaxed cognitive processing level rp(1 − x(t)); this is illustrated in Figure 5.2. The
incoming external task demand td is transferred to the internal perceived task demand
ptd by dividing it by the current maximal processing level (mp(1 − x(t))). When the
result is above 1, it is set to 1 which ensures that the perceived task demand lies between 0
and 1. The perceived task demand and exhaustion level determine based on a personality
characteristic parameter β what the current effort motivation level em(t) is, with a value
between 0 (no motivation) and 1 (totally motivated). This level in return determines the
current available processing level ap(t), which influence the maximal processing effort
cp(t). Below these processes are described in more detail.

Exhaustion

First, the model for the level of cognitive exhaustion x(t) over time is introduced. The
exhaustion for a next time point depends on the current processing effort, but also on
the current exhaustion, which is built up in the past. The assumption is that exhaustion
increases proportionally to the amount by which the current cognitive processing effort
cp(t) exceeds the level indicated by rp(1− x(t)). When the current processing effort is
lower than this value, exhaustion decreases proportionally, until 0 is reached. Further-
more, the factor γ is used to fine-tune the model.



190 Control Component

∆x = γ
cp(t)− rp(1− x(t))

mp
∆t

x(t+ ∆t) = x(t) + ∆x if x(t) + ∆x > 0

= 0 else

Effort Motivation

At time t the cognitive effort motivation level influences the processing level at which
the agent maximally operates. A personality characteristic parameter β is introduced that
indicates in how far the motivation for effort is externally driven through the perceived
task demand (indicated by β = 1), or internally driven by the exhaustion level (indicated
by β = 0). The effort motivation em(t) is determined as follows.

em(t) = β × ptd(t) + (1− β)× (1− x(t))

Available Processing Level

Given the motivation indicator the cognitive processing level made available ap(t) is
determined as follows. If the motivation is 1, the maximal possible processing level
mp(1 − x(t)) will be the processing level made available. If the motivation is 0, the
available processing level is the relaxed processing level rp(1 − x(t)), which is always
proportional to mp(1−x(t)). The general model for the processing level made available
is:

ap(t) = (em(t)×mp+ (1− em(t))× rp)× (1− x(t))

When cp(t) = ap(t) is taken (i.e., the processing level made available is fully used),
the three models for x(t), em(t) and ap(t) above can be combined to obtain a single
(but complex) difference or differential equation model for x(t), given the chosen values
cp(t) for the current processing effort over time.

5.2.6 Overall Cognitive Agent Model

This section describes the overall design of the cognitive agent model, incorporating
the dynamical models of the previous section. To evaluate whether the model indeed
dynamically adjusts its task performance in a way similar to humans, it has been designed
in a formal, executable format. The model includes various cognitive components and
control knowledge about them. In addition, it is able to observe the world, form goals,
and execute actions. The model’s execution cycle is as follows:



5.2. Controlling Biases in Demanding Tasks 191

Determine Observations: The agent observes the world and forms beliefs about what it sees.
Determine Goals: Based on beliefs, it forms goals with priorities.
Determine Task Demand: Based on the formed goals, their priorities, and the cognitive pro-

cessing level that is required to reach them in the optimal way, the task demand is determined.
Determine Perceived Task Demand: The perceived task demand is deduced from the real

task demand (see section above).
Determine Effort Motivation Level: see section above.
Determine Available Processing Level: see section above.

After these processes the agent starts the selection process of the cognitive processing
components to be executed.

Determine Executability of Components: First, it determines which components are eligible
for execution, i.e. that they can actually produce outputs when selected. For this it checks for each
component whether all the input it requires is available.

Determine Relevance of Components for Goals: Next, it determines which components are
relevant for which goal:

∀g ∀c ∀k ∀cr ∀kr ∀x [

If goal(g) ∧ component has output(c, g) ∧ component requires processing level(c, k) ∧
component has output(cr, g) ∧ component requires processing level(cr, kr) ∧
¬∃co ∃ko [ component has output(co, g) ∧ component requires processing level(co, ko)

∧ ko > kr ] ∧
component has executability(c, 1) ∧ exhaustion− level(x) ∧ b = 1− |(1− k / kr)− x|

Then component has relevance for goal(c, g, b) ]

This process entails that the relevance of a component c for a certain goal g that it has as its
output, depends on the current exhaustion level x and the existence of a most expensive component
cr that has goal g as its output. The rational behind this process is that the most expensive compo-
nent is the best (most rational) component to reach g, and is preferred when there is no exhaustion
(receives a relevancy of 1 − |(1− k / kr)− 0| = 1). However, the more exhausted the agent
is, the more it prefers the cheaper components over the expensive ones. For example, when x is
0.3, cr only receives a relevancy of 0.7, while c, given it requires a lower processing level, e.g. 4
instead of 6, receives a relevancy of 1−|(1− 4 / 6)− 0.3| ≈ 0.97. If a component does not have
a certain goal as one of its outputs, its relevance for that goal is 0.

Determine Priority of Components: The priorities of the components for the various goals
are determined by multiplying their relevancy for a goal with the priority of that respective goal.

Determine Components to be Activated: This is done by considering all possible groups of
components for which it holds that 1) they have a priority greater than 0; 2) they are not relevant
for the same goal; 3) their output does not make the goal of the other irrelevant. Furthermore, 4)
their combined required processing level is below, or equal to, the available processing level. The
components that are selected for execution are the members of the group with the highest total
priority, which is formed by the sum of the priorities of the components.

Determine Activated Components: The components selected for activation are executed.



192 Control Component

Determine Current Processing Effort: The current processing effort that the executing com-
ponents deliver is determined.

Update Exhaustion Level: Given this current processing effort, the exhaustion level is up-
dated, see the previous section.

As long as observations are made, the agent keeps controlling its process as indicated.
When there is no task demand the agent relaxes, resulting in decreased exhaustion.

5.2.7 Simulation Experiments

To evaluate the cognitive agent model, simulation experiments were performed in Lead-
sTo (Bosse et al., 2007), which is especially developed to model executable temporal
properties. For the evaluation a simple classification task was chosen. Although sim-
plified, it is representative for the kinds of tasks future software agents might perform,
e.g., in training simulations of military air-traffic-controllers. The task entails the correct
classification at every execution cycle of the objects (none, one or two) then present in
the world. The classification of an object entails assigning it to one of the bins present
in the environment. Objects have two properties, namely a color (red, blue or green),
and a shape (cube, cylinder or triangle). This results in nine possible objects that can be
classified. Bins also have two properties: they can either fit red, blue, green, or all colors
and cube, cylinder, triangle, or all shapes. For the current scenario’s it is assumed that
these 4 bins are present:

Bin 1: fits red cubes
Bin 2: fits blue objects
Bin 3: fits any colored triangles
Bin 4: fits all objects

The general goal of the task is to classify objects, but also to do this as precise as
possible. The assignment of an object to a bin whose properties it exactly matches has the
highest preference. Furthermore, partial classifications are desired above an assignment
to the most general bin. So in the current scenario, the best classification of the red
cube is assigning it to bin 1, followed by an assignment to bin 4. A blue triangle can be
assigned to bin 2 just as well as to bin 3; bin 4 however is less desired.

To test the behavior of the cognitive agent model over time, four scenarios were
developed. They all incorporate the same bins, but the objects present in the world over
time differ. In the scenario named 1 object, one object is present at every execution cycle.
The similar principle holds for the scenario named 2 objects. For scenarios named low
demand and high demand the amount of objects varies, see Table 5.3 for an overview.
Each scenario takes 9 time steps.



5.2. Controlling Biases in Demanding Tasks 193

Time: 1 2 3 4 5 6 7 8 9

low demand

high demand

Table 5.3: Objects Present in World over Time

During the execution cycle of the model, the agent first observes the world and forms
beliefs about the properties of the available objects and bins. Then it derives new goals
from the top level goal classify all objects as follows:

∀x ∀p [

If goal(classify all objects) ∧ goal has priority(classify all objects, p) ∧ belief(object, x)

Then goal(belief(classification type of, x, total)) ∧
goal has priority(belief(classification type of, x, total), p/3× 1.1) ∧
goal satisfied when(belief(classification type of, x, total), belief(classified, x)) ∧
goal(belief(classification type of, x, partly)) ∧
goal has priority(belief(classification type of, x, partly), p/3× 1.0) ∧
goal satisfied when(belief(classification type of, x, partly), belief(classified, x)) ∧
goal(belief(classification type of, x, not)) ∧
goal has priority(belief(classification type of, x, not), p/3× 0.9) ∧
goal satisfied when(belief(classification type of, x, not), belief(classified, x)) ]

So for every object the agent forms three classification goals, with varying priority.
These priorities express the agent’s preferences for the various types of classifications.

The task demand for the current task is determined by the combined task demand of
the present objects. Objects entail task demand because they cause goals with priorities.
task demand =

∑
(mp× p | goal(g) ∧ goal has priority(g, p) ∧

maximum required processing level for goal(g,mp))

For the current task this entails that a single object delivers a total task demand of
5.06667. This results in a constant task demand for the scenarios 1 object and 2 objects:
5.06667 and 10.1333, respectively. For scenarios low and high demand the task demand
varies, see Figure 5.3.

Above it was described how, based on the goals and the priority of components for
these goals, the cognitive agent model determines which components execute. Besides
the components themselves, it also uses control knowledge over these components, e.g.



194 Control Component

Figure 5.3: Task demand for scenario’s low demand (blue diamonds) and high demand
(pink squares)

about their inputs, outputs, and required processing level. The latter value is deduced
from the number of required inputs of the component.

The following shows the process of a rational component in the form of an executable
temporal rule:
∀x ∀p [

If HoldsAt(belief(object, x), t) ∧ HoldsAt(belief(bin, y), t) ∧
HoldsAt(belief(has shape, x, s), t) ∧ HoldsAt(belief(fits shape, y, s), t) ∧
HoldsAt(belief(has color, x, c), t) ∧ HoldsAt(belief(fits color, y, c), t)

Then HoldsAt(belief(classified as, x, y), t+ 1) ∧ HoldsAt(belief(classified, x), t+ 1) ∧
HoldsAt(belief(classification type of, x, total), t+ 1) ]

This component requires a processing level of 6 and has a bias level of 0. Besides
rational components, biased ones are present with a different process but a same output,
e.g.:
∀x ∀p [

If HoldsAt(belief(object, x), t) ∧ HoldsAt(belief(bin, y), t) ∧
HoldsAt(belief(has shape, x, s), t) ∧ HoldsAt(belief(fits shape, y, s), t)

Then HoldsAt(belief(classified as, x, y), t+ 1) ∧ HoldsAt(belief(classified, x), t+ 1) ∧
HoldsAt(belief(classification type of, x, total), t+ 1) ]

This component also deduces a belief about a total classification, but forgets to take
the colors of the object and the bin into account. The final result might be correct, but
might also be incorrect. This second component requires a processing level of 4 and has
a bias level of 4/6, because the most expensive processing requires a level of 6; see the
previous section on the relevance of components.

Last, various parameters present in the model are assigned a fixed value to arrive at
an executable version. For the current task the maximal processing level mp is set to 10
and the relaxed processing level rp to 7. It is assumed that the agent is not exhausted



5.2. Controlling Biases in Demanding Tasks 195

at the beginning of the task. Furthermore, parameter γ, with which the granularity in
exhaustion level over time can be tuned, is set to 0.3.

Each scenario was executed twice, once with personality value 0.7 (motivation pri-
marily determined by external task demand) and once with value 0.3 (motivated primarily
determined by internal exhaustion level).

Simulation Results

Scenario 1 Object
In this scenario the cognitive agent model classified each object in a perfect way

for both personalities. Since there is a maximum of one object at each execution, the
maximal possible current processing level (for the red cube classification) lies at 6. This
is below the relaxed processing level, set at 7, and thus no exhaustion occurs.
Scenario 2 Objects

In this scenario the two objects ensure a constant high task demand of 10.1333. This
results in a constant perceived task demand ptd of 1, which causes both agents to make
more than their relaxed processing level available. Therefore the effort of the selected
processing components often lies above the relaxed processing level rp(1−x(t)), causing
the agent to become exhausted, which in turn influences the available processing level,
see Figure 5.4.

Figure 5.4: Current processing effort and exhaustion level for personality 0.7 (yellow
triangles) and 0.3 (green dots)

The agent with personality value 0.7 will, given the ptd of 1, make more processing
level available than the agent with personality value 0.3. This is beneficial at first; more
available processing level entails that more demanding, so less biased, components can
execute. However, due to this higher effort level this agent becomes exhausted quicker.
This results in that it over time actually has less processing level available, which result



196 Control Component

in the selection of cheaper and thus more biased components, see Figure 5.5.

Figure 5.5: Bias level for personality value 0.7 (yellow triangles) and 0.3 (green dots) in
the 2 objects scenario

Scenarios low and high demand
In the scenarios low and high demand the numbers of objects that are available at

each execution cycle vary, see Table 5.3. The variety in the task demand, see Figure 5.3,
clearly determines the variety in current processing effort, see Figure 5.6. This in turn
influences the exhaustion level and bias level, see Figure 5.7.

Figure 5.6: Current processing effort for the low demand (blue diamonds) and high de-
mand (pink squares) scenarios

The increase in bias level has its impact on the quality of the task performance. Ta-
ble 5.4 sums for personality value 0.7 the percentage of false classifications averaged
over all objects present. As an example: this percentage is 75 percent when the agent
blindly assigned an object to any bin, since it is correct for bin 4, which is one of four
bins.



5.2. Controlling Biases in Demanding Tasks 197

Figure 5.7: Exhaustion and bias level for the low (blue diamonds) and high demand (pink
squares) scenarios

Scenario 1 2 3 4 5 6 7 8 9
1 object 0 0 0 0 0 0 0 0 0
2 objects 0 0 50 25 37.5 25 12.5 37.5 62.5
low demand 0 0 0 50 0 0 0 0 0
high demand 0 0 0 50 0 0 0 100 75

Table 5.4: Percentage of mistakes for personality value 0.7

5.2.8 Verification

Formalized properties, such as those presented earlier, have been automatically verified
against a number of simulation traces, such as discussed above. As an example, property
HTDtoHBwithin has been verified and shown to hold for all four traces for the following
values for the duration and bound parameters: D1 = 100, E = 100, D4 = 100, M1 =
8, M4 = 0.2.

Notice that one execution cycle of the model takes a 100 time steps. Moreover, the
property HTDtoHBbetween that compares two traces was also verified and shown to
hold for the low demand - high demand scenario pair as well as the 1 object - 2 objects
scenario pair for the values: D1 = 100, E = 100, D4 = 100.

5.2.9 Discussion and Conclusion

This paper presented a cognitive agent model capable of dynamically adapting its be-
havior to the external, as well as its internal state. Related research with a similar goal
focuses on integrating emotions, arousal, and motivation in cognitive systems, but no
similar approach can be found. Closest to this work is the work of Ritter et al. (2007b)
that implements various theories of stress and their effect on behavior (some considered
biases). However, the implemented factors were local, fixed and no temporal aspect is in-



198 Control Component

corporated. One theory they did not implement is that tasks themselves are stressors (the
approach taken in this paper). About this they state ‘we recognize that modeling tasks
as stressors is an interesting and important next step in the effort to model the effects of
stress.’

The dynamical cognitive agent model was tested for various task scenarios in simula-
tions. A formal analysis of properties of the model has been performed, including auto-
mated verification of the identified properties against simulation traces, indeed showing
the behavior as expected.

For a number of choices that were made for the case currently presented, also alter-
native choices could have been made, e.g., for the choice of parameters for the maximum
en relaxed processing power in relation to the required processing level of components.
It is expected that the values of the parameters depend on the application context. Based
on the requirements of the behavior that the model should show, these can be adapted as
to provide a best fit.

The model’s main contribution is that it offers a mechanism to control the appearance
of biases in a wide variety of tasks, but even stronger, on multiple levels of the task
execution. The current paper solely addressed the controlling of biases appearing in
cognitive components processing beliefs. The processes from observations to beliefs and
from beliefs to goals were fixed. These processes may just as well be subject to biases
under stress. A biased determination of priorities of goals can also have serious effects on
task execution. In future work the control of these processes will be added to the current
model.



5.3. Modeling Human Information Acquisition Strategies 199

Research Paper

5.3 Modeling Human Information Acquisition Strategies

Abstract

In this paper we focus on the development of a computational model that provides in-
telligent agents with a mechanism to decide on whether to acquire required information
by retrieving it from memory or by interacting with the world. First, we present a task
in which choices have to be made between acquiring information from memory or from
the world. Two conditions are introduced with variable costs, and an experiment is per-
formed to detect whether humans apply some kind of rational expected utility analysis
to make this decision. Results indicate that humans do not, but instead adopt a simpler
heuristic strategy. Next, we introduce a computational model that incorporates various
heuristic task strategies, as well as rational ones. The human data is compared to the be-
havior of the model under various parameter settings. We were able to match the human
actions with model actions for various task strategies, suggesting that humans differ in
the task strategies they apply, and that our manner to deduce heuristic task strategies is
feasible.

This section is an extended version of a paper published as:
Heuvelink, A., Klein, M. C. A., and Lambalgen, R. M. van.* Modeling Human Information Acquisition Strate-
gies. In Proceedings of the 31st Annual Conference of the Cognitive Science Society (CogSci 2009), Cognitive
Science Society. July 30- August 1 2009, Amsterdam, the Netherlands.
* Authors are listed in alphabetic order and can be regarded as having made a comparable contribution.



200 Control Component

5.3.1 Introduction

For the execution of almost all tasks knowledge is required. For example, making a
phone call to a good friend requires - apart from procedural knowledge on how to operate
a phone - explicit knowledge about the phone number. When preparing for the task, a
human will make an (often implicit) choice between retrieving the required knowledge
from memory, or looking it up. Intuitively, this choice is determined by the balance
between the costs of looking up information on the one hand, and the costs of retrieval
and the risk of mistakes on the other hand. In the phone call example the choice could
be to retrieve the phone number from memory as a number of a good friend is probably
easily retrievable, while the costs of looking up the required information are probably
relatively high (finding the number in the address book), and the costs of mistakes are
low (apologizing and calling again).

Selecting actions based on their expected costs and benefits is often described as ra-
tional decision making. However, it is well known that humans do not always follow a ra-
tional process, but often depend on heuristic approaches to solve a problem (Tversky and
Kahneman, 1974; Gigerenzer et al., 1999). In addition, humans vary (between-subject) in
the task-specific strategies they apply, but this choice is also influenced (within-subject)
by the specific task circumstances (see, e.g., Beilock and Decaro, 2007; Byrne et al.,
2008). For example, some people might prefer to always first try the phone number that
they remember and only look it up in case of failure, even in cases in which a rational
analysis would conclude that it is more efficient to look up the information.

The overall aim of our work is to build intelligent agents that exhibit human-like
behavior. In order to do so, we would like to build a computational model that can decide
on whether to acquire information by retrieving it from memory (information in-the-
head) or by interacting with the world (information in-the-world).

In the first part of this paper, we describe an experiment with two cost conditions in
which we analyzed the behavior of humans in a relative simple task. This task required
the participants to choose between information in-the-head and information in-the-world.
After elaborating on the task we discuss how rational expected utility analysis could be
applied to it, i.e., what the possible task actions are, and the associated types of costs and
benefits. Subsequently, the behavioral experiment and its results are presented.

In the second part of the paper, we try to align the results of the experiment with a
developed task model that takes both the rational-choice approach and heuristic-based
approaches into account. We first describe this task model and the possible heuristic task
strategies that people could apply. Then, we describe the technical experiment by means
of which we searched for values for the model’s parameters that best fit the results of the
behavioral experiment. Finally, the implications of the findings are discussed.



5.3. Modeling Human Information Acquisition Strategies 201

5.3.2 Task Description

The computer task we developed required participants to classify presented objects to
specific bins. During the task, nine objects were presented in a sequence of thirty-six
trials. The objects were composed of a color (red, blue or yellow) and a shape (square,
circle or triangle). Each object belonged to a specific bin, numbered 1 to 9, but initially
the participants did not know the correct combinations. The goal of the task was to press
the number of the correct bin upon presentation of the object. On each trial participants
had the option to press the number of a bin first (‘choose’), or to press a button to get
more information about the bins (‘sense’). Participants could choose one of three buttons:
button ‘j’ revealed the bins of objects with the same color as the presented object; button
‘k’ revealed the bins with the same shape; and button ‘l’ revealed the bin of the specific
object. After the information was shown, participants had to select a bin. After a bin was
chosen, the correct bin was revealed.

Participants started the task with 10 euro. Money was subtracted when either a button
was chosen (Button Costs), or an error was made (Error Costs); see Table 5.5 for the two
specific cost-settings used. In addition, for every 500 ms 0.01 euro was subtracted.

A typical trial started with presenting an object with below it nine empty boxes.
Furthermore, the three buttons were shown and in the upper right corner the amount of
money left.

When participants choose to sense color or shape, they had to wait for 1.0 seconds
until the requested information was shown (Button Time). When participants choose to
sense all, they had to wait for 1.5 seconds (Button Time). Meanwhile, time costs were
still subtracted. When the waiting time had passed, the object was presented again with
below it the nine bins, but this time the bins were revealed that matched the specific
feature that was sensed: the three bins that matched the color of the object; the three bins
that matched its shape; or the bin that matched the whole object.

When a bin was chosen (immediately, or after sensing), the object and the nine bins
were presented again with the correct bin revealed. At the same time feedback was given
on the choice of the participant.

Condition Feature Button Costs Button Time = Extra Button Costs Error Costs
1 Color € 0.10 1.0s = € 0.02 € 0.10
1 Shape € 0.10 1.0s = € 0.02 € 0.15
1 All € 0.15 1.5s = € 0.03 € 0.20
2 Color € 0.06 1.0s = € 0.02 € 0.12
2 Shape € 0.06 1.0s = € 0.02 € 0.18
2 All € 0.09 1.5s = € 0.03 € 0.24

Table 5.5: Costs of the two task conditions.



202 Control Component

The combination of nine objects in thirty-six trials was determined previous to the
experiment, to make sure that some objects would be often encountered so that over time
it would be well known to which bin they belonged, while for others, less encountered,
this could have been forgotten. See Table 5.6 for the number of specific objects presented
over the trials.

Feature 3 x Red 2 x Blue 1 x Yellow
3 x Circle RC: 9x BC: 6x YC: 3x
2 x Square RS: 6x BS: 4x YS: 2x
1 x Triangle RT: 3x BT: 2x YT: 1x

Table 5.6: Overview of objects presented.

Rational Expected Utility Analysis

The presented task requires interactive behavior: for its performance a mixture of el-
ementary cognitive, perceptual, and motor operations are required. Gray and Boehm-
Davis (2000) introduce interactive routines as the basis of interactive behavior. They
envision interactive routines as dependency networks of low-level cognitive, perceptual,
and motor operators that come together at a time span of about 1/3 to 3 seconds. Gray
and Fu (2004) propose that at this time span, the human control system selects sequences
of interactive routines that tend to minimize performance costs measured in time while
achieving expected benefits.

For the presented task it is possible to rely to a smaller or larger degree on informa-
tion in-the-world versus information in-the-head. In the first case more interaction with
the world is required (button pressing), in the second case more intensive memory use
(remembering the colors and shapes of the bins). Based on the specific task conditions it
is expected that humans will adopt different interactive routines to minimize performance
costs.

A rational strategy for performing the presented task would determine at each trial
which of the four possible actions would be most optimal to execute: either directly
choosing a bin, or first requesting which bins fit the color, shape, or both these aspects of
the presented object. For this, a cost-benefit analysis of each action needs to be made.

For the presented task four types of costs exist: 1) the money it costs when a cer-
tain mistake is made, 2) the money it costs to press a button, 3) the time it costs to do
so, and 4) the time it costs to retrieve beliefs from memory. It is possible to express
all the various types of costs in money, because time costs money. It could be debated
that in addition to these money and time costs another type of costs exist, namely the



5.3. Modeling Human Information Acquisition Strategies 203

cognitive and perceptual-motor effort involved in executing the actions. We do not sep-
arately distinguish these efforts but assume that time is a reasonable surrogate measure
for them (Gray and Fu, 2004). By doing this we also decline the minimum memory
hypothesis that suggests that humans are biased to conserve cognitive resources by fa-
voring perceptual-motor resources (Wilson, 2002). Gray et al. (2006) make a convincing
case that people do not favor strategies that minimize the use of memory, but those that
minimize temporal cost-benefit tradeoffs.

To determine the expected utility of each of the possible actions, the expected costs
for each of the four types of costs need to be determined. The money and time it costs to
press one or none of the buttons depends on the task condition, but apart from that can
be determined in a straightforward way. It is harder to determine the expected costs of 1)
making an error and of 2) retrieving beliefs from memory.

For the first aspect the chance that one of the three possible errors is made (color false,
shape false, all false) is important together with their respective, task condition depen-
dent, penalties. The chance that a specific error is made depends on what is remembered.
When it is possible to retrieve the correct bin for a specific object, the chance on any
error is zero. However, when this is not possible the chance on a specific error depends
on the chance of correctly retrieving knowledge concerning bins with the to-be-classified
object’s color or shape, but also on the chance that knowledge is retrieved that exclude
specific bins from selection, increasing the chance the correct bin is picked.

The expected cost of retrieving beliefs from memory is equal to the time to do so or
to the time to failure. These times, as well as the chance that knowledge can be retrieved
in the first place, are important to know for calculating the expected utilities. Insight in
these aspects can come from models of human memory. A well known model of memory
retrieval is embedded in the cognitive theory ACT-R (Anderson et al., 2004). In ACT-R
declarative knowledge is presented by chunks, whose activation values determine their
chance and speed of retrieval, the latter according to this formula:

RT = Fe−Ai

RT : The time to retrieve the chunk in seconds.
Ai: The activation of the chunk i which is being retrieved.
F : The latency factor parameter.
The latency factor parameter depends on the retrieval threshold, T , which varies

substantially between ACT-R models. However, the following general relationship has
been discovered: F = 0.35eT which means that the retrieval latency at threshold (when
Ai = T ) is approximately 0.35 seconds (Anderson et al., 2004). The full equation used
by ACT-R to determine a chunk’s activation takes into account several aspects, but its ba-



204 Control Component

sis is the chunk’s base-level activation. The base level activation Bi reflects the recency
and frequency of use of the chunk, and is calculated by:

Bi = ln(
n∑

j=1

t−d
j ) + βi

n: The number of presentations for chunk i.
tj : The time since the jth presentation.
d: The decay parameter. Standard this one is set at 0.5 (Anderson et al., 2004).
βi: A constant offset.
When we assume that people are able to unconsciously employ a kind of utility analy-

sis (which includes having implicit knowledge about what they can remember, see (Gray
et al., 2006)) and adopt these interactive routines that minimize performance costs, we
expect to find differences in behavior between the two cost conditions introduced.

5.3.3 Experiment

Sixteen first year AI students, aged between 17 and 24 years, participated in the experi-
ment. The experiment’s duration was approximate 30 minutes and participants received
theoretically from 1 to 10 euro for participation, depending on their performance. In the
experiment a 2-factor, between subjects design was used, with costs varied between par-
ticipants. In condition 1, the costs of pressing a button were relatively high compared to
the costs of an error, while in condition 2 the opposite was the case. For an overview of
exact costs, see Table 5.5.

Participants started by reading a written instruction on how to perform the experiment
and the costs of errors, time and sensing. Next, a practice task was given to familiarize
them with the task and the costs. This task was similar to the main task, but in order to
keep a low interference, color and shapes of objects were altered. Furthermore, the bin
in which often or rarely encountered objects belonged and the order in which the objects
were presented was altered.

Data Analysis

For data analysis we first calculated for each bin and at each trial the expected activation
value of the participant’s knowledge concerning the color, shape and the whole object
(all) that would fit in the bin. For this we used the ACT-R formula with a standard decay
of 0.5 and an offset of 0. As ‘presentations’ we counted the display of bin information
due to button use, and the display of the correct bin at the end of each trial. Next,
these activation values were used for regression analysis across participants for each



5.3. Modeling Human Information Acquisition Strategies 205

trial. Trials where the activation was 0 (e.g., the object had not been presented before)
were excluded from analysis.

Univariate variance analysis was used to check for differences between the two con-
ditions. For the difference between color and shape, a repeated measure ANOVA was
conducted, using the Huyn-Feldt correction. For all analysis, trials with a RT exceeding
8000ms were excluded.

Experimental Results

Over all the participants, the percentage correct ranged from 30 to 97 percent; the average
percentage correct was 61 (SD = 21). The number of times a participant chose a bin
immediately ranged from 5 to 34; the average was 24.44 (SD = 7.87). So overall, there
was a wide variety in the participant’s behavior. As an illustration, Table 5.7 shows the
data of one participant (participant 9). For each trial the participant’s reaction time (RT,
the time it takes to choose a bin or button), action (Sense, what feature was sensed) and
performance (Correct, which feature was correct) are shown.

Table 5.7: Experiment data of participant number 9.

Trial Object RT Sense Correct
1 BT 1370 Shape Shape
2 RC 960 Color+Shape Color+Shape
3 RS 1106 Color+Shape Color+Shape
4 BC 1564 None Color
5 RC 1791 None None
6 RT 923 None Shape
7 YS 1222 Color+Shape Color+Shape
8 RC 1399 None Color+Shape
9 BS 2212 None None
10 RC 800 None Color+Shape
11 RS 1766 None None
12 YC 2048 None None
13 BC 2783 None Shape
14 RS 1251 None None
15 RC 804 None Color+Shape
16 RC 1962 None Color+Shape
17 YT 564 Color+Shape Color+Shape
18 RS 930 None Color+Shape
19 BC 5168 None Shape
20 BS 1158 None None
21 YC 2315 None Color
22 RT 1390 Color+Shape Color+Shape



206 Control Component

Table 5.7 – Continued
23 BC 2044 None Color
24 RC 672 None Color
25 RS 1338 None Color+Shape
26 BT 1479 None Color
27 BC 2479 None None
28 YS 2415 None None
29 RC 3315 None Color+Shape
30 RC 1154 None Color+Shape
31 BS 2023 None Shape
32 RT 1250 Color+Shape Color+Shape
33 BC 3060 None None
34 RS 1999 None Color+Shape
35 YC 974 Color+Shape Color+Shape
36 BS 5372 None Shape

Independent Variables
Dependent First Choice RT First RT Bin
Variables p R2 r p R2 r p R2 r
Act-Color 0.002 0.27 0.52 0.000 0.48 -0.69 0.000 0.46 -0.68
Act-Shape 0.000 0.38 0.62 0.000 0.36 -0.60 0.000 0.35 -0.59
Act-All 0.001 0.35 0.59 0.000 0.53 -0.73 0.000 0.59 -0.73
Dependent Sense Feature Correct Bin
Variables p R2 r p R2 r
Act-Color 0.002 0.28 -0.53 0.004 0.24 0.49
Act-Shape 0.000 0.40 -0.63 0.006 0.22 0.46
Act-All 0.000 0.43 -0.65 0.002 0.32 0.57

Table 5.8: Results of Regression Analysis.

The results of the linear regression analysis are shown in Table 5.8. The R2 (ex-
plained variance), r(correlation) and p-values are given for each analysis. The results
show that the activation value of color, shape and the whole object was successful in pre-
dicting a number of variables, confirming that the ACT-R theory correctly captures how
human memory operates. For example, the Blue Circle in trial 13 was an object that was
only shown 1 time before. Therefore, the activation value of this object was low (-1.77
on average), which coincided with the low mean percentage correct when participants
immediately chose a bin (0.18).

First Choice (the number of participants who chose a bin immediately) is positively
dependent on activation value: as activation increased, First Choice increased. Further-
more RT (reaction time) was examined: RT when the object is shown for the first time
(‘RT First’) and the time from the presentation of the object to the moment the bin was
chosen (‘RT Bin’). Both RT’s are dependent on the activations: RT decreased when
activation value increased.



5.3. Modeling Human Information Acquisition Strategies 207

Figure 5.8: Interaction between feature and condition on percentage incorrect and per-
centage sensed feature.

In addition, the percentage of correct classifications concerning color, shape and all
was found to be positively dependent on the activation of color, shape and all, see Ta-
ble 5.8. When the activation increased, the percentage correct increased as well. The
number of times a specific feature was sensed (’Sense Feature’) for color, shape or all
decreased as the activation value of that feature increased.

Figure 5.8 shows the results of the ANOVA on the interaction between condition and
feature. A trend is revealed when looking at the percentage incorrect. In condition 1
participants’ percentage incorrect of shape (M = 0.32, SD = 0.15) was higher than
that of color (M = 0.21, SD = 0.15; F (1, 7) = 6.81, p < 0.04). For participants in
condition 2 no such difference was found. An interaction is found between condition and
feature on the number of times participants sensed a feature. For participants in condition
2 a trend was revealed, which showed that the percentage of sensed shape (M = 0.30,
SD = 0.27) was higher than the percentage of sensed color (M = 0.19, SD = 0.28;
F (1, 7) = 4.37, p < 0.1). For participants in condition 1 no significant difference was
found between the percentage of sensed color and the percentage of sensed shape.

Other than these interactions, no differences were found between the two conditions.
This indicates that participants did not always make a rational decision, otherwise we
would have expected to find more variety, e.g., in the total number of times features were
sensed. Support for the thesis that humans instead rely on a prefixed strategy is found in
the data, e.g., although participant 2 and 12 had the same condition, participant 2 always
chose to acquire unknown information from the world (by pressing the all button ‘l’),
whereas participant 12 always attempted to retrieve it from memory (never pressed any
button). Other support for relying on prefixed strategies can be found in the description
of their approach by the subjects themselves. Table 5.9 gives an overview. As can be



208 Control Component

seen, the responses are very diverse, and do not always seem to reflect rational decision-
making.

Table 5.9: Strategies as described by the participants themselves.

Response Strategy (literally translated descriptions)

1 After I knew the red circle, and a red shape was asked I choose color. Therefore
I had 50% chance on a correct guess. After I stored some in my memory I was
able to make a right choice for color or shape more often, thus leaving only one
option because I knew that the others were different.

2 I first looked for the shapes and then I guessed, until you knew the colors many
red at the left side, so use that to primary

3 Here I more often pressed ‘everything’

4 Guessing and memorizing, two colors (red and blue, then you also know where
the yellow ones are)

5 Only after some time I got clear where the shapes were, in the beginning I had to
guess and the more I saw it, the better I could guess right

6 Choosing for shape and color (‘l’) if unsure or unknown, else answer

7 The first trials requesting both shape and color, afterwards only shape or color in
order to have a chance of a half on a right guess (assuming that I still knew the
requested objects). Initially this went quite well, but my memory is a strainer, so
eventually remembering shapes and colors didn’t went very well :-)

8 My strategy was to first look at the color and then choosing between the options
until I had all colors and then came the shapes by experience, again 5,45 earned.

9 My strategy was to take another bin that had the same color. The right answer
became visible and could be recorded.

10 My strategy was to show everyting in the beginning. In this way I was able to see
the requested bin. In this way I was able to learn quickly where what was. This
worked, but had as consequence that in case of a mistake, this often was ‘both
wrong’, because I remembered the location per combination.

11 First using the L-key (show both), until you knew more or less where is what,
then gradually less the L-key and guessing the location.

12 Guessing in the beginning and remembering.

13 A mix of only color and only shape. First guessing and later you can use logical
reasoning to see where is which shape. (Thus, first color, then you know e.g. that
blue is in 9, then shape in the second trial and then you see that square is in 9). If
you do this reasonably well you can for surely earn 7 euros.



5.3. Modeling Human Information Acquisition Strategies 209

Discussion of Experimental Results

Overall, the results show that people’s decision to acquire information from the world
or from memory correlates with the activation of that information in memory follow-
ing ACT-R’s base-level activation formula, and is thus dependent on the frequency and
recency of using that information.

A difference is found between color and shape, in that shape appears more difficult
to retrieve from memory than color. This is shown by the fact that when people retrieve
information from memory, the chance of making a mistake concerning shape is higher
than the chance of making a mistake concerning color, see Figure 1. When the costs of
acquiring information from the world are relatively low, this difference disappears as in
such a situation people request shape (button ‘k’) more than color (button ‘j’).

No other differences are found between condition 1 and 2 when looking at the partic-
ipant’s reaction times or actions (sense or choose bin). This indicates that the decision to
rely on information in-the-world versus information in-the-head is not influenced by the
specific costs of acquiring that information. Rather it seems that people make a decision
based on their own (pre-)specified strategy.

This finding does not necessary conflict the hypothesis that humans optimize their
interactive routines to minimize performance costs. Gray and Fu (2004) and Gray et al.
(2006) only consider performance costs measured in time, and argue that humans are
evolved to conserve the resource of time. For the task presented in this paper performance
costs are a combination of time and money costs, and it is conceivable that humans are
not good in taking into account the money costs of actions. Since the time costs of actions
do not alter between the two conditions, this might explain that no more differences can
be found between them. On the other hand, people definitely attempt to optimize their
performance based on time and money costs. When this would not be the case and they
would only optimize the time costs, they would never press a button.

5.3.4 Task Model

As mentioned in the introduction, our research goal is the development of methods and
techniques that will enable intelligent agents to display human-like behavior which might
be rational, but often is not. For this goal we previously developed a memory model en-
abling rational as well as biased reasoning (Heuvelink et al., 2008a). This model was
implemented in SWI-Prolog (Wielemaker, 2003), and incorporates ACT-R’s base-level
activation formula for declarative knowledge in memory. In this paper we take that mo-
del as basis for the development of a task specific model capable of executing the task
previously introduced: http://human-ambience.few.vu.nl/docs/CogSci-IIAModel.pl.



210 Control Component

Execution Loop

A run of the model starts by requesting the start of the task for a specific condition and
individual. This sets the current time and trial at 0 and starts the model’s execution cycle
by calling the scenario_loop clause:

scenario_loop :-

current_trial(Cond, Ind, T1),

retract(current_trial(T1)),

T2 is T1 + 1,

assert(current_trial(Cond, Ind, T2)),

sense_and_form_goal,

determine_strategy_for_goal,

sense_and_store_result,

scenario_end.

The last predicate of the scenario loop, scenario_end, ensures that as long as the
current_trial is not equal to 36, scenario_loop keeps being called.

In sense_and_form_goal, the model observes the presented object, which takes
time T as specified by time_required_to_ observe_goal_object(Cond, Ind,

T) and stores the observed object as goal_at_trial(classify_object(C, S),

T).
In determine_strategy_for_goal, the model executes a specific strategy on

which we elaborate in the next section.
In sense_and_store_result, the model observes the correct result and stores

this in its memory as belief(color_shape, B, [C, S], T, passive_sense_

result, 1.0), which denotes the belief that in bin B (1-9) color C and shape S fit.
The T denotes the time at which this belief held, passive_sense_result the source
of the belief and 1.0 its certainty. The fact that each belief receives a time, source,
and certainty label is adapted from the memory model. In addition, the belief receives
a so-called impression_value, which forms the constant offset of its activation level.
The level of this impression value depends on whether the model chose the correct or a
wrong bin. In case it was correct, the impression value V is equal to the impression_
value_correct_result(Cond, Ind, V), otherwise to the impression_value_

false_result(Cond, Ind, V).
After any belief is stored a process of the memory model becomes active called

deduce_abstract_belief_from_belief(B). This process deduces specific abstrac-
tions from stored beliefs with as main feature the deduction of semantic knowledge out
of the episodic knowledge formed by beliefs with the introduced time, source and cer-
tainty labels. For the current task model, abstract beliefs are formed that abstract away



5.3. Modeling Human Information Acquisition Strategies 211

from the T , S and C of the specific beliefs. It are exactly those abstractions that over time
have multiple ‘presentations’ and therefore receive a high activation value.

In addition, from beliefs about the color and shape that fit in bins, beliefs are ab-
stracted that only capture knowledge about the color, or about the shape that fits in a
specific bin. This separate storage of that information is inspired by the literature that
claims that features are stored independently in memory, although they are bounded by
their spatial location, in our case the bins (Johnson et al., 2002).

Heuristic Strategies

Gray and Fu (2004) state that the cost-benefit considerations for interactive routines only
provide a soft constraint on their selection as they may be overridden by deliberately
adopted top-down strategies. We have two indications that this might have happened
with participants in our task: 1) the statistical analysis did not indicate significant dif-
ferences between behavior on the two task conditions which would be expected when
costs-benefits of actions would have been considered; 2) participants explicitly answered
the open question ‘What strategy did you follow’ with answers like: ‘When I did not
know the correct answer I would pick a bin of which I knew it had the correct color.’ (see
response 9 in Table 5.9).

Based on logical reasoning and inspired by the participants’ answers, we came up
with 37 possible strategies participants could follow. The strategies mainly differ in the
number of retrieval actions humans are willing to execute, and the order in which they
do so. The strategies can be classified as embedding 1 to 3 retrieval steps. There is also
the possibility of an extra security check, to see whether the bin selected to be chosen is
not in conflict with the given object (e.g., when checked, it turns out that the shape of the
selected bin can be retrieved and conflicts that of the object). Possible actions that can be
taken after one of the retrieval steps are:

• choose a random bin (a)
• choose a random bin with security check (b)
• press show color/shape button, then choose random one of the three presented bins

with security check. (c/d)
• press show all button, then choose that bin. (e)

Figure 5.9 summarizes all strategies. In the first retrieval step it is tried to retrieve the
bin that matches the whole object which is presented. When retrieval is unsuccessful, any
one of the actions a, b, c, d and e can be taken, which results respectively in strategies 1,
2, 3, 4, 5.



212 Control Component

Figure 5.9: Schematic overview of all strategies.

Instead of directly choosing an action after unsuccessful retrieval of an object, a par-
ticipant can make a second retrieval step to retrieve a bin of which either the color or
the shape fits that of the object. If it is possible to retrieve the specific feature, that bin
will be chosen. If it is not possible to retrieve the feature, again a specific action will be
taken. For strategy 6 to 9 and 14 to 17, action a, b, c and e will be taken directly after an
unsuccessful attempt to retrieve color. The difference between strategies 6 to 9 and 14 to
17 is that the latter, in case color can be retrieved, perform a security check. Strategy 22
to 25 and 30 to 33 are the same, but attempt to retrieve shape instead of color, and actions
a, b, d and e are taken.

There is also the possibility of a third retrieval step after retrieving color or shape.



5.3. Modeling Human Information Acquisition Strategies 213

That is, if color can not be retrieved, in such strategies people will first try to retrieve
shape before taking an action. Strategy 10 to 13 first try to retrieve color, then try to
retrieve shape. Strategies 18 to 21 do the same, but with an extra security check. Actions
a, b, c and e are taken when retrieving is unsuccessful. Strategy 26 to 29 first try to
retrieve shape, then try to retrieve color (strategy 34 to 37 with an extra security check).
Actions a, b, d and e are taken with unsuccessful retrieval.

In addition to the 37 strategies just introduced, we also implemented the rational strat-
egy and included it as strategy 38-40. These strategies were equal in their determination
of the expected costs of each action, but varied in the time it took them to introspect the
activation values of the beliefs. This took them respectively 10, 15 and 20% of the time
that it would take to actually retrieve the belief inspected.

In case a strategy would lead to action a: choice of a random bin, any of the nine bins
could be chosen. Although the model would select one of these options, all of them were
denoted as possible chosen bins. Similarly for action b: all the random bins of which no
conflicting information could be retrieved were denoted as possible chosen bins.

When action c, d, or e was selected, the bins that fitted the requested information
were revealed, and this knowledge was stored. The impression value of the stored infor-
mation dependent on the feature sensed, as denoted by impression_value_sense_

color/shape/all_bin respectively. Also from these specific beliefs about the color,
shape or color-shape of bins, abstract beliefs were deduced. Next, (one of) the revealed,
non conflicting bin(s) was chosen, and the possible bins that could have been chosen
denoted.

5.3.5 Parameter Fitting

The model as described above contains a large number of parameters. Each specific
parameter setting will result in different behavior of the model. To answer the question to
what extent the model can correctly describe human behavior, we performed a technical
experiment with which we tried to find parameter settings for which the model displays
behavior close to that of a participant.

Unfortunately, due to the large number of parameters, we were unable to fit them
all. For the current research we focused on fitting the various strategies as well as the
specific parameters that influence the storage and retrieval of beliefs. This means that the
parameters that influence the time to sense information and to execute actions were fixed.
In specific, we fixed the following parameters to the given values, based on inspection of
the empirical human data:

time_required_to_observe_goal_object(_,_, 0.3)



214 Control Component

time_required_to_press_button(_,_, 0.4)

time_required_to_press_bin(_,_, 0.7)

The technical experiment has been performed as follows. First, we analyzed the
empirical human data further to find realistic ranges for the parameters in the model.
This resulted in the following parameters that were run:

impression_value_sense_color_bin: 0.0, 0.1, 0.2

impression_value_sense_shape_bin: 0.0, 0.1, 0.2

impression_value_sense_all_bin:

impression_value_sense_shape_bin + 0.0, 0.2

impression_value_correct_result: 0.0, 0.1, 0.2

impression_value_false_result:

impression_value_correct_result + 0.0, 0.2

retrieval_threshold: -1.0, -0.7, -0.4, -0.1, 0.2, 0.5

strategy: 1, 2, , 39, 40

As can be seen, we decided to separately denote the impression_value that a
belief about the color, shape, or color and shape of a bin would receive after sensing color,
shape or both, respectively. This way it is possible for a possibly existing difference in
how well color and shape are remembered to show up. Due to the large number of
parameters already present we decided not to parameterize the impression value given to
the abstract beliefs about the color or shape of a bin that were deduced from beliefs about
its color and shape. Therefore, differences between the storage of color and shape could
only show up in case the model selects the sense-color and sense-shape button.

In addition, we decided to make the impression_value of sense_all_bin de-
pendent on (equal or larger to) the sense_shape_bin, and the impression_value of
a false_result dependent on (equal or larger to) that of a correct_result . The
reason we did this is that the impression value denotes the amount of attention paid to
the information to be remembered. We gathered it illogical that one out of three features
would receive more attention than one out of two, or that a correct, probably expected,
result would receive more attention than a false, important to remember, result.

Next, we used the model to run simulations for all the possible combination of the
introduced parameter settings. This meant that we ran the model 27,864 times (twice for
strategies 38-40 due to the influence of the task condition), each time giving the model the
same 36 objects to classify as were given to the participants. For all parameter settings
and at each trial the following information was logged: the action executed by the model
(sense-color, sense-shape, sense-all or none), its reaction time (RT, the time until the
button, or in case of ‘none’ the time until a bin number was pressed), and the possible
bins the model could have chosen.



5.3. Modeling Human Information Acquisition Strategies 215

Subsequently, we compared each participant with the 27,864 simulation results. To
do this in a structured way, we developed a distance measure that calculates for each
trial a distance between the model data and the data of the participant. For this, we first
calculate a distance value for each aspect, in case of reaction time RT by the following
formula:

distance RT = |human RT −model RT | /(2 ∗ SD)

SD: the standard deviation of the human reaction times.
For the chosen bin, the distance was 0 when the human had chosen a bin which was

one of possible the bins the model could have chosen, and 1 otherwise. For action, the
distance was calculated according to Table 5.10.

Action Color Shape Color+Shape None
Color 0 1 0.5 0.5
Shape 1 0 0.5 0.5
Color+Shape 0.5 0.5 0 1
None 0.5 0.5 1 0

Table 5.10: The distance measure for actions.

For the overall distance measure we decided to let the similarity between the human
action and model action have the strongest influence, followed by the similarity of the
bin in which the object is classified, while the reaction time only has a slight influence:

distance = (6 ∗ distance action+ 2 ∗ distance chosen bin+ distance RT )/9

The reason for this measure was that the use of different strategies, which is the focus
of this paper, mainly shows up in the action choices. In addition, we did not expect to
find very good fittings for the reaction times due to the fixing of the time_required_to
parameters that largely determine the model’s reaction times.

Results Parameter Fitting

The results of the parameter fitting for four different participants will now be discussed.
Although this is not yet a thorough validation of the model, it provides evidence for the
feasibility of the model. The subjects, two for each condition, were selected based on typ-
ical behavior patterns: participant 2 (condition 2) almost always requested information,
participant 7 (condition 1) almost never did. Participant 9 (condition 1) and 10 (condition
2) were chosen because they seemed to perform rational behavior (more sensing in the
beginning, less sensing at the end). Table 5.11 shows the actions of the four participants.



216 Control Component

Table 5.11: Sense actions of the 4 participants.

Trial Object PP2 PP7 PP9 PP10
1 BT Color+Shape Color Shape Color
2 RC Color+Shape Color Color+Shape Shape
3 RS Color+Shape None Color+Shape Shape
4 BC Color+Shape None None Shape
5 RC Color+Shape None None None
6 RT Color+Shape None None Color
7 YS Color+Shape None Color+Shape Shape
8 RC Color+Shape None None None
9 BS None None None None

10 RC None None None None
11 RS Color+Shape None None None
12 YC Color+Shape None None Shape
13 BC Color+Shape None None None
14 RS Color+Shape None None None
15 RC Color+Shape None None None
16 RC None None None None
17 YT Color+Shape None Color+Shape Shape
18 RS Color+Shape None None None
19 BC Color+Shape None None Shape
20 BS Color+Shape None None None
21 YC Color+Shape None None None
22 RT Color+Shape None Color+Shape Shape
23 BC Color+Shape None None Color
24 RC Color+Shape None None None
25 RS Color+Shape None None None
26 BT Color+Shape None None Color
27 BC Color+Shape None None None
28 YS Color+Shape None None Shape
29 RC Color+Shape None None None
30 RC None None None None
31 BS Color+Shape None None None
32 RT Color+Shape None Color+Shape Color
33 BC Color+Shape None None Shape
34 RS Color+Shape None None None
35 YC Color+Shape None Color+Shape Shape
36 BS None None None None

The lowest distance values of subjects 2, 7, 9 and 10 are 5.242, 2.105, 5.555 and 6.340
respectively. For all participants the settings with distance values that lie within 1% of
this lowest distance value were analyzed. This resulted in only 1 setting for participant
10, but 7, 18, and 16 different settings for subjects 2, 7, and 9 respectively. We found



5.3. Modeling Human Information Acquisition Strategies 217

that the parameters for strategy and retrieval_threshold were equal across
the settings per participant, but that the impression_values strongly fluctuated per
setting. This, however, is not surprising as differences stemming from the setting for,
e.g., impression_value_sense_color_bin, only show up in case this sense action
is actually selected.

The strategy parameter that fits participant 2 is strategy 5, with a retrieval threshold
of 0.5. This strategy entails that when an object can not be retrieved from memory, its
position will be requested. Because the model’s retrieval threshold is very high (0.5)
the objects’ activation values frequently lie below the retrieval threshold. Therefore,
the model is often unable to retrieve the presented object, and thus often (30x) requests
information. This represents the choices of participant 2, who 31 times pressed button
‘l’: sense-all. Looking at Table 5.11, it appears that the participant could only remember
the frequently presented red circle, and the blue square. Analysis of the best matching
setting pointed out that action of subject 2 indeed correlates with model action (r = 0.47,
p < 0.01). Reaction time of subject 2 does not correlate with model reaction time.

Strategy 30 and a retrieval threshold of 0.5 fit best with participant 7. This strategy
often results in directly choosing a bin as when shape can not be retrieved, a random
bin is chosen. This is apparent in participant 7, who only pressed a button at the first
two trials. The relatively low distance (2.103) follows from the fact that when the model
chooses a random bin, the bin chosen by the participant always matches the possible
chosen bins of the model. No significant correlations were found between model RT and
human RT and between model action and human action. This is partly due to the fact
that the values of model RT and model action varied little and not at all, respectively.

Participant 9 fits best with strategy 39 and a retrieval threshold of -0.1. Strategy 39
is a rational strategy taking the costs of acquiring information from the world and from
memory into account. Since this participant had been assigned the condition in which
the button costs are high and penalties low, such a strategy would result in a pattern that
the only time information will be acquired from the world is when the chance or error
is really large, e.g., for an object rarely encountered. This behavior is indeed shown in
participant 9, see Table 5.7. For example, on trial 17 a Yellow Triangle was presented,
an object which was never presented before, and that was one of the few (7) trials the
participant decided to press the sense-all button. Further analysis revealed a significant
correlation between human action and model action (r = 0.68, p < 0.01), but also
between human RT and model RT (r = 0.40, p < 0.02).

Strategy 36 and a retrieval threshold of 0.2 fit best with participant 10. Strategy 36
is, contrary to our expectations, not a rational strategy. The strategy either results in
choosing a bin (when either shape or color is known), or in sensing the shape (when



218 Control Component

shape and color are both unknown or one of them conflicts). The choices of participant
10 reveal such a pattern as the participant’s actions are mainly to directly choose a bin
or to sense shape. This is confirmed by the significant correlation between human action
and model action (r = 0.61, p < 0.01). In addition, a trend in correlation was found
between human RT and model RT (r = 0.31, p < 0.1).

5.3.6 Discussion & Conclusion

The results show that it was possible to find parameter settings that matched reasonably
well with the four investigated participants, especially on the executed actions. Reaction
time proved to be a less optimal measurement for parameter fitting. This could be due to
the fact that we set a fixed time to observe information, and to press a bin or a button for
all participants. As reaction time is personal, such parameters need to be fitted as well.

We can also conclude that people adopt different strategies to decide whether to ac-
quire information in-the-world versus information in-the-head. At this moment we think
that many of our participants already had decided on how to act, instead of deciding this
on-line. The descriptions of the strategies as listed in Table 5 support this hypothesis.

With hindsight knowledge, we can make a few critical remarks about our experimen-
tal setup and our model. First, the task that was given to the subjects was too complex
with respect to the cost parameters. There were too many cost parameters, in addition to
the fact that we used two types of costs (time and money). This made it difficult for the
participants to do an accurate cost-benefit analysis, shown by the fact that we were not
able to clearly distinguish an effect of the different cost conditions. It is interesting to
find out whether this would be different for tasks that are less complex and only involve
one type of costs. In such a situation the effect of costs of information acquisition actions
and costs of errors can be studied more closely.

Second, it became clear that the setup of the task made it possible to choose a strategy
that optimizes the utility over different trials. Some participants preferred to sense ‘color’
or ‘shape’ over ‘color+shape’ because the first two options revealed information about
objects in three bins instead of information about an object in one bin (e.g., see response
13 in Table 5). As the rational strategies in our model do not take this into account, such
strategies won’t fit to a rational strategy in the model, although they actually are rational.
This could also explain why the behavior of participant 10, which appeared rational, did
not fit best with a rational strategy (see the previous section).

Third, we can conclude that we made a suboptimal choice in selecting the parame-
ters to be fitted. Major parameter settings were fixed (time to observe information and
time to execute actions) while it was attempted to fit others (impression-values of sensed
information) that were of much less importance to task execution.



5.3. Modeling Human Information Acquisition Strategies 219

Fourth, it is a question whether our ‘meta-model’ for deriving the 37 strategies is cor-
rect, i.e., the idea that the heuristic strategies vary in the number (and order) of retrieval
actions humans are willing to take to come to a decision. The rational strategy decides by
(unconsciously) considering all the possible retrieval and sense actions and their effects
at the same time. The heuristic strategies execute a more serial process; they execute a
retrieval action, and then decide on what to do next, which could be further deliberation.

The modeling of these different approaches to decide on what to do resembles the
work of Dickison and Taatgen (2007), who state that for complex tasks it may become
impossible to model individual differences by parameter tuning. Instead, they propose
that people differ in the control strategies they employ, and that these manifest themselves
as different problem-solving strategies. These control strategies supposedly differ in the
amount of top-down control exerted on behavior, opposed to this behavior being driven
by bottom-up processes.

It could well be that people differ in the type of control they exert (with top-down
control leading to more rational behavior) based on other individual differences, e.g. the
capacity of their working memory (WM). Differences in WM capacity have been used to
explain the differences between the task strategies selected by different humans under the
same task circumstances, as by the same human under different circumstances (Beilock
and Decaro, 2007). Given these findings, we think that our approach to capture varied
human decision-making by modeling (heuristic) strategies that vary in the number of
retrieval actions humans are willing to make, is a feasible one.

In future work, we would like to redo the experiments using the insights that are
described above, i.e., using a simpler task with fewer cost parameters. In addition, we
want to vary the various time-to-do-x parameters and to fit the model on these parameters
as well. Moreover, we would like to extend the model so it does not execute a pre-
determined strategy, but on-line selects one, e.g., based on the available WM capacity.
Furthermore, it might be useful to do a separate experiment with a simple task to further
investigate the difference we found between the retrieval of color and shape.





Chapter 6

Cognitive Agent Capabilities

6.1 Introduction

In the previous chapters we modeled several cognitive capabilities in the form of compo-
nents of cognitive agent models. We decided to follow a component-based approach to
the modeling of cognitive agents to foster a structured, cost-effective agent-development
method (Section 1.1.5). An important factor for making a component-based agent-
development method cost-effective is the reuse of previously developed components. To
support this, these components should be available in some repository that can be queried
for relevant agent components. In addition, these existing components should be tagged
with a proper description, so that they can be discovered for reuse.

In this chapter, we introduce a preliminary line of research that in the long run might
support the tagging, thus querying, and thus reuse of cognitive agent components. The
basic idea underlying the research is that cognitive agent components usually embed spe-
cific cognitive capabilities. From this it follows that it is useful to tag these components
with a description of the cognitive agent capability they embed; advisable with a spec-
ification of the properties of that capability implementation. To support this we started
the research presented here: the development of a Capability Description Framework
(CaDeF) that can be used to analyze and describe the capabilities and accompanying
properties of cognitive agent models.

Chapter overview

This chapter embeds a single paper (Section 6.2) in which we introduce our preliminary
ideas for a Capability Description Framework (CaDeF). CaDeF has two functions, it 1)



222 Cognitive Agent Capabilities

defines a method for describing cognitive agent capabilities, and 2) provides definitions
of generic, basic capabilities. The method proposes that capabilities are described by
defining the properties of the entities that make up the capability, and that there exist three
types of such entities: means, processes on means, and control of processes on means.
For each of these entities functional, system, and dynamic properties can be defined. We
demonstrate the use of this method by defining two well-known, generic cognitive agent
capabilities. In addition, we demonstrate its use by describing specific implementations
of these two capabilities in the existing cognitive agent BOA (Section 3.3).

Additional Remark

In the presented paper we use a semi-formal notation that combines aspects of set theory
and predicate logic to clarify the ideas underlying CaDeF. This notation is only tempo-
rary; the ideas could have been formalized in another way. In order to develop a full
formal framework additional research is required, at which time it also has to be decided
whether an algebraic or logical approach is more suited.



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 223

Research Paper

6.2 CaDeF: Towards a Method for Describing Cognitive
Agent Capabilities

Abstract

Reusing existing (parts of) cognitive agent models requires that it is specified which
cognitive capabilities and properties each embeds. This is especially the case because
capabilities can be realized in multiple ways, giving rise to capability variants. In this
paper we introduce CaDeF, a framework to describe cognitive agent capabilities and
properties. A capability is defined by the properties of its means, processes, and control
of processes; a capability variant by specifying additional properties. We demonstrate the
Capability Description Framework by defining two well-known, generic cognitive agent
capabilities. Its applicability is shown by describing the implementation of (variants of)
these capabilities in an existing agent.

This section is an unpublished paper:
Heuvelink, A., Mioch, T., and Doesburg, W. A. van. CaDeF: Towards a Method for Describing Cognitive
Agent Capabilities.



224 Cognitive Agent Capabilities

6.2.1 Introduction

Our research concerns the development of cognitive agent models that, when imple-
mented in software, can replace human role-players in training simulations and thus cut
back the expenses of training. To ensure the cognitive agents do this, the costs of devel-
oping them should not be too high. This entails that it should not be so that for every
new domain, task, or even scenario a new agent model has to be developed from scratch.
Therefore, our research takes a component-based approach to the modeling of cognitive
agents.

A prerequisite of a component-based design approach for cognitive agents is that
one must be able to 1) design an agent model by specifying its capabilities and for each
capability the specific properties for the task at hand, and 2) find existing components
that support this specification. Unfortunately, there does not exist consensus on an ap-
proach to catalog cognitive agent capabilities and their properties, nor on the level at
which these should be described. The focus of the research described in this paper is the
development of a framework that can be used to analyze and describe the capabilities and
accompanying properties of cognitive agent models. With our work we aim to support
future component-based, cognitive agent modeling approaches that require structured,
meaningful descriptions of components.

We start this paper with a short discussion on decomposing cognition, which is fol-
lowed by an introduction of the ideas underlying the proposed Capability Description
Framework (CaDeF). First, we elaborate on CaDeF’s capability definition. Then, we ex-
plain this definition further by means of two example capabilities. Next, we illustrate the
applicability of CaDeF to analyze and describe capabilities of existing cognitive agents.
We conclude this paper with a short discussion about the proposed framework and future
research plans.

6.2.2 Related Work

Since the advent of (cognitive) agents it has been a recurring topic which capabilities
a cognitive agent can, and should, possess (Franklin and Graesser, 1997). One reason
for this discussion is that when it is understood which capabilities are critical for the
modeling of behavior in agents, cognitive architectures can be built that support these
capabilities.

A basic assumption underlying cognitive architectures as well as component-based
cognitive agent designs is that human cognition is modular. Much research within psy-
chology, artificial intelligence (AI), and neuroscience subscribes to this modularity of
mind (Bryson, 2005). Fodor (1983) makes a distinction between horizontal vs. verti-



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 225

cal modules that both can be used to decompose cognition. Horizontal decompositions
are those which identify processes which underlie all of cognition, such as memory,
attention, perception, and judgment. Such a decomposition is embedded in cognitive
architectures. Vertical decompositions identify particular skills, such as mathematics
and language, that each have their own characteristic processes of memory, attention,
etc. AI research that develops agents for specific goals, e.g., online auctions, is likely to
subscribe to the vertical decomposition when developing agent components.

The literature shows that a wide variety of agent capability classifications are pos-
sible: some are inspired by cognitive theories and capture generic, ‘horizontal’ capabi-
lities (Langley et al., 2006; Gluck and Pew, 2005), others stem from practical design
choices and capture more specific, ‘vertical’ capabilities (Fineberg, 1995; Padgham and
Lambrix, 2005). The fact that agent models and models of cognition are engineered
makes that they can vary widely on their level of description and the roles their internal
components play. However, it can be useful to reuse any of these model parts; it should
therefore be possible to label each of them with a proper description of the capability
variants they embed.

6.2.3 Approach

This paper proposes a Capability Description Framework for cognitive agent models.
With CaDeF we aim to be able to describe the entire range of (parts of) models that
can be considered to embed a capability: from abstract, generic models to task specific,
instantiated ones. In order to bring structure to this wide amount of possible capability
descriptions we adopt the following approach: 1) we describe the generic abstract cogni-
tive capabilities that can be found in cognitive agents; 2) we develop a method to extend
these generic descriptions to capture specific capability variants; 3) we investigate how
(variants of) capabilities relate to each other.

At this moment we take as the basis for the generic cognitive capabilities to be de-
scribed by CaDeF the work of Langley et al. (2006) that examines the capabilities that a
cognitive architecture can support. They divide these capabilities into nine main areas,
see Table 6.1.

Generic capability descriptions should be extendable to capture specific capability
variants. We subscribe to the existence of two variant types: horizontal variants are
formed by amending a generic description to capture new capability properties that hold
for the entire agent; vertical variants are specifications of a generic capability whose
added properties only hold for a task-specific module.

In order to model a new agent using CaDeF or to describe an existing agent, a func-
tional analysis of the cognitive agent should be done to identify the capabilities of that



226 Cognitive Agent Capabilities

Table 6.1: Capabilities of Cognitive Agents, from Langley et al. (2006)

1. Recognition and Categorization
2. Decision-Making and Choice
3. Perception and Situation Assessment
4. Prediction and Monitoring
5. Problem Solving and Planning
6. Reasoning and Belief Maintenance
7. Execution and Action
8. Interaction and Communication
9. Remembering, Reflection and Learning

agent. When a certain part of an agent plays an identifiable functional role (e.g. choosing
between various goals) that part embeds a specific agent capability. In order to describe
that capability not all the details of the part need to be recorded as properties of the ca-
pability, but only those aspects that are typical for its functioning. CaDeF functions as a
means to record the outcomes of such a functional analysis.

Capability Definition

We consider a capability as a part of an agent that, by itself, can generate meaningful
behavior. Because our final concern is the computational modeling of behavior, it is
proposed that for defining a capability one needs to define resources (i.e., capability-
means), processes acting upon these resources (i.e., capability-processes) and a logic
that controls the behavior of that process (i.e., a capability-control), semi-formal denoted
by:

A capability is a collection of Means, Processes operating on

these Means, and a Control entity:

Capability = (Means, Processes, Control)

As mentioned in the previous section, capability entities are identified based on their
functionality: the way in which specific entities of an agent are viewed depends on the
role they fulfill within a capability. For example, in the next section we explain how some
entities that have the role of means within one capability fulfill the role of processes in
another. By describing capabilities in this functional way, the great variety found in level
of detail of the entities of capabilities does not pose any problem for its description.

We propose to define the generic capabilities, whose descriptions are part of CaDeF,
by denoting the properties that must hold for their Means, the ones that must hold for the
Processes, and the ones that must hold for the Control.



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 227

For the means M of generic capability Cap, properties PropM

must hold:

Means of Capability has Properties(M,Cap, PropM )

For the process P of generic capability Cap, properties PropP

must hold:

Process of Capability has Properties(P,Cap, PropP )

For the control C of generic capability Cap, properties PropC

must hold:

Control of Capability has Properties(C,Cap, PropC)

Additionally, we propose three types of properties: functional properties, system proper-
ties, and dynamic properties.

Properties PropX is a collection of functional properties FPX,

system properties SPX, and dynamic properties DPX:

PropX = (FPX , SPX , DPX)

Functional Properties describe properties the capability entity has that are relevant to its
role in the capability. In CaDeF we abstract away from what properties exactly mean: we
assume that it is possible to define this in a separate ontology of cognitive agent terms.
In CaDeF we denote properties simply as ordered attribute value pairs: 〈A, V 〉.

System Properties describe inherent properties of capability entities, for example
their representation. In generic capability descriptions the values of these properties
are often not specified, because they are implementation specific. The reason to include
them in the capability description is because these properties will be instantiated in spe-
cific variants, in which case they are relevant to know with respect to reuse.

Dynamic Properties also describe inherent properties of capability entities, but their
specific value is not given by the developer, but by the current, dynamic, circumstances.
As such, the value of dynamic properties always depend on the other capability entities.

A generic capability can be specialized. Specialization of a generic capability can
be done by adding new properties that hold for any task the agent might perform (i.e.
horizontal specialization). Additionally specialization can be done by adding properties
that only hold for certain skills or tasks of the agent (i.e. vertical specialization)

Specific capability Capspecific is a specification of the Generic

capability Capgeneric:

Specific V ariant Of(Capspecific, Capgeneric)



228 Cognitive Agent Capabilities

6.2.4 Capability Cases

In this section we describe the generic capabilities reasoning and decision-making using
CaDeF. This illustrates how CaDeF defines such generic capabilities by specifying the
properties that must hold for each of the three entity types introduced. At the end of
this section we discuss how certain levels of capabilities can relate to each other, causing
the confusion between capabilities and properties of agents as often encountered, e.g.,
in Langley et al. (2006).

Reasoning

We consider reasoning “a central cognitive activity that lets an agent augment its know-
ledge state” (Langley et al., 2006).

In the following, we propose a definition of the generic capability reasoning us-
ing CaDeF by specifying the properties we believe each reasoning capability minimally
needs to have. Capitals denote variables (for readability often informed variable names
are chosen).

For the means Knowledge of generic capability reasoning,

properties PropKnowledge must hold:

Means of Capability has Properties(Knowledge, reasoning,
PropKnowledge)

PropKnowledge = (FPKnowledge, SPKnowledge, DPKnowledge)

Functional properties FPKnowledge are that Knowledge is

declarative and accessible:

FPKnowledge = (〈declarative, yes〉, 〈accessible, yes〉)
Declarativeness means that an agent in principle can access the Knowledge’s content,
while accessible denotes that the agent can assess its content at the current moment.

System properties SPKnowledge are that Knowledge has

representation R:

SPKnowledge = (〈representation,R〉)

Dynamic properties DPKnowledge are not defined:

DPKnowledge = ∅
With the given definitions we denote the minimal properties the entities that function as
means for reasoning have to have. They might have additional properties, e.g. certainty,
representing an agent’s confidence about the knowledge.

ProcessesCap are entities that operate on the MeansCap. We propose the following
definition for the processes of the generic reasoning capability:



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 229

For the process Rule of generic capability reasoning,

properties PropRule must hold:

Process of Capability has Properties(Rule, reasoning, PropRule)

PropRule = (FPRule, SPRule, DPRule)

Functional properties FPRule are that Rule is task specific:

FPRule = (〈task specific, yes〉)

System properties SPRule are that Rule has representation R,

and determinism D:

SPRule = (〈representation,R〉 , 〈deterministic,D〉)

Dynamic properties DPRule are that Rule has executability E:

DPRule = (〈executability, E〉)

The executability of a process is determined at runtime and depends on the current means.
It is possible to identify many additional process properties that can be used to define

specific variants, e.g., the cognitive costs of processes, their utility, or their required input.
These optional properties can play an important role for the control of reasoning, as is
described at the end of this section.

ControlCap in an entity that determines which of the ProcessesCap may become active.
We propose the following definition for the generic control of reasoning:

For the control C of generic capability reasoning, properties

PropC must hold:

Control of Capability has Properties(C, reasoning, PropC)

PropC = (FPC , SPC , DPC)

Functional properties FPC are that C is not task specific and

that it always considers the processes’ executability:

FPC = (〈task specific, no〉, 〈considers executability, yes〉)

That the control is task unspecific does not mean that for a specific task a specific type
of control might not be more suited than another. But usually it is assumed that a single
structure controls all reasoning, independent of the task.

System properties SPC are that C has representation R, and loop

type L:

SPC = (〈representation,R〉 , 〈type of loop, L〉)

The type of loop can be either single or multiple, dependent on whether the control
process can only execute once while executed the reasoning capability, or several times.



230 Cognitive Agent Capabilities

Dynamic properties DPC are that C activates N active reasoning

processes:

DPC = (〈number of active reasoning processes,N〉)

An additional property of control might be that it takes a certain constraint into account
to determine which process to execute. For example, there can be a limited number of
knowledge rules that may fire, or a maximal amount of processing costs these rules may
have. To facilitate this the control may have as additional property that it take properties
of processes into account besides their executability. At the end of this section we discuss
such a specific control variant.

Decision-Making

We consider decision-making as “the ability to select among alternatives” (Langley et al.,
2006). Here we describe our CaDeF definition of decision-making succinctly, in the next
section we illustrate it further by means of an example.

For the means Alternative of generic capability decision-making,

properties PropAlt must hold:

Means of Capability has Properties(Alternative, decision-making,
(FPAlt, SPAlt, DPAlt))

Functional properties FPAlt are that an Alternative is

declarative and accessible, and has an additional Aspect A:

FPAlt = (〈declarativeness, true〉 , 〈accessibility, true〉 , 〈Aspect, A〉)

System properties SPAlt are that an Alternative has

representation R:

SPAlt = (〈representation,R〉)

Dynamic properties DPAlt are that an Alternative has an

evaluation score E:

DPAlt = (〈evaluation score,E〉)

Each alternative must have an additional Aspect A because based on this aspect the ca-
pability determines an evaluation score for it on which it basis its final decision.

Three different decision-making processes are identified; they specify three neces-
sary steps within decision-making. The processes are labeled Determination-of-Options
(DO), Evaluation-of-Options (EO), and Selection-of-Options (SO). None of these pro-
cesses has any required dynamic properties:

DPDO = DPFO = DPSO = ∅



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 231

However, the processes differ in their functional and system properties. The first process
Determination-of-Options is a structure that determines which of the Alternatives are
currently actual options by taking a constraint C into account. For example, if a decision
has to be made about which goal to attend to, this step might determine which goals are
currently active and could therefore be actually attended to.

Functional properties FPDO are that DO is task specific and

considers a constraint:

FPDO = (〈task specific, yes〉, 〈considers constraint, yes〉)

System properties SPDO are that DO has representation R and

takes constraint C into account:

SPDO = (〈representation,R〉 , 〈takes into account constraint, C〉)

The second process Evaluation-of-Options is a structure that determines evaluation scores
E for the Alternatives based on one or more aspects A of them. This structure can em-
bed an injective or a non injective function, which means that an option always receives a
unique or possibly shared score respectively. For example, each active goal might receive
a relevancy value based on their expected output.

Functional properties FPEO are that EO is task specific and

considers an aspect:

FPEO = (〈task specific, yes〉, 〈considers aspect, yes〉)

System properties SPEO are that EO has representation R,

outputs evaluation type T, and bases its evaluation on

Alternatives’ aspect A:

SPEO = (〈representation,R〉 , 〈evaluation type, T 〉 ,
〈takes into account aspect, Aspect〉)

The third process Selection-of-Options is a structure that determines which of the Al-
ternatives are selected and basis this on their evaluation score E taking a constraint into
account. This is based on the assumption that decision-making always involves some
kind of decision: selecting randomly is not considered decision-making. For example,
this process may select the goal which has the highest relevancy.

Functional properties FPSO are that SO is task specific, and

considers a constraint and the evaluation scores of the

Alternatives:

FPSO = (〈task specific, yes〉, 〈considers constraint, yes〉,
〈considers evaluation score, yes〉)



232 Cognitive Agent Capabilities

System properties SPSO are that SO has representation R and

takes constraint C into account:

SPSO = (〈representation,R〉 , 〈takes into account constraint, C〉)

Control C of the decision-making capability determines which of the three decision-
making processes may execute.

Functional properties FPC are that C is not task specific, and

that it has a fixed process order:

FPC = (〈task specific, no〉, 〈fixed process order, true〉)

Independent of the task, the three decision-making capability processes are executed in
the same order, namely first DO, then EO, and last SO.

System properties SPC are that C has representation R and

operates in a single loop:

SPC = (〈representation,R〉 , 〈type of loop, single〉)

To make a decision, the control loop just has to execute once.

There are no dynamic properties DPC: DPC = ∅

Combining Capabilities

Previously we introduced CaDeF’s definition of the generic reasoning capability. We
mentioned that in addition to the specified required properties additional properties might
hold for specific capability variants, e.g., the control might take constraints into account
for deciding which of the executable reasoning processes may fire. When there exist such
a constraint, e.g., on the number of Rules that may fire, a selection has to be made among
the executable ones. Interestingly, a possible selection process is the decision-making
capability.

When the control of reasoning is based on decision-making, the processes of reason-
ing are interpreted as means for decision-making. For this, the properties of the reasoning
processes are expanded with the properties of the decision-making means. This entails
that reasoning processes should be declarative and accessible. In addition, they should
have an additional (functional or dynamic) property besides their dynamic property ‘ex-
ecutability’ that can function as aspect to base the decision on, and they receive as new
additional dynamic property an evaluation score.

The processes and control of decision-making are comprised within the reasoning
control. This entails, e.g., that the latter now has the additional functional property that it
takes a constraint, and a processes’ aspect into account.



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 233

With this section we want to stress that different capabilities can be embedded in each
other and that the properties of the capability levels depend on each other. For example,
when reasoning embeds decision-making, the reasoning processes should be specified
declaratively and have an additional property that can be used to base a decision on.

6.2.5 Applying CaDeF to a Pre-Existing Agent

In this section, CaDeF is used to describe two capabilities of a previously developed
cognitive agent named BOA (Both and Heuvelink, 2007), which is implemented in ACT-
R (Anderson and Lebiere, 1998). BOA is developed to perform the so-called tactical
picture compilation task, which consists of gathering and integrating information from a
screen about radar contacts and classifying these contacts. In addition to the information
from the screen, BOA can send a helicopter to gain visual information about contacts. In
the following, we describe the horizontal variant of the reasoning capability embedded
in BOA and a vertical decision-making variant.

Reasoning

The major part of the task execution by BOA consists of reasoning about its beliefs using
its domain knowledge in order to deduce new beliefs. For BOA, the Meansreasoning are
the beliefs the agent holds. These beliefs are implemented, and thus represented, in the
declarative memory of ACT-R as chunks, and are therefore declarative. BOA is based on
the belief framework developed in Heuvelink (2007), which causes all beliefs to have as
additional properties a certainty level, a source label, and a time stamp.

In ACT-R, each chunk automatically receives an activation level that determines how
available it is. ACT-R limits the accessibility of the means for reasoning: only the chunk
with the highest activation that matches a retrieval request can be retrieved. However,
for BOA it is required that certain types of belief can be retrieved independent of their
activation. Because this is impossible to do within ACT-R, beliefs are not retrieved by
ACT-R’s retrieval buffer, but by functions in LISP, the language underlying ACT-R. As
such, all of the agent’s beliefs are always accessible, and the additional ACT-R property
‘activation’ is not used and thus not specified.

Means of Capability has Properties(Belief, reasoningBOA,

(FPBelief , SPBelief , DPBelief )

FPBelief = (〈declarative, yes〉, 〈accessible, yes〉, 〈time, T 〉, 〈source, S〉,
〈certainty, C〉)

SPBelief = (〈representation, chunk〉)

DPBelief = ∅



234 Cognitive Agent Capabilities

The Processesreasoning operate on the beliefs that the agent holds. These processes are
task-specific; for BOA, they constitute its procedural knowledge on how to reason about
its beliefs using domain knowledge. In ACT-R, procedural knowledge is represented
by production rules, which is also the case for BOA. ACT-R adds an utility value to its
production rules, but this is not used within BOA.

Process of Capability has Properties(Rule, reasoningBOA,

(FPRule, SPRule, DPRule)

FPRule = (〈task specific, yes〉)

SPRule = (〈representation, production-rule〉 , 〈deterministic, true〉)

DPRule = (〈executability, E〉)

The Controlreasoning determines which rules operate on which beliefs. In ACT-R, the con-
trol of reasoning takes one clear constraint into account; a maximum of one production
rule may fire at a time, which is therefore also the case for BOA.

To determine which process may execute, the antecedent of a production rule is
matched with the contents of ACT-R’s buffers to determine the rule’s executability. In
principle, it is possible that the antecedents of multiple rules match, in which case ACT-
R uses a conflict-resolution mechanism to decide which rule may fire. This entails that
ACT-R’s reasoning control is a form of decision-making. However, BOA was imple-
mented in such a way that maximally one production rule can be activated at a time,
which means that the conflict-resolution mechanism is never activated.

Control of Capability has Properties(C, reasoningBOA, (FPC , SPC , DPC)

FPC = (〈task specific, no〉, 〈considers executability, yes〉)

SPC = (〈representation, Lisp〉 , 〈type of loop, single〉)

DPC = (〈number of active reasoning processes, 1〉)

By choosing ACT-R for BOA’s implementation some of BOA’s reasoning capability
properties were fixed. For example, because ACT-R only allows one production rule
to fire at a time, BOA’s reasoning control has as dynamic property that the number of
active reasoning processes is always 1.

The specific reasoning capability variant presented here is an example of a horizontal
variant, as the specified properties hold for any reasoning task agent BOA performs.

Decision-Making

Part of the tactical picture compilation task consists of employing an available helicopter
to gather additional visual information about radar contacts. To do this in a correct way



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 235

one important decision has to be made: where to send the helicopter to. The specific
vertical decision-making capability that enables this is elaborated on here.

The Meansdecision-making are alternatives from which one or several have to be chosen.
For BOA, these alternatives are the current positions of the contacts on the radar screen:
to one of these locations the helicopter should be sent.

Means of Capability has Properties(Positions, decision-makingHeli,

(FPPos, SPPos, DPPos))

FPPos = (〈declarativeness, true〉 , 〈accessibility, true〉 , 〈time, current〉 ,
〈urgency, U〉 , 〈informativeness, I〉 , 〈resource economics,R〉)

SPPos = (〈representation, chunk〉)
DPPos = (〈evaluation score,Relevancy〉)

Three Processesdecision-making are identified within any decision-making capability. Also
for this variant it holds that these processes do not have any required dynamic properties.

DPDO = DPFO = DPSO = ∅

The first process, Determination-of-Options, determines which positions are eligible to
send the helicopter to, which are positions of contacts that have not been visually identi-
fied before and not been identified as neutral or friendly.

FPDO = (〈task specific, yes〉, 〈considers constraint, yes〉)
SPDO = (〈representation, production-rule〉 ,

〈takes into account constraint, not identified visually〉 ,
〈takes into account constraint, no neutral id〉 ,
〈takes into account constraint, no friendly id〉)

The second process, Evaluation-of-Options, takes three aspects into account to calculate
an evaluation score that represents how relevant it is to go to that location, namely a
location’s urgency, informativeness, and resource economics. The urgency of a location
represents the time that is left to take precautionary actions in case the contact turns
out to be hostile. Its informativeness is based on the number of contacts that can be
identified visually from that location, as well as on their expected identity. The distance
of a location towards the helicopter determines its resource economics.

FPEO = (〈task specific, yes〉, 〈considers aspect, yes〉)
SPEO = (〈representation, production-rule〉 ,

〈evaluation type, non injective〉 ,
〈takes into account aspect, urgency〉 ,
〈takes into account aspect, informativeness〉 ,
〈takes into account aspect, resourceeconomics〉)



236 Cognitive Agent Capabilities

The third process, Selection-of-Options, makes the actual selection and takes as con-
straint into account that no other location may have a higher score than the one selected.

FPSO = (〈task specific, yes〉, 〈considers constraint, yes〉,
〈considers evaluation score, yes〉)

SPSO = (〈representation, production-rule〉 ,
〈takes into account constraint, highest relevancy〉)

The Controldecision-making simply executes the three processes in a single loop in the fixed
order, by which it is decided where to send the helicopter to.

This specific decision-making capability variant presented here is an example of a
vertical variant, as the specified properties do not hold for all, but only for a specific
decision-making task of the agent.

6.2.6 Discussion and Conclusion

In this paper we presented a new approach for defining cognitive agent capabilities: by
specifying the required properties for the capability entity types means, processes and
control. With this approach it is possible to specify generic capabilities, i.e., processes
that are considered horizontal modules by Fodor (1983), as well as specific variants,
independent of whether these constitute a vertical or a horizontal module.

By means of examples we have shown how CaDeF can be applied to describe both
conceptual and implemented capabilities. However, the reasoning of BOA is not very
complex. In the future we will apply CaDeF’s generic reasoning capability definition to
other agents to evaluate whether it is also suitable to capture more complex reasoning
variants. The treated examples do show that the framework offers room to vary the level
of abstraction between entities, properties and thus capabilities. Entities can range from
simple items to complex structures embedding processes and control themselves. This
feature of the framework explicitly acknowledges the nature of agents and models of
cognition where levels of description are not fixed and where capabilities come in many
variants.

So, although CaDeF structures the description of cognitive agents through mandatory
entities for describing capabilities, it provides enough flexibility to describe all types and
variants of capabilities. Our aim is to start using these descriptions to catalog (com-
ponents of) agents that possess these capabilities. Such a catalog is desired because it
enables an agent designer to draw upon a pool of existing and implemented capabili-
ties while designing a new agent. When this is possible, the development costs of new
cognitive agent models are reduced, which in turn will lead to a more cost-effective con-
struction of training simulations that embed cognitive agents.



6.2. CaDeF: Towards a Method for Describing Cognitive Agent Capabilities 237

In future work, the effectiveness of this approach will be further evaluated. In addi-
tion, its possible role in selecting an appropriate cognitive architecture for the develop-
ment of an agent will be examined. Because different architectures provide more or less
support for certain properties, our framework might aid to identify which architecture is
most suited for a certain cognitive agent design.

Acknowledgments

This research has been supported by the research program ‘Cognitive Modeling’ (V524),
funded by the Netherlands Defense Organization.





Chapter 7

Feedback System

7.1 Introduction

In the previous chapters we have focused on modeling components of cognitive agents
and on the development of a method to describe cognitive capabilities. These efforts
were conducted to develop cognitive agents that can generate human-like behavior in a
simulated environment. However, we are also interested in using agents as instructors,
e.g., to provide feedback to the student.

In this chapter we develop a training system based on software agents, tailored to
the provision of feedback on task performance in dynamic, open, complex tasks such
as situational assessment. Previously, we determined that for these types of tasks it is
desired to provide feedback at the level of cognition, e.g., on the appropriateness of the
followed strategy (Section 2.4.2).

To enable the generation of cognitive feedback to a student’s task behavior, it is re-
quired to diagnose his or her task performance, for which two main techniques have
emerged: model-tracing and constraint-based modeling, see Section 2.4.2. Feedback
systems that embed model-tracing focus on inferring the (erroneous) process by which
a student arrived at a solution, and base their feedback on this. In contrast, feedback
systems based on constraint-based modeling base their feedback solely on the final-state
the student arrived at, independent of the process that led him or her there.

In order to create a robust feedback system, we decided to combine variants of both
techniques in one system. The system will first try to generate feedback at the level
of diagnosed cognitive processes. However, it is not always possible to diagnose the
cognitive process (e.g., due to multiple possible explanations) in which case the system
can fall back on the generation of model-based feedback.



240 Feedback System

The developed feedback-generating training system is based on multiple software
agents. It embeds an expert agent that performs the task according to expert standard,
and a series of deficient agents that perform the task in a variety of wrong (biased) ways.
In addition, the system incorporates a student-behavior agent that monitors the task be-
havior of the student. Last, we developed a feedback-generating agent (FeGA), which
diagnoses the student’s task performance and provides the feedback.

Chapter Overview

This chapter embeds one paper (Section 7.2) which focuses on the development of a
multi-agent-based training system for dynamic, open, complex tasks. In this paper we
mainly elaborate on the development of the Feedback Generating Agent (FeGA). FeGA
evaluates and diagnoses the task performance of a student by retrieving information from
the training environment and the other agents. Subsequently, FeGA provides feedback to
this performance, which it can do either after a single, or a series of trials. We evaluate
the capability of FeGA to diagnose task performance by letting it evaluate and diagnose
software agents representing possible students.



7.2. FeGA: a Feedback-Generating Agent 241

Research Paper

7.2 FeGA: a Feedback-Generating Agent

Abstract

In current simulation-based training of knowledge-intensive tasks, human instructors are
needed to evaluate a student’s task performance. This paper reports a study into the
development of a multi-agent-based training system that evaluates student behavior at the
result-level (quality of performance) and at the process-level (appropriateness of taken
approach). The system uses expert and error modeling as well as plan recognition to
evaluate and diagnose the student behavior. Furthermore, it keeps track of this behavior
over time and generates feedback on the student’s task performance after either one trial
or a series of trials. Exploratory results suggest that the system can correctly diagnose
the behavior of students.

This section is published as:
Heuvelink, A., and Mioch, T. FeGA: A cognitive Feedback Generating Agent. In Proceedings of the Seventh
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2008), p 567-572, IEEE
Computer Society Press. December 9 - 12 2008, Sydney, Australia.



242 Feedback System

7.2.1 Introduction

A common way to teach a task is by training students in its execution. An impor-
tant factor in task training is the generation of feedback on the student’s task perfor-
mance (Bosch and Riemersma, 2004). Usually instructors who possess expert task know-
ledge as well as didactic knowledge monitor the training, evaluate the student’s perfor-
mance and progress, and provide feedback. When the task environment is dangerous
and uncertain, e.g., as faced by firemen and the military, task training often takes place
in simulated environments. These environments guarantee the safety of the students and
facilitate training because they are perfectly controllable.

Despite these benefits, students are still dependent for their training on the availability
of instructors. It would be beneficial if students could train anytime, anywhere, and by
themselves. However, in such a situation it is important to ensure that the training is
conducted properly and no wrong behavior is learned. For this, the training environment
should be able to monitor, evaluate, and diagnose the student’s performance and provide
feedback.

Many intelligent tutoring systems (ITS) have been developed that possess such feed-
back-generation methods, for overviews see (Polson and Richardson, 1988; VanLehn,
2006). However, most of these systems concern the training of (procedural) tasks in well-
structured and small domains. The challenge is to generate feedback on task performance
in open, complex domains for which not only the final result, but especially the process
leading to this result is of importance.

This paper focuses on the development of a feedback-generation method that is ca-
pable of generating feedback on student performance for open tasks.

7.2.2 Types of Feedback

In the context of simulation-based training systems, three types of feedback can be dis-
tinguished (Mioch et al., 2007):

• Result-based feedback, also named minimal feedback (VanLehn, 2006), is based
solely on the result of the task behavior of the student. Feedback is generated by
comparing this result with the correct result, which is often hard-coded.

• Model-based feedback is not only based on the result of the student’s behavior, but
also on contextual knowledge of the simulation environment and explicit task know-
ledge. Feedback is generated by reasoning about the result of the student and why it
was good or false, for which it uses an expert model and the task circumstances.

• Cognition-based feedback is also based on the student’s result, the context of the
task and explicit task knowledge, but additionally takes a student model into account



7.2. FeGA: a Feedback-Generating Agent 243

that tracks his or her behavior. Using this extra knowledge, feedback can be generated
not only on the final result of the student’s behavior, e.g., the selected action, but also
on the process, e.g., how he or she selected this action.

Cognition-based and model-based feedback are also referred to as error-specific feed-
back (VanLehn, 2006). The two major approaches for generating error-specific feedback
are constraint-based modeling and model-tracing (Kodaganallur et al., 2005). Both tech-
niques have successfully been applied in ITS. However, most of these ITS concern the
training of tasks in well-defined, small domains, for which it is relatively easy to de-
duce both types of error-specific feedback. ITS that have been developed for training
tasks in open domains generally limit themselves to model-based feedback (Stottler and
Vinkavich, 2000).

Generating error-specific feedback for open tasks is hard because often no single cor-
rect behavior exists. Additionally, the quality of the task performance depends for a great
part on the student’s reasoning process and not so much on the final result. Last, often a
multitude of possible error-explanations exist from which it is hard to choose (Menzel,
2006).

Instructors commonly deal with these difficulties by simply asking the students to
explain why they behaved the way they did. However, this is not a feasible strategy for
an automated feedback system, since it is hard to implement a system that is capable
of understanding a student’s explanation of his or her behavior. In addition, instructors
are known to try to deduce the cognitive strategies of students by paying attention to
other behavioral factors related to the task, e.g., by monitoring where the student looks
at (Bosch and Riemersma, 2004).

7.2.3 Training Open Tasks

The military is concerned with training open, complex tasks like decision-making in
dynamic and uncertain conditions. A well-known paradigm for laboratory studies into
learning such tasks is multiple cue probability learning (MCPL) (Brehmer, 1980), also
called multidimensional functional learning (MFL) (Hoffman et al., 1981). Two impor-
tant elements of MCPL/MFL tasks are a criterion that the student must learn to predict,
and cues representing the information from which the student has to make a prediction.
The student’s goal is to learn how the criterion values relate to the cue values.

A military example of such a task is threat assessment, in which the threat of an
object has to be judged based on a few factors, i.e., its attributes. To research the training
of this task, a simulation environment was developed in GameMaker (Overmars, 2009).
The simulation environment consists of a 2D map of an environment on which fifteen



244 Feedback System

Figure 7.1: Screenshot of the simulation environment for training threat assessment

surface radar contacts are plotted, see figure 7.1. The own force is depicted by a small
blue diamond (FF), the other known contacts as gray squares. On the map a sea lane is
plotted, which denotes a common travel route for merchants from harbor to harbor. In
this environment a student is trained to assess the threat of surface radar contacts on the
basis of their speed, position relative to the own force, and position relative to sea lanes.

To adequately judge the threat levels of the contacts, the student needs to assess the
value and importance of the various factors separately, relative to the other factors, and in
combination. For example, the student needs to judge the importance of speed, whether
speed is more important than position with respect to sea lanes when the contact is nearby,
and what constitutes a higher threat: a contact that sails fast, outside a sea lane but does
that far away, or a contact that sails slowly in the sea lane but does so in close proximity.

In a training trial the student has 30 seconds to assess the values of the several factors,
after which he or she should select the contact judged to be most threatening. However,
values of factors can not be assessed directly but have to be requested through task-
support buttons. After pressing a button its information will be visible for a short time
period. Figure 7.1 shows all the available information at the same time, as if all the
buttons are pressed simultaneously. Button 1 shows the various speeds of the contacts
(s-bar below the contacts), button 2 shows two distance ranges with tactical meaning
(yellow and red circle) and button 3 shows the contacts that follow the sea lane (red
discs). The latter means that not only the contact’s position lies within the sea lane, but
that its course is also following the sea lane.



7.2. FeGA: a Feedback-Generating Agent 245

7.2.4 Feedback-Generation Method

For training open tasks it is beneficial to have a feedback-generation method that can
easily incorporate new findings and can be tailored to various types of students. This
is ensured by implementing it as a multi-agent-based training system. Notice that the
current study focuses on determining the appropriate content for feedback, and not on
how and when this feedback is presented to the student (VanLehn, 2006).

Feedback Based on an Expert Model

For the generation of feedback, first, the result of the student’s behavior is considered.
The contact that is chosen by the student as most threatening is compared with the best
choice given the circumstances, i.e., with the choice of a task expert. This choice is
generated by an expert agent. In the current study it is assumed that one expert solu-
tion exists. However, for open tasks are, in general, multiple expert solutions possible.
The proposed system can accommodate multiple good solutions by adding more expert
agents.

When the student’s choice equals the choice of the expert, it is determined that the
feedback should be positive. When the choice does not cohere with that of the expert,
other feedback has to be generated. Feedback generation is aimed at helping the student
to learn the task, which can be achieved by making task knowledge explicit. Model-
based feedback, introduced in Section 7.2.2, elaborates on why the student’s choice is
not the best choice using expert task knowledge. For the threat assessment task this
knowledge entails knowing about the relevant factors and the relationship of their values
to the criterion value, i.e., the threat level. In the current task three factors play a role:

• Factor 1) Sea Lane: In how far a contact is suspicious due to whether or not it
follows a sea lane, denoted by a binary value. Contacts that do not follow a sea lane
are more suspicious than those who do.

• Factor 2) Speed: In how far a contact is suspicious due to its speed; the faster, the
more suspicious it is.

• Factor 3) Distance: In how far a contact’s position makes it threatening, i.e. lies
within the dangerous zone determined by the shooting range of the expected enemy.

The latter two factors are represented by a real value between 0 and 1, see figure 7.2.
The three factors carry different weights in the determination of a contact’s threat level.
The following equation displays the relationship between a contact’s threat value and its
values for the three factors.

threat = (.2 ∗ sea lane) + (.3 ∗ speed) + (.5 ∗ distance)



246 Feedback System

Figure 7.2: Threat due to a contact’s speed (left) and due to its distance (right)

When the student has chosen a different contact than the expert, model-based feedback
can be given on why that was a wrong choice. This feedback is generated by reasoning
about how substantial the differences between the two choices are. What ‘substantially
different’ entails is determined separately for each factor by a task expert. When the two
choices do not differ substantially in any of the factors, it is deduced that the student’s
choice is also a valid option.

When the choices do differ substantially on a certain task aspect, that aspect is rele-
vant for feedback. For example, when expert choice X lies within the dangerous zone but
student choice S does not, it is deduced that the two choices differ in the factor distance.
Since the expert choice has a substantial higher threat value due to the distance factor, it
is further deduced that the student gives insufficient weight to that factor. This approach
generates feedback of a similar nature and in a similar way as constraint-based modeling.

Feedback Based on Error Models

For this task it is easy to deduce model-based feedback. However, this type of feedback
is limited in that it just considers the student’s response, and only gives feedback on
the level of task knowledge. Cognition-based feedback on the other hand also takes the
reasoning process of the student into account and promises better learning results (Mioch
et al., 2007).

The common way to generate cognition-based feedback is by deviation or error mo-
deling (VanLehn, 2006), a technique also used by model-tracing. Typical errors for the
current task are, e.g., the selection of the nearest or the fastest contact, thus giving exces-
sive weight to a single factor and insufficient weights to the others. The rationale behind
modeling errors is that when the student’s behavior corresponds to a particular error, it
can be inferred that that error probably has been made. To trace whether a student’s re-
sponse originates from a particular deficiency, it should be known to which choices the



7.2. FeGA: a Feedback-Generating Agent 247

deficiencies lead. These choices are generated by multiple deficient agents, with every
agent incorporating a deficiency. The set of deficient agents can easily be altered, and
therefore also the types and amount of errors the feedback-generation method is sensitive
to.

Unlike model-based feedback, it is not always straight-forward to generate cognition-
based feedback. Feedback cannot be deduced directly when the student’s result does not
match any of the results of the deficient agents, or when multiple deficient agents’ results
match the student’s result.

In section 7.2.2, it was mentioned that instructors also use other behavioral aspects to
deduce the reasoning process of the students, like where they look at. By extending the
training environment with task-support buttons this process is made partially observable
to the system. Since values of factors need to be requested, it can be deduced which fac-
tors the student attends to. Furthermore, because those values are only shortly visible, the
amount of requests gives information on how much a student attends to certain factors.

By administering the task to experts it is determined what, on average, the required
task-support button use is. When a student clearly under- or overuses a button, this is
an indication of insufficient or excessive weighing of that factor. Assessing a student’s
reasoning process from his or her button use can be considered a form of plan recogni-
tion (VanLehn, 2006) and is done by the student-behavior agent.

Feedback Based on a Student Model

Two ways in which feedback can be generated on the behavior of a student after a trial
have been discussed. However, neither of them can deduce after a single trail how well
the student performs the task on average. To increase the reliability of the feedback on
the general level of task performance, it is required that the student’s behavior is tracked
over multiple trials. For this a student-performance model is introduced, which consists
of two layers. The lower layer keeps track of the task performance with respect to the
various factors; the upper layer of overall task performance.

The lower layer keeps track of whether the student gives insufficient, good or ex-
cessive weight to a factor. This is represented by a value denoting the membership of
this factor to the fuzzy sets denoting these weights. When it is assessed that the student
gives an incorrect weight to a certain factor, the values of the fuzzy sets are updated with
a step size of 0.2. When the student shows correct behavior, the fuzzy sets are updated
with a step size of 0.05. This ensures that a single false behavior is not compensated by
a single correct behavior; after false behavior the student should show correct behavior
over multiple runs before the model deduces that a correct weight is given to a certain
factor.



248 Feedback System

When the lower level deduces that all the weights given by the student are correct,
the upper level deduces that the student has learned the task. The upper layer consists
of membership values for the student’s performance for the three fuzzy sets unknown,
known, and learned. When the lower level deduces that a factor is given correct weight,
this is transferred in an update of the known or learned set. Otherwise, the unknown set
is updated. Over a series of trials the assessed correct and wrong aspects of the student
behavior accumulate in the layers of the student-performance model. This leads to an
increasing certainty considering the overall quality of the student’s task performance.

Feedback Generation Agent (FeGA)

The last agent required by the multi-agent-based training system is the feedback agent
that actually controls the generation of feedback after the student has finished the task.

For this, FeGA retrieves the result of the student and the expert and deficient agents.
When the choice of the student does not correspond to any of the agent’s choices it is not
correct, but moreover, no cognition-based feedback can be generated. In such a case
FeGA falls back on generating model-based feedback for which it uses task knowledge
and information concerning the contacts and the environment.

When the choice of the student corresponds to one or more agents, it is checked for
which agents this holds. In case the expert agent is amongst them, FeGA concludes
that the student has performed the task well, and gives feedback accordingly. When the
choice of the student matches that of a single deficient agent, it is concluded that the error
originates from the deficiency represented by that agent. This results in cognition-based
feedback based on that deficiency.

When the student’s choice matches that of multiple deficient agents, FeGA will rea-
son further over which of these deficient agents also matches the student’s reasoning
process. For this it first retrieves the assessment of whether the student paid good, in-
sufficient or excessive attention to the various factors, formed by the student-behavior
agent.

When the interpretation of the attention given by the student to the factors corre-
sponds to the reasoning process of a deficient agent, this agent’s deficiencies form the
basis of feedback. When no deficient agent’s reasoning process matches that of the stu-
dent, it is checked whether all the deficient agents have the same deficiency for a par-
ticular factor, i.e., give the same false (insufficient or excessive) weight to it. If this is
true, it can be assumed that that deficiency caused them to choose the wrong contact, and
feedback is given concerning the wrong use of this single factor. When this is not true
FeGA falls back on model-based feedback.

Feedback generated by FeGA is transferred to its student-performance model. The



7.2. FeGA: a Feedback-Generating Agent 249

Name Sea lane Speed Distance
Expert 0.2 0.3 0.5

Student 1 0 0.4 0.6
Student 2 0.3 0 0.7
Student 3 0.4 0.6 0
Student 4 1 0 0
Student 5 0 1 0
Student 6 0 0 1
Student 7 0 0.5 0.5
Student 8 0.5 0 0.5
Student 9 0.5 0.5 0

Student 10 0.1 0.6 0.3
Student 11 0.3 0.6 0.1
Student 12 0.6 0.3 0.1

Table 7.1: Student weights given to the factors

generated feedback can be transferred directly to the student, or it can be decided to
give feedback after multiple trials, using the knowledge accumulated in the student-
performance model.

7.2.5 Evaluation

FeGA can be evaluated on two levels: whether it generates appropriate feedback for each
single trial and whether its diagnosis about the student’s overall task performance is cor-
rect. It was decided to evaluate FeGA by letting it evaluate and diagnose software agents
representing possible students. This has the advantage that all aspects of the student’s
behavior are known, which is not the case when ‘real’ students are deployed for the eva-
luation. Another advantage is that the agents can be designed in such a way that many
different ways of reasoning are covered.

It is assumed that the student agents have knowledge of the three relevant factors, but
do not know the correct relation of their values to the threat value of a contact. In total
12 agents are modeled. See table 7.1 for the different weights the various student agents
give to each factor.

The reasoning of students 1-6 corresponds to the reasoning of the modeled deficient
agents. Students 7-9 exclude a factor all together, and weigh the other two factors equally.
Students 10-12 are used to cover an even greater variety of ways to weight the factors.
The light gray cells denote that the student agent ascribes insufficient (I) weight to that
factor compared to the expert agent, dark gray cells that it ascribes excessive (E) weight,
and white that it ascribes a good (G) weight.



250 Feedback System

Name Sea lane Speed Distance
weight: I G E I G E I G E

Student 1 1 0 0 0 0 1 0 0 1
Student 2 0 0 1 1 0 0 0 0 1
Student 3 0 0 1 0 0 1 1 0 0
Student 4 0 0 1 1 0 0 1 0 0
Student 5 1 0 0 0 0 1 1 0 0
Student 6 1 0 0 1 0 0 0 0 1
Student 7 1 0 0 0 0 1 .2 .8 0
Student 8 0 0 1 1 0 0 0 .05 .95
Student 9 0 0 1 0 0 1 1 0 0
Student 10 1 0 0 0 0 1 .2 .8 0
Student 11 0 .05 .95 0 .05 .95 .95 .05 0
Student 12 0 .85 .15 0 1 0 .95 .05 0

Table 7.2: Final student-performance models

For evaluating FeGA 15 scenarios are generated, each containing 15 contacts that
display a great variety in behavior. The behavior that the student agents show during task
execution (i.e., the button-use to gather information about the contacts) corresponds to
its deficient reasoning process, measured in relation to the average button-use of experts.

Results

Table 7.2 shows the student-performance models formed by FeGA for every student
agent over the 15 trials.

It was found that students 1-6 choose at almost every trial a different contact than
the expert agent. In the few cases that the student agent chooses the same contact as the
expert, positive feedback is generated. When the choice does not match the choice of the
expert, it usually matches the choice of the corresponding deficient agent. Even if there is
a match with several deficient agents, the ‘correct’ one can be chosen as the student agent
behaves according to his deficiencies. This means that for these trials valid cognition-
based feedback is returned on the basis of the reasoning mistake of the matching deficient
agent. Although sometimes positive feedback is generated, the accumulated values of
the student-performance model over 15 trials perfectly correspond to, and thus correctly
diagnose, the deficiencies of the student agents.

The deficient weighing of the factors by students 7-12 does not correspond to the
weighing of any of the deficient agents. As a consequence, it is often not possible to
diagnose a single deficient agent as representative for the student agent’s behavior. The
student agents’ choices sometimes match the choice of the expert agent, the choice of



7.2. FeGA: a Feedback-Generating Agent 251

several other deficient agents, or not with any of the other agents’ choices. Feedback
after a trial is thus respectively sometimes positive, based on deficient agents whose de-
ficiencies are not necessarily equal to those of the student agent, or model-based. As a
result, the diagnosis of FeGA after a single trial is not very reliable. However, it was
found that after 15 trials the accumulated values of the student-performance models cor-
respond fairly well to the actual deficiencies of the student agents.

Only twice, for student 7 and 8, an accumulated value of the student-performance
model does not correspond to the actual deficiency of the student agent, denoted in ta-
ble 7.2 by light gray cells. Figure 7.3 shows the student-performance model of student
7 who weighs the factor sea lane insufficiently (I), the factor speed excessively (E), and
the factor distance well (G). In none of the 15 trials the student chooses the same contact
as the expert, as otherwise all the performance values would have come closer to zero at
the same time. Further, FeGA does not diagnose after each trial that the student weighs
the factor speed excessively. This is because several times the student’s choice matches
the choice of several deficient agents, none of which has the exact same deficiencies as
the student. As a consequence, the student’s behavior during the task performance (i.e.,
the button-pressing behavior) does not correspond to any of the deficient agents. This
means that an agreement in deficiency between the matching deficient agents is returned
as feedback, or model-based feedback is generated.

Fortunately, the accumulation of the feedback generated after each trial over 15 trials
enables FeGA to correctly diagnose the student’s excessive weighing of the factor speed.
On the other hand, FeGA fails to diagnose the correct weighing of the factor distance by
the student. The reason for this is that often the student’s choice matches the choice of
an agent that is deficient in the factor distance. However, FeGA is not very certain about
its diagnosis of the factor distance, which is represented by the fluctuating value of the
student-performance model for that factor.

Figure 7.3: Student-7-Performance model



252 Feedback System

7.2.6 Discussion and Conclusion

We developed and implemented a feedback system based on multiple agents that to-
gether diagnose student performance and can generate feedback after a single trial or a
series of trials. In certain aspects the developed feedback-generation method resembles
constraint-based modeling and error modeling. Our work differs in that the feedback
system incorporates both approaches as well as a student-behavior agent, which aids in
dissolving possible ambiguities in the assessment of the student’s task performance. For
the latter it is required that the interaction of the student with the simulation environment
is extended in such a way that extra knowledge concerning the student’s behavior during
task execution can be extracted.

Although the current evaluation with student agents yielded positive results, it is not
yet certain whether equally positive results will be achieved with real students. The main
reason for this is that for implementing the student agents certain simplifications were
made. For example, it is assumed that the student agents have fixed deficiencies in their
weighing of the important factors to assess which contact has the highest threat. Since
the student agents do not learn, they will never adapt their deficiencies, even when pro-
vided with correct feedback. Real students are likely to learn and will therefore be more
dynamic in their reasoning process. This will lead to a higher fluctuation in the values
of the student-performance model and thus to a lower certainty of the accumulated feed-
back. However, this seems to be quite realistic: if the student does not have a consistent
deficiency, no certain diagnosis about this deficiency can be given by the feedback agent.

Another issue is that currently positive feedback is returned when the choice of the
student matches the choice of the expert, even when that choice also matches the choice
of deficient agents. In such a situation it might be better to reason one step further,
and check with which agent the student’s behavior during the task execution matches
best. When that behavior corresponds to the deficiencies of the deficient agent, it can be
decided to return feedback that not simply mentions that the result was correct, but that
also mentions the assessed reasoning deficiencies.

Because of the simplifications made, the developed feedback-generation method has
to be further evaluated. A real indication of the validity of the feedback-generation
method is when students are able to learn the task correctly based on the feedback that
is generated. Therefore, in the next evaluation phase, it will be tested whether students
that receive the feedback generated by FeGA learn quicker than students that receive
simple result-based feedback. Subsequently, the generality of the developed feedback-
generation method can be evaluated, e.g., by implementing it for a different open task
with other relevant factors.



7.2. FeGA: a Feedback-Generating Agent 253

Acknowledgments

This research has been supported by the research program ‘Cognitive Modeling’ (V524),
funded by the Netherlands Defense Organization. The authors like to thank Willem van
Doesburg and Karel van den Bosch for useful discussions, Rob Verkuylen for the deve-
lopment of the simulated task environment, and Tijmen Muller for his help with Soar.





Chapter 8

Conclusion

The presented study was motivated by the gap between current scenario-based simulator
training for which many people are required, and the desired situation in which students
can train at any time by themselves. In order to narrow this gap, we developed methods
and techniques for the modeling of intelligent agents that can perform roles in simulator
training. It is likely that in the future such agents replace the humans currently required
for training; by this our research contributes to future independent training.

We started this research with three research questions (Section 1.2.2). To answer
these questions we developed in this study 1) components for cognitive agents that enable
them to display rational as well as biased behavior, 2) a framework to describe cognitive
capabilities, and 3) a feedback generating system based on multiple agents that diagnoses
task performance. Our major research effort has been in the first area, so in developing
content of cognitive agents. Our second research effort, in the development of cognitive
agents, and third, in the application of cognitive agents, are at a more initial stage.

In the following sections we discuss for each research question the opportunities
and limitations of the developed methods and techniques, as well as additional research
possibilities. In the last section we reflect on the relevance of our work, and identify the
need for future research.

8.1 Modeling Human-Like Behavior

The first research question of this study was: ‘How can a cognitive agent display human-
like behavior with a varying degree of biasedness?’ Existing methods and techniques
are commonly developed to bring about either rational or biased behavior, and not both
types. We developed mechanisms that enable an agent to display rational as well as, to



256 Conclusion

a larger or smaller extent, biased behavior. For this, we extended the scope of Artificial
Intelligence to more human-like behaviors inspired by Cognitive Science.

We investigated our first research question in the context of a typical military task:
situational assessment. We started with modeling a rational, expert agent for this task. To
achieve an assessment of a complex situation, an agent must be able to deal with factual,
but also with uncertain information. In addition, it must be able to integrate information
received from different sources, and relate new information to information previously
gathered. These things are self-evident for humans, since most real-world tasks require
these capabilities.

Unfortunately, reasoning about uncertain information received over time and from
different sources is as yet not supported by integrated architectures. In general, they do
not require information to be stored with a degree of belief, a time stamp, or source label,
and therefore also do not offer support for the handling of these values. Usually, archi-
tectures do support that their basic knowledge entities can embed strings and numerical
values, and often also offer operators that can compare them for equality and ordering.
However, there exists a large gap between such generic processes and cognitive processes
operating on these values.

A reason for the architectures stemming from Artificial Intelligence to not support the
explicit reasoning over uncertain beliefs from different sources over time might be that
these architectures are usually used to model agents for tasks that are better structured
than the open, dynamic, complex tasks investigated here. Architectures stemming from
Cognitive Science might not support these processes because they are usually used to
model tasks at a smaller scale, and with more detail for the cognitive validity of the
underlying processes, than the current research task.

We do not claim that the methods and techniques we developed are most suited to mo-
del human-like behavior for all types of tasks. For many tasks existing architectures pos-
sess all what is required for their modeling, and frequently more than we offer. However,
they lack the required cognitive processes (e.g., reasoning about uncertainty or about
time) for modeling dynamic, open, complex tasks like situational assessment. We hope
that the mechanisms developed in this study can bridge the gap between the processes
required to model complex tasks and those usually offered by integrated architectures.

8.1.1 Developed Cognitive Agent Capabilities

In order to perform its task in a simulated world, an agent must be able to reason about
this world. We decided to model an agent’s knowledge about what is going on by means
of beliefs. For modeling a rational, expert agent in situational assessment we first had
to develop methods and techniques that would enable agents to reason about uncertain



8.1. Modeling Human-Like Behavior 257

information received over time and from different sources. Next, for modeling behavior
with a varying degree of biasedness, we had to determine which cognitive processes
could become biased, as well as how and when this would happen.

In Chapter 3 we presented methods for an agent to transform observed information
into beliefs, to integrate beliefs from different sources and/or times, and to reason about
beliefs over time. These methods enable an agent to do this in a rational, or in a to a
smaller or larger extent biased way. The implemented biases were selected by examining
literature from Cognitive Science and by talking to task experts. The extent to which
the biases influence the agent’s behavior is determined by a parameter. This parameter
was labeled ‘stress’ because of the context in which we want biases to emerge: under
circumstances of stress and exhaustion. In order to model the agent’s (biased) belief
formation processes we proposed a belief notation that includes information about the
time, source, and certainty of the information. At this stage, memory was modeled as
an unlimited database of always available beliefs. This is not very human-like, and also
turns out to be computationally undesirable.

In Chapter 4 we presented a more human-like memory model that distinguishes
working/short-term memory from long-term memory. This memory model supports ra-
tional behavior due to the storage, maintenance, and perfect retrieval of beliefs, but also
biased behavior, among others by forming abstract versions of beliefs, and by attaching
an availability value to beliefs that enables biased retrieval. In particular, the memory
model enables the inherent human memory aspect that sometimes specific details about
an event can not be remembered anymore, but the event itself can. In addition, the model
enables task-specific effects on memory, like the fact that beliefs required for the current
task are readily available, and that not relevant beliefs are quickly forgotten.

In Chapter 5 we presented two control models that determine the behavior of the
agent during task execution. The first model focuses on controlling the execution of
the agent’s cognitive processing components, and determines on-line whether rational
or biased behavior emerges. The parameter that mediates between rational and biased
behavior is labeled (cognitive) exhaustion. The mechanism that we developed to imple-
ment this dynamic exhaustion value was inspired by the idea of Hancock and Meshkati
(1988) of ‘tasks as stressors’. The essence of this idea is that humans get stressed when
the tasks they have to execute lie above their cognitive capacity. This idea has, to our
knowledge, not yet been implemented in cognitive agents to model stress. The second
control model focuses on controlling the decision whether required information will be
acquired by memory retrieval, or by sensing the world. For this model it is determined
off-line which type of behavior emerges by the selection of one of the implemented, to a
smaller of larger degree heuristic, task-strategies.



258 Conclusion

8.1.2 Points of Discussion

Belief Component

We decided to extend beliefs with a time stamp, source label and certainty value. Multiple
aspects of this choice can be discussed. From an implementation point of view it is
debatable whether the combination of these arguments with the belief term in one tuple
was optimal, or whether it would have been better to have used multiple predicates.
We selected the first option because of the increased transparency, although on multiple
occasions it also demanded the specification of unused belief arguments.

Of another order is the question whether the added belief arguments are complete and
sufficient. For the selected task it turned out they are. However, it is likely that for other
tasks not all the arguments are relevant. In addition, for modeling other types of tasks
and biases other arguments might be required, e.g., an emotion value.

Related to this point is the selection of the implemented biases, which are only a
subset of all known biases. The reason to select the chosen biases was because they were
known to influence situational assessment. The reason why we are satisfied with the
implementation of this subset is that in order to create more human-like behavior it is,
although desirable, not necessary to implement all possible emerging biases.

This point stresses the fact that we conduct design science: we ‘devise artifacts to
attain goals’ and do not ‘explain how and why things are’. This is also important when
discussing the validity of the behavior generated by the agents embedding the developed
belief component. We use the term validity to express the requirement that the behavior
of the agents has observational fidelity, and not that this behavior is the result of cognitive
valid processes. We validated this observational fidelity using experts (Section 3.3), but
this validation study was unable to provide us with conclusive evidence on whether the
belief framework is suited for modeling valid human-like behavior. The reason was that
other factors (the agent’s speed and task control) already impaired the face validity of the
agent’s behavior. Therefore, we cannot conclude with high certainty that the developed
belief framework enables the modeling of human-like belief maintenance. However, the
fact that we could use it to implement the situational assessment task and that it was
successful in mimicking a specific case of biased human behavior, stems us hopeful.

The last discussion point follows from Section 3.1.2 in which we state that the belief
arguments can be used to maintain beliefs in a variety of ways. Although we showed
some ways in our research, we did not investigate how possible it is to implement other
techniques using the same notation. It is likely that adjustments need to be made, e.g.,
for implementing rational source integration using Dempster’s rule of combination, the
certainty value should be transformed to a probability interval.



8.1. Modeling Human-Like Behavior 259

Memory Component

The structure of the proposed declarative memory model mimics, to our knowledge, none
of the memories embedded in known integrated architectures. The memory model is in-
spired by the proposed belief representation and is unique in that it is purely episodic
in nature. We propose that over time semantic memory can emerge from this episodic
memory, due to aggregations that abstract from the episodic details of memories and
combine their content. Most integrated architectures only embed semantic declarative
memories, with Clarion and Soar as noticeable exceptions that embed episodic memory
in addition to semantic memory. We acknowledge that Cognitive Science, starting from
Tulving (1972), considers episodic and semantic memory to be two parallel, partially
overlapping, but distinct information-processing systems. Nevertheless, semantic know-
ledge is not innate, but acquired during the lifetime of a person. In our view it is therefore
defendable to model semantic memories as emerging from episodic memories, and to
model them in one system.

The incentive to develop the memory model was to decrease the query time of the
agent’s belief base. We proposed to do this by deducing aggregated beliefs that are
required for task execution, and by making them more available than the basic beliefs.
Whether the memory model will indeed prevent the agent from slowing down awaits
evaluation. An important point for this will be how frequently it is possible to have the
beliefs that are required during task execution readily available. This is likely to vary
from task to task.

Control Component

The developed agent reasoning control model determines on-line, by taking the task cir-
cumstances and its internal state into account, which reasoning components to execute.
We developed this component to enable the modeling of agents that display rational be-
havior under normal task circumstances, but start showing biased behavior under stress,
like humans do. In order to model this behavior the agent has to reason in a declarative
way about many aspects, such as the possible actions and their relevancy. Most inte-
grated cognitive architectures do not support such explicit, declarative, on-line reasoning
over actions, let alone by taking into account an agent’s internal state. We think that it
is required for an agent to reason in a declarative way over its actions to execute the va-
riety of behavior required for training simulations. One interesting question concerning
the developed control for an agent’s reasoning process, is its computational scalability.
To determine which cognitive processing components are best executed it reasons over
many aspects, which costs much processing time.



260 Conclusion

In the control model for information acquisition, the agent’s behavior was determined
by the selected task strategy. Besides the so-called ‘rational’ task strategy that reasoned
about the costs and benefits of the various actions to choose between them, we imple-
mented several ‘heuristic’ task strategies. The actions that could be selected by the lat-
ter were limited, and the heuristic strategies varied in the amount of information they
retrieved in order to make a choice between the actions. The developed task model rea-
sonably fitted the actions of humans executing the task. This is interesting, because the
heuristic strategies were, although inspired by the participant’s behaviors, derived by a
meta-model on how to form heuristic strategies: by varying the number (and order) of
retrieval actions humans are willing to take to come to a decision.

Of the participant’s reaction times, only two out of four correlated with those of the
model. The reaction times of the model that correlated the strongest with human reaction
times was the model that followed a rational strategy. This, together with the fact that
the behavior of the heuristic strategies appeared to be more restricted than the behavior
actually shown by humans, makes it questionable whether the heuristic strategies truly
capture the way humans operate. It might be more valid to adapt the rational strategy to
fit various personalities. Currently, the strategies only consider the costs of the actions
as they really are. However, it might be that people’s personality influences how these
costs are perceived, e.g., some people are very sensitive to making mistakes, so for them
the costs of making a mistake should be weighted more. In addition, people’s current
internal state might influence these costs, e.g., when stressed or exhausted they might be
slower in belief retrieval.

8.1.3 Additional Research

In this section we elaborate on ideas for future research that directly follow from the
research presented in this study. At the end of this chapter, in Section 8.4, we elaborate
on interesting future research directions of a more general order.

In this study we developed several agent components. A challenge for the future is
to combine these components: the model that dynamically determines the agent’s cur-
rent exhaustion level can be used to make the fixed stress level embedded in the belief
framework dynamic. In addition, the control model that decides whether rational or bi-
ased cognitive processing components execute, can be applied to the memory model to
determine whether beliefs are perfectly retrieved, or ‘quick and dirty’.

When the agent components are combined in one cognitive agent, it becomes more
feasible to validate them by asking experts their opinion about the face validity of the
agent’s behavior. When the behavior is not judged to be observationally valid, it has to be
established which of the embedded components causes that. Of course, it is also possible



8.1. Modeling Human-Like Behavior 261

that not these processes, but the embedded task knowledge causes it. This might be
circumvented by implementing a task of which a well-established model exists (although
it is not very likely to come across such a task-model for an open, dynamic, and complex
task). An additional benefit of implementing a new task using the developed components
is that this exercise will highlight how suited the developed mechanisms and techniques
are for modeling other types of complex tasks.

By combining the components as proposed above, the biasedness of their processes
will be tunable through one parameter. The advantage of this approach is that when a
training instructor does not want agents to display biased behavior, or only wants them
to do so, he or she can fix this parameter. This way the biasedness of all processes are
controlled in one step. A disadvantage might be that this parameter combines a vari-
ety of cognitive states, like stress, cognitive exhaustion (workload), and fatigue. These
states may have different effects, e.g., Harris et al. (2005) found that extended stress
deteriorated performance, but not fatigue. On the other hand, Hancock and Desmond
(2001) state that stress, workload, and fatigue are not distinct and separate phenomena,
but actually only different facets of the same phenomenon: they are all reflections of the
energetic state of an individual. For modeling observational valid behavior for training
simulations, it is probably unnecessary to disentangle these states and their effects.

In future research, it would be useful to model more capabilities in such a way that
they can display rational as well as biased behavior. An interesting question is how these
biases will reinforce each other when the capabilities are combined. For example, at this
moment an agent can display biased belief formation because of its trust in the source
of the information. In the future, this trust in a specific source might also influence the
decision to use, or to not use that source for acquiring information. When capabilities are
combined and multiple biases operate at the same time, it is important to research how
they reinforce each other and whether their effect needs to be proportionalized in order
to keep the behavior believable.

It may be hard to determine the validity of the possible emerging interactions, because
these have not been studied much. Teachman et al. (2007) investigated three different in-
formation processing biases to determine how they inter-relate, but found that the biases
showed little relationship to one another. They state that the results of the few stud-
ies into multiple biases general suggest no significant correlations. For example, Lundh
et al. (1999) found no correlation between memory and attention biases, and Lundh et al.
(1997) found no relationship between measures of explicit memory and implicit memory
biases. On the other hand, Hirsch et al. (2006) introduce the ‘combined cognitive biases
hypothesis’ and propose that biases do not operate in isolation, but influence each other
and interact.



262 Conclusion

A last point for future research is implementing the pattern-matching capability that
enables experts to recognize a current situation as similar to a previous one (Klein, 1998).
This capability inspired us to attach a time stamp to beliefs: time stamps enable the
recognition of belief patterns in time. In addition, the memory model enables the for-
mation of generic belief-pattern representations by abstracting from specific details of
beliefs. These generic belief-pattern representations can be used to compare current spe-
cific beliefs with in order to determine a match. Therefore, we think the developed agent
components are very suited for implementing pattern-matching.

8.2 Describing Agent Components

The second research question of this study was: ‘How can cognitive agent capabilities
be described?’ We investigated this question because a uniform manner to describe ca-
pabilities, the typical content of cognitive agent components, can be used to label these
components. These labels can, in turn, be used when searching for specific components
to reuse when developing a new cognitive agent. So with this research, we hope to con-
tribute to the cost-efficient modeling of cognitive agents.

8.2.1 Developed Capability Description Framework

We were motivated to develop a framework for describing capabilities of cognitive agents
because in the literature there exists no consensus on what constitutes capabilities, or on
how to describe them. We explained the wide variety of capability descriptions found
to be a result of whether they are inspired by the agent’s underlying cognitive theory,
or by practical, task specific design choices. The first leads to definitions of so-called
horizontal (agent-specific) capabilities such as ‘reasoning’, the second to definitions of
so-called vertical (task-specific) capabilities such as ‘multiply’.

The goal of the Capability Description Framework (CaDeF) is to be able to describe
all these capability variants. For this, CaDeF 1) defines a method for describing (vari-
ants of) agent capabilities, and 2) provides definitions of generic agent capabilities. The
method prescribes that capabilities are defined by specifying the functional, system and
dynamic properties for three types of capability entities: means, processes on means,
and control of processes. The combination of these entities make up the capability. The
generic agent capability definitions can be used to describe horizontal as well as vertical
variants of these generic capabilities. Specific capability variants are defined by specify-
ing values for properties of the capabilities entities, or by specifying addition properties.

Our research is still at an initial stage: only two generic cognitive capabilities are



8.2. Describing Agent Components 263

defined by studying the literature on cognitive agents and incorporating the common
ideas shared. Also the evaluation of CaDeF is at a starting point. We evaluated CaDeF
by using it to describe two variants of the defined definitions implemented in BOA. For
these capabilities CaDeF turned out to be satisfactory: their definitions were enclosed by
the generic definitions, and could be expressed by extending them.

8.2.2 Points of Discussion

We determined that each capability can be described using three types of entities. The
main reason why we are confident that all capabilities can be described by defining prop-
erties for these entities on three different levels, is that these entities are defined by their
functionality, and that each entity is allowed to embed multiple entities itself. However,
it is a point of discussion whether we will be able to formally express the embedding
of multiple entity types in another entity. Our major concern is whether it is possible to
define generic rules for the inheritance of properties.

Another issue are the terms used to define properties. Because a wide variety of
capability-variants exists, the terms used to specify properties should be free. An advan-
tage of not predefining concepts is that this offers the freedom to integrate an arbitrary
model (capability) that determines the required concept in a way suited for the task at
hand. However, this freedom delivers a risk for the discoverability of components. For
example, when an agent designer is interested in the capability to make decisions based
on emotions, he or she might search for a decision-making capability with the functional
property ‘takes emotions into account’. When another agent designer has developed an
agent that bases its decisions on its mood (which can be considered an emotional state)
and has defined this agent’s decision-making capability differently, e.g., as ‘takes mood
into account’, this agent component will not be discovered. To deal with such situa-
tions it is useful to attach an ontology of cognitive terms to the search mechanism. An
ontology enables the discovery of cognitive agent components based on description simi-
larity. There exists a variety of ways in which ontologies can be formed and their content
mapped to a search term, for an overview see Shvaiko and Euzenat (2005).

8.2.3 Additional Research

In future research we want to provide definitions for all the generic (cognitive) capa-
bilities that cognitive agents embed. We suspect that only a limited amount of generic
capability definitions is required, because of the freedom to add arbitrary properties to
define specific variants, and the possibility to include one capability in another.

Each of these new, as the current, generic capability definitions need to evaluated



264 Conclusion

on their ability to enclose and capture all possible variants. For this, a wide variety of
(implemented) cognitive agent models should be described using CaDeF. This effort will
also inform us about the usability and effectiveness of CaDeF.

A last point we would like to investigate is the ability of CaDeF to describe the
horizontal capabilities embedded in specific integrated architectures, and to use these
descriptions to select an architecture for implementing a specific task model. When
developing BOA and Boar, we encountered the difficulty of implementing an established
task model in an established cognitive architecture. This undertaking made us aware of
an important factor when developing agents: before selecting an architecture in which
to implement an agent model, check whether the vertical capabilities the model requires
are compatible with the horizontal capabilities of the architecture. In the future, CaDeF
could deliver the means to check this compatibility.

8.3 Generating Cognitive Feedback

The third research question of this study was: ‘How can an agent generate cognitive
feedback to the behavior of a trainee?’ Because our research concerns open, dynamic,
complex tasks, the generation of feedback on the level of cognitive processes is hard.

8.3.1 Developed Feedback System

The approach we took for generating cognitive feedback was to build a robust system
by combining several methods to diagnose performance. The feedback system is based
on multiple agents. The feedback-generating agent (FeGA) provides feedback and di-
agnoses performance using the other agents. FeGA starts it diagnosis by comparing
the performance of the student with that of expert and deficient agents (model-tracing).
When multiple matches exist, it attempts to clear the confusion by comparing the strate-
gies of these agents with the deduced strategy of the student (plan-recognition). The latter
is provided to FeGA by the student-behavior agent that deduces this strategy from the
interaction of the student with the training environment. To support this interaction, we
proposed to extend the training environment with non-intrusive ‘task-support-buttons’.
When at this stage the student’s performance is still undiagnosed, FeGA diagnoses it by
comparing the student’s result with the expert result (constraint-based modeling). The di-
agnosed performance of the student is stored in FeGA’s student-performance model. This
model denotes the student’s performance for each relevant task aspect using fuzzy sets,
which are updated after each training session. On the basis of its student-performance-
model, FeGA generates cognitive feedback.



8.3. Generating Cognitive Feedback 265

8.3.2 Points of Discussion

A principle question here is whether the feedback system will be suitable for training
tasks that are more complex than the current one.

The task for which the feedback system is developed possesses important aspects for
training real-world situational assessment tasks, namely a criterion (threat level) that the
student must learn to predict based on cues (sea lane, speed, distance). However, the
relation between the criterion values and cue values was straightforward in our study:
only three cues had to be taken into account, their values were known, and these values
were available at the same moment. In real-world situational assessment tasks there are
often more cues relevant, and their values are usually uncertain and dynamic.

The first question that emerges for more complex tasks is whether we will be able to
capture the required task knowledge in an expert agent model. The current expert and
deficient agents are formed by simple models with limited performance. When the task
becomes more complex, the performance of these models will as well, as will the number
of deficient agents. Even when we are able to correctly capture (biased) task knowledge
in agent models it is a question whether under such circumstances it is computationally
feasible to 1) run all these agents on one machine, and 2) compare their performances
on-line to the performance of the student. Another question is whether for more complex
tasks and cues, the three fuzzy sets that the feedback system uses to denote the diagnosed
performance of a student on a specific task aspect (cue) are suited. A last question is
whether it is for all tasks possible to extend the training environment with facilities (e.g.,
task-support-buttons) that extract additional knowledge about the student’s behavior dur-
ing task execution, and, more importantly, whether it is also possible for more complex
tasks to deduce cognitive strategies from that knowledge.

8.3.3 Additional Research

Foremost, it has to be validated whether the proposed feedback system is indeed capable
of supporting the threat-assessment training. We evaluated FeGA’s capability to diagnose
performance by letting it evaluate and diagnose software agents representing possible
students, which it did satisfactory. However, for the representation of the students certain
simplifications were made, e.g., their reasoning process was considered to be static. A
real indication of the validity of the feedback-generation method is when students are able
to learn the task based on the feedback that is generated. Therefore, we are planning to
test whether students that receive the feedback generated by FeGA learn the task quicker
than students that receive simple result-based feedback.

When it is found that the feedback system is capable of supporting training for this



266 Conclusion

simplified situational assessment task, it can be researched whether it is also capable of
training more complex tasks, i.e., with more uncertainty and higher dynamics. For the
modeling of a feedback system for real complex, open, dynamic tasks, the cognitive agent
components developed in this study might be useful. For the current task, the expert and
deficient agents are formed by simple models which did not require, e.g., the reasoning
over uncertain beliefs over time. However, for modeling more complex tasks this might
be required, and than the developed components can be used. For this, first an expert
agent has to be modeled that incorporates the developed capabilities whose biasedness
can be tuned. Then, a set of agents can be formed, ranging from expert to deficient agents,
by simply setting the stress/exhaustion parameter to a variety of values. However, it is a
question whether the use of such agents to diagnose performance is scalable.

8.4 Future Research

In the previous sections we discussed how our study contributes to future independent
training by developing methods and techniques for the 1) content, 2) development, as
well as 3) application of cognitive agents. In this section we discuss future research
concerning these aspects of cognitive agents.

8.4.1 Cognitive Agent Content

Sandercock (2004) identified several areas in which current computer generated forces
consistently show weaknesses compared to human players: environment awareness, hu-
man variance, persistence, vengeance, anticipation, learning, and teaming. In the current
study we have developed content for cognitive agents that, of these 7 weaknesses, will
decrease the inability to show human variance and environment awareness the most.

In Section 1.4.4 we listed the processes a cognitive agent should be capable of in
order to show human-like behavior for the situational assessment task. When we would
have listed the capabilities required to show human behavior in all its facets, the list
would have been considerably longer and include aspects such as empathy, communica-
tion, and learning. In order to support the independent training of all possible types of
tasks, eventually all the known human capabilities need to be modeled, i.e., those listed
by Gordon (2005) and Langley et al. (2006). This will support the development of agents
that can validly represent human behavior in all its facets, for all types of tasks.

Situational assessment was selected as task because it is important within the mili-
tary. It is a task that underlies many other military tasks, and it is potentially subject to a
wide variety of cognitive biases, which makes it an important task to train. However, sit-



8.4. Future Research 267

uational assessment is a task which can be executed by an individual (unlike many other
military tasks), and this limited the requirements for the cognitive capabilities (content)
of the agent. In future research the progression of human-like behavior in training simula-
tions can be supported by modeling additional content for cognitive agents, e.g., content
that enables cognitive agents to display varied, human-like behavior in team tasks. For
team tasks it is required that agents are able to communicate; to reason about the be-
liefs, goals, and intentions of others (theory of mind reasoning); and to explain their own
behavior. Because the cognitive agent components developed in this study incorporate
mentalistic notions, and declaratively represent and explicitly reason about their reason-
ing rules, they are well suited to support these new capabilities. Other capabilities, e.g.,
learning, might require more research to implement using the developed components.

8.4.2 Cognitive Agent Development

Modeling cognitive agents following a component-based design approach is cost-effective
when components are reused. To foster reusability, cognitive agent components should
be placed in a repository that can be queried for useful components. Useful components
are those that embed capabilities and properties required for modeling the task of the
agent under construction. In this study we started the development of a Capability De-
scription Framework (CaDeF) for capabilities of cognitive agents, whose descriptions
can be used to label components so that they can be discovered for reuse.

Unfortunately, a capability description is not enough to determine whether a compo-
nent can be reused. Tracz (1990) proposed that a component’s description should contain:
1) the concept or abstraction the component represents; 2) the content of the component,
or its implementation, and; 3) the context that component is defined under, or what is
needed to complete the definition of a concept or content within a certain environment.
CaDeF supports the description of the concept and content of a component by embedding
functional and system properties of capabilities, respectively. However, CaDeF offers no
support for denoting the context of a component. This aspect is interesting to investigate
in future research, e.g., by specifying the relations between capabilities.

Future research into component-based development of cognitive agents can benefit
from studying the modeling of agents within AI; these agents are frequently based on
separate components and a coordination mechanism (see, e.g., Brazier et al., 2002; Bosse
et al., 2007). In addition, much can be learned from the research fields of Component-
Based Software Engineering (CBSE), and Web Services. For example, CBSE defines
three common stages in the process of developing a system based on components, labeled
component qualification, adaptation, and integration (Brown and Wallnau, 1996), and has
developed methods and techniques for each of these stages. Similarly, Web Services are



268 Conclusion

concerned with the specification, discovery, and combination of specific services on the
web, and have also developed many possibly useful methods and techniques.

In this study we only made a small step towards a structured, cost-efficient develop-
ment methodology for cognitive agents. But recognizing that this is important aspect for
their future application, and therefore keeping it in our mind when developing agents, is
a gain compared to modeling agents in an ad-hoc fashion.

8.4.3 Cognitive Agent Applications

In this study we developed cognitive agents for displaying human-like behavior within a
simulated environment, and for executing a training task in parallel with, but invisible to,
a student. In the last case the agent’s task performance was used for comparison with the
performance of the student, which leads to a diagnosis of the student’s task performance
that is required for feedback generation.

The generation of feedback to a student’s task performance is one of the functio-
nalities defined by VanLehn (2006) for Intelligent Tutoring Systems (ITSs). Other func-
tions of ITSs are constructing an individual-tailored curriculum, and answering questions
about the exercises or domain in general. In this study we focused on using cognitive
agents to generate feedback. Below we elaborate on how in future research cognitive
agents might also aid the other two functionalities.

For constructing an individual-tailored curriculum, it is important to diagnose the
student’s task deficiencies, and to know which training scenarios will require the appli-
cation of these deficiencies. When the latter is known, the curriculum can be tailored to
the student by offering these scenarios. For open, dynamic, complex tasks it is hard to
determine which specific task knowledge the scenario will draw upon. Possibly cognitive
agents can aid to determine this, by performing the student’s task in such a scenario.

For answering questions about the exercises or domain in general, cognitive agents
can be useful, especially when they are extended with the capabilities to explain their own
behavior and to perform theory-of-mind reasoning. The first capability enables the expert
agent to provide generic answers to questions about the task knowledge it embeds, the
second capability to tailor this explanation to the student. For example, when it is known
that a student desires to know about one particular task aspect, the agent can especially
elaborate on this aspect.

The methods and techniques for creating agents capable of showing varied human-
like behavior could also be used in other applications than simulator training. They might
be useful for developing and testing military doctrine for which nowadays, among others,
Computer Generated Forces are used that do not always behave very human-like. In
addition, they can be used for decision-support systems. Decision-support systems that



8.5. Concluding Remark 269

embed a rational task model can provide the system operator with suggestions on how
to execute the task. Moreover, decision-support systems that embed knowledge about
false task behavior might not only be capable of detecting that the operator’s behavior
is not rational, but also diagnose which mistake he or she made. When it is possible
to diagnose false task behavior it is possible to extend the support suggestion with an
explanation tailored to the operator, or to perform other types of actions that bring the
diagnosed mistake to the operator’s attention. The cognitive agent components might also
be useful to implement agents for validating system design, e.g., to investigate which
design decreases the emergence of biases the most, or for modeling more human-like
companion agents.

In spite of these many directions for future research, we can envisage applications for
cognitive models in the near future. This study focused on the development of cognitive
models for complex tasks that would enable single persons to train by themselves, and
this is still a challenge. However, the development of cognitive models for more proce-
dural tasks is well possible, and could already enhance current simulation-based training.
After all, any part of training in which a cognitive agent can replace a person is a gain,
especially now the military faces a strong reduction in personnel. Similarly, cognitive
models that perhaps cannot replace, but aid instructors so that multiple trainees can be
trained at any one time are already possible. However, for training domains that face
less pressure on available man-hours, a careful cost-benefit analyses should be made to
determine whether the time and effort put in the development of cognitive models pays
back by freeing up personnel.

8.5 Concluding Remark

The proverb ‘time is money’ dates back 2300 years: the favorite saying of the Greek
philosopher Theophrastus (± 300 B.C.) was ‘time is the most valuable thing a man can
spend’, or more precisely: ‘πoλυτελες αναλωµα ειναι τoν Xρoνoν’. Although many
centuries later, also today much time and effort is spent on developing artifacts that in
time will save us time. Indeed, more than that: no other century has yielded so many
time-saving inventions as the previous one, and this trend is likely to continue in many
years to come. A specific case in point is this study of which the objective is, in a nutshell,
to decrease the man-hours required for training students in complex tasks.

We hope that this dissertation contributes to this time-saving trend by providing a
clear story concerning the relevant questions, possible difficulties, as well as directions
toward possible solutions to these questions and difficulties, when developing Cognitive
Models for Training Simulations.





Appendix A

Overview of Software Packages

ACT-R A cognitive architecture implementing a hybrid approach toward the modeling
of cognition (Anderson and Lebiere, 1998). ACT-R constitutes a unified the-
ory of cognition and is based on detailed findings concerning the functioning
of human memory and of learning and problem-solving processes, see Sec-
tion 2.3.2.

AI-implant A commercial AI tool that can be used to simulate synthetic entities that make
context specific decisions, and move in a realistic fashion within their environ-
ment. Its main use is simulating crowd behavior (Presagis, 2009).

COGNET A framework for creating and exercising models of human operators engaged
in primarily cognitive, as opposed to psychomotor tasks. COGNET’s original
use was the development of user models for intelligent interfaces, but it has
also been used to model operators and opponents in simulators. The primary
assumption underlying COGNET is that humans perform multiple tasks in
parallel (Zachary et al., 1992, 1996).

CoJACK A recent cognitive architecture that is used in simulation systems to underpin
virtual actors, and created by adding a cognitive modeling layer on top of
JACK, see below. CoJACK models the structural properties of the human
cognitive system and constrains the models that can be implemented therein by
only allowing the definition of models that fit within its structural boundaries.
It models variation in human behavior by supporting behavior moderators such
as stress, morale and fear, each implemented as an overlay (Norling and Ritter,
2004; Evertsz et al., 2008a).



272 Overview of Software Packages

CLARION A cognitive architecture that explicitly distinguishes implicit from explicit pro-
cesses and focuses on capturing the interaction between these two types of pro-
cesses. It consist of four distinct subsystems: the action-centered subsystem,
the non-action-centered subsystem, the motivational subsystem, and the meta-
cognitive subsystem. Each of these subsystems has a dual representational
structure, so incorporates implicit as well as explicit representations (Sun,
2002a).

D-Cog Distributed Cognition (D-Cog) is a theoretical framework that takes a dis-
tributed, socio-technical system rather than an individual mind as its primary
unit of analysis. This framework is explicitly cognitive in that it is concerned
with how information is represented and how representations are transformed
and propagated in the performance of tasks (Hutchins, 1995; Perry, 2003).

EPIC A symbolic cognitive architecture developed for modeling human multiple-
task performance, with as main focus the provision of a detailed account of
human perceptual and motor operations. A parsimonious production system
is used as cognitive processor, which is surrounded by separate sensory and
motor processors. EPIC assumes that all capacity limitations are a result of
limited structural resources, rather than a limited cognitive processor (Kieras
and Meyer, 1997).

JACK The JAVA Agent Compiler Kernel (JACK) is an extension to JAVA which im-
plements a BDI architecture. It can be used to create a runnable JAVA pro-
gram that instantiates a BDI agent. The agent’s beliefs are represented with
a database, its desires as events that can trigger plans, with these plans repre-
senting its intentions (Busetta et al., 2000).

Jason An interpreter for an extended version of AgentSpeak (Rao, 1996), a
BDI agent-oriented logic programming language. Jason is implemented in
Java (Bordini et al., 2007) and forms a BDI agent. The agents belief state is
the current state of the agent, which is a model of itself, its environment, and
other agents. The agents desires are the states that the agent wants to bring
about based on its external or internal stimuli, while its intentions are active,
partially instantiated, plans that the agent adopts in an attempt to achieve its
desires.

Java An object-oriented, structured, imperative programming language, released
in 1995 and originally developed by Sun Microsystems. Java applications
are typically compiled to byte code that can run on any Java virtual machine
(JVM) regardless of computer architecture.

Jess A rule engine and scripting environment written in Java. Using Jess, Java
software can be build that has the capacity to ‘reason’, using knowledge in the
form of declarative rules (Friedman-Hill, 2003).



273

LeadsTo A language and software environment developed to model and simulate dy-
namic processes in terms of both qualitative and quantitative concepts. Dy-
namic processes are modeled by specifying the temporal dependencies be-
tween state properties in successive states. The LeadsTo language is a declar-
ative order-sorted temporal language, extended with quantitative means. The
software environment performs simulations of LeadsTo specifications, gener-
ates simulation traces for further analysis, and constructs visual representa-
tions of traces. (Bosse et al., 2007).

PMFserv An agent-based architecture with the flexibility to act as meta-level emotional
arbitrator for others’ cognitive architecture, or to provide a fully functional
stand-alone system to simulate human decision-making. It provides a frame-
work that permits examining the impacts of stress, culture, and emotion upon
decision-making, and is mainly used to simulate crowd behavior (Silverman
et al., 2006).

Prolog A declarative, logic programming language, originally designed by Alain
Colmerauer in 1972.

Soar A symbolic cognitive architecture based on a production system and proposed
by Newell (1990) as ‘a candidate unified theory’. Soar implements goal-
directed behavior as a search through a problem space, for which at each cycle
first the current state is elaborated on, after which a decision is made which
production rule (operator) may fire, see Section 2.3.2.

VBS2 Virtual Battlespace 2 is an interactive, three-dimensional training system pro-
viding a synthetic environment suitable for a wide range of military (or simi-
lar) training and experimentation purposes. VBS2 offers both virtual and con-
structive interfaces onto high-fidelity worlds and is used for mission rehearsal,
tactical training and simulated combined arms exercises (Bohemia Interactive
Australia, 2009).





Bibliography

Adelman, L. and Bresnick, T. (1992). Examining the effect of information sequence on patriot air
defense officiers judgments. Organizational Behavior and Human Decision Processes, 53:204–
228.

Adelman, L., Bresnick, T., Black, P., Marvin, F., and Sak, S. (1996). Research with patriot air
defense officers: Examining information order effects. Human Factors, 38:250–261.

Adelman, L., Tolcott, M., and Bresnick, T. (1993). Examining the effect of information order on
expert judgment. Organizational Behavior and Human Decision Processes, 56:348–369.

Alchourròn, C. E., Gärdenfors, P., and Makinson, D. (1985). On the logic of theory change: Partial
meet contraction and revision functions. Journal of Symbolic Logic, 50:510–530.

Aleven, V., Sewall, J., McLaren, B., and Koedinger, K. (2005). Rapid authoring of intelligent tutors
for real-world and experimental use. In Kinshuk, Koper, R., Kommers, P., Kirschner, P., Samp-
son, D. G., and Didderen, W., editors, Proceedings of the 6th IEEE International Conference on
Advanced Learning Technologies (ICALT 2006), pages 847–851. IEEE Computer Society.

Amant, R. S., Horton, T. E., and Ritter, F. E. (2007). Model-based evaluation of expert cell phone
menu interaction. ACM TRANSACTIONS ON COMPUTER HUMAN INTERACTION, 14(1):Ar-
ticle 1 (24 pages).

Anderson, J. R. (1976). Language, Memory and Thought. Lawrence Erlbaum Associates, Inc.,
Mahwah, NJ, USA.

Anderson, J. R. (1988). The expert module. In (Polson and Richardson, 1988), pages 21–54.

Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe? Oxford
University Press.

Anderson, J. R., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., and Qin, Y. (2004). An inte-
grated theory of the mind. Psychological Review, 111(4):1036–1060.

Anderson, J. R., Bothell, D., Lebiere, C., and Matessa, M. (1998). An integrated theory of list
memory. Journal of Memory and Language, 38:341–380.



276 Bibliography

Anderson, J. R., Boyle, C. F., Corbett, A. T., and Lewis, M. W. (1990). Cognitive modeling and
intelligent tutoring. Artificial Intelligence, 42(1):7–49.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive tutors:
Lessons learned. Journal of the Learning Sciences, 4(2):167–207.

Anderson, J. R. and Lebiere, C. (1998). The Atomic Components of Thought. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, USA.

Anderson, J. R. and Schooler, L. J. (1991). Reflections of the environment in memory. Psycholog-
ical Science, 2(6):396–408.

Anderson, N. H. (1981). Foundations of Information Integration Theory. Academic Press, Inc.,
New York, NY, USA.

Areces, C. and ten Cate, B. (2006). Hybrid logics. In Blackburn, P., Wolter, F., and van Benthem,
J., editors, Handbook of Modal Logics. Elsevier.

Aristotle (350). Nicomachean Ethics. (translated by W.D. Ross).

Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in
Cognitive Science, 4:417–423.

Baddeley, A. D. and Hitch, G. J. (1974). Working memory. Recent Advances in Learning and
Motivation, 8:647–667.

Bader, S. and Hitzler, P. (2005). Dimensions of neural-symbolic integration - a structured survey.
In Artemov, S., Barringer, H., dAvila Garcez, A. S., Lamb, L. C., and Woods, J., editors, We Will
Show Them: Essays in Honour of Dov Gabbay, volume 1, pages 167–194. College Publications.

Banks, S. B. and Stytz, M. R. (2003). Progress and prospects for the development of computer
generated actors for military simulation: Part 2: Reasoning system architectures and human
behavioral modeling. Presence, 12(4):422–436.

Barbuceanu, M. and Fox, M. S. (1996). The design of a coordination language for multi-agent
systems. In Proceedings of the ECAI’96 Workshop on Agent Theories, Architectures, and Lan-
guages: Intelligent Agents III, volume 1193 of LNAI, pages 341–356. Springer-Verlag.

Baron, J. (2000). Thinking and Deciding. Cambridge University Press, Cambridge, UK.

Bayes, T. (1958 (originally published 1763)). An essay towards solving a problem in the doctrine
of chances. Biometrika, 45(3-4):296–315.

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences,
4(3):91–99.

Beilock, S. L. and Decaro, M. S. (2007). From poor performance to success under stress: work-
ing memory, strategy selection, and mathematical problem solving under pressure. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 33(6):983–998.



Bibliography 277

Best, B. and Lebiere, C. (2006). Cognitive agents interacting in real and virtual worlds. In Cog-
nition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, pages 186–
218. Cambridge University Press, New York, NY, USA.

Best, B., Lebiere, C., and Scarpinatto, K. C. (2002). Modeling synthetic opponents in MOUT
training simulations using the ACT-R cognitive architecture. In Proceedings of the Eleventh
Conference on Behavior Representation In Modeling and Simulation (BRIMS 2002).

Bloch, I., Hunter, A., Appriou, A., Ayoun, A., Benferhat, S., Besnard, P., Cholvy, L., Cooke, R.,
Cuppens, F., Dubois, D., Fargier, H., Grabisch, M., Kruse, R., Lang, J., Moral, S., Prade, H.,
Saffiotti, A., Smets, P., and Sossai, C. (2001). Fusion: General concepts and characteristics.
International Journal of Intelligent Systems, 16(10):1107–1134.

Bohemia Interactive Australia (2009). Virtual battle space 2. Retrieved from
http://virtualbattlespace.vbs2.com/.

Bonsangue, M. M., Arbab, F., Bakker, J. W. D., Rutten, J. J. M. M., and Zavattaro, G. (2000). A
transition system semantics for the control-driven coordination language manifold. Theoretical
Computer Science, 240:3–47.

Bordini, R. H., Hbner, J. F., and Wooldridge, M. (2007). Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley & Sons-Interscience, New York, NY, USA.

Bosch, K. v. d. and Riemersma, J. (2004). Reflections on scenario-based training in tactical com-
mand. In Schiflett, S., Elliott, L., Salas, E., and Coovert, M., editors, Scaled Worlds: Develop-
ment, Validation and Applications, pages 1–21. Aldershot, Ashgate.

Bosse, T. (2005). Analysis of the Dynamics of Cognitive Processes. PhD thesis, Vrije Universiteit
Amsterdam.

Bosse, T., Jonker, C. M., van der Meij, L., and Treur, J. (2007). A language and environment
for analysis of dynamics by simulation. International Journal of Artificial Intelligence Tools,
16(3):435–464.

Both, F. and Heuvelink, A. (2007). From a formal cognitive task model to an implemented ACT-
R model. In Proceedings of the 8th International Conference on Cognitive Modeling (ICCM
2007), pages 199–204. Psychology Press.

Boyd, J. (1996). The observe-orient-decide-act loop. Retrieved from http://www.d-n-
i.net/richards/boyds ooda loop.ppt.

Bratman, M. E. (1987). Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA, USA.

Brazier, F. M. T., Dunin-Keplicz, B., Treur, J., and Verbrugge, R. (2001). Modelling internal dy-
namic behaviour of BDI agents. In Gabbay, D. and Smets, P., editors, Dynamics and Manage-
ment of Reasoning Processes, volume 6 of Defeasible Reasoning and Uncertainty Management



278 Bibliography

Systems, pages 339–361. Kluwer Academic Publishers.

Brazier, F. M. T., Jonker, C. M., and Treur, J. (2000). Compositional design and reuse of a generic
agent model. Applied Artificial Intelligence Journal, 14(5):491–538.

Brazier, F. M. T., Jonker, C. M., and Treur, J. (2002). Principles of component-based design of
intelligent agents. Data Knowledge Engineering, 41(1):1–27.

Brehmer, B. (1980). In one word: Not from experience. Acta Psychologica, 45(1-sup-3):223–241.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. Robotics and Automa-
tion, IEEE Journal of [legacy, pre - 1988], 2(1):14–23.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47:139–159.

Brown, A. W. and Wallnau, K. C. (1996). Engineering of component-based systems. In Proceed-
ings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS 1996), pages 414–422, Washington, DC, USA. IEEE Computer Society.

Browne, A. and Sun, R. (2001). Connectionist inference models. Neural Networks, 14(10):1331–
1355.

Bryson, J. J. (2005). Modular representations of cognitive phenomena in AI, psychology and
neuroscience. In Davis, D. N., editor, Visions of Mind: Architectures for Cognition and Affect,
pages 66–89. Idea Group.

Busetta, P., Howden, N., Rönnquist, R., and Hodgson, A. (2000). Structuring BDI agents in
functional clusters. In 6th International Workshop on Intelligent Agents VI, Agent Theories,
Architectures, and Languages (ATAL 1999), volume 1757 of LNCS, pages 277–289, London,
UK. Springer-Verlag.

Byrne, M. D. and Kirlik, A. (2005). Using computational cognitive modeling to diagnose possible
sources of aviation error. International Journal of Aviation Psychology, 15(2):135–155.

Byrne, M. D., Kirlik, A., and Fleetwood, M. D. (2008). An ACT-R approach to closing the loop on
computational cognitive modeling: Describing the dynamics of interactive decision making and
attention allocation. In Foyle, D. C. and Hooey, B. L., editors, Human performance modeling in
aviation, pages 77–104. CRC Press, Boca Raton, FL, USA.

Byrne, R. M. J. and McEleney, A. (2000). Counterfactual thinking about actions and failures to act.
Journal of Experimental Psychology: Learning, Memory, and Cognition., 26(5):1318–1331.

Byrne, R. M. J. and Walsh, C. R. (2002). Contradictions and counterfactuals: Generating belief
revisions in conditional inference. In Gray, W. and Schunn, C., editors, Proceedings of the 24th
Annual Conference of the Cognitive Science Society (CogSci 2002), pages 160–165, Mahwah,
NJ, USA. Lawrence Erlbaum Associates, Inc.

Cadoli, M. and Donini, F. M. (1997). A survey on knowledge compilation. AI Communications,



Bibliography 279

10(3,4):137–150.

Carnegie Learning Inc. (2009). Cognitive tutor website. Retrieved from
http://www.carnegielearning.com.

Castelfranchi, C. (1997). Representation and integration of multiple knowledge sources: issue and
questions. In Cantoni, V., Ges, V. D., Setti, A., and Tegolo, D., editors, Human & Machine
Perception: Information Fusion, pages 235–254. Plenum Press.

Castelfranchi, C. and Paglieri, F. (2007). The role of beliefs in goal dynamics: prolegomena to a
constructive theory of intentions. Synthese, 155:237–263.

Chong, R. (1999). Towards a model of fear in soar. Retrieved from
http://www.eecs.umich.edu/ soar/sitemaker/workshop/19/rchong-slides.pdf.

Ciancarini, P. (1996). Coordination models and languages as software integrators. ACM Comput-
ings Surveys, 28(2):300–302.

Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelli-
gence, 42(2–3):213–361.

Cohen, S., Evans, G. W., Stokols, D., and Krantz, D. S. (1986). Behavior, Health, and Environ-
mental Stress. Plenum Press, New York, NY, USA.

Cowan, N. (2005). Working memory capacity. Psychology Press, New York, NY, USA.

Dam, B. J. v. and Arciszewski, H. F. R. (2002). Studie commandovoering do-2: Beeldvorming.
Technical Report FEL-02-A242, TNO-FEL.

Davis, D. N. (2004). Why do anything? Emotion, affect and the fitness function underlying
behaviour and thought. In Proceedings of the AISB 2004 Symposium on Emotion, Cognition,
and Affective Computing, pages 21–32. The Society for the Study of Artificial Intelligence and
the Simulation of Behaviour.

Dempster, A. P. (1968). A generalization of bayesian inference. Journal of the Royal Statistical
Society, Series B, 30:205–247.

Dickison, D. and Taatgen, N. A. (2007). ACT-R models of cognitive control in the abstract decision
making task. In Lewis, R. L., Polk, T. A., and Laird, J. E., editors, Proceedings of the Ninth
International Conference on Cognitive Modeling (ICCM 2008), pages 79–84. Psychology Press.

Dieussaert, K., Schaeken, W., de Neys, W., and d’Ydewalle, G. (2000). Initial belief state as a
predictor of belief revision. Current Psychology of Cognition, 19(3):277–286.

Diller, D. E., Ferguson, W., Leung, A. M., Benyo, B., and Foley, D. (2004). Behavior modeling in
commercial games. In Proceedings of the Thirteenth Conference on Behavior Representation
In Modeling and Simulation (BRIMS 2004), Arlington, VI, USA. Simulation Interoperability
Standards Organization.



280 Bibliography

Drosten, K. (1988). Translating algebraic specifications to Prolog programs: A comparative study.
In Proceedings of the International Workshop on Algebraic and Logic Programming, volume
343 of LNCS, pages 137–146, London, UK. Springer-Verlag.

Dubois, D. and Prade, H. (2001). Possibility theory, probability theory and multiple-valued logics:
A clarification. Annals of Mathematics and Artificial Intelligence, 32:35–66.

Elio, R. and Pelletier, F. J. (1997). Belief change as propositional update. Cognitive Science,
21(4):419–460.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems: Situation
awareness. Human Factors, 37(1):32–64.

Engelmore, R. S. and Morgan, A. (1988). Blackboard Systems. Addison-Wesley, Reading, MA,
USA.

Ernst, G. and Newell, A. (1969). GPS: A Case Study in Generality and Problem Solving. Academic
Press, New York, NY, USA.

Evertsz, R., Ritter, F., Busetta, P., and Pedrotti, M. (2008a). Realistic behaviour variation in a BDI-
based cognitive architecture. In Proceedings of the Thirteenth annual Simulation Technology
and Training conference (SimTecT 2008). Simulation Industry Association of Australia.

Evertsz, R., Ritter, F., Busetta, P., Pedrotti, M., and Bittner, J. (2008b). CoJACK - achieving
principled behaviour variation in a moderated cognitive architecture. In Proceedings of the Sev-
enteenth Conference on Behavior Representation In Modeling and Simulation (BRIMS 2008),
Arlington, VI, USA. Simulation Interoperability Standards Organization.

Fewell, M. P. and Hazen, M. G. (2005). Cognitive issues in modelling network-centric command
and control. DSTO-RR 0293, Defence Science and Technology Organisation.

Fikes, R. and Nilsson, N. (1971). STRIPS: a new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208.

Fineberg, M. L. (1995). A comprehensive taxonomy of human behaviors for synthetic forces.
Technical report, Institute for Defense Analyses, Alexandria, VA, USA.

Fodor, J. A. (1983). The Modularity of Mind. MIT Press, Cambridge, MA, USA.

Fogarty, W. (1988). Formal investigation into the circumstances surrounding the downing of Iran
Air Flight 655 on 3 july 1988. Technical report, Department of Defense, Washington, DC, USA.

Fotta, M. E., Byrne, M. D., and Luther, M. S. (2005). Developing a human error modeling ar-
chitecture (HEMA). In Proceedings of Human-Computer International, Mahwah, NJ, USA.
Lawrence Erlbaum Associates, Inc.

Franklin, S. and Graesser, A. (1997). Is it an agent, or just a program?: A taxonomy for autonomous
agents. In Müller, J. P., Wooldridge, M. J., and Jennings, N. R., editors, Proceedings of the



Bibliography 281

ECAI’96 Workshop on Agent Theories, Architectures, and Languages: Intelligent Agents III
(ATAL 1996), volume 1193 of LNAI, pages 21–36. Springer-Verlag.

Friedman-Hill, E. (2003). Jess in Action. Java Rule-based Systems. Manning Publications Co.

Galton, A. (2006). Operators vs arguments: the ins and outs of reification. Synthese, 150(3):415–
441.

Gelder, T. v. (1995). What might cognition be, if not computation. Journal of Philosophy, 91:345–
381.

Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M. (1999). The belief-desire-
intention model of agency. In Müller, J., Singh, M. P., and Rao, A. S., editors, Proceedings
of the 5th International Workshop on Intelligent Agents: Agent Theories, Architectures, and
Languages (ATAL-1998), volume 1555, pages 1–10, London, UK. Springer-Verlag.

Georgeff, M. P. and Lansky, A. L. (1987). Reactive reasoning and planning. In Proceedings of the
6th National Conference on Artificial Intelligence, pages 677–682, Menlo Park, California.

Gigerenzer, G., Todd, P. M., and Group, A. R. (1999). Simple Heuristics that make us smart.
Oxford University Press.

Gilbert, D. T. and Malone, P. S. (1995). The correspondence bias. Psychological Bulletin,
117(1):21–38.

Gilbert, G. N. and Troitzsch, K. G. (1999). Simulation for the Social Scientist. Taylor & Francis,
Inc., Bristol, PA, USA.

Gluck, K. A. and Pew, R. W., editors (2005). Modeling human behavior with integrated cogni-
tive architectures: comparison evaluation and validation. Lawrence Erlbaum Associates, Inc.,
Mahwah, NJ, USA.

Gomboc, D., Solomon, S., Core, M., Lane, H., and van Lent, M. (2005). Design recommendations
to support automated explanation and tutoring. In Proceedings of the Fourteenth Conference
on Behavior Representation In Modeling and Simulation (BRIMS 2005), Arlington, VI, USA.
Simulation Interoperability Standards Organization.

Gordon, A. S. (2005). Commonsense psychology and the functional requirements of cognitive
models. In Proceedings of the 2005 AAAI Workshop on Modular Construction of Human-like
Intelligence, Menlo Park, CA. AAAI Press.

Gratch, J. and Marsella, S. (2001). Tears and fears: Modeling emotions and emotional behaviors
in synthetic agents. In Proceedings of the 5th International Conference on Autonomous Agents.

Gray, W. D. (2007a). Composition of integrated cognitive systems. In (Gray, 2007b), pages 3–12.

Gray, W. D., editor (2007b). Integrated models of cognitive systems. Oxford University Press, New
York, NY, USA.



282 Bibliography

Gray, W. D. and Boehm-Davis, D. A. (2000). Milliseconds matter: An introduction to microstrate-
gies and to their use in describing and predicting interactive behavior. Journal of Experiment
Psychology: Applied, 6:322–335.

Gray, W. D. and Fu, W.-T. (2004). Soft constraints in interactive behavior: The case of ignor-
ing perfect knowledge in-the-world for imperfect knowledge in-the-head. Cognitive Science,
28:359–382.

Gray, W. D., Sims, C. R., Fu, W.-T., and Schoelles, M. J. (2006). The soft constraints hypothesis: A
rational analysis approach to resource allocation for interactive behavior. Psychological Review,
113:461–482.

Groot, A. D. d. (1969). Methodology: Foundations of Inference in Research in the Behavioral
Sciences. Mouton & Co, The Hague, the Netherlands.

Gunzelmann, G. and Anderson, J. (2001). An ACT-R model of the evolution of strategy use
and problem difficulty. In Proceedings of the Fourth International Conference on Cognitive
Modeling (ICCM 2001), pages 109–114, Mahwah, NJ, USA. Lawrence Erlbaum Associates,
Inc.

Gunzelmann, G., Gluck, K. A., Price, S., Dongen, H. P. A. V., and Dinges, D. F. (2007). Decreased
arousal as a result of sleep deprivation. In (Gray, 2007b), pages 243–253.

Hancock, P. A. and Desmond, P. A., editors (2001). Stress, Workload, and Fatigue. Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, USA.

Hancock, P. A. and Meshkati, N., editors (1988). Human mental workload. North-Holland, Ams-
terdam, the Netherlands.

Hancock, P. A. and Warm, J. S. (1989). A dynamic model of stress and sustained attention. Human
Factors, 31(5):519–537.

Hanus, M. (1994). The integration of functions into logic programming: From theory to practice.
Journal of Logic Programming, 19:583–628.

Harris, W., Hancock, P., and Harris, S. (2005). Information processing changes following extended
stress. Military Psychology, 17(2):115–128.

Hart, P. E., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107.

Hasson, U. and Johnson-Laird, P. N. (2003). Why believability cannot explain belief revision. In
Alterman, R. and Kirsh, D., editors, Proceedings of the 25th Annual Conference of the Cognitive
Science Society (CogSci 2003), Mahwah, NJ, USA. Lawrence Erlbaum Associates, Inc.

Hawkins, S. A. and Hastie, R. (1990). Hindsight: biased judgments of past events after the out-
comes are known. Psychological Bulletin, 107(03):311–327.



Bibliography 283

Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence, 26(3):251–
321.

Hertwig, R. and Todd, P. (2003). More is not always better: The benefits of cognitive limits.
In Hardman, D. and Macchi, L., editors, Thinking: Psychological perspectives on reasoning,
judgment, and decision making, pages 213–231. John Wiley & Sons, Inc., Chichester, England.

Heuvelink, A. (2007). A belief framework for modeling cognitive agents. In Proceedings of the
8th International Conference on Cognitive Modeling (ICCM 2007), pages 235–240. Psychology
Press.

Heuvelink, A. and Both, F. (2007). BOA: A cognitive tactical picture compilation agent. In Pro-
ceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT 2007), pages 175–181. IEEE-CS Press.

Heuvelink, A., Klein, M. C. A., and Lambalgen, R. L. C. v. (2009a). Modeling human information
acquisition strategies. In Proceedings of the 31st Annual Conference of the Cognitive Science
Society (CogSci 2009). Cognitive Science Society. In print.

Heuvelink, A., Klein, M. C. A., and Treur, J. (2008a). An agent memory model enabling ratio-
nal and biased reasoning. In Proceedings of the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2008), pages 193–199.

Heuvelink, A., Klein, M. C. A., and Treur, J. (2008b). A formal approach to belief aggregation.
In Proceedings of the 12th International Workshop on Cooperative Information Agents (CIA
2008), volume 5180 of Lecture Notes of Artificial Intelligence, pages 71–85. Springer-Verlag.

Heuvelink, A. and Mioch, T. (2008). FeGA: a feedback generation agent. In Proceedings of the
2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2008),
pages 567–572.

Heuvelink, A., Mioch, T., and Doesburg, W. A. v. (2009b). CaDeF: Towards a method for describ-
ing cognitive agent capabilities. Unpublished.

Heuvelink, A. and Treur, J. (2008). Controlling biases in demanding tasks. In Proceedings of
the 30th Annual Conference of the Cognitive Science Society (CogSci 2008), pages 1392–1397.
Cognitive Science Society.

Hintzmann, D. (1986). “schema abstraction” in a multiple-trace memory model. Psychological
Review, 93:411–428.

Hirsch, C., Clark, D., and Mathews, A. (2006). Imagery and interpretations in social phobia:
support for the combined cognitive biases hypothesis. Behavior Therapy, 37(3):223–236.

Hoffman, P., Earle, T., and Slovic, P. (1981). Multidimensional functional learning (MFL) and
some new conceptions of feedback. Organizational Behavior and Human Decision Processes,
27(1):75–102.



284 Bibliography

Hogarth, R. M. and Einhorn, H. J. (1992). Order effects in belief updating: The belief-adjustment
model. Cognitive Psychology, 24:1–55.

Hollnagel, E. (1993). The phenotype of erroneous actions. International Journal on Man-Machine
Studies, 39(1):1–32. kan.

Hulme, C., Roodenrys, S., Brown, G., and Mercer, R. (1995). The role of long-term memory
mechanisms in memory span. British Journal of Psychology, 86:527–536.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19:265–288.

James, W. (1890). The principles of psychology (Vol. 1). Holt, New York, NY, USA.

Johnson, T. R., Wang, H., Zhang, J., and Wang, Y. (2002). A model of spatio-temporal coding
of memory for multidimensional stimuli. In Gray, W. and Schunn, C., editors, Proceedings of
the 24th Annual Conference of the Cognitive Science Society (CogSci 2002), pages 506–511,
Mahwah, NJ, USA. Lawrence Erlbaum Associates, Inc.

Johnston, W. A. and Heinz, S. P. (1978). Flexibility and capacity demands of attention. Journal of
Experimental Psychology: General, 107:420–435.

Jones, R. M., Laird, J., Nielsen, P., Coulter, K., Kenny, P., and Koss, F. (1999). Automated intelli-
gent pilots for combat flight simulation. AI Magazine, 20(1):27–41.

Jones, R. M., Lebiere, C., and Crossman, J. A. (2007). Comparing modeling idioms in ACT-R
and Soar. In Lewis, R. L., Polk, T. A., and Laird, J. E., editors, Proceedings of the Ninth
International Conference on Cognitive Modeling (ICCM 2008). Psychology Press.

Juarez-Espinosa, O. and Gonzalez, C. (2004). Situation awareness of commanders: A cognitive
model. In Proceedings of the Thirteenth Conference on Behavior Representation In Modeling
and Simulation (BRIMS 2004), Arlington, VI, USA. Simulation Interoperability Standards Or-
ganization.

Kahnemann, D. (1973). Attention and Effort. Prentice-Hall, Englewood Cliffs, NJ, USA.

Kahnemann, D., Slovic, P., and Tversky, A., editors (1982). Judgement Under Uncertainty:
Heuristics and Biases. Cambridge University Press, Cambridge, UK.

Kieras, D. E. and Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and
performance with application to human-computer interaction. Human-Computer Interaction,
12:391–48.

Klein, G. (1998). Sources of Power. MIT Press, Cambridge, MA, USA.

Kodaganallur, V., Weitz, R., and Rosenthal, D. (2005). A comparison of model-tracing and
constraint-based intelligent tutoring paradigms. International Journal of Artificial Intelligence
in Education, 15:117–144.

Kodaganallur, V., Weitz, R., and Rosenthal, D. (2006). An assessment of constraint-based tu-



Bibliography 285

tors: A response to Mitrovic and Ohlssons critique of “A comparison of model-tracing and
constraint-based intelligent tutoring paradigms”. International Journal of Artificial Intelligence
in Education, 16:291–321.

Konieczny, S. and Pino Prez, R. (2002). Merging information under constraints: A logical frame-
work. Journal of Logic and Computation, 12(5):773–808.

Laird, J. E., Congdon, C. B., and Coulter, K. J. (2006). The Soar users manual version 8.6.3.
Available at http://ai.eecs.umich.edu/soar/sitemaker/docs/manuals/Soar8Manual.pdf.

Laird, J. E. and Duchi, J. (2000). Creating human-like synthetic characters with multiple skill
levels: A case study using the Soar quakebot. In Freed, M., editor, Proceedings of the 2000
AAAI Fall Symposium: Simulating Human Agents, pages 54–58.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). SOAR: an architecture for general intelli-
gence. Artificial Intelligence, 33(1):1–64.

Langley, P., Laird, J. E., and Rogers, S. (2006). Cognitive architectures: Research issues and
challenges. Technical report, Computational Learning Laboratory, CSLI, Stanford University,
CA.

Lebiere, C., Anderson, J., and Reder, L. (1994). Error modeling in the ACT-R production system.
In Proceedings of the 16th Annual Conference of the Cognitive Science Society (CogSci 1994),
pages 555–559, Mahwah, NJ, USA. Lawrence Erlbaum Associates, Inc.

Lehman, J. F., Laird, J., and Rosenbloom, P. (2006). A gentle introduction to Soar, an architecture
for human cognition: 2006 update.

Lewis, R. L. (2001). Cognitive theory, Soar. In Smelser, N. J. and Baltez, P. B., editors, In-
ternational Encylopedia of the Social and Behavioral Sciences, pages 2178–2183. Pergamon
(Elsevier Science), Amsterdam, the Netherlands.

Lucas, A. and Goss, S. (1999). The potential for intelligent software agents in defence simulation.
In Proceedings of the 1999 Conference on Information, Decision and Control (IDC 1999), pages
579–583.

Lundh, L., Czyzykow, S., and Öst., L. (1997). Explicit and implicit memory bias in panic disorder
with agoraphobia. Behaviour Research and Therapy, 35(11):1003–1014.

Lundh, L., Wikstrom, J., and Westerlund, J. (1999). Preattentive bias for emotional information in
panic disorder with agoraphobia. Journal of Abnormal Psychology, 108(2):222–232.

Maes, P. (1991). Situated agents can have goals. In Maes, P., editor, Designing Autonomous
Agents: Theory and Practice from Biology to Engineering and Back, pages 49–70. MIT press,
London, UK.

Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life, 1(1-2):135–162.



286 Bibliography

March, S. T. and Smith, G. F. (1995). Design and natural science research on information technol-
ogy. Decision Support Systems, 15:251–266.

Marinier, R. and Laird, J. (2007). Computational modeling of mood and feeling from emotion.
In Proceedings of the 29th Annual Conference of the Cognitive Science Society (CogSci 2007),
pages 461–466.

Matthews, G. and Desmond, P. (2002). Task-induced fatigue states and simulated driving perfor-
mance. Journal of Experimental Psychology: Section A, 55(2):659–686.

McBride, S., Merullo, D. J., Johnson, R., Banderet, L., and Robinson, R. (2007). Performance
during a 3-hour simulated sentry duty task under varied work rates and secondary task demands.
Military Psychology, 19(2):103–117.

McTear, M. (1993). User modeling for adaptive computer systems: A survey of recent develop-
ments. Artificial Intelligence Review, 7:157–184.

Menzel, W. (2006). Constraint-based modeling and ambiguity. International Journal of AIED,
16(1):29–63.

Mercier, H. and der Henst, J.-B. V. (2005). The source of beliefs in conflicting and non conflicting
situations. In Bara, B., Barsalou, L., and Bucciarelli, M., editors, Proceedings of the 27th Annual
Conference of the Cognitive Science Society (CogSci 2005), pages 1495–1500, Mahwah, NJ,
USA. Lawrence Erlbaum Associates, Inc.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psycological Review, 63:81–97.

Minsky, M. (1992). Future of AI technology. Toshiba Review, 47(7).

Mioch, T., Harbers, M., Doesburg, W. A. v., and Bosch, K. v. d. (2007). Enhancing human under-
standing through intelligent explanations. In Bosse, T., Castelfranchi, C., Neerincx, M., Sadria,
F., and Treur, J., editors, Proceedings of the First International Workshop on Human Aspects in
Ambient Intelligence, pages 73–83, Darmstadt, Germany.

Mitrovic, A., Koedinger, K., and Martin, B. (2003). A comparative analysis of cognitive tutoring
and constraint-based modelling. In Brusilovsky, P., Corbett, A., and de Rosis, F., editors, Pro-
ceedings of the Ninth International Conference on User Modeling (UM 2003), volume 2702 of
Lecture Notes in Artificial Intelligence, pages 313–322, London, UK. Springer-Verlag.

Mitrovic, A., Martin, B., and Suraweera, P. (2007). Intelligent tutors for all: The constraint-based
approach. IEEE Intelligent Systems, 22(4):38–45.

Mitrovic, A. and Ohlsson, S. (2006). A critique of Kodaganallur, Weitz, and Rosenthal, “A com-
parison of model-tracing and constraint-based intelligent tutoring paradigms”. International
Journal of Artificial Intelligence in Education, 16:277–289.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., and Holland, J. (2006). Authoring



Bibliography 287

constraint-based tutors in ASPIRE. In Ikeda, M., Ashley, K., and Chan, T.-W., editors, Proceed-
ings of the eigth International Conference on Intelligent Tutoring Systems (ITS 2006), volume
4053 of Lecture Notes in Computer Science, pages 41–50, London, UK. Springer-Verlag.

Miyake, A. and Shah, P., editors (1999). Models of working memory: Mechanisms of active
maintenance and executive control. Cambridge University Press, Cambridge, UK.

Morgan, G., Ritter, F. E., Stevenson, W., Schenck, I., and Cohen, M. A. (2005). dTank: An
environment for architectural comparisons of competitive agents. In Allender, L. and Kelley,
T., editors, Proceedings of the Fourteenth Conference on Behavior Representation In Modeling
and Simulation (BRIMS 2005), pages 133–140, Arlington, VI, USA. Simulation Interoperability
Standards Organization.

Morrison, J. (2003). A review of computer-based human behavior representations and their relation
to military simulations. IDA P-3845, Institute for Defense Analyses, Alexandria, VA, USA.

Moulin, B., Irandoust, H., Belanger, M., and Desbordes, G. (2002). Explanation and argumentation
capabilities: Towards the creation of more persuasive agents. Artificial Intelligence Review,
17:169–222.

Muller, T. J., Heuvelink, A., and Both, F. (2008). Implementing a cognitive model in ACT-R and
Soar: A comparison. In Proceedings of the 6th International Workshop on From Agent Theory
to Agent Implementation (AT2AI-6 2008) in conjunction with AAMAS 2008.

Neerincx, M. A. (2007). Modelling cognitive and affective load for the design of human-machine
collaboration. In Proceedings of the Seventh international conference on Engineering Psychol-
ogy and Cognitive Ergonomics (EPCE 2007), held as part of HCI International 2007, volume
4562 of Lecture Notes in Computer Science, pages 568–574. Springer.

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press, Cambridge, MA,
USA.

Newell, A. and Simon, H. (1963). GPS: A program that simulates human thought. In Feigenbaum,
E. A. and Feldman, J., editors, Computers and Thought, pages 279 – 293. McGraw-Hill, New
York, NY, USA.

Newell, A. and Simon, H. (1976). Computer science as empirical enquiry: Symbols and search.
Communications of the Association for Computing Machinery, 19(3):113–126.

Norling, E. and Ritter, F. (2004). A parameter set to support psychologically plausible variability
in agent-based human modelling. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), pages 758–765, Washington, DC,
USA. IEEE Computer Society.

Norling, E. J. (2004). Folk psychology for human modelling: Extending the BDI paradigm. In
Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), pages 202–209, Washington, DC, USA. IEEE Computer Society.



288 Bibliography

Norman, D. and Bobrow, D. (1975). On data-limited and resource-limited processes. Cognitive
Psychology, 7:44–64.

Nuxoll, A. and Laird, J. E. (2004). A cognitive model of episodic memory integrated with a gen-
eral cognitive architecture. In Proceedings of the Sixth International Conference on Cognitive
Modeling (ICCM 2004), pages 220–225.

Nuxoll, A. and Laird, J. E. (2007). Extending cognitive architecture with episodic memory. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence (AAAI 2007), pages 1560–
1564. AAAI Press.

Nuxoll, A., Laird, J. E., and James, M. R. (2004). Comprehensive working memory activation
in Soar. In Proceedings of the Sixth International Conference on Cognitive Modeling (ICCM
2004), pages 226–230.

Nwana, H. (1996). Software agents: an overview. Knowledge Engineering Review, 11(3):1–40.

Oser, R. L. (1999). A structured approach for scenario-based training. In Proceedings of the Human
Factors and Ergonomics Society 43rd Annual Meeting, pages 1138–1142, Santa Monica, CA,
USA.

Overmars, M. (2009). Designing games with game maker. Retrieved from
http://www.yoyogames.com/gamemaker.

Padgham, L. and Lambrix, P. (2005). Formalisations of capabilities for BDI-agents. Autonomous
Agents and Multi-Agent Systems, 10(3):249–271.

Paglieri, F. (2004). Data-oriented belief revision: Towards a unified theory of epistemic processing.
In E. Onaindia, S. S., editor, STAIRS 2004: 2nd Starting AI Researchers’ Symposium, pages
179–190. Amsterdam: IOS Press.

Parsons, S., editor (2001). Qualitative Methods for Reasoning under Uncertainty. The MIT Press,
Cambridge, MA, USA.

Perrin, B. M., Barnett, B. J., and Walrath, L. C. (1993). Decision making bias in complex task
environments. In Proceedings of the Human Factors and Ergonomics Society 37th Annual
Meeting, pages 1117–1121, Santa Monica, CA, USA.

Perry, M. (2003). Distributed cognition. In Carroll, J., editor, HCI Models, Theories, and Frame-
works: Toward an Interdisciplinary Science, pages 193–223. Morgan Kaufmann publishers Inc.,
San Mateo, CA, USA.

Pew, R. W. and Mavor, A. S., editors (1998). Modeling human and organizational behavior:
Application to military simulations. National Academy Press, Washington, DC, USA.

Pohl, R. F., editor (2004). Cognitive Illusions. Psychology Press.

Polson, M. C. and Richardson, J. J., editors (1988). Foundations of Intelligent Tutoring Systems.



Bibliography 289

Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA.

Posner, M. and Boies, S. (1971). Components of attention. Psycological Review, 78:391–408.

Presagis (2009). Ai-implant website. Retrieved from
http://www.presagis.com/products/simulation/details/aiimplant/.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In
Proceedings of the 7th European workshop on Modelling autonomous agents in a multi-agent
world : agents breaking away (MAAMAW 1996), pages 42–55, London, UK. Springer-Verlag.

Rao, A. S. and Georgeff, M. P. (1991). Modeling agents within a BDI-architecture. In Fikes,
R. and Sandewall, E., editors, Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), pages 473–484, San Mateo, CA, USA.
Morgan Kaufmann publishers Inc.

Rasmussen, J. (1983). Skills, rules, knowledge; signals, signs, and symbols, and other distinctions
in human performance models. IEEE Transactions on Systems, Man and Cybernetics, 13:257–
266.

Reason, J. (1988). Stress and cognitive failure. In Fisher, S. and Reason, J., editors, Handbook of
life stress, cognition and health, pages 405–423. John Wiley & Sons, Inc., London, UK.

Reason, J. T. (1990). Human Error. Cambridge University Press, Cambridge, UK.

Ritter, F., Baxter, G., Jones, G., and Young, R. (2001). User interface evaluation: How cognitive
models can help. In Carroll, J., editor, Human-computer interaction in the new millennium,
pages 125–147. Addison-Wesley, Reading, MA, USA.

Ritter, F., Shadbolt, N., Elliman, D., Young, R., Gobet, F., and Baxter, G. (2003). Cognitive
architectures: Research issues and challenges. Technical report, Defense Technical Information
Center, Wright-Patterson Air Force Base, OH, USA.

Ritter, F. E., Kase, S., Bhandarkar, D., Lewis, B., and Cohen, M. (2007a). dTank updated: Steps
towards exploring moderator-influenced behavior in a small synthetic environment. In Pro-
ceedings of the Sixteenth Conference on Behavior Representation In Modeling and Simulation
(BRIMS 2007), pages 51–60, Arlington, VI, USA. Simulation Interoperability Standards Orga-
nization.

Ritter, F. E., Reifers, A., Klein, A. C., and Schoelles, M. (2007b). Lessons from defining theories
of stress. In (Gray, 2007b), pages 254–262.

Rollings, A. and Adams, E. (2003). Andrew Rollings and Ernest Adams on Game Design. New
Riders Publishing.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd ed.). Prentice
Hall, Upper Saddle River, NJ, USA.



290 Bibliography

Ryder, J. M., Santarelli, T., Scolaro, J., Hicinbothom, J., and Zachary, W. W. (2000). Comparison
of cognitive model uses in intelligent training systems. In Human Factors and Ergonomics
Society Annual Meeting Proceedings, volume 44, pages 374–377, Santa Monica, CA, USA.
Human Factors and Ergonomics Society.

Ryder, J. M., Weiland, M. Z., Szczepkowski, M. A., and Zachary, W. W. (1998). Cognitive en-
gineering of a new telephone operator workstation using COGNET. International Journal of
Industrial Ergonomics, 22(6):417–429.

Sandercock, J. (2004). Lessons learned for construction of military simulations: A comparison
of artificial intelligence to human-controlled agents. DSTO TR-1614, Defence Science and
Technology Organisation Systems Sciences Laboratory, Adelaide, South Australia.

Schooler, L. J. and Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological
Review, 112(3):610–628.

Scott, B. (2002). The illusion of intelligence. In Rabin, S., editor, AI Game Programming Wisdom,
pages 16–20. Charles River Media.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.

Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence,
90(1-2):79–133.

Shields, S. (1983). Development of autonomic nervous system responsitivity in children: A review
of the literature. International Journal of Behavioral Development, 6:291–319.

Shortliffe, E., editor (1976). Computer-Based Medical Consultations: MYCIN. Elsevier / North
Holland, New York, NY, USA.

Shvaiko, P. and Euzenat, J. (2005). A survey of schema-based matching approaches. Journal on
Data Semantics IV, 3730:146–171.

Silverman, B. G., Johns, M., Cornwell, J., and OBrien, K. (2006). Human behavior models for
agents in simulators and games: Part I: Enabling science with PMFserv. Presence, 15(2):139–
162.

Simon, H. (1967). The Sciences of the Artificial. MIT Press, Cambridge, MA, USA.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review,
63:129–138.

Simon, H. A. (1997). Allen Newell: March 19, 1927 - July 19, 1992. In Biographic Memoirs,
volume 71. National Academy of Sciences.

Sloman, A. (1997). What sort of architecture is required for a humanlike agent? In Wooldridge,
M. and Rao, A., editors, Foundations of Rational Agency, pages 35–52. Kluwer Academic, New
York, NY, USA.



Bibliography 291

Sloman, A., Chrisley, R., and Scheutz, M. (2005). The architectural basis of affective states and
processes. In Fellous, J.-M. and Arbib, M., editors, Who Needs Emotions?: The Brain Meets
the Machine, pages 203–244. Oxford University Press, New York, NY, USA.

Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin,
119:3–22.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences,
11:1–23.

Sripada, S. M. (1993). A temporal approach to belief revision in knowledge bases. In Proceedings
of the 9th Conference on Artificial Intelligence for Applications (CAIA 1993), pages 56–62,
Orlando, FL, USA. IEEE Computer Society Press.

Stottler, R. and Vinkavich, M. (2000). Tactical action officer intelligent tutoring system (TAO
ITS). In Proceedings of the Interservice/Industry Training, Simulation and Education Confer-
ence (I/ITSEC 2000).

Strien, P. v. (1997). Towards a methodology of psychological practice: the regulative cycle. Theory
Psychology, 7:683–700.

Stytz, M. R. and Banks, S. B. (2003a). Progress and prospects for the development of com-
puter generated actors for military simulation: Part 1: Introduction and background. Presence,
12(3):311 325.

Stytz, M. R. and Banks, S. B. (2003b). Progress and prospects for the development of computer
generated actors for military simulation: Part 3: The road ahead. Presence, 12(6):629–643.

Sun, R., editor (2002a). Duality of the Mind: A Bottom-up Approach Toward Cognition. Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, USA.

Sun, R. (2002b). Hybrid systems and connectionist implementationalism. In Nadel, L., editor,
Encyclopedia of Cognitive Science, volume 1, pages 697–703. Macmillan.

Teachman, B. A., Smith-Janika, S. B., and Saporito, J. (2007). Information processing biases and
panic disorder: Relationships among cognitive and symptom measures. Behaviour Research
and Therapy, 45(8):1791–1811.

Thagard, P. (1992). Adversarial problem solving: Modeling an oponent using explanatory coher-
ence. Cognitive Science, 16(1):123–149.

Thagard, P. (2000). Coherence in Thought and Action. MIT Press, Cambridge, MA, USA.

Todd, P. M. and Gigerenzer, G. (2000). Precis of simple heuristics that make us smart. Behavioral
and Brain Sciences, 23:727–780.

Tozour, P. (2002). The evolution of game AI. In Rabin, S., editor, AI Game Programming Wisdom,
pages 3–15. Charles River Media.



292 Bibliography

Tracz, W. (1990). The 3 cons of software reuse. In Proceedings of the 3rd Workshop on Software
Reuse.

Tulving, E. (1972). Episodic and semantic memory. In E.Tulving and Donaldson, W., editors,
Organization of memory, pages 381–403. Academic Press, New York, NY, USA.

Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53:1–25.

Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Sci-
ence, 185:1124–1131.

Tversky, A. and Kahneman, D. (1982). Judgments of and by representativeness. In (Kahnemann
et al., 1982), pages 84–98.

US-Army (2002). FM 17-96, the reconnaissance, surveillance, and target acquisition (RSTA)
squadron of the brigade combat team. Technical report, U.S. Department of the Army, Wash-
ington, DC, USA.

Van Lent, M., McAlinden, R., Brobst, P., Silverman, B., O’Brien, K., and Cornwell, J. (2004).
Enhancing the behavioral fidelity of synthetic entities with human behavior models. In Pro-
ceedings of the Thirteenth Conference on Behavior Representation In Modeling and Simulation
(BRIMS 2004), pages 1495–1500, Arlington, VI, USA. Simulation Interoperability Standards
Organization.

VanLehn, K. (1988). Student modeling. In (Polson and Richardson, 1988), pages 55–78.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of AIED, 16:227–
265.

Walsh, C. R. and Sloman, S. A. (2004). Revising causal beliefs. In Forbus, K., Gentner, D., and
Regier, T., editors, COGSCI ’04: Proceedings of the 26th Annual Conference of the Cognitive
Science Society, pages 1423–1427, Mahwah, NJ, USA. Lawrence Erlbaum Associates, Inc.

Wang, H. and Johnson, T. (1998). UEcho: A model of uncertainty management in human abductive
reasoning. In Gernsbacher, M. A. and Derry, S. J., editors, Proceedings of the 20th Annual
Conference of the Cognitive Science Society (CogSci 1998), pages 1113–1118, Mahwah, NJ,
USA. Lawrence Erlbaum Associates, Inc.

Wang, H., Zhang, J., and Johnson, T. (2000). Human belief revision and the order effect. In
Gleitman, L. and Joshi, A., editors, Proceedings of the 22nd Annual Conference of the Cog-
nitive Science Society (CogSci 2000), pages 547–552, Mahwah, NJ, USA. Lawrence Erlbaum
Associates, Inc.

Weiland, M., Campbell, G. E., Zachary, W., and Cannon-Bowers, J. A. (1998). Applications of
cognitive models in a combat information center. In Proceedings of 1998 Command and Control
Research and Technology Symposium, pages 770–782.

Wickens, C. D. and Flach, J. (1988). Information processing. In Wiener, E. L. and Nagel, D. C.,



Bibliography 293

editors, Human Factors in Aviation, pages 111–155. Academic Press, San Diego, CA, USA.

Wielemaker, J. (2003). An overview of the SWI-prolog programming environment. In Proceedings
of the 13th International Workshop on Logic Programming Environments, pages 1–16.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4):625–
636.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10(2):115–152.

Wray, R. E., Laird, J. E., Nuxoll, A., and Jones, R. M. (2002). Intelligent opponents for virtual
reality trainers. In Proceedings of the Interservice/Industry Training, Simulation and Education
Conference (I/ITSEC 2002).

Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., and Kerfoot, A. (2004). Synthetic adversaries
for urban combat training. In Proceedings of Innovative Applications of Artificial Intelligence.
AAAI Press.

Zachary, W., J.Cannon-Bowers, Bilazarian, P., Krecker, D., Lardieri, P., and Burns, J. (1999).
The advanced embedded training system (AETS): An intelligent embedded tutoring system for
tactical team training. International Journal of Artificial Intelligence in Education, 10:257–277.

Zachary, W., Le Mentec, J.-C., and Ryder, J. (1996). Interface agents in complex systems. In Ntuen,
C. and Park, E., editors, Human Interaction with Complex Systems: Conceptual Principles and
Design Practice, pages 35–52. Kluwer Academic Publisher, Norwell, MA, USA.

Zachary, W., Ryder, J., and Hicinbothom, J. (1998). Cognitive task analysis and modeling of de-
cision making in complex environments. In Cannon-Bowers, J. and Salas, E., editors, Decision
Making Under Stress: Implications for Training and Simulation, pages 315–344. APA Press,
Washington, DC, USA.

Zachary, W., Ryder, J., Ross, L., and Weiland, M. (1992). Intelligent human-computer interaction
in real time, multi-tasking process control and monitoring systems. In Helander, M. and Naga-
machi, M., editors, Human Factors in Design for Manufacturability, pages 377–402. Taylor and
Francis, New York, NY, USA.

Zhang, J., Johnson, T., and Wang, H. (1998). Order effects and frequency learning in tactical
decision making. Thinking and Reasoning, 4(2):123–145.

Zsambok, C. E. and Klein, G., editors (1997). Naturalistic Decision Making. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, USA.





Proefschrift Samenvatting

In dit proefschrift, getiteld “Cognitieve modellen voor trainingssimulaties”, hebben we
onderzoek gedaan naar modellen van de menselijke cognitie met de achterliggende vraag
hoe zulke cognitieve modellen kunnen bijdragen aan de training van personen in gesimu-
leerde omgevingen. In het bijzonder hebben we gekeken naar de vraag of cognitieve
modellen gebruikt kunnen worden om de mensen te vervangen die nu vaak nodig zijn
voor simulatietraining (instructeurs en rollenspelers).

In hoofdstuk 1 wordt de motivatie voor dit onderzoek uitvoerig beschreven en ver-
kennen we de ambitie om mensen in trainingssimulaties te vervangen door intelligente
software, ook wel ‘agenten’ genoemd. Uit die verkenning zijn drie onderzoeksvragen
voortgekomen. De eerste onderzoeksvraag is: Hoe kan een cognitieve agent gedrag ver-
tonen dat net zoals het gedrag van mensen variabel en foutgevoelig kan zijn? Mensen
gedragen zich namelijk lang niet altijd rationeel, maar laten zich - vaak onbewust - lei-
den door allerlei interne en externe omstandigheden. Als we de effecten van deze om-
standigheden op gedrag goed kunnen representeren in een model, dan kunnen we dit
model vervolgens gebruiken om agenten te bouwen die zich ‘menselijk’ gedragen. Het
onderzoek naar deze eerste vraag vormt het grootste deel van dit proefschrift. De tweede
onderzoeksvraag is: Hoe kunnen capaciteiten van cognitieve agenten beschreven wor-
den? Deze vraag is relevant omdat voor het kosteneffectief ontwikkelen van cognitieve
agenten het belangrijk is dat eerder ontwikkelde capaciteiten hergebruikt kunnen worden.
De derde onderzoeksvraag heeft betrekking op een functie die normaliter een instructeur
in een simulatietraining vervult: Hoe kan een agent terugkoppeling geven op het taakre-
sultaat én op de taakuitvoering van een student?

We hebben deze drie vragen voornamelijk onderzocht binnen het domein van de Ne-
derlandse marine. In de inleiding gaan we daarom ook kort in op het militaire domein,
met name op het begrip situational assessment, dat situatiebeoordeling betekent en wat
leidt tot situational awareness, oftewel situationeel bewustzijn. Situatiebeoordeling ligt
ten grondslag aan vele militaire taken en wordt dan ook uitvoerig getraind.



296 Samenvatting

In hoofdstuk 2 geven we een overzicht van bestaand onderzoek dat gerelateerd is aan
onze onderzoeksvragen. Vooral studies uit de cognitiewetenschappen en de kunstmatige
intelligentie zijn voor dit proefschrift van belang. De cognitiewetenschap doet voor-
namelijk empirisch-experimenteel onderzoek naar het gedrag van mensen en ontwikkelt
modellen op basis van die bevindingen. Dit verschilt van de modellen en instrumenten
ontwikkeld binnen de kunstmatige intelligentie: deze zijn doorgaans slechts geı̈nspireerd
door de menselijke cognitie.

In hoofdstuk 3 onderzoeken we hoe we het menselijk vermogen om een situationeel
bewustzijn op te bouwen zo kunnen modelleren dat een cognitieve agent dat ook kan.
Mensen interpreteren een situatie in de wereld door gebruik te maken van allerlei typen
informatie, zoals observaties, kennis-van-de-wereld, verwachtingen, enzovoort. Om dit
soort informatie te representeren binnen een agent maken we gebruik van beliefs, dat
letterlijk vertaald overtuigingen betekent. Het woord overtuiging geeft aan dat het geen
feiten zijn waarmee geredeneerd wordt, maar interpretaties van feiten. Aan elk van deze
overtuigingen verbinden we dan ook een zekerheidswaarde, bron en tijdslabel. Met be-
hulp van deze extra informatie kunnen we de agent zo met zijn overtuigingen om laten
gaan, dat die in meer of mindere mate beı̈nvloed kunnen worden door interne en ex-
terne omstandigheden. Met behulp van een historisch voorbeeld tonen we aan dat het
met onze aanpak mogelijk is een typisch menselijke foutieve situatiebeoordeling na te
bootsen. Vervolgens gebruiken we deze aanpak om een tactische beeldopbouwer van de
marine te modelleren. Dit model hebben we geı̈mplementeerd in de cognitieve archi-
tectuur ACT-R. De resulterende agent kan een tactisch beeld opbouwen op zowel een
rationele, alsook op een meer menselijke manier. Om te laten zien dat het door ons ont-
wikkelde model generiek is en niet gebonden is aan een specifieke architectuur, hebben
we de agent geherimplementeerd in Soar, een andere cognitieve architectuur.

In hoofdstuk 4 presenteren we onderzoek naar hoe een agent op een menselijke
manier overtuigingen kan opslaan en herinneren. In hoofdstuk 3 legden we uit dat een
agent met behulp van overtuigingen zich een beeld van de wereld kan vormen. Dit beeld
is niet statisch, maar dynamisch, waarbij de ene overtuiging de andere kan overschrijven.
Gedateerde overtuigingen blijven wel bewaard, zodat er geredeneerd kan worden over
gebeurtenissen in de tijd (de vaarrichting van een schip kan bijvoorbeeld afgeleid wor-
den uit twee overtuigingen over diens positie). Het opslaan van gedateerde overtuigingen
heeft echter wel tot gevolg dat er een onhanteerbare grote hoeveelheid overtuigingen
ontstaat, die bijvoorbeeld de in het vorige hoofdstuk geı̈ntroduceerde beeldopbouwagent
zienderogen deed vertragen. In dit hoofdstuk stellen we dan ook twee mechanismen
voor om de hoeveelheid overtuigingen waarmee de agent kan redeneren hanteerbaar te
houden. Het eerste mechanisme betreft de bewerking van specifieke overtuigingen tot



Samenvatting 297

a) samengestelde overtuigingen (bijv. een overtuiging over de maximale snelheid van
een schip uit een set van overtuigingen over de snelheid van dat schip) en b) tot geab-
straheerde overtuigingen (bijv. een overtuiging dat een schip snel heeft gevaren, zonder
precies te weten hoe snel of wanneer dat was). Het tweede mechanisme betreft de toeken-
ning van een activatiewaarde aan overtuigingen. De activatiewaarde is afhankelijk van
hoe vaak en hoe recent een overtuiging gebruikt is en bepaalt of de agent de overtuiging
nog uit zijn geheugen kan oproepen of niet. Aan de hand van een voorbeeld demonstre-
ren we de werking van het geheugenmodel. Hierbij focussen we ons op de mogelijkheid
van het model om preciese gedetailleerde redeneringen te ondersteunen, als ook grovere,
minder accurate gedachtestappen.

In hoofdstuk 5 onderzoeken we hoe we kunnen modelleren dat het gedrag van cog-
nitieve agenten, net zoals dat van mensen, in meer of mindere mate beı̈nvloed wordt
door interne en externe omstandigheden. De eerder ontwikkelde componenten voor de
overtuigingen en het geheugen van een cognitieve agent zijn in staat om dit gedrag te
ondersteunen, maar ze zijn niet gebouwd om te bepalen welk gedrag optreedt. In dit
hoofdstuk ontwikkelen we allereerst een component die dit kan bepalen. Uit de cogni-
tiewetenschap is bekend dat het gedrag van mensen op een hoog niveau beı̈nvloed wordt
door de doelen die iemand zichzelf stelt. Hoe iemand vervolgens uiting geeft aan deze
doelen is afhankelijk van de omstandigheden, bijv. van de taaklast en de tijdsdruk. Om
dit te modelleren hebben we twee mechanismen ontwikkeld. Het eerste mechanisme
bestaat uit een deliberatiemodel waarmee de agent bepaalt - op basis van zijn doelen, de
beschikbare cognitieve denkkracht en het stressniveau - welke cognitieve processen wor-
den uitgevoerd. Het tweede mechanisme is een stressmodule die berekent hoeveel stress
er optreedt als functie van de cognitieve taakbelasting. Met deze mechanismen tezamen
kunnen we een dynamisch stressniveau creëren. Aan de hand van een voorbeeld laten
we zien dat een agent onder hoge stress andere keuzes maakt (in het bijzonder cogni-
tief ‘goedkopere’ redeneeracties kiest, die mogelijk tot een foutieve situatiebeoordeling
leiden) dan wanneer hij geen of weinig stress ervaart.

Een groot deel van de menselijke cognitie bestaat uit het afleiden van informatie uit
andere informatie. Als een agent een specifieke redeneerregel heeft gekozen om zijn
doel te bereiken (bijv. het bepalen van de snelheid van een schip door deze af te leiden
uit twee overtuigingen over diens positie met verschillende tijdslabels) dan is het voor
het uitvoeren van zo’n regel nodig dat bepaalde informatie beschikbaar is (in dit geval de
twee overtuigingen over de positie van het schip). De tweede component die we in dit
hoofdstuk ontwikkelen heeft als functie om te bepalen hoe dit type informatie het beste
beschikbaar gemaakt kan worden, namelijk a) door het te observeren in de wereld of b)
door het op te halen uit het geheugen. Om te onderzoeken wat mensen doen, hebben



298 Samenvatting

we een experiment opgezet met een taak waarin specifieke informatie nodig is die op
verschillende manieren verkregen kon worden. Het experiment bestond uit twee condi-
ties: in de ene conditie waren de kosten van het opvragen van informatie in de wereld
groter dan de kosten van het maken van fouten, in de andere conditie was het omgekeerde
het geval. Op basis hiervan verwachtten we verschillend gedrag te zien, maar dit bleek
niet zo te zijn. Naar aanleiding van dit resultaat hypothetiseren we dat mensen voor
deze taak niet in staat zijn om door middel van een rationele kostenbaten analyse een
keuze te maken tussen de mogelijke acties, maar dat mensen deze keuze bepalen door
een andere, heuristische taakstrategie. Om dit te onderzoeken hebben we verschillende
taakstrategieën gemodelleerd en hebben we een cognitieve agent geı̈mplementeerd die
aan de hand van een bepaalde strategie de taak uitvoert. Om onze hypothese te toetsen
hebben we de empirische gegevens van de mensen met de data van de agent vergeleken.
Uit deze vergelijking bleek dat het gedrag van de mensen dankzij de ontwikkelde taak-
strategieën redelijk door de agent nagebootst kon worden, maar dat er voor het maken
van een compleet juist model nog verder onderzoek nodig is.

In hoofdstuk 6 doen we onderzoek naar het kosteneffectief ontwikkelen van cogni-
tieve agenten. Eén van de motivaties voor het onderzoek gepresenteerd in dit proefschrift
is dat met cognitieve modellen mogelijk rollenspelers, die doorgaans nodig zijn voor si-
mulatietraining, vervangen kunnen worden. Als we met cognitieve agenten de menselijke
inzet kunnen verminderen, kan dit een aanzienlijke kostenbesparing opleveren, maar dan
moeten die agenten wel op een kosten-efficiënte manier ontwikkeld kunnen worden. Eén
manier om kosten te drukken is het hergebruik van eerder ontwikkelde (componenten
van) agenten. Een belangrijke voorwaarde voor hergebruik van ontwikkelde compo-
nenten is een juiste specificatie van hun inhoud, zodat ze op basis daarvan later weer
geselecteerd kunnen worden. In dit hoofdstuk doen we het voorstel om componenten
van cognitieve agenten te specificeren aan de hand van de cognitieve capaciteiten die
ze bezitten. Om dit gestandaardiseerd te doen, hebben we een structuur ontwikkeld om
cognitieve capaciteiten te beschrijven en wel aan de hand van hun eigenschappen. We de-
monstreren de structuur door een aantal van de componenten van de beeldopbouwagent
uit hoofdstuk 3 te beschrijven.

In hoofdstuk 7 bespreken we hoe cognitieve modellen gebruikt kunnen worden om
de rol van instructeur in een simulatietraining door een intelligente agent te laten vervullen.
De taak van een instructeur is het geven van terugkoppeling op het taakgedrag van een
student, zodat deze zijn taakkennis kan vergroten. Een voorwaarde voor het geven van
zo’n terugkoppeling is het maken van een inschatting van de correctheid waarmee de
student zijn taak uitvoert. Zo’n inschatting maakt een instructeur door het gedrag van
de student te observeren en deze te relateren aan zijn kennis over juist en foutief gedrag.



Samenvatting 299

Om dit gedrag van de instructeur te modelleren, maken we gebruik van cognitieve mo-
dellen. In het bijzonder hebben we in dit hoofdstuk een intelligente agent ontwikkeld
die gegevens verzamelt over het taakgedrag van de student en deze vergelijkt met het
gedrag van een verzameling cognitieve modellen. Eén daarvan is een expertmodel die de
taak correct uitvoert; de andere cognitieve modellen zijn in meer of mindere mate onjuist
(bijv. doordat er bepaalde essentiële taakkennis mist, of doordat er onjuiste redeneringen
in gebruikt worden) en leiden mogelijk tot foutief gedrag. Aan de hand van deze verge-
lijkingen komt de agent tot een inschatting van het taakgedrag van de student en geeft
op basis daarvan een bijpassende terugkoppeling. Om onze intelligente agent te toetsen
hebben we gebruik gemaakt van gesimuleerde studenten, die elk een bepaald type fout
representeerden. Uit de evaluatie bleek dat de agent praktisch alle gemaakte denkfouten
juist kon diagnostiseren.

In hoofdstuk 8 tenslotte vatten we het onderzoek uit dit proefschrift samen en trekken
we conclusies over de toepassingsmogelijkheden van cognitieve modellen voor train-
ingssimulaties. Tevens inventariseren we welke vervolgonderzoeken nodig zijn, zowel
voor de korte als voor de lange termijn.





Dankwoord

Nu mijn proefschrift af is zijn er mensen die me geı̈nteresseerd de notoire vraag stellen:
“Waar zie je jezelf over vijf jaar?” Als deze vraag me vijf jaar geleden gesteld was, dan
had ik waarschijnlijk geantwoord met een beeld dat overeenkomt met mijn huidige situ-
atie: gepromoveerd en aan het werk bij een leuk wetenschappelijk onderzoeksinstituut.
Wat ik vijf jaar geleden niet had kunnen bedenken zijn de mensen, die ik in die periode
zou ontmoeten en de inzichten, die ik op zou doen.

Allereerst wil ik de twee mensen bedanken die mij gedurende het hele traject hebben
begeleid: mijn promotor Jan Treur van de Vrije Universiteit en mijn co-promotor Karel
van den Bosch van TNO. Van Jan heb ik, met vallen en opstaan, geleerd dat je weten-
schappelijk onderzoek niet alleen hoeft te doen. De Annerieke die binnenkwam dacht
vooral aan te moeten tonen dat ze zelf in staat was tot allerlei grootse zaken; mijn huidige
ik ziet veel meer het belang van goede samenwerking en hoe je samen verder komt dan
alleen. Karel is degene die mij vanaf het begin heeft ondersteund op een manier die ik
als van een vader zou willen omschrijven. Altijd betrokken, met oog voor niet alleen de
wetenschappelijke kant van mijn onderzoek, maar vooral ook voor mij. Daarnaast heb
ik veel geleerd van Karels kritische blik ten opzichte van geschreven tekst. Als u dit
proefschrift goed leesbaar vindt, dan weet u wie hiervoor te danken.

Als derde wil ik Catholijn Jonker bedanken en niet alleen voor haar rol als lid van
de leescommissie. Toen ik op een gegeven moment tijdens mijn promotietraject niet zag
hoe ik de eindstreep zou kunnen bereiken was het haar chargerende opmerking in de trant
van ‘misschien kan je er beter mee stoppen’ die me liet voelen dat dat geen optie was.
Het is mede aan haar coaching te danken dat dit proefschrift nu voor u ligt. Ook Michel
Klein, mijn tweede co-promotor, heeft daaraan bijgedragen. Ik waardeer Michel erg
voor de betrokkenheid waarmee hij zich opgesteld heeft, ondanks dat hij pas laat bij mijn
promotie betrokken is geraakt. In dit rijtje wil ik ook Egon van den Broek noemen die
mij juist in de beginperiode begeleid heeft en vanuit zijn doelgerichtheid een inspirerend
voorbeeld was.



302 Dankwoord

Naast Jan en Michel wil ik alle co-auteurs bedanken van de papers die in dit proef-
schrift zijn opgenomen: Fiemke Griffioen-Both, Rianne van Lambalgen, Tijmen Muller,
Tina Mioch en Willem van Doesburg. Fiemke en Tina, ik had me geen betere master-
studenten kunnen wensen.

I am very grateful to the members of the reading committee: Catholijn Jonker, Cris-
tiano Castelfranchi, Frank van Harmelen, Johan Hoorn, John-Jules Meyer, Mark Nee-
rincx, and Wayne Gray. Thank you for spending some of your precious time on reading
my dissertation, and on providing me with valuable comments.

Dit proefschrift was er niet geweest zonder de samenwerking tussen de VU en TNO
die mij in staat heeft gesteld wetenschappelijk onderzoek te doen voor een concrete
toepassing. Ik ben altijd dankbaar geweest voor deze promotieconstructie waarbij ik
naast vier dagen op TNO, gemiddeld ook een dag in de week op de VU werkzaam was.

Van de VU wil ik alle collega’s van de AI afdeling en vooral van de Agent Systems
Research groep bedanken voor de gezelligheid tijdens mijn dagen daar, alsook tijdens
conferenties in het buitenland. Vanuit de beginperiode wil ik met name Alexei Sharpan-
skykh, Mark van Assem, Mark Hoogendoorn, en Tibor Bosse bedanken; voor het einde
‘de dames’. Via de VU heb ik ook deelgenomen aan SIKS, the School for Information
Knowledge Systems. Alle sprekers die daar cursussen hebben gegeven en medepro-
movendi met wie ik eindeloos nageborreld en geweerwolfd heb: bedankt.

Van TNO wil ik vooral alle (voormalige) collega’s van de afdeling Training en In-
structie bedanken, waaronder in het bijzonder Anne Helsdingen, Jan Lubbers, Maaike
Harbers, Nicolet Theunissen, Rob Verkuylen, Tijmen, Tina en op nummer 1 mijn para-
nimf Willem met wie ik vijf jaar lang zoveel meer dan een kamer heb gedeeld. Ook wil
ik alle medepromovendi van TNO bedanken voor de gezellige etentjes en waardevolle
gesprekken. Van die groep wil ik Peter-Paul van Maanen extra bedanken: ik had nooit
zoveel van Amerika gezien als ik naast het kaartlezen ook de auto had moeten besturen.

Tijdens mijn promotie heb ik regelmatig geroepen dat ik “hartstikke ambitieus ben,
alleen ook in veel dingen naast mijn onderzoek!” Mijn vriendschappen zijn daar wel het
concreetste voorbeeld van. Allereerst wil ik ‘de Needse Meiden’ Annemieke, Daniëlle,
Frytzen en Hester bedanken. Ik ken jullie al heel lang en hoop dat nog veel langer te blij-
ven doen. Ten tweede mijn vrienden vanuit mijn oude CKI studie: Carola, Eva, Heleen,
Jannie, Maarten, Marieke, Martijn, Pieter, Pim, Rommert en Stefan. Ik ben ontzettend
blij met jullie. Paranimf Michiel, jij hoort natuurlijk ook in dat rijtje thuis, dank voor je
onvoorwaardelijke vriendschap. Ten derde wil ik ‘de Nieuwe Meiden’ bedanken voor het
delen van zoveel de laatste anderhalf jaar. Eefje, Eva, Maaike, Marieke, Marike en Saar,
hoe bijzonder om jullie in zo’n korte tijd zo goed te leren kennen. Buiten alle kaders
vallend wil ik Eveline, Jeanine en Lisette bedanken: jullie betekenen erg veel voor me.



Dankwoord 303

Als laatste dank aan iedereen die hier niet expliciet genoemd staat, maar met wie ik de
afgelopen jaren heb gelachen en een fijne tijd heb gehad.

Vijf jaar geleden had ik weinig zicht op hoe alles zou gaan lopen en wat mij zou
brengen tot waar ik nu ben. Eén ding had ik op dat moment gelukkig wel al kunnen be-
noemen: de onvoorwaardelijke steun van mijn familie. MaPa, dank voor alle luisterende
oren, peptalks, lieve kaartjes, bloemen-uit-de-bloementuin-meebrengende bezoekjes en
heerlijke maaltijden-met-groenten-uit-de-groentetuin-gevulde Needse weekendjes. Het
is fantastisch om me gekend en zo geliefd te weten. Henk Jan en Marike, prachtstel dat
jullie zijn, ik hoop dat wij nog lang van elkaar mogen genieten. Jantine, dearest sister,
wat ben ik toch blij met jou. Dr. worden is mooi, maar zussen zijn het allermooist.





SIKS Dissertatiereeks

1998
1998-1 Johan van den Akker (CWI) DEGAS - An Active, Temporal Database of Autonomous Objects
1998-2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information
1998-3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversations

within the Language/Action Perspective
1998-4 Dennis Breuker (UM) Memory versus Search in Games
1998-5 E.W.Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999
1999-1 Mark Sloof (VU) Physiology of Quality Change Modelling;

Automated modelling of Quality Change of Agricultural Products
1999-2 Rob Potharst (EUR) Classification using decision trees and neural nets
1999-3 Don Beal (UM) The Nature of Minimax Search
1999-4 Jacques Penders (UM) The practical Art of Moving Physical Objects
1999-5 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-Driven

Specification of Network Information Systems
1999-6 Niek J.E. Wijngaards (VU) Re-design of compositional systems
1999-7 David Spelt (UT) Verification support for object database design
1999-8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-Agent

Mechanism for Discrete Reallocation.

2000
2000-1 Frank Niessink (VU) Perspectives on Improving Software Maintenance
2000-2 Koen Holtman (TUE) Prototyping of CMS Storage Management
2000-3 Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van kennistechnologie;

een procesbenadering en actorperspectief.
2000-4 Geert de Haan (VU) ETAG,

A Formal Model of Competence Knowledge for User Interface Design
2000-5 Ruud van der Pol (UM) Knowledge-based Query Formulation in Information Retrieval.
2000-6 Rogier van Eijk (UU) Programming Languages for Agent Communication
2000-7 Niels Peek (UU) Decision-theoretic Planning of Clinical Patient Management
2000-8 Veerle Coup (EUR) Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI) Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI) Image Database Management System Design Considerations,

Algorithms and Architecture
2000-11 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Management

2001
2001-1 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks
2001-2 Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Models
2001-3 Maarten van Someren (UvA) Learning as problem solving
2001-4 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with



306 SIKS Dissertatiereeks

Instance-Based Boundary Sets
2001-5 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style
2001-6 Martijn van Welie (VU) Task-based User Interface Design
2001-7 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualization
2001-8 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent Systems Dynamics.
2001-9 Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large Object-Oriented Models,

Views of Packages as Classes
2001-10 Maarten Sierhuis (UvA) Modeling and Simulating Work Practice

BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA) Knowledge Management:
The Role of Mental Models in Business Systems Design

2002
2002-01 Nico Lassing (VU) Architecture-Level Modifiability Analysis
2002-02 Roelof van Zwol (UT) Modelling and searching web-based document collections
2002-03 Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval
2002-04 Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov Model in Data Mining
2002-05 Radu Serban (VU) The Private Cyberspace Modeling Electronic Environments

inhabited by Privacy-concerned Agents
2002-06 Laurens Mommers (UL) Applied legal epistemology;

Building a knowledge-based ontology of the legal domain
2002-07 Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications
2002-08 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innovative

E-Commerce Ideas
2002-09 Willem-Jan van den Heuvel(KUB) Integrating Modern Business Applications with Objectified Legacy Systems
2002-10 Brian Sheppard (UM) Towards Perfect Play of Scrabble
2002-11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics:

Biological and Organisational Applications
2002-12 Albrecht Schmidt (UVA) Processing XML in Database Systems
2002-13 Hongjing Wu (TUE) A Reference Architecture for Adaptive Hypermedia Applications
2002-14 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Programming and

Verifying Multi-Agent Systems
2002-15 Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams

for Workflow Modelling
2002-16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and Applications
2002-17 Stefan Manegold (UVA) Understanding, Modeling, and Improving Main-Memory

Database Performance

2003
2003-01 Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Structured Environments
2003-02 Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive Systems
2003-03 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in

Virtual Reality Exposure Therapy
2003-04 Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology
2003-05 Jos Lehmann (UVA) Causation in Artificial Intelligence and Law - A modelling approach
2003-06 Boris van Schooten (UT) Development and specification of virtual environments
2003-07 Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks
2003-08 Yongping Ran (UM) Repair Based Scheduling
2003-09 Rens Kortmann (UM) The resolution of visually guided behaviour
2003-10 Andreas Lincke (UvT) Electronic Business Negotiation: Some experimental studies on the interaction

between medium, innovation context and culture
2003-11 Simon Keizer (UT) Reasoning under Uncertainty in Natural Language Dialogue

using Bayesian Networks
2003-12 Roeland Ordelman (UT) Dutch speech recognition in multimedia information retrieval
2003-13 Jeroen Donkers (UM) Nosce Hostem - Searching with Opponent Models



SIKS Dissertatiereeks 307

2003-14 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across
ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems
2003-16 Menzo Windhouwer (CWI) Feature Grammar Systems - Incremental Maintenance of Indexes to

Digital Media Warehouses
2003-17 David Jansen (UT) Extensions of Statecharts with Probability, Time, and Stochastic Timing
2003-18 Levente Kocsis (UM) Learning Search Decisions

2004
2004-01 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents, Founded in Logic
2004-02 Lai Xu (UvT) Monitoring Multi-party Contracts for E-business
2004-03 Perry Groot (VU) A Theoretical and Empirical Analysis of Approximation in

Symbolic Problem Solving
2004-04 Chris van Aart (UVA) Organizational Principles for Multi-Agent Architectures
2004-05 Viara Popova (EUR) Knowledge discovery and monotonicity
2004-06 Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling Techniques
2004-07 Elise Boltjes (UM) Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar

abstract denken, vooral voor meisjes
2004-08 Joop Verbeek(UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale

politiële gegevensuitwisseling en digitale expertise
2004-09 Martin Caminada (VU) For the Sake of the Argument; explorations into argument-based reasoning
2004-10 Suzanne Kabel (UVA) Knowledge-rich indexing of learning-objects
2004-11 Michel Klein (VU) Change Management for Distributed Ontologies
2004-12 The Duy Bui (UT) Creating emotions and facial expressions for embodied agents
2004-13 Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how to Play
2004-14 Paul Harrenstein (UU) Logic in Conflict. Logical Explorations in Strategic Equilibrium
2004-15 Arno Knobbe (UU) Multi-Relational Data Mining
2004-16 Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning
2004-17 Mark Winands (UM) Informed Search in Complex Games
2004-18 Vania Bessa Machado (UvA) Supporting the Construction of Qualitative Knowledge Models
2004-19 Thijs Westerveld (UT) Using generative probabilistic models for multimedia retrieval
2004-20 Madelon Evers (Nyenrode) Learning from Design: facilitating multidisciplinary design teams

2005
2005-01 Floor Verdenius (UVA) Methodological Aspects of Designing Induction-Based Applications
2005-02 Erik van der Werf (UM)) AI techniques for the game of Go
2005-03 Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of Language
2005-04 Nirvana Meratnia (UT) Towards Database Support for Moving Object data
2005-05 Gabriel Infante-Lopez (UVA) Two-Level Probabilistic Grammars for Natural Language Parsing
2005-06 Pieter Spronck (UM) Adaptive Game AI
2005-07 Flavius Frasincar (TUE) Hypermedia Presentation Generation for Semantic Web Information Systems
2005-08 Richard Vdovjak (TUE) A Model-driven Approach for Building Distributed Ontology-based

Web Applications
2005-09 Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web Languages
2005-10 Anders Bouwer (UVA) Explaining Behaviour: Using Qualitative Simulation in

Interactive Learning Environments
2005-11 Elth Ogston (VU) Agent Based Matchmaking and Clustering -

A Decentralized Approach to Search
2005-12 Csaba Boer (EUR) Distributed Simulation in Industry
2005-13 Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen
2005-14 Borys Omelayenko (VU) Web-Service configuration on the Semantic Web;

Exploring how semantics meets pragmatics
2005-15 Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes
2005-16 Joris Graaumans (UU) Usability of XML Query Languages
2005-17 Boris Shishkov (TUD) Software Specification Based on Re-usable Business Components
2005-18 Danielle Sent (UU) Test-selection strategies for probabilistic networks



308 SIKS Dissertatiereeks

2005-19 Michel van Dartel (UM) Situated Representation
2005-20 Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and Perspectives
2005-21 Wijnand Derks (UT) Improving Concurrency and Recovery in Database Systems by

Exploiting Application Semantics

2006
2006-01 Samuil Angelov (TUE) Foundations of B2B Electronic Contracting
2006-02 Cristina Chisalita (VU) Contextual issues in the design and use of

information technology in organizations
2006-03 Noor Christoph (UVA) The role of metacognitive skills in learning to solve problems
2006-04 Marta Sabou (VU) Building Web Service Ontologies
2006-05 Cees Pierik (UU) Validation Techniques for Object-Oriented Proof Outlines
2006-06 Ziv Baida (VU) Software-aided Service Bundling - Intelligent Methods & Tools

for Graphical Service Modeling
2006-07 Marko Smiljanic (UT) XML schema matching –

balancing efficiency and effectiveness by means of clustering
2006-08 Eelco Herder (UT) Forward, Back and Home Again - Analyzing User Behavior on the Web
2006-09 Mohamed Wahdan (UM) Automatic Formulation of the Auditor’s Opinion
2006-10 Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
2006-11 Joeri van Ruth (UT) Flattening Queries over Nested Data Types
2006-12 Bert Bongers (VU) Interactivation - Towards an e-cology of people,

our technological environment, and the arts
2006-13 Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information Exchanging Agents
2006-14 Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign -

towards a Theory of Requirements Change
2006-15 Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain
2006-16 Carsten Riggelsen (UU) Approximation Methods for Efficient Learning of Bayesian Networks
2006-17 Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on a Mobile Device
2006-18 Valentin Zhizhkun (UVA) Graph transformation for Natural Language Processing
2006-19 Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic Approach
2006-20 Marina Velikova (UvT) Monotone models for prediction in data mining
2006-21 Bas van Gils (RUN) Aptness on the Web
2006-22 Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation
2006-23 Ion Juvina (UU) Development of Cognitive Model for Navigating on the Web
2006-24 Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources
2006-25 Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary MCMC
2006-26 Vojkan Mihajlovic (UT) Score Region Algebra:

A Flexible Framework for Structured Information Retrieval
2006-27 Stefano Bocconi (CWI) Vox Populi: generating video documentaries from

semantically annotated media repositories
2006-28 Borkur Sigurbjornsson (UVA) Focused Information Access using XML Element Retrieval

2007
2007-01 Kees Leune (UvT) Access Control and Service-Oriented Architectures
2007-02 Wouter Teepe (RUG) Reconciling Information Exchange and Confidentiality: A Formal Approach
2007-03 Peter Mika (VU) Social Networks and the Semantic Web
2007-04 Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in Multi-agent Systems:

a dialogue-based approach
2007-05 Bart Schermer (UL) Software Agents, Surveillance, and the Right to Privacy:

a Legislative Framework for Agent-enabled Surveillance
2007-06 Gilad Mishne (UVA) Applied Text Analytics for Blogs
2007-07 Natasa Jovanovic’ (UT) To Whom It May Concern -

Addressee Identification in Face-to-Face Meetings
2007-08 Mark Hoogendoorn (VU) Modeling of Change in Multi-Agent Organizations
2007-09 David Mobach (VU) Agent-Based Mediated Service Negotiation
2007-10 Huib Aldewereld (UU) Autonomy vs. Conformity:



SIKS Dissertatiereeks 309

an Institutional Perspective on Norms and Protocols
2007-11 Natalia Stash (TUE) Incorporating Cognitive/Learning Styles in a

General-Purpose Adaptive Hypermedia System
2007-12 Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision Support:

A Rational Approach to Dynamic Decision-Making under Uncertainty
2007-13 Rutger Rienks (UT) Meetings in Smart Environments; Implications of Progressing Technology
2007-14 Niek Bergboer (UM) Context-Based Image Analysis
2007-15 Joyca Lacroix (UM) NIM: a Situated Computational Memory Model
2007-16 Davide Grossi (UU) Designing Invisible Handcuffs. Formal investigations in

Institutions and Organizations for Multi-agent Systems
2007-17 Theodore Charitos (UU) Reasoning with Dynamic Networks in Practice
2007-18 Bart Orriens (UvT) On the development an management of adaptive business collaborations
2007-19 David Levy (UM) Intimate relationships with artificial partners
2007-20 Slinger Jansen (UU) Customer Configuration Updating in a Software Supply Network
2007-21 Karianne Vermaas (UU) Fast diffusion and broadening use: A research on residential adoption and

usage of broadband internet in the Netherlands between 2001 and 2005
2007-22 Zlatko Zlatev (UT) Goal-oriented design of value and process models from patterns
2007-23 Peter Barna (TUE) Specification of Application Logic in Web Information Systems
2007-24 Georgina Ramrez Camps (CWI) Structural Features in XML Retrieval
2007-25 Joost Schalken (VU) Empirical Investigations in Software Process Improvement

2008
2008-01 Katalin Boer-Sorbn (EUR) Agent-Based Simulation of Financial Markets:

A modular,continuous-time approach
2008-02 Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling and Analysis of Organizations
2008-03 Vera Hollink (UVA) Optimizing hierarchical menus: a usage-based approach
2008-04 Ander de Keijzer (UT) Management of Uncertain Data - towards unattended integration
2008-05 Bela Mutschler (UT) Modeling and simulating causal dependencies on process-aware

information systems from a cost perspective
2008-06 Arjen Hommersom (RUN) On the Application of Formal Methods to Clinical Guidelines,

an Artificial Intelligence Perspective
2008-07 Peter van Rosmalen (OU) Supporting the tutor in the design and support of adaptive e-learning
2008-08 Janneke Bolt (UU) Bayesian Networks: Aspects of Approximate Inference
2008-09 Christof van Nimwegen (UU) The paradox of the guided user: assistance can be counter-effective
2008-10 Wauter Bosma (UT) Discourse oriented summarization
2008-11 Vera Kartseva (VU) Designing Controls for Network Organizations: A Value-Based Approach
2008-12 Jozsef Farkas (RUN) A Semiotically Oriented Cognitive Model of Knowledge Representation
2008-13 Caterina Carraciolo (UVA) Topic Driven Access to Scientific Handbooks
2008-14 Arthur van Bunningen (UT) Context-Aware Querying; Better Answers with Less Effort
2008-15 Martijn van Otterlo (UT) The Logic of Adaptive Behavior: Knowledge Representation and Algorithms

for the Markov Decision Process Framework in First-Order Domains.
2008-16 Henriette van Vugt (VU) Embodied agents from a user’s perspective
2008-17 Martin Op ’t Land (TUD) Applying Architecture and Ontology to the Splitting and Allying of Enterprises
2008-18 Guido de Croon (UM) Adaptive Active Vision
2008-19 Henning Rode (UT) From Document to Entity Retrieval:

Improving Precision and Performance of Focused Text Search
2008-20 Rex Arendsen (UVA) Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie

van elektronisch berichtenverkeer met de overheid op de administratieve lasten
van bedrijven

2008-21 Krisztian Balog (UVA) People Search in the Enterprise
2008-22 Henk Koning (UU) Communication of IT-Architecture
2008-23 Stefan Visscher (UU) Bayesian network models for the management of

ventilator-associated pneumonia
2008-24 Zharko Aleksovski (VU) Using background knowledge in ontology matching
2008-25 Geert Jonker (UU) Efficient and Equitable Exchange in Air Traffic Management Plan Repair

using Spender-signed Currency



310 SIKS Dissertatiereeks

2008-26 Marijn Huijbregts (UT) Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled
2008-27 Hubert Vogten (OU) Design and Implementation Strategies for IMS Learning Design
2008-28 Ildiko Flesch (RUN) On the Use of Independence Relations in Bayesian Networks
2008-29 Dennis Reidsma (UT) Annotations and Subjective Machines -

Of Annotators, Embodied Agents, Users, and Other Humans
2008-30 Wouter van Atteveldt (VU) Semantic Network Analysis:

Techniques for Extracting, Representing and Querying Media Content
2008-31 Loes Braun (UM) Pro-Active Medical Information Retrieval
2008-32 Trung H. Bui (UT) Toward Affective Dialogue Management using

Partially Observable Markov Decision Processes
2008-33 Frank Terpstra (UVA) Scientific Workflow Design; theoretical and practical issues
2008-34 Jeroen de Knijf (UU) Studies in Frequent Tree Mining
2008-35 Ben Torben Nielsen (UvT) Dendritic morphologies: function shapes structure

2009
2009-01 Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models
2009-02 Willem Robert van Hage (VU) Evaluating Ontology-Alignment Techniques
2009-03 Hans Stol (UvT) A Framework for Evidence-based Policy Making Using IT
2009-04 Josephine Nabukenya (RUN) Improving the Quality of Organisational Policy Making

using Collaboration Engineering
2009-05 Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge Intensive Tasks -

Based on Knowledge, Cognition, and Quality
2009-06 Muhammad Subianto (UU) Understanding Classification
2009-07 Ronald Poppe (UT) Discriminative Vision-Based Recovery and Recognition of Human Motion
2009-08 Volker Nannen (VU) Evolutionary Agent-Based Policy Analysis in Dynamic Environments
2009-09 Benjamin Kanagwa (RUN) Design, Discovery and Construction of Service-oriented Systems
2009-10 Jan Wielemaker (UVA) Logic programming for knowledge-intensive interactive applications
2009-11 Alexander Boer (UVA) Legal Theory, Sources of Law & the Semantic Web
2009-12 Peter Massuthe (TUE) Operating Guidelines for Services
2009-13 Steven de Jong (UM) Fairness in Multi-Agent Systems
2009-14 Maksym Korotkiy (VU) From ontology-enabled services to service-enabled ontologies

(making ontologies work in e-science with ONTO-SOA)
2009-15 Rinke Hoekstra (UVA) Ontology Representation - Design Patterns and Ontologies that Make Sense
2009-16 Fritz Reul (UvT) New Architectures in Computer Chess
2009-17 Laurens van der Maaten (UvT) Feature Extraction from Visual Data
2009-18 Fabian Groffen (CWI) Armada, An Evolving Database System
2009-19 Valentin Robu (CWI) Modeling Preferences, Strategic Reasoning and Collaboration

in Agent-Mediated Electronic Markets
2009-20 Bob van der Vecht (UU) Adjustable Autonomy: Controling Influences on Decision Making
2009-21 Stijn Vanderlooy (UM) Ranking and Reliable Classification
2009-22 Pavel Serdyukov (UT) Search For Expertise: Going beyond direct evidence
2009-23 Peter Hofgesang (VU) Modelling Web Usage in a Changing Environment
2009-24 Annerieke Heuvelink (VU) Cognitive Models for Training Simulations


